WO2021057488A1 - 车载充电系统及具有其的车辆 - Google Patents

车载充电系统及具有其的车辆 Download PDF

Info

Publication number
WO2021057488A1
WO2021057488A1 PCT/CN2020/114445 CN2020114445W WO2021057488A1 WO 2021057488 A1 WO2021057488 A1 WO 2021057488A1 CN 2020114445 W CN2020114445 W CN 2020114445W WO 2021057488 A1 WO2021057488 A1 WO 2021057488A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
switch tube
circuit module
diode
node
Prior art date
Application number
PCT/CN2020/114445
Other languages
English (en)
French (fr)
Inventor
杨柳
吴昊
刘宇
许兴发
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2021057488A1 publication Critical patent/WO2021057488A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to an on-board charging system and a vehicle including the on-board charging system.
  • Fig. 1 is a circuit diagram of an on-board charging system in the related art.
  • the system includes two-stage circuits Part1' and Part2'.
  • Part1' is connected to the power grid, and Part2' is connected to the battery pack.
  • Part1' realizes AC-DC conversion and power factor correction, and outputs DC voltage.
  • Part2’ is a DC-DC converter that outputs a suitable voltage to charge the battery pack.
  • a large-capacity electrolytic capacitor C1' is required between Part1' and Part2', which increases the volume and cost of the system, and the electrolytic capacitor C1' has problems such as short life and poor shock resistance. Conducive to the reliability of the system.
  • the present disclosure provides a vehicle-mounted charging system and a vehicle adopting the vehicle-mounted charging system.
  • the vehicle-mounted charging system does not need a large-capacity electrolytic capacitor, reduces the system volume, reduces the cost, and improves the system stability.
  • the vehicle-mounted charging system of the embodiment of the first aspect of the present disclosure includes: a first resonant circuit module, the first end of the first resonant circuit module is connected to the first end of the electric unit, and is used to supply electricity for the first half cycle Signal conversion processing; a second resonant circuit module, the first end of the second resonant circuit module is connected to the second end of the electrical unit, and is used to perform conversion processing on the electrical signal for the second half cycle of the power supply; wherein, The first resonant circuit module includes a first transformer, the second resonant circuit module includes a second transformer, and the first transformer and the second transformer share the same magnetic core; the gate circuit module, the gate circuit The first end of the module is connected to the first end of the electric unit, the second end of the gating circuit module is connected to the second end of the electric unit, and the third end of the gating circuit module is connected to the The second end of the first resonant circuit module is connected, and the fourth end of the gate circuit module is connected to
  • the second end of the first resonant circuit module is connected to the second end of the electrical unit, or, when a second gate control signal is received, the second end of the second resonant circuit module is controlled to be connected to the second end of the electric unit.
  • the first end of the electrical unit is turned on; the control module is configured to output the first gate control signal during the first half period of power supply, and control the first resonant circuit module according to the timing signal of the first half period of power supply, Alternatively, the second gating control signal is output during the second half period of power supply, and the second resonance circuit module is controlled according to the timing signal of the second half period of power supply.
  • the control module controls the gate circuit module according to the power supply cycle signal to gate the first resonant circuit module or the second resonant circuit module .
  • Making the output signal of the resonant circuit module a steamed bun wave therefore, does not need a large-capacity electrolytic capacitor for filtering, so the system adopts a non-electrolytic capacitor design, only a small-capacity capacitor, such as a film capacitor, is used to reduce the electrolytic capacitor part
  • the cost and volume of the system improve the reliability and life of the system; and, the first resonant circuit module and the second resonant circuit module share the same magnetic core, which can reduce the use of magnetic cores, increase power density, and reduce costs.
  • the vehicle according to the embodiment of the second aspect of the present disclosure includes a battery pack and the on-board charging system.
  • the cost can be reduced, the reliability can be improved, and the shock resistance level can be improved.
  • Figure 1 is a circuit diagram of a two-way vehicle charger in the related art
  • Fig. 2 is a functional block diagram of an on-board charging system according to an embodiment of the present disclosure
  • Fig. 3 is a functional block diagram of an on-board charging system according to another embodiment of the present disclosure.
  • Fig. 4 is a circuit diagram of an on-board charging system according to an embodiment of the present disclosure.
  • Fig. 5 is a circuit diagram of a vehicle-mounted charging system according to another embodiment of the present disclosure.
  • FIG. 6 is a block diagram of a vehicle according to an embodiment of the present disclosure.
  • the vehicle-mounted charging system according to an embodiment of the present disclosure will be described below with reference to FIGS. 2 to 5.
  • the vehicle-mounted charging system 100 of an embodiment of the present disclosure includes a first resonant circuit module 10, a second resonant circuit module 20, and a gating circuit Module 30 and control module 50.
  • the first resonance circuit module 10 is used to perform conversion processing on the electric signal of the first half period of power supply, and the first end of the first resonance circuit module 10 is connected to the first end of the electric unit 60.
  • the second resonant circuit module 20 is used to perform conversion processing on the electric signal of the second half cycle of the power supply, and the first end of the second resonant circuit module 20 is connected to the second end of the electric unit 60.
  • the electrical unit 60 may include a power grid, electrical equipment, and the like.
  • the gating circuit module 30 is used to control the second end of the first resonant circuit module 10 to be connected to the second end of the electric unit 60 when the corresponding switch tube is turned on when the first gating control signal is received.
  • the first resonant circuit module 10 is activated, or, when the second gating control signal is received, the corresponding switch tube is turned on, and the second end of the second resonant circuit module 20 is controlled to be connected to the first end of the electric unit 60, That is, the second resonance circuit module 20 is activated at this time.
  • the first end of the gate circuit module 30 is connected to the first end of the electric unit 60, the second end of the gate circuit module 30 is connected to the second end of the electric unit 60, and the third end of the gate circuit module 30 is connected to the first end.
  • the second end of the resonant circuit module 10 is connected, and the fourth end of the gate circuit module 30 is connected to the second end of the second resonant circuit module 20.
  • the first resonant circuit module 10 includes a first transformer T1
  • the second resonant circuit module 10 includes a second transformer T2.
  • the first transformer T1 and the second transformer T2 share the same magnetic core, that is, the transformer is magnetically coupled to reduce the use of magnetic cores. , Improve power density, can save costs.
  • the control module 50 is configured to output a first gate control signal during the first half cycle of power supply, and control the first resonant circuit module 10 according to the timing signal of the first half cycle of power supply, or output a second gate control signal during the second half cycle of power supply.
  • the control signal is gated, and the second resonance circuit module 20 is controlled according to the timing signal of the second half cycle of the power supply.
  • the electric unit 60 when charging, the electric unit 60 may be the grid, and the control module 50 detects the cycle information of the alternating current output from the grid, and outputs the first strobe control signal during the first half cycle of power supply, such as the positive half cycle.
  • the power circuit module 30 receives the first gate control signal, and its corresponding switch tube is turned on, and controls the second end of the first resonant circuit module 10 to be connected to the second end of the power grid. At this time, the power supply from the power grid is provided to the first resonance.
  • the circuit module 10, the control module 50 controls the first resonant circuit module 10 according to the timing signal of the first half cycle of the power supply.
  • the first resonant circuit module 10 converts the AC signal of the positive half cycle of the power grid into a direct current signal, and inputs it to the subsequent circuit to Charge the battery pack 70.
  • control module 50 when the control module 50 detects the second half-cycle of the power supply, such as a negative half-cycle electrical signal, it outputs a second gating control signal.
  • the gating circuit module 30 receives the second gating control signal, and its corresponding switch is turned on. , Controlling the second end of the second resonant circuit module 20 to connect with the first end of the power grid.
  • the power supply from the power grid is provided to the second resonant circuit module 10, and the control module 50 controls the second terminal according to the timing signal of the second half cycle of the power supply.
  • the resonant circuit module 20 and the second resonant circuit module 20 convert the AC signal of the negative half cycle of the power grid into a DC signal, and input it to the subsequent circuit to charge the battery pack 70.
  • the positive and negative periodic electrical signals of the power grid are selected by the gating circuit module 30.
  • the control module 50 controls the first resonant circuit module 10 to output a positive direct current signal
  • the control module 50 controls the second resonant circuit module 20 to output a positive direct current signal.
  • the direct current signal is provided to the subsequent circuit, that is, the direct current signal provided to the subsequent circuit is a steamed bun wave signal. Therefore, there is no need to use a large
  • the electrolytic capacitor with a large capacity can be used for filtering, and it can be filtered by a common capacitor unit.
  • the resonant circuit module can be gated according to the power supply cycle, and the control module 50 respectively controls the first resonant circuit module 10 and the first resonant circuit module 10 according to the timing of the corresponding power supply cycle.
  • the second resonant circuit module 20 is controlled so that the DC signal provided by the resonant circuit module to the subsequent circuit is a steamed bun wave, so there is no need to use a large-capacity electrolytic capacitor, which can reduce the volume and cost of the system.
  • the design of a non-electrolytic capacitor does not need to consider the life of the electrolytic capacitor.
  • Anti-vibration problem which is beneficial to provide the stability of the charging system, and the first resonant circuit module 10 and the second resonant circuit module 20 share the same magnetic core, which can reduce space, increase power density, and reduce costs.
  • FIG. 3 is a block diagram of a vehicle-mounted charging system according to another embodiment of the present disclosure.
  • the vehicle-mounted charging system 100 further includes a DC conversion circuit module 40, and the DC conversion circuit module 40 is used for DC conversion of the input electrical signal , For example, reduce the DC voltage or increase the DC voltage.
  • the DC conversion circuit module 40 may adopt a BOOST circuit.
  • the first end of the DC conversion circuit module 40 is connected to the first resonant circuit module 10 and the second resonant circuit module 20 respectively, and the second end of the DC conversion circuit module 40 is connected to the battery pack 70.
  • the first resonance circuit module 10 outputs a DC signal to the DC conversion circuit module 40, or, during the second half cycle of power supply, the second resonance circuit module 20 outputs a DC signal to The DC conversion circuit module 40 converts the input DC electric signal to convert the electric signal required by the battery pack 70 and transmits it to the battery pack 70 to charge the battery pack 70.
  • the on-vehicle charging system 100 of the embodiment of the present disclosure has the DC conversion circuit module 40 rear-mounted. Therefore, the charging voltage or charging power output to the battery pack 70 can be adjusted by controlling the duty cycle of the DC conversion circuit module 40, which can be broadened. Adapting the voltage range of the battery pack 70 can also shorten the charging time of the battery pack 70 and the charging efficiency of the battery pack 70.
  • FIG. 4 is a circuit diagram of an on-board charging system according to an embodiment of the present disclosure, in which the electric unit 60 is a power grid.
  • the gate circuit module 30 includes a first switching tube Q1 and a second switching tube Q2.
  • the first terminal of the first switch tube Q1 is connected to the first terminal of the electric unit 60, the second terminal of the first switch tube Q1 is connected to the second terminal of the first resonance circuit module 10, and the control terminal of the first switch tube Q1 is connected to The control module 50 is connected; the first end of the second switching tube Q2 is connected to the second end of the electric unit 60, the second end of the second switching tube Q2 is connected to the second end of the second resonance circuit module 20, and the second switching tube Q2 is connected to the second end of the second resonance circuit module 20.
  • the control terminal of Q2 is connected to the control module 50.
  • the switching sequence of the control module 50 for the gate circuit module 30 is that during the positive half cycle of the supply voltage, the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the first resonance is gated.
  • Circuit module 10 in the negative half cycle of the supply voltage, the first switching tube Q1 is turned off, the second switching tube Q2 is turned on, and the second resonant circuit module 20 is gated.
  • different resonant circuit modules are gated according to the power supply cycle signal, so that the voltage signals output by the resonant circuit modules are in the same direction, that is, the steamed bread wave information is output to the DC conversion circuit module 40.
  • the first resonant circuit module 10 and the second resonant circuit module 20 may adopt a symmetrical half-bridge LLC resonant circuit to realize isolation and voltage regulation, and perform AC-DC conversion on the input electrical signal.
  • the first resonant circuit module 10 includes a first capacitor C1, a third switching tube Q3, a fourth switching tube Q4, a second capacitor C2, a third capacitor C3, a first transformer T1, and a fifth switching tube Q5. ,
  • the first end of the first capacitor C1 is connected to the first end of the electric unit 60, and the second end of the first capacitor C1 is connected to the second end of the first switch Q1.
  • the first capacitor C1 can filter the input electrical signal and reduce the interference of the electrical signal.
  • the first terminal of the third switch tube Q3 is connected to the first terminal of the first capacitor C1, the control terminal of the third switch tube Q3 is connected to the control module 50, and the second terminal of the third switch tube Q3 is connected to the terminal of the fourth switch tube Q4.
  • the first terminal is connected, the second terminal of the fourth switch tube Q4 is connected to the second terminal of the first capacitor C1, the control terminal of the fourth switch tube Q4 is connected to the control module 50, and the second terminal of the third switch tube Q3 is connected to the second terminal of the first capacitor C1.
  • the first end of the second capacitor C2 is connected to the first end of the third switch Q3, the second end of the second capacitor C2 is connected to the first end of the third capacitor C3, and the second end of the third capacitor C3 is connected to the fourth end of the third capacitor C3.
  • the second terminal of the switch tube Q4 is connected, and a second node O2 is provided between the second terminal of the second capacitor C2 and the first terminal of the third capacitor C3.
  • the first transformer T1 includes a first coil W1 and a second coil W2. A first end of the first coil W1 is connected to a first node O1 through a first inductor L1, and a second end of the first coil W1 is connected to a second node O2.
  • the first terminal of the fifth switch tube Q5 is connected to the first terminal of the DC conversion circuit module 40, the control terminal of the fifth switch tube Q5 is connected to the control module 50, and the second terminal of the fifth switch tube Q5 is connected to the sixth switch tube Q6.
  • the first end of the sixth switch tube Q6 is connected to the second end of the DC conversion circuit module 40, the control end of the sixth switch tube Q6 is connected to the control module 50, and the second end of the fifth switch tube Q5
  • the first end of the fourth capacitor C4 is respectively connected to the first end of the fifth switch tube Q5 and the first end of the DC conversion circuit module 40, and the second end of the fourth capacitor C4 is connected to the first end of the fifth capacitor C5,
  • the second end of the fifth capacitor C5 is connected to the first end of the sixth switch tube Q6 and the second end of the DC conversion circuit module 40, respectively.
  • the second end of the fourth capacitor C4 is connected to the first end of the fifth capacitor C5.
  • There is a fourth node O4 and the fourth node O4 is connected to the second end of the second coil W2.
  • the fifth switch tube Q5, the sixth switch tube Q6, the fourth capacitor C4, and the fifth capacitor C5 constitute a rectifier circuit structure.
  • the battery pack 70 when the battery pack 70 is charged, when the grid voltage is a positive half cycle, the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the first resonance circuit module 10 is gated; the power grid; The voltage is applied to the first capacitor C1, and the third switching tube Q3 and the fourth switching tube Q4 are turned on and off at a fixed frequency and a fixed duty cycle through the control module 50, and the second capacitor C2 and the third capacitor C3 are charged, Discharging, an AC voltage is formed between the midpoint of the third switch tube Q3 and the fourth switch tube Q4, that is, the first node O1, and the midpoint of the second capacitor C2 and the third capacitor C3, that is, the second node O2.
  • the rectifier circuit composed of the fifth switching tube Q5, the sixth switching tube Q6, the fourth capacitor C4, and the fifth capacitor C5 is connected to the fifth switching tube Q5 and the sixth switching tube Q6.
  • Turn off control, and charge and discharge the fourth capacitor C4 and the fifth capacitor C5, and the midpoints of the fifth switch tube Q5 and the sixth switch tube Q6 are the third node O3, the fourth capacitor C4, and the fifth capacitor C5.
  • the midpoint of the AC voltage between the fourth node O4 is converted into a DC voltage output, that is, the voltage provided to the DC conversion circuit module 40, so as to achieve AC-DC conversion.
  • the DC conversion circuit module 40 includes a sixth capacitor C6, a seventh switch tube Q7, an eighth switch tube Q8, and a seventh capacitor C7.
  • the first end of the sixth capacitor C6 is respectively connected to the first end of the fifth switch Q5 and the first end of the fourth capacitor C4, and the second end of the sixth capacitor C6 is respectively connected to the second end of the sixth switch Q6.
  • the sixth capacitor C6 is used to filter the input direct current signal.
  • the sixth capacitor C6 can be a small-capacity capacitor such as a film capacitor. Large-capacity electrolytic capacitors.
  • the first terminal of the seventh switching tube Q7 is connected to the first terminal of the battery pack 70, the control terminal of the seventh switching tube Q7 is connected to the control module 50, and the second terminal of the seventh switching tube Q7 is connected to the first terminal of the eighth switching tube Q8.
  • the seventh switch There is a fifth node O5 between the second terminal of the tube Q7 and the first terminal of the eighth switch tube Q8, and the fifth node O5 is connected to the first terminal of the sixth capacitor C6 through the third inductor L3;
  • One end is respectively connected to the first end of the seventh switch tube Q7 and the first end of the battery pack 70, and the second end of the seventh capacitor C7 is respectively connected to the second end of the eighth switch tube Q8 and the second end of the battery pack 70. Connected.
  • the second resonance circuit module 20 includes an eighth capacitor C8, a ninth switch tube Q9, a tenth switch tube Q10, a ninth capacitor C9, a tenth capacitor C10, a second transformer T2, and an eleventh switch tube.
  • the second transformer T2 and the first transformer T1 share the same magnetic core, which reduces the cost.
  • the first end of the eighth capacitor C8 is connected to the second end of the electric unit 60, and the second end of the eighth capacitor C8 is connected to the second end of the second switch Q2.
  • the first terminal of the ninth switch tube Q9 is connected to the first terminal of the eighth capacitor C8, the control terminal of the ninth switch tube Q9 is connected to the control module 50, and the second terminal of the ninth switch tube Q9 is connected to the first terminal of the tenth switch tube Q10.
  • the first terminal is connected, the second terminal of the tenth switch tube Q10 is connected to the second terminal of the eighth capacitor C8, the control terminal of the tenth switch tube Q10 is connected to the control module 50, and the second terminal of the ninth switch tube Q9 is connected to the second terminal of the eighth capacitor C8.
  • the first end of the ninth capacitor C9 is connected to the first end of the ninth switch tube Q9, the second end of the ninth capacitor C9 is connected to the first end of the tenth capacitor C10, and the second end of the tenth capacitor C10 is connected to the tenth capacitor C10.
  • the second terminal of the switch tube Q10 is connected, and a seventh node O7 is formed between the second terminal of the ninth capacitor C9 and the first terminal of the tenth capacitor C10.
  • the second transformer T2 includes a third coil W3 and a fourth coil T4.
  • the first end of the third coil T3 is connected to the sixth node O4 through the fourth inductor L4, and the second end of the third coil W3 is connected to the seventh node O7.
  • the first terminal of the eleventh switch tube Q10 is connected to the first terminal of the sixth capacitor C6, the control terminal of the eleventh switch tube Q11 is connected to the control module 50, and the second terminal of the eleventh switch tube Q11 is connected to the twelfth terminal.
  • the first end of the switching tube Q12 is connected, the second end of the twelfth switching tube Q12 is connected to the second end of the sixth capacitor C6, the control end of the twelfth switching tube Q12 is connected to the control module 50, and the eleventh switching tube is connected to the second end of the sixth capacitor C6.
  • the first end of the eleventh capacitor C11 is respectively connected to the first end of the eleventh switch Q11 and the first end of the sixth capacitor C6, and the second end of the eleventh capacitor C11 is connected to the first end of the twelfth capacitor C12.
  • the second end of the twelfth capacitor C12 is connected to the second end of the twelfth switch tube Q12 and the second end of the sixth capacitor C6 respectively, and the second end of the eleventh capacitor C11 is connected to the second end of the twelfth capacitor C12.
  • the control module 50 controls the ninth switching tube Q9 and the tenth switching tube Q10 to turn on or off with a fixed frequency and a fixed duty cycle, as well as the ninth capacitor C9 and the tenth capacitor C10
  • the charging and discharging of the ninth switch tube Q9 and the tenth switch tube Q10 form an AC voltage between the middle point of the ninth switch tube Q9 and the tenth switch tube Q10, that is, the sixth node O6, and the middle point of the ninth capacitor C9 and the tenth capacitor C10, that is, the seventh node O7.
  • the eleventh switching tube Q11, the twelfth switching tube Q12, the eleventh capacitor C11 and the twelfth capacitor C12 form a rectifier circuit
  • the control module 50 passes through the eleventh switching tube Q11, the The turn-on or turn-off control of the twelfth switching tube Q12, the charging and discharging of the eleventh capacitor C11 and the twelfth capacitor C12, the eighth node is the midpoint of the eleventh switching tube Q11 and the twelfth switching tube Q12
  • the AC voltage between O8 and the midpoint of the eleventh capacitor C11 and the twelfth capacitor C12, that is, the ninth node O9, is converted into a DC voltage output, that is, the voltage across the sixth capacitor C6 to achieve AC-DC conversion.
  • the voltage on the sixth capacitor C6 is proportional to the absolute value of the grid voltage. Since the output voltage waveforms of the first resonant circuit module 10 and the second resonant circuit module 20 are steamed, there is no need for a large-capacity electrolytic capacitor for filtering, so C6 can be Choose small-capacity capacitors, such as film capacitors.
  • the DC conversion circuit module 40 adjusts the input DC voltage to provide it to the battery pack 70.
  • the eighth switch tube Q8 is turned on, the current of the third inductor L3 rises, as shown in FIG. 4, the current flow is A ⁇ L3 ⁇ Q8 ⁇ B; the eighth switch tube Q8 is turned off, and the third inductor L3 The current drops, as shown in Figure 4, the current flow is A ⁇ L3 ⁇ Q7 ⁇ Battery Pack ⁇ B.
  • the eighth switch tube Q8 is controlled by the control module 50 to turn on and off at a high frequency, so that the current waveform of the third inductor L3 tracks the voltage of the sixth capacitor C6, which can achieve power factor correction, and the current amplitude of the third inductor L3 depends on Charging power.
  • the circuit structure of the on-board charging system 10 shown in FIG. 4 can also work in the discharging mode, that is, to discharge the battery pack 70 to supply power to the electrical equipment.
  • the specific process is as follows.
  • the battery pack 70 discharges and outputs DC power
  • the DC conversion circuit module 40 performs DC-DC conversion to achieve the voltage regulation function
  • the control module 50 controls the gate circuit module 30 according to the power supply cycle signal
  • the two switch tubes realize gating to gate the first resonant circuit module 10 or the second resonant circuit module 20, and output power frequency alternating current to supply power to the electrical equipment or feed back to the power grid.
  • the switching sequence of the DC conversion circuit module 40 is: when the seventh switching tube Q7 is turned on, the current of the third inductor L3 rises, and the battery pack 70 transfers energy to the subsequent circuit; the seventh switching tube Q7 is turned off At this time, the current of the third inductor L3 decreases, and it flows freely through the eighth switch tube Q8, and transfers energy to the subsequent stage.
  • the control module 50 adjusts the output voltage, that is, the voltage across the sixth capacitor C6, through the turn-on and turn-off control of the seventh switching tube Q7. The voltage amplitude depends on the switching duty cycle of the seventh switching tube Q7 and the voltage of the battery pack 70 .
  • the first resonant circuit module 10 is gated when the positive half cycle of the alternating current is output. Specifically, the fifth switching tube Q5 and the sixth switching tube Q6 are turned on or off at a fixed frequency and a fixed duty cycle, and the fourth capacitor C4 and the fifth capacitor C5 are charged and discharged. An AC voltage is formed between the midpoint of the switch tube Q6, that is, the third node O3, the midpoint of the fourth capacitor C4, and the midpoint of the fifth capacitor C5, that is, the fourth node O4.
  • the third switching tube Q3, the fourth switching tube Q4, the second capacitor C2 and the third capacitor C3 realize the rectification function, and the third switching tube Q3 and the fourth switching tube Q4 are turned on or off.
  • the charging and discharging of the second capacitor C2 and the third capacitor C3 are the midpoints of the first node O1 and the second capacitor C2 and the third capacitor C3. That is, the AC voltage between the second node O2 is converted into the positive half cycle part of the power frequency AC power, that is, the voltage across the first capacitor C1, so as to realize the positive half cycle part of the power frequency AC power output.
  • the second resonance circuit module 20 is gated.
  • the eleventh switching tube Q11 and the twelfth switching tube Q12 are turned on or off at a fixed frequency and a fixed duty cycle, and the eleventh capacitor C11 and the twelfth capacitor C12 are charged and discharged.
  • the eleventh switching tube Q11 An AC voltage is formed between the midpoint of the twelfth switch tube Q12, that is, the eighth node O8, and the midpoint of the eleventh capacitor C11 and the twelfth capacitor C12, that is, the ninth node O9.
  • the ninth switching tube Q9, the tenth switching tube Q10, the ninth capacitor C9, and the tenth capacitor C10 realize the rectification function.
  • the middle point of the ninth switching tube Q9 and the tenth switching tube Q10 is the seventh node O7 and the ninth capacitor C9 and the tenth
  • the midpoint of the capacitor C10, that is, the AC voltage between the sixth node O6 is converted into the negative half cycle of the power frequency AC, that is, the voltage across the eighth capacitor C8, to achieve the negative half cycle of the power frequency AC output.
  • the switching sequence of the gating circuit module 30 is: when the system outputs a positive half-cycle signal of alternating current, the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the first resonant circuit module 10 is gated; In the case of a negative half-period signal, the first switching tube Q1 is turned off, the second switching tube Q2 is turned on, and the second resonant circuit module 20 is gated.
  • the on-board charging system 100 of the embodiment of the present disclosure further includes a unidirectional charging circuit structure.
  • FIG. 5 is a circuit diagram of a vehicle-mounted charging system according to an embodiment of the present disclosure.
  • the vehicle-mounted charging system 100 according to an embodiment of the present disclosure will be described below with reference to FIG. 5.
  • the first resonant circuit module 10 includes a thirteenth capacitor C13, a thirteenth switch tube Q13, a fourteenth switch tube Q14, a fourteenth capacitor C14, a fifteenth capacitor C15, a first transformer T1, The first diode D1, the second diode D2, the third diode D3, and the fourth diode D4.
  • the first end of the thirteenth capacitor C13 is connected to the first end of the electric unit 60 such as the power grid, and the second end of the thirteenth capacitor C13 is connected to the second end of the first switch tube Q1.
  • the thirteenth capacitor C13 is used to filter the electrical signal input from the grid to reduce interference.
  • the first terminal of the thirteenth switch tube Q13 is connected to the first terminal of the thirteenth capacitor C13, the control terminal of the thirteenth switch tube Q13 is connected to the control module 50, and the second terminal of the thirteenth switch tube Q13 is connected to the tenth terminal.
  • the first end of the four switch tube Q14 is connected, the second end of the fourteenth switch tube Q14 is connected to the second end of the thirteenth capacitor C13, and the control end of the fourteenth switch tube Q14 is connected to the control module 50.
  • the first transformer T1 includes a first coil W1 and a second coil W2.
  • the first end of the first coil W1 is connected to the tenth node O10 through the sixth inductor L6, and the second end of the first coil W1 is connected to the eleventh node O11. .
  • the first transformer T1 realizes voltage transformation and isolation.
  • the first end of the first diode D1 is connected to the first end of the DC conversion circuit module 40, the second end of the first diode D1 is connected to the first end of the second diode D2, and the second diode The second end of D2 is connected to the second end of the DC conversion circuit module 40.
  • the node O12 is connected to the first end of the second coil W2.
  • the first end of the third diode D3 is connected to the first end of the DC conversion circuit module 40, the second end of the third diode D3 is connected to the first end of the fourth diode D4, and the fourth diode D3 is connected to the first end of the fourth diode D4.
  • the second end of D4 is connected to the second end of the DC conversion circuit module 40, and there is a thirteenth node O13 between the second end of the third diode D3 and the first end of the fourth diode D4.
  • the node O13 is connected to the second end of the second coil W2.
  • the first diode D1, the second diode D2, the third diode D3, and the fourth diode D4 form a rectifier circuit.
  • the first switching tube Q1 when the battery pack 70 is charged, when the grid voltage is a positive half cycle, the first switching tube Q1 is turned on, the second switching tube Q2 is turned off, and the first resonant circuit module 10 is gated.
  • the grid voltage is applied to the thirteenth capacitor C13, and the thirteenth switching tube Q13 and the fourteenth switching tube Q14 are turned on or off at a fixed frequency and a fixed duty cycle through the control module 50.
  • the fourteenth capacitor C14, the tenth switching tube Q14 are turned on or off with a fixed frequency and a fixed duty cycle.
  • the five capacitor C15 is charged and discharged.
  • the midpoint of the thirteenth switch tube Q13 and the fourteenth switch tube Q14 is the tenth node O10, and the midpoint of the fourteenth capacitor C14 and the fifteenth capacitor C15 is the eleventh node O11.
  • AC voltage is formed between.
  • the rectifier circuit composed of the first diode D1, the second diode D2, the third diode D3, and the fourth diode D4 to rectify the AC voltage to form a DC voltage , That is, the voltage provided to the DC conversion circuit module 40 to achieve AC-DC conversion.
  • the DC conversion circuit module 40 includes a sixteenth capacitor C16, a fifth diode D5, a fifteenth switch tube Q15, and a seventeenth capacitor C17.
  • the first end of the sixteenth capacitor C16 is connected to the first end of the first diode D1 and the first end of the third diode D3 respectively, and the second end of the sixteenth capacitor C16 is connected to the second end of the second diode.
  • the second end of the pole tube D2 and the second end of the fourth diode D4 are connected.
  • the sixteenth capacitor C16 is used to filter the input electrical signal.
  • the first end of the fifth diode D5 is connected to the first end of the battery pack 70, and the second end of the fifth diode D5 is connected to the first end of the fifteenth switching tube Q15.
  • the second end is respectively connected to the second end of the sixteenth capacitor C16 and the second end of the battery pack 70, the control end of the fifteenth switch tube Q15 is connected to the control module 50, and the second end of the fifth diode D5 is connected to
  • the first end of the seventeenth capacitor C17 is respectively connected to the first end of the fifth diode D5 and the first end of the battery pack 70, and the second end of the seventeenth capacitor C17 is respectively connected to the first end of the fifteenth switch Q15.
  • the two ends and the second end of the battery pack 70 are connected.
  • the second resonance circuit module 20 includes an eighteenth capacitor C18, a sixteenth switching tube Q16, a seventeenth switching tube Q17, a nineteenth capacitor C19, a twentieth capacitor C20, and a second transformer T2,
  • the sixth diode D6, the seventh diode D7, the eighth diode D8 and the ninth diode D9, the second transformer T2 and the first transformer T1 share the same magnetic core to reduce the use of magnetic cores and reduce costs .
  • the first end of the eighteenth capacitor C18 is connected to the second end of the electric unit 60, for example, the power grid, and the second end of the eighteenth capacitor C18 is connected to the second end of the second switch tube Q2.
  • the eighteenth capacitor C18 is used to filter the electrical signal input from the power grid to reduce interference.
  • the first terminal of the sixteenth switch tube Q16 is connected to the first terminal of the eighteenth capacitor C18, the control terminal of the sixteenth switch tube Q16 is connected to the control module 50, and the second terminal of the sixteenth switch tube Q16 is connected to the tenth terminal.
  • the first end of the seventh switch tube Q17 is connected, the second end of the seventeenth switch tube Q17 is connected to the second end of the eighteenth capacitor C18, the control end of the seventeenth switch tube Q17 is connected to the control module 50, and the sixteenth switch tube Q17 is connected to the second end of the eighteenth capacitor C18.
  • the first end of the nineteenth capacitor C19 is connected to the first end of the sixteenth switch Q16, the second end of the nineteenth capacitor C19 is connected to the first end of the twentieth capacitor C20, and the second end of the twentieth capacitor C20 is The two ends are connected to the second end of the seventeenth switch tube Q17, and there is a sixteenth node O16 between the second end of the nineteenth capacitor C19 and the first end of the twentieth capacitor C20.
  • the second transformer T2 includes a third coil W3 and a fourth coil W4.
  • the first end of the third coil W3 is connected to the fifteenth node O15 through the eighth inductor L8, and the second end of the third coil W3 is connected to the sixteenth node O16. Connected.
  • the first end of the sixth diode D6 is connected to the first end of the sixteenth capacitor C16
  • the second end of the sixth diode D6 is connected to the first end of the seventh diode D7
  • the seventh diode is connected to the second end of the sixteenth capacitor C16.
  • the node O17 is connected to the first end of the fourth coil W4.
  • the first end of the eighth diode D8 is respectively connected to the first end of the sixth diode D6 and the first end of the sixteenth capacitor C16, and the second end of the eighth diode D8 is connected to the ninth diode
  • the first end of D9 is connected
  • the second end of the ninth diode D9 is connected to the second end of the seventh diode D7 and the second end of the sixteenth capacitor C16 respectively
  • the second end of the eighth diode D8 is
  • the sixth diode D6, the seventh diode D7, the eighth diode D8, and the ninth diode D9 form a rectifier circuit.
  • the first switching tube Q1 is turned off
  • the second switching tube Q2 is turned on
  • the second resonant circuit module 20 is gated.
  • the grid voltage is applied to the eighteenth capacitor C18
  • the control module 50 performs on or off control of the sixteenth switching tube Q16 and the seventeenth switching tube Q17 at a fixed frequency and a fixed duty cycle
  • the nineteenth The charging and discharging of the capacitor C19 and the twentieth capacitor C20 are at the midpoint of the sixteenth switching tube Q16 and the seventeenth switching tube Q17, that is, the fifteenth node O15, the nineteenth capacitor C19, and the twentieth capacitor C20.
  • the point is the AC voltage formed between the sixteenth node O16.
  • the rectifier circuit composed of the sixth diode D6, the seventh diode D7, the eighth diode D8, and the ninth diode D9 is provided to the subsequent stage.
  • the rectifier circuit will input
  • the AC voltage is rectified into a DC voltage, that is, the voltage across the sixteenth capacitor C16 to achieve AC-DC conversion.
  • the voltage on the sixteenth capacitor C16 is proportional to the absolute value of the grid voltage. Since the output voltage waveforms of the first resonant circuit module 10 and the second resonant circuit module 20 are steamed, there is no need for a large-capacity electrolytic capacitor for filtering, so C16 Optional small-capacity capacitors, such as film capacitors.
  • the DC conversion circuit module 40 adjusts the input DC voltage to provide it to the battery pack 70. Specifically, when the fifteenth switching tube Q15 is turned on, the current of the seventh inductor L7 rises, as shown in Fig. 5, the current flow is A ⁇ L7 ⁇ Q15 ⁇ B; the fifteenth switching tube Q15 is turned off, and the seventh inductor L7 The current of L7 drops, as shown in Figure 3, the current flow is A ⁇ L7 ⁇ D5 ⁇ Battery Pack ⁇ B.
  • the control module 50 performs high-frequency on and off control of the fifteenth switch tube Q15, so that the current waveform of the seventh inductor L7 tracks the voltage of the sixteenth capacitor C16, which can achieve power factor correction, and the current amplitude of the seventh inductor L7 Depends on charging power.
  • the switch tube can be a MOS tube or a triode or other suitable switching devices.
  • the switching frequency deviates from the resonance frequency by a large amount, resulting in low charging efficiency.
  • the duty cycle of the downstream DC conversion circuit module 40 can be adjusted through the control module 50 to control the charging power, and the adaptable battery voltage range is wider.
  • the on-board charging system 100 of the embodiment of the present disclosure is provided with a gate circuit module 30 and two resonant circuit modules, and the control module 50 controls the gate circuit module 30 according to the power supply cycle signal to gate the first resonant circuit.
  • the module 10 or the second resonant circuit module 20 makes the signal output from the resonant circuit module to the conversion circuit module a steamed bun wave, so there is no need for a large-capacity electrolytic capacitor for filtering. Therefore, the system adopts a non-electrolytic capacitor design and only needs to use a small capacity Capacitors, such as film capacitors, reduce the cost and volume of electrolytic capacitors, and improve product reliability and life.
  • the first resonant circuit module 10 and the second resonant circuit module 20 share the same magnetic core, which can reduce the use of magnetic cores and reduce costs; and, by adjusting the duty cycle of the DC conversion circuit module 40, it can be adapted to greater The battery voltage range is increased to improve the efficiency of charging the battery pack 40.
  • FIG. 6 is a block diagram of a vehicle according to an embodiment of the present disclosure.
  • the vehicle 1000 of the embodiment of the present disclosure includes a battery pack 70 and the on-board charging system 100 of the above embodiment.
  • the composition of the on-board charging system 100 refer to the description of the above embodiment.
  • the vehicle 1000 also includes other Systems such as transmission systems, power systems, steering systems, etc., are not listed here.
  • the cost can be reduced, the reliability is improved, and the earthquake resistance level is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种车载充电系统及具有其的车辆,涉及车辆技术领域。该车载充电系统包括第一谐振电路模块、第二谐振电路模块、选通电路模块和控制模块,第一谐振电路模块用于对供电第一半周期的电信号进行转换处理;第二谐振电路模块用于对供电第二半周期的电信号进行转换处理;第一谐振电路模块包括第一变压器,所述第二谐振电路模块包括第二变压器,所述第一变压器和所述第二变压器共用同一磁芯;选通电路模块用于选通第一谐振电路模块或第二谐振电路模块;控制模块用于在供电第一半周期时控制第一谐振电路模块,或者,在供电第二半周期时控制第二谐振电路模块。

Description

车载充电系统及具有其的车辆
相关申请的交叉引用
本公开要求于2019年9月29日提交的申请号为201910936705.7、名称为“车载充电系统及具有其的车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,尤其是涉及一种车载充电系统,以及包括该车载充电系统的车辆。
背景技术
图1是相关技术中的一种车载充电系统的电路图,该系统包括Part1’和Part2’两级电路,Part1’与电网相连,Part2’与电池包相连。正向充电时,Part1’实现交流-直流转换和功率因数矫正,输出直流电压。Part2’是直流-直流转换器,输出适合的电压给电池包充电。为了给part2’提供平稳的电压,Part1’和Part2’之间需要大容量的电解电容C1’,由此使得系统的体积和成本增加,且电解电容C1’存在寿命短、抗震差等问题,不利于系统的可靠性。
发明内容
本公开提出一种车载充电系统和采用该车载充电系统的车辆,该车载充电系统,无需大容量的电解电容,减小系统体积降低成本,提高系统稳定性。
本公开第一方面实施例的车载充电系统,包括:第一谐振电路模块,所述第一谐振电路模块的第一端与电单元的第一端相连,用于对供电第一半周期的电信号进行转换处理;第二谐振电路模块,所述第二谐振电路模块的第一端与所述电单元的第二端相连,用于对供电第二半周期的电信号进行转换处理;其中,所述第一谐振电路模块包括第一变压器,所述第二谐振电路模块包括第二变压器,所述第一变压器和所述第二变压器共用同一磁芯;选通电路模块,所述选通电路模块的第一端与所述电单元的第一端相连,所述选通电路模块的第二端与所述电单元的第二端相连,所述选通电路模块的第三端与所述第一谐振电路模块的第二端相连,所述选通电路模块的第四端与所述第二谐振电路模块的第二端相连,用于在接收到第一选通控制信号时,控制所述第一谐振电路模块的第二端与所述电单元的第二端接通,或者,在接收到第二选通控制信号时,控制所述第二谐振电路模块的第二端与所述电单元的第一端接通;控制模 块,用于在供电第一半周期时输出所述第一选通控制信号,并根据供电第一半周期的时序信号控制所述第一谐振电路模块,或者,在供电第二半周期时输出所述第二选通控制信号,并根据供电第二半周期的时序信号控制所述第二谐振电路模块。
根据本公开实施例的车载充电系统,通过设置选通电路模块以及两路谐振电路模块,控制模块根据供电周期信号来控制选通电路模块,以选通第一谐振电路模块或者第二谐振电路模块,使得谐振电路模块输出的信号为馒头波,因而,不需要大容量的电解电容进行滤波,故该系统采用无电解电容设计,只需使用小容量的电容,如薄膜电容,降低了电解电容部分的成本和体积,提高了系统的可靠性和寿命;以及,第一谐振电路模块与第二谐振电路模块共用同一磁芯,可以减少磁芯使用,提高功率密度,降低成本。
本公开第二方面实施例的车辆,包括电池包和所述的车载充电系统。
根据本公开实施例的车辆,通过采用上面实施例的车载充电系统,可以降低成本,提高可靠性,提升抗震等级。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术中的一种双向车载充电机的电路图;
图2是根据本公开的一个实施例的车载充电系统的功能框图;
图3是根据本公开的另一个实施例的车载充电系统的功能框图;
图4是根据本公开的一个实施例的车载充电系统的电路图;
图5是根据本公开的另一个实施例的车载充电系统的电路图;
图6是根据本公开的一个实施例的车辆的框图。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考图2-图5描述根据本公开实施例的车载充电系统。
图2是根据本公开的一个实施例的车载充电系统的框图,如图2所示,本公开实施例的车载充电系统100包括第一谐振电路模块10、第二谐振电路模块20、选通电路模块30和控制模块50。
其中,第一谐振电路模块10用于对供电第一半周期的电信号进行转换处理,第一谐振电路模块10的第一端与电单元60的第一端相连。第二谐振电路模块20用于对供电第二半周期的电信号进行转换处理,第二谐振电路模块20的第一端与电单元60的第二端相连。其中,实施例中,电单元60可以包括电网、用电设备等。
选通电路模块30用于在接收到第一选通控制信号时,其相应的开关管导通,控制第一谐振电路模块10的第二端与电单元60的第二端接通,此时第一谐振电路模块10启用,或者,在接收到第二选通控制信号,其对应的开关管导通,控制第二谐振电路模块20的第二端与电单元60的第一端接通,即此时第二谐振电路模块20启用。选通电路模块30的第一端与电单元60的第一端相连,选通电路模块30的第二端与电单元60的第二端相连,选通电路模块30的第三端与第一谐振电路模块10的第二端相连,选通电路模块30的第四端与第二谐振电路模块20的第二端相连。
其中,第一谐振电路模块10包括第一变压器T1,第二谐振电路模块10包括第二变压器T2,第一变压器T1与第二变压器T2共用同一磁芯,即变压器磁耦合,减少磁芯的使用,提高功率密度,可以节省成本。
控制模块50用于在供电第一半周期时输出第一选通控制信号,并根据供电第一半周期的时序信号控制第一谐振电路模块10,或者,在供电第二半周期时输出第二选通控制信号,并根据供电第二半周期的时序信号控制第二谐振电路模块20。
在该实施例中,在进行充电时,电单元60可以为电网,控制模块50检测电网输出交流电的周期信息,并在供电第一半周期例如正半周期时输出第一选通控制信号,选通电路模块30接收到第一选通控制信号,其相应的开关管导通,控制第一谐振电路模块10的第二端与电网的第二端接通,此时电网供电提供给第一谐振电路模块10,控制模块50根据供电第一半周期的时序信号控制第一谐振电路模块10,第一谐振电路模块10将电网正半周期的交流信号转换为直流电信号,输入给后级电路,以对电池包70充电。
同样地,控制模块50检测到供电第二半周期例如负半周期电信号时,输出第二选通控制信号,选通电路模块30接收到第二选通控制信号,其对应的开关管导通,控制第二谐振电路模块20的第二端与电网的第一端接通,此时电网工供电提供给第二谐振 电路模块10,控制模块50根据供电第二半周期的时序信号控制第二谐振电路模块20,第二谐振电路模块20将电网负半周期的交流信号转换为直流电信号,输入给后级电路,以对电池包70充电。
在该实施例中,通过选通电路模块30将电网的正负周期电信号进行选择,在正半周期时,控制模块50控制第一谐振电路模块10输出正向的直流电信号,以及,在负半周期时,控制模块50控制第二谐振电路模块20输出正向的直流电信号,该直流电信号均提供给后级电路,即提供给后级电路的直流电信号是馒头波信号,因此,无需采用大容量的电解电容进行滤波,采用普通的电容单元滤波即可。
根据本公开实施例的车载充电系统100,通过设置选通电路模块30,可以根据供电周期进行谐振电路模块的选通,控制模块50分别根据相应供电周期的时序来对第一谐振电路模块10和第二谐振电路模块20控制,使得谐振电路模块提供给后级电路的直流信号为馒头波,从而无需采用大容量电解电容,可以降低系统体积和成本,采用无电解电容设计,无需考虑电解电容寿命、抗震问题,利于提供充电系统的稳定性,以及第一谐振电路模块10与第二谐振电路模块20共用同一磁芯,可以减小空间,提高功率密度,降低成本。
图3为根据本公开的另一个实施例的车载充电系统的框图,如图3所示,车载充电系统100还包括直流转换电路模块40,直流转换电路模块40用于对输入电信号进行直流转换,例如,降低直流电压或者提升直流电压。在一些实施例中,直流转换电路模块40可以采用BOOST电路。直流转换电路模块40的第一端分别与第一谐振电路模块10、第二谐振电路模块20相连,直流转换电路模块40的第二端与电池包70相连。
在该实施例中,在供电第一半周期时,第一谐振电路模块10输出直流电信号给直流转换电路模块40,或者,在供电第二半周期时,第二谐振电路模块20输出直流电信号给直流转换电路模块40,直流转换电路模块40对输入的直流电信号进行转换,以转换为电池包70所需的电信号,并传输给电池包70,从而实现对电池包70充电。
本公开实施例的车载充电系统100,将直流转换电路模块40后置,因此,可以通过控制直流转换电路模块40的占空比,调整输出至电池包70的充电电压或充电功率,既可以拓宽适配电池包70的电压范围,也可以缩短电池包70的充电时长以及电池包70的充电效率。
下面结合附图4,对本公开实施例的每个模块的电路结构进一步说明。
图4为根据本公开的一个实施例的车载充电系统的电路图,其中,电单元60为电网。如图4所示,选通电路模块30包括第一开关管Q1、第二开关管Q2。第一开关管Q1的第一端与电单元60的第一端相连,第一开关管Q1的第二端与第一谐振电路模块10的第二端相连,第一开关管Q1的控制端与控制模块50相连;第二开关管Q2的第一端与电单元60的第二端相连,第二开关管Q2的第二端与第二谐振电路模块20的第二端相连,第二开关管Q2的控制端与控制模块50相连。
在该实施例中,控制模块50对于选通电路模块30的开关时序为,在供电电压的正半周期时,第一开关管Q1导通,第二开关管Q2关断,选通第一谐振电路模块10;在供电电压的负半周期时,第一开关管Q1关断,第二开关管Q2导通,选通第二谐振电路模块20。从而实现根据供电周期信号来选通不同的谐振电路模块,使得谐振电路模块输出的电压信号同向,即输出馒头波信息至直流转换电路模块40。
在该实施例中,第一谐振电路模块10和第二谐振电路模块20可以采用对称半桥LLC谐振电路,实现隔离和调压,对输入电信号进行交流-直流转换。
如图4所示,第一谐振电路模块10包括第一电容C1、第三开关管Q3、第四开关管Q4、第二电容C2、第三电容C3、第一变压器T1、第五开关管Q5、第六开关管Q6、第四电容C4和第五电容C5。
其中,第一电容C1的第一端与电单元60的第一端相连,第一电容C1的第二端与第一开关管Q1的第二端相连。第一电容C1可以对输入的电信号进行滤波,减小电信号干扰。
第三开关管Q3的第一端与第一电容C1的第一端相连,第三开关管Q3的控制端与控制模块50相连,第三开关管Q3的第二端与第四开关管Q4的第一端相连,第四开关管Q4的第二端与第一电容C1的第二端相连,第四开关管Q4的控制端与控制模块50相连,第三开关管Q3的第二端与第四开关管Q4的第一端之间具有第一节点O1。第二电容C2的第一端与第三开关管Q3的第一端相连,第二电容C2的第二端与第三电容C3的第一端相连,第三电容C3的第二端与第四开关管Q4的第二端相连,第二电容C2的第二端与第三电容C3的第一端之间具有第二节点O2。
第一变压器T1包括第一线圈W1和第二线圈W2,第一线圈W1的第一端通过第一电感L1与第一节点O1相连,第一线圈W1的第二端与第二节点O2相连。
第五开关管Q5的第一端与直流转换电路模块40的第一端相连,第五开关管Q5的控制端与控制模块50相连,第五开关管Q5的第二端与第六开关管Q6的第一端相连, 第六开关管Q6的第二端与直流转换电路模块40的第二端相连,第六开关管Q6的控制端与控制模块50相连,第五开关管Q5的第二端与第六开关管Q6的第一端之间具有第三节点O3,第三节点O3通过第二电感与第二线圈W2的第一端相连。第四电容C4的第一端分别与第五开关管Q5的第一端、直流转换电路模块40的第一端相连,第四电容C4的第二端与第五电容C5的第一端相连,第五电容C5的第二端分别与第六开关管Q6的第一端、直流转换电路模块40的第二端相连,第四电容C4的第二端与第五电容C5的第一端之间具有第四节点O4,第四节点O4与第二线圈W2的第二端相连。第五开关管Q5、第六开关管Q6、第四电容C4和第五电容C5构成整流电路结构。
在该实施例中,在对电池包70充电时,当电网电压为正半周期时,第一开关管Q1导通,第二开关管Q2关断,第一谐振电路模块10被选通;电网电压施加在第一电容C1上,通过控制模块50对第三开关管Q3和第四开关管Q4以固定频率、固定占空比开通、关断,第二电容C2、第三电容C3的充电、放电,在第三开关管Q3、第四开关管Q4的中点即第一节点O1和第二电容C2、第三电容C3中点即第二节点O2之间形成交流电压。经过第一变压器T1隔离后,第五开关管Q5、第六开关管Q6、第四电容C4和第五电容C5组成的整流电路,通过对第五开关管Q5、第六开关管Q6的导通、关断控制,以及第四电容C4、第五电容C5的充电、放电,将第五开关管Q5、第六开关管Q6的中点即第三节点O3和第四电容C4、第五电容C5的中点即第四节点O4之间的交流电压转换为直流电压输出,即提供给直流转换电路模块40的电压,从而实现交流-直流转换。
如图4所示,直流转换电路模块40包括第六电容C6、第七开关管Q7、第八开关管Q8、第七电容C7。
其中,第六电容C6的第一端分别与第五开关管Q5的第一端、第四电容C4的第一端相连,第六电容C6的第二端分别与第六开关管Q6的第二端、第五电容C5的第二端相连;第六电容C6用于对输入的直流电信号进行滤波,在本公开实施例中,第六电容C6采用较小容量电容器件例如薄膜电容即可,无需大容量的电解电容。
第七开关管Q7的第一端与电池包70的第一端相连,第七开关管Q7的控制端与控制模块50相连,第七开关管Q7的第二端与第八开关管Q8的第一端相连,第八开关管Q8的第二端分别与第六电容C6的第二端、电池包70的第二端相连,第八开关管Q8的控制端与控制模块50相连,第七开关管Q7的第二端与第八开关管Q8的第一端之间具有第五节点O5,第五节点O5通过第三电感L3与第六电容C6的第一端相连;第七 电容C7的第一端分别与第七开关管Q7的第一端、电池包70的第一端相连,第七电容C7的第二端分别与第八开关管Q8的第二端、电池包70的第二端相连。
如图4所示,第二谐振电路模块20包括第八电容C8、第九开关管Q9、第十开关管Q10、第九电容C9、第十电容C10、第二变压器T2、第十一开关管Q11、第十二开关管Q12、第十一电容C11和第十二电容C12。其中,第二变压器T2与第一变压器T1共用同一磁芯,降低成本。
其中,第八电容C8的第一端与电单元60的第二端相连,第八电容C8的第二端与第二开关管Q2的第二端相连。
第九开关管Q9的第一端与第八电容C8的第一端相连,第九开关管Q9的控制端与控制模块50相连,第九开关管Q9的第二端与第十开关管Q10的第一端相连,第十开关管Q10的第二端与第八电容C8的第二端相连,第十开关管Q10的控制端与控制模块50相连,第九开关管Q9的第二端与第十开关管Q10的第一端之间具有第六节点O6。
第九电容C9的第一端与第九开关管Q9的第一端相连,第九电容C9的第二端与第十电容C10的第一端相连,第十电容C10的第二端与第十开关管Q10的第二端相连,第九电容C9的第二端与第十电容C10的第一端之间具有第七节点O7。
第二变压器T2包括第三线圈W3和第四线圈T4,第三线圈T3的第一端通过第四电感L4与第六节点O4相连,第三线圈W3的第二端与第七节点O7相连。
第十一开关管Q10的第一端与第六电容C6的第一端相连,第十一开关管Q11的控制端与控制模块50相连,第十一开关管Q11的第二端与第十二开关管Q12的第一端相连,第十二开关管Q12的第二端与第六电容C6的第二端相连,第十二开关管Q12的控制端与控制模块50相连,第十一开关管Q11的第二端与第十二开关管Q12的第一端之间具有第八节点O8,第八节点O8通过第五电感L5与第四线圈W4的第一端相连。
第十一电容C11的第一端分别与第十一开关管Q11的第一端和第六电容C6的第一端相连,第十一电容C11的第二端与第十二电容C12的第一端相连,第十二电容C12的第二端分别与第十二开关管Q12的第二端、第六电容C6的第二端相连,第十一电容C11的第二端与第十二电容C12的第一端之间具有第九节点O9,第九节点O9与第四线圈W4的第二端相连。
在该实施例中,在对电池包70充电时,当电网电压为负半周期时,第一开关管Q1关断,第二开关管Q2导通,第二谐振电路模块20被选通;电网电压施加在第八电容C8上,而控制模块50对第九开关管Q9和第十开关管Q10以固定频率、固定占空比进 行开通或关断控制,以及第九电容C9、第十电容C10的充电放电,在第九开关管Q9、第十开关管Q10的中点即第六节点O6和第九电容C9、第十电容C10的中点即第七节点O7之间形成交流电压。经过第二变压器T2隔离后,第十一开关管Q11、第十二开关管Q12、第十一电容C11和第十二电容C12组成整流电路,控制模块50通过对第十一开关管Q11、第十二开关管Q12的导通或关断控制,第十一电容C11、第十二电容C12的充电、放电,将第十一开关管Q11、第十二开关管Q12的中点即第八节点O8和第十一电容C11、第十二电容C12的中点即第九节点O9之间的交流电压转换为直流电压输出,即第六电容C6两端电压,实现交流-直流转换。
第六电容C6上的电压和电网电压的绝对值成正比,由于第一谐振电路模块10和第二谐振电路模块20输出电压波形为馒头波,因而无需大容量的电解电容进行滤波,故C6可选小容量的电容,例如薄膜电容。
进而,直流转换电路模块40将输入的直流电压进行调节,以提供给电池包70。具体地,第八开关管Q8导通时,第三电感L3的电流上升,如图4所示,电流流向为A→L3→Q8→B;第八开关管Q8关断,第三电感L3的电流下降,如图4所示,电流流向为A→L3→Q7→电池包→B。通过控制模块50对第八开关管Q8进行高频开、关控制,使得第三电感L3的电流波形跟踪第六电容C6的电压,可以实现功率因数矫正,第三电感L3的电流幅值取决于充电功率。
图4所示的车载充电系统10的电路结构,也可以工作在放电模式,即实现电池包70放电,为用电设备供电,具体过程如下。
当车载充电系统10工作在放电模式时,电池包70放电,输出直流电,直流转换电路模块40进行直流-直流转换,实现调节电压功能,控制模块50根据供电周期信号控制选通电路模块30中的两个开关管实现选通,以选通第一谐振电路模块10或者第二谐振电路模块20,输出工频交流电,以为用电设备供电或者反馈给电网。
参照图4所示,直流转换电路模块40的开关时序为:第七开关管Q7导通时,第三电感L3电流上升,电池包70向后级电路传递能量;地第七开关管Q7关断时,第三电感L3电流下降,通过第八开关管Q8续流,并向后级传递能量。控制模块50通过对第七开关管Q7的开通和关断控制,调节输出电压,即第六电容C6两端电压,电压幅值取决于第七开关管Q7的开关占空比与电池包70电压。
对于第一谐振电路模块10和第二谐振电路模块20,在输出交流电的正半周期时,选通第一谐振电路模块10。具体地,第五开关管Q5和第六开关管Q6以固定频率、固 定占空比开通或关断,以及第四电容C4、第五电容C5的充电放电,在第五开关管Q5、第六开关管Q6的中点即第三节点O3和第四电容C4、第五电容C5的中点即第四节点O4之间形成交流电压。经过第一变压器T1的隔离后,第三开关管Q3、第四开关管Q4、第二电容C2和第三电容C3实现整流功能,通过第三开关管Q3、第四开关管Q4的开通或关断,以及第二电容C2、第三电容C3的充电、放电,将第三开关管Q3、第四开关管Q4的中点即第一节点O1和第二电容C2、第三电容C3的中点即第二节点O2之间的交流电压转换为工频交流电的正半周期部分,即第一电容C1两端电压,从而实现工频交流电的正半周期部分输出。
同样地,在系统输出交流电的负半周期时,选通第二谐振电路模块20。第十一开关管Q11和第十二开关管Q12以固定频率、固定占空比开通或关断,以及第十一电容C11、第十二电容C12充电、放电,在第十一开关管Q11、第十二开关管Q12的中点即第八节点O8和第十一电容C11、第十二电容C12的中点即第九节点O9之间形成交流电压。经过第二变压器T2的变压和隔离后,第九开关管Q9、第十开关管Q10、第九电容C9和第十电容C10实现整流功能,通过第九开关管Q9、第十开关管Q10的导通或关断,以及第九电容C9、第十一电容C10的充电、放电,将第九开关管Q9、第十开关管Q10的中点即第七节点O7和第九电容C9、第十电容C10的中点即第六节点O6之间的交流电压转换为工频交流电的负半周期,即第八电容C8两端电压,实现工频交流电的负半周期输出。
对于选通电路模块30的开关时序为:系统输出交流电的正半周期信号时,第一开关管Q1导通,第二开关管Q2关断,选通第一谐振电路模块10;系统输出交流电的负半周期信号时,第一开关管Q1关断,第二开关管Q2导通,选通第二谐振电路模块20。
以上描述了本公开实施例的车载充电系统100的双向充电电路结构,在一些实施例中,本公开实施例的车载充电系统100还包括单向充电电路结构。
图5为根据本公开的一个实施例的车载充电系统的电路图,下面参照附图5对本公开实施例的车载充电系统100进行说明。
如图5所示,第一谐振电路模块10包括第十三电容C13、第十三开关管Q13、第十四开关管Q14、第十四电容C14、第十五电容C15、第一变压器T1、第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4。
其中,第十三电容C13的第一端与电单元60例如电网的第一端相连,第十三电容C13的第二端与第一开关管Q1的第二端相连。第十三电容C13用于对电网输入的电信 号进行滤波,以减小干扰。
第十三开关管Q13的第一端与第十三电容C13的第一端相连,第十三开关管Q13的控制端与控制模块50相连,第十三开关管Q13的第二端与第十四开关管Q14的第一端相连,第十四开关管Q14的第二端与第十三电容C13的第二端相连,第十四开关管Q14的控制端与控制模块50相连,第十三开关管Q13的第二端与第十四开关管Q14的第一端之间具有第十节点O10;第十四电容C14的第一端与第十三开关管Q13的第一端相连,第十四电容C14的第二端与第十五电容C15的第一端相连,第十五电容C15的第二端与第十四开关管Q14的第二端相连,第十四电容C14的第二端与第十五电容C15的第一端之间具有第十一节点O11。
第一变压器T1包括第一线圈W1和第二线圈W2,第一线圈W1的第一端通过第六电感L6与第十节点O10相连,第一线圈W1的第二端与第十一节点O11相连。第一变压器T1实现变压和隔离。
第一二极管D1的第一端与直流转换电路模块40的第一端相连,第一二极管D1的第二端与第二二极管D2的第一端相连,第二二极管D2的第二端与直流转换电路模块40的第二端相连,第一二极管D1的第二端与第二二极管D2的第一端之间具有第十二节点O12,第十二节点O12与第二线圈W2的第一端相连。第三二极管D3的第一端与直流转换电路模块40的第一端相连,第三二极管D3的第二端与第四二极管D4的第一端相连,第四二极管D4的第二端与直流转换电路模块40的第二端相连,第三二极管D3的第二端与第四二极管D4的第一端之间具有第十三节点O13,第十三节点O13与第二线圈W2的第二端相连。第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4组成整流电路。
在该实施例中,在对电池包70充电时,当电网电压为正半周期时,第一开关管Q1导通,第二开关管Q2关断,选通第一谐振电路模块10。电网电压施加在第十三电容C13上,通过控制模块50对第十三开关管Q13和第十四开关管Q14以固定频率、固定占空比开通或关断,第十四电容C14、第十五电容C15充电、放电,在第十三开关管Q13、第十四开关管Q14的中点即第十节点O10和第十四电容C14、第十五电容C15的中点即第十一节点O11之间形成交流电压。经过第一变压器T1隔离后,提供至第一二极管D1、第二二极管D2、第三二极管D3、第四二极管D4组成的整流电路,对交流电压进行整流形成直流电压,即提供给直流转换电路模块40的电压,从而实现交流-直流转换。
如图5所示,直流转换电路模块40包括第十六电容C16、第五二极管D5、第十五开关管Q15和第十七电容C17。
其中,第十六电容C16的第一端分别与第一二极管D1的第一端、第三二极管D3的第一端相连,第十六电容C16的第二端分别与第二二极管D2的第二端、第四二极管D4的第二端相连。第十六电容C16用于对输入电信号进行滤波。
第五二极管D5的第一端与电池包70的第一端相连,第五二极管D5的第二端与第十五开关管Q15的第一端相连,第十五开关管Q15的第二端分别与第十六电容C16的第二端、电池包70的第二端相连,第十五开关管Q15的控制端与控制模块50相连,第五二极管D5的第二端与第十五开关管Q15的第一端之间具有第十四节点O14,第十四节点Q14通过第七电感L7与第十六电容C16的第一端相连。
第十七电容C17的第一端分别与第五二极管D5的第一端、电池包70的第一端相连,第十七电容C17的第二端分别与第十五开关管Q15的第二端、电池包70的第二端相连。
如图5所示,第二谐振电路模块20包括第十八电容C18、第十六开关管Q16、第十七开关管Q17、第十九电容C19、第二十电容C20、第二变压器T2、第六二极管D6、第七二极管D7、第八二极管D8和第九二极管D9,第二变压器T2与第一变压器T1共用同一磁芯,以减少磁芯使用,降低成本。
其中,第十八电容C18的第一端与电单元60例如电网的第二端相连,第十八电容C18的第二端与第二开关管Q2的第二端相连。第十八电容C18用于对电网输入的电信号进行滤波,减小干扰。
第十六开关管Q16的第一端与第十八电容C18的第一端相连,第十六开关管Q16的控制端与控制模块50相连,第十六开关管Q16的第二端与第十七开关管Q17的第一端相连,第十七开关管Q17的第二端与第十八电容C18的第二端相连,第十七开关管Q17的控制端与控制模块50相连,第十六开关管Q16的第二端与第十七开关管Q17的第一端之间具有第十五节点O15。
第十九电容C19的第一端与第十六开关管Q16的第一端相连,第十九电容C19的第二端与第二十电容C20的第一端相连,第二十电容C20的第二端与第十七开关管Q17的第二端相连,第十九电容C19的第二端与第二十电容C20的第一端之间具有第十六节点O16。
第二变压器T2包括第三线圈W3和第四线圈W4,第三线圈W3的第一端通过第八电 感L8与第十五节点O15相连,第三线圈W3的第二端与第十六节点O16相连。
第六二极管D6的第一端与第十六电容C16的第一端相连,第六二极管D6的第二端与第七二极管D7的第一端相连,第七二极管D7的第二端与第十六电容C16的第二端相连,第六二极管D6的第二端与第七二极管D7的第一端之间具有第十七节点O17,第十七节点O17与第四线圈W4的第一端相连。第八二极管D8的第一端分别与第六二极管D6的第一端、第十六电容C16的第一端相连,第八二极管D8的第二端与第九二极管D9的第一端相连,第九二极管D9的第二端分别与第七二极管D7的第二端、第十六电容C16的第二端相连,第八二极管D8的第二端与第九二极管D9的第一端之间具有第十八节点O18,第十八节点O18与第四线圈W4的第二端相连。第六二极管D6、第七二极管D7、第八二极管D8、第九二极管D9组成整流电路。
在该实施例中,在对电池包70充电时,当电网电压为负半周期时,第一开关管Q1关断,第二开关管Q2导通,选通第二谐振电路模块20。具体地,电网电压施加在第十八电容C18上,控制模块50对第十六开关管Q16和第十七开关管Q17以固定频率、固定占空比进行开通或关断控制,以及第十九电容C19、第二十电容C20的充电、放电,在第十六开关管Q16、第十七开关管Q17的中点即第十五节点O15和第十九电容C19、第二十电容C20的中点即第十六节点O16之间形成交流电压。经过第二变压器T2隔离后,提供给后级的第六二极管D6、第七二极管D7、第八二极管D8、第九二极管D9组成的整流电路,整流电路将输入的交流电压整流为直流电压,即第十六电容C16两端电压,实现交流-直流转换。
第十六电容C16上的电压和电网电压的绝对值成正比,由于第一谐振电路模块10和第二谐振电路模块20输出电压波形为馒头波,因而无需大容量的电解电容进行滤波,故C16可选小容量的电容,例如薄膜电容。
进而,直流转换电路模块40将输入的直流电压进行调节,以提供给电池包70。具体地,第十五开关管Q15导通时,第七电感L7的电流上升,如图5所示,电流流向为A→L7→Q15→B;第十五开关管Q15关断,第七电感L7的电流下降,如图3所示,电流流向为A→L7→D5→电池包→B。通过控制模块50对第十五开关管Q15进行高频开、关控制,使得第七电感L7的电流波形跟踪第十六电容C16的电压,可以实现功率因数矫正,第七电感L7的电流幅值取决于充电功率。
在本公开的实施例中,开关管可以选择MOS管或者三极管或者其它适用的开关器件。
另外,对于图1中的Part2’部分为LLC拓扑,当输出电压范围较宽时,开关频率偏离谐振频率较大,导致充电效率低。本公开实施例的车载充电系统100,可以通过控制模块50对后级的直流转换电路模块40工作的占空比进行调节,以控制充电功率,可适配的电池电压范围更宽。
概括来说,本公开实施例的车载充电系统100,通过设置选通电路模块30以及两路谐振电路模块,控制模块50根据供电周期信号来控制选通电路模块30,以选通第一谐振电路模块10或者第二谐振电路模块20,使得谐振电路模块输出至转换线路模块的信号为馒头波,因而不需要大容量的电解电容进行滤波,故该系统采用无电解电容设计,只需使用小容量的电容,如薄膜电容,降低了电解电容部分的成本和体积,提高了产品可靠性和寿命。以及,第一谐振电路模块10与第二谐振电路模块20共用同一磁芯,可以减少磁芯使用,降低成本;以及,通过对直流转换电路模块40的工作占空比调节,可以适配更大的电池电压范围,提高对电池包40充电的效率。
基于上面实施例的车载充电系统,下面参照附图6描述根据本公开第二方面实施例的车辆。
图6是根据本公开的一个实施例的车辆的框图。如图6所示,本公开实施例的车辆1000包括电池包70和上面实施例的车载充电系统100,其中,车载充电系统100的组成可以参照上面实施例的说明,当然该车辆1000还包括其它系统例如传动系统、动力系统、转向系统等等,在此不一一列举。
根据本公开实施例的车辆1000,通过采用上面实施例的车载充电系统100,可以降低成本,提高可靠性,提升抗震等级。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种车载充电系统,其特征在于,包括:
    第一谐振电路模块,所述第一谐振电路模块的第一端与电单元的第一端相连,用于对供电第一半周期的电信号进行转换处理;
    第二谐振电路模块,所述第二谐振电路模块的第一端与所述电单元的第二端相连,用于对供电第二半周期的电信号进行转换处理;
    其中,所述第一谐振电路模块包括第一变压器,所述第二谐振电路模块包括第二变压器,所述第一变压器和所述第二变压器共用同一磁芯;
    选通电路模块,所述选通电路模块的第一端与所述电单元的第一端相连,所述选通电路模块的第二端与所述电单元的第二端相连,所述选通电路模块的第三端与所述第一谐振电路模块的第二端相连,所述选通电路模块的第四端与所述第二谐振电路模块的第二端相连,用于在接收到第一选通控制信号时,控制所述第一谐振电路模块的第二端与所述电单元的第二端接通,或者,在接收到第二选通控制信号时,控制所述第二谐振电路模块的第二端与所述电单元的第一端接通;
    控制模块,用于在供电第一半周期时输出所述第一选通控制信号,并根据供电第一半周期的时序信号控制所述第一谐振电路模块,或者,在供电第二半周期时输出所述第二选通控制信号,并根据供电第二半周期的时序信号控制所述第二谐振电路模块。
  2. 根据权利要求1所述的车载充电系统,其特征在于,所述车载充电系统还包括:
    直流转换电路模块,所述直流转换电路模块的第一端分别与所述第一谐振电路模块、所述第二谐振电路模块相连,所述直流转换电路模块的第二端与电池包相连,用于对输入电信号进行直流-直流转换。
  3. 根据权利要求1或2所述的车载充电系统,其特征在于,所述选通电路模块包括:
    第一开关管,所述第一开关管的第一端与所述电单元的第二端相连,所述第一开关管的第二端与所述第一谐振电路模块的第二端相连,所述第一开关管的控制端与所述控制模块相连;
    第二开关管,所述第二开关管的第一端与所述电单元的第一端相连,所述第二开关管的第二端与所述第二谐振电路模块的第二端相连,所述第二开关管的控制端与所述控制模块相连。
  4. 根据权利要求3所述的车载充电系统,其特征在于,所述第一谐振电路模块包 括:
    第一电容,所述第一电容的第一端与所述电单元的第一端相连,所述第一电容的第二端与所述第一开关管的第二端相连;
    第三开关管和第四开关管,所述第三开关管的第一端与所述第一电容的第一端相连,所述第三开关管的控制端与所述控制模块相连,所述第三开关管的第二端与所述第四开关管的第一端相连,所述第四开关管的第二端与所述第一电容的第二端相连,所述第四开关管的控制端与所述控制模块相连,所述第三开关管的第二端与所述第四开关管的第一端之间具有第一节点;
    第二电容和第三电容,所述第二电容的第一端与所述第三开关管的第一端相连,所述第二电容的第二端与所述第三电容的第一端相连,所述第三电容的第二端与所述第四开关管的第二端相连,所述第二电容的第二端与所述第三电容的第一端之间具有第二节点;
    所述第一变压器包括第一线圈和第二线圈,所述第一线圈的第一端通过第一电感与所述第一节点相连,所述第一线圈的第二端与所述第二节点相连;
    第五开关管和第六开关管,所述第五开关管的第一端与所述直流转换电路模块的第一端相连,所述第五开关管的控制端与所述控制模块相连,所述第五开关管的第二端与所述第六开关管的第一端相连,所述第六开关管的第二端与所述直流转换电路模块的第二端相连,所述第六开关管的控制端与所述控制模块相连,所述第五开关管的第二端与所述第六开关管的第一端之间具有第三节点,所述第三节点通过第二电感与所述第二线圈的第一端相连;
    第四电容和第五电容,所述第四电容的第一端分别与所述第五开关管的第一端、所述直流转换电路模块的第一端相连,所述第四电容的第二端与所述第五电容的第一端相连,所述第五电容的第二端分别与所述第六开关管的第一端、所述直流转换电路模块的第二端相连,所述第四电容的第二端与所述第五电容的第一端之间具有第四节点,所述第四节点与所述第二线圈的第二端相连。
  5. 根据权利要求4所述的车载充电系统,其特征在于,所述直流转换电路模块包括:
    第六电容,所述第六电容的第一端分别与所述第五开关管的第一端、所述第四电容的第一端相连,所述第六电容的第二端分别与所述第六开关管的第二端、所述第五电容的第二端相连;
    第七开关管和第八开关管,所述第七开关管的第一端与所述电池包的第一端相连,所述第七开关管的控制端与所述控制模块相连,所述第七开关管的第二端与所述第八开关管的第一端相连,所述第八开关管的第二端分别与所述第六电容的第二端、所述电池包的第二端相连,所述第八开关管的控制端与所述控制模块相连,所述第七开关管的第二端与所述第八开关管的第一端之间具有第五节点,所述第五节点通过第三电感与所述第六电容的第一端相连;
    第七电容,所述第七电容的第一端分别与所述第七开关管的第一端、所述电池包的第一端相连,所述第七电容的第二端分别与所述第八开关管的第二端、所述电池包的第二端相连。
  6. 根据权利要求5所述的车载充电系统,其特征在于,所述第二谐振电路模块包括:
    第八电容,所述第八电容的第一端与所述电单元的第二端相连,所述第八电容的第二端与所述第二开关管的第二端相连;
    第九开关管和第十开关管,所述第九开关管的第一端与所述第八电容的第一端相连,所述第九开关管的控制端与所述控制模块相连,所述第九开关管的第二端与所述第十开关管的第一端相连,所述第十开关管的第二端与所述第八电容的第二端相连,所述第十开关管的控制端与所述控制模块相连,所述第九开关管的第二端与所述第十开关管的第一端之间具有第六节点;
    第九电容和第十电容,所述第九电容的第一端与所述第九开关管的第一端相连,所述第九电容的第二端与所述第十电容的第一端相连,所述第十电容的第二端与所述第十开关管的第二端相连,所述第九电容的第二端与所述第十电容的第一端之间具有第七节点;
    所述第二变压器包括第三线圈和第四线圈,所述第三线圈的第一端通过第四电感与所述第六节点相连,所述第三线圈的第二端与所述第七节点相连;
    第十一开关管和第十二开关管,所述第十一开关管的第一端与所述第六电容的第一端相连,所述第十一开关管的控制端与所述控制模块相连,所述第十一开关管的第二端与所述第十二开关管的第一端相连,所述第十二开关管的第二端与所述第六电容的第二端相连,所述第十二开关管的控制端与所述控制模块相连,所述第十一开关管的第二端与所述第十二开关管的第一端之间具有第八节点,所述第八节点通过第五电感与所述第四线圈的第一端相连;
    第十一电容和第十二电容,所述第十一电容的第一端分别与所述第十一开关管的第一端和所述第六电容的第一端相连,所述第十一电容的第二端与所述第十二电容的第一端相连,所述第十二电容的第二端分别与所述第十二开关管的第二端、所述第六电容的第二端相连,所述第十一电容的第二端与所述第十二电容的第一端之间具有第九节点,所述第九节点与所述第四线圈的第二端相连。
  7. 根据权利要求3所述的车载充电系统,其特征在于,所述第一谐振电路模块包括:
    第十三电容,所述第十三电容的第一端与所述电单元的第一端相连,所述第十三电容的第二端与所述第一开关管的第二端相连;
    第十三开关管和第十四开关管,所述第十三开关管的第一端与所述第十三电容的第一端相连,所述第十三开关管的控制端与所述控制模块相连,所述第十三开关管的第二端与所述第十四开关管的第一端相连,所述第十四开关管的第二端与所述第十三电容的第二端相连,所述第十四开关管的控制端与所述控制模块相连,所述第十三开关管的第二端与所述第十四开关管的第一端之间具有第十节点;
    第十四电容和第十五电容,所述第十四电容的第一端与所述第十三开关管的第一端相连,所述第十四电容的第二端与所述第十五电容的第一端相连,所述第十五电容的第二端与所述第十四开关管的第二端相连,所述第十四电容的第二端与所述第十五电容的第一端之间具有第十一节点;
    所述第一变压器包括第一线圈和第二线圈,所述第一线圈的第一端通过第六电感与所述第十节点相连,所述第一线圈的第二端与所述第十一节点相连;
    第一二极管和第二二极管,所述第一二极管的第一端与所述直流转换电路模块的第一端相连,所述第一二极管的第二端与所述第二二极管的第一端相连,所述第二二极管的第二端与所述直流转换电路模块的第二端相连,所述第一二极管的第二端与所述第二二极管的第一端之间具有第十二节点,所述第十二节点与所述第二线圈的第一端相连;
    第三二极管和第四二极管,所述第三二极管的第一端与所述直流转换电路模块的第一端相连,所述第三二极管的第二端与所述第四二极管的第一端相连,所述第四二极管的第二端与所述直流转换电路模块的第二端相连,所述第三二极管的第二端与所述第四二极管的第一端之间具有第十三节点,所述第十三节点与所述第二线圈的第二端相连。
  8. 根据权利要求7所述的车载充电系统,其特征在于,所述直流转换电路模块包括:
    第十六电容,所述第十六电容的第一端分别与所述第一二极管的第一端、所述第三二极管的第一端相连,所述第十六电容的第二端分别与所述第二二极管的第二端、所述第四二极管的第二端相连;
    第五二极管和第十五开关管,所述第五二极管的第一端与所述电池包的第一端相连,所述第五二极管的第二端与所述第十五开关管的第一端相连,所述第十五开关管的第二端分别与所述第十六电容的第二端、所述电池包的第二端相连,所述第十五开关管的控制端与所述控制模块相连,所述第五二极管的第二端与所述第十五开关管的第一端之间具有第十四节点,所述第十四节点通过第七电感与所述第十六电容的第一端相连;
    第十七电容,所述第十七电容的第一端分别与所述第五二极管的第一端、所述电池包的第一端相连,所述第十七电容的第二端分别与所述第十五开关管的第二端、所述电池包的第二端相连。
  9. 根据权利要求8所述的车载充电系统,其特征在于,所述第二谐振电路模块包括:
    第十八电容,所述第十八电容的第一端与所述电单元的第二端相连,所述第十八电容的第二端与所述第二开关管的第二端相连;
    第十六开关管和第十七开关管,所述第十六开关管的第一端与所述第十八电容的第一端相连,所述第十六开关管的控制端与所述控制模块相连,所述第十六开关管的第二端与所述第十七开关管的第一端相连,所述第十七开关管的第二端与所述第十八电容的第二端相连,所述第十七开关管的控制端与所述控制模块相连,所述第十六开关管的第二端与所述第十七开关管的第一端之间具有第十五节点;
    第十九电容和第二十电容,所述第十九电容的第一端与所述第十六开关管的第一端相连,所述第十九电容的第二端与所述第二十电容的第一端相连,所述第二十电容的第二端与所述第十七开关管的第二端相连,所述第十九电容的第二端与所述第二十电容的第一端之间具有第十六节点;
    所述第二变压器包括第三线圈和第四线圈,所述第三线圈的第一端通过第八电感与所述第十五节点相连,所述第三线圈的第二端与所述第十六节点相连;
    第六二极管和第七二极管,所述第六二极管的第一端与所述第十六电容的第一端 相连,所述第六二极管的第二端与所述第七二极管的第一端相连,所述第七二极管的第二端与所述第十六电容的第二端相连,所述第六二极管的第二端与所述第七二极管的第一端之间具有第十七节点,所述第十七节点与所述第四线圈的第一端相连;
    第八二极管和第九二极管,所述第八二极管的第一端分别与所述第六二极管的第一端、所述第十六电容的第一端相连,所述第八二极管的第二端与所述第九二极管的第一端相连,所述第九二极管的第二端分别与所述第七二极管的第二端、所述第十六电容的第二端相连,所述第八二极管的第二端与所述第九二极管的第一端之间具有第十八节点,所述第十八节点与所述第四线圈的第二端相连。
  10. 一种车辆,其特征在于,包括电池包和如权利要求1-9任一项所述的车载充电系统。
PCT/CN2020/114445 2019-09-29 2020-09-10 车载充电系统及具有其的车辆 WO2021057488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936705.7A CN112583096B (zh) 2019-09-29 2019-09-29 车载充电系统及具有其的车辆
CN201910936705.7 2019-09-29

Publications (1)

Publication Number Publication Date
WO2021057488A1 true WO2021057488A1 (zh) 2021-04-01

Family

ID=75110851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114445 WO2021057488A1 (zh) 2019-09-29 2020-09-10 车载充电系统及具有其的车辆

Country Status (2)

Country Link
CN (1) CN112583096B (zh)
WO (1) WO2021057488A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076076A1 (en) * 2001-10-19 2003-04-24 General Electric Company Control of single-phase power converter in D-Q rotating coordinates
CN102570560A (zh) * 2012-01-18 2012-07-11 华北电力大学(保定) V2g双向功率变换电动汽车充放电系统及其控制方法
JP2013179805A (ja) * 2012-02-29 2013-09-09 Toyota Industries Corp 双方向電力変換回路
TW201403107A (zh) * 2012-07-11 2014-01-16 Prodigit Electronics Co Ltd 具有可調補償電壓之交流負載模擬裝置
CN107370360A (zh) * 2017-08-30 2017-11-21 广东工业大学 一种无桥apfc有源因数功率校正电路
CN109309456A (zh) * 2017-07-28 2019-02-05 兴澄股份有限公司 低谐度高效率的交流整流系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011259560A (ja) * 2010-06-07 2011-12-22 Minebea Co Ltd 負荷駆動装置及びその周波数制御方法
CN103208849B (zh) * 2013-04-28 2016-03-30 长城汽车股份有限公司 一种充电装置
CN104470167B (zh) * 2014-12-24 2017-02-22 福州大学 一种用于无极灯的多相并联谐振变换器及调光控制方法
CN107070281A (zh) * 2017-03-03 2017-08-18 燕山大学 一种lc串联谐振高频链矩阵式半桥逆变器拓扑及调制方法
CN207368721U (zh) * 2017-10-31 2018-05-15 北京新能源汽车股份有限公司 一种车载电源系统及电动汽车
CN109510453A (zh) * 2018-12-11 2019-03-22 南京工程学院 一种基于SiC功率器件的EV车载充电器
CN110277922B (zh) * 2019-05-17 2020-07-21 杭州电子科技大学 一种llc原边恒流控制装置及补偿电流信号提取方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030076076A1 (en) * 2001-10-19 2003-04-24 General Electric Company Control of single-phase power converter in D-Q rotating coordinates
CN102570560A (zh) * 2012-01-18 2012-07-11 华北电力大学(保定) V2g双向功率变换电动汽车充放电系统及其控制方法
JP2013179805A (ja) * 2012-02-29 2013-09-09 Toyota Industries Corp 双方向電力変換回路
TW201403107A (zh) * 2012-07-11 2014-01-16 Prodigit Electronics Co Ltd 具有可調補償電壓之交流負載模擬裝置
CN109309456A (zh) * 2017-07-28 2019-02-05 兴澄股份有限公司 低谐度高效率的交流整流系统
CN107370360A (zh) * 2017-08-30 2017-11-21 广东工业大学 一种无桥apfc有源因数功率校正电路

Also Published As

Publication number Publication date
CN112583096B (zh) 2023-03-14
CN112583096A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN103746419B (zh) 车载充电器电路
Kwon et al. High gain soft-switching bidirectional DC–DC converter for eco-friendly vehicles
WO2021056976A1 (zh) 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩
CN108964469B (zh) 一种并串联结构的全桥双llc谐振变换器
WO2021057492A1 (zh) 车载充电系统及具有其的车辆
CN109818494A (zh) 一种高增益电压型准y源直流-直流变换器
WO2024051317A1 (zh) 一种三相交错宽范围高效隔离双向变换器
CN103441690B (zh) 高频交流侧串联实现紧调整输出的组合变流器的控制方法
WO2021057488A1 (zh) 车载充电系统及具有其的车辆
CN111181411A (zh) 变/定母线电压超宽增益范围双向dc/dc变换器
CN112572190B (zh) 车载充电系统及具有其的车辆
CN112583094B (zh) 车载充电系统及具有其的车辆
WO2021057491A1 (zh) 车载充电系统及具有其的车辆
CN211764987U (zh) 一种电动汽车车载双向充电机的主电路
CN112572186B (zh) 车载充电系统及具有其的车辆
CN112583095B (zh) 车载充电系统及具有其的车辆
CN112583093B (zh) 车载充电系统及具有其的车辆
CN112583089B (zh) 车载充电系统及具有其的车辆
CN112583061A (zh) 车载充电系统及具有其的车辆
CN112572195B (zh) 车载充电系统及具有其的车辆
CN112572194B (zh) 车载充电系统及具有其的车辆
CN112572187B (zh) 车载充电系统及具有其的车辆
CN112572192A (zh) 车载充电系统及具有其的车辆
Chaurasiya et al. A Five-Level Switch Clamped On-Board EV Charger With Wide Input Voltage Range
Senthilkumar et al. Interleave isolated boost converter as a frontend converter for fuel cell applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867521

Country of ref document: EP

Kind code of ref document: A1