WO2021056976A1 - 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩 - Google Patents

一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩 Download PDF

Info

Publication number
WO2021056976A1
WO2021056976A1 PCT/CN2020/078357 CN2020078357W WO2021056976A1 WO 2021056976 A1 WO2021056976 A1 WO 2021056976A1 CN 2020078357 W CN2020078357 W CN 2020078357W WO 2021056976 A1 WO2021056976 A1 WO 2021056976A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
coupled
obc
primary
Prior art date
Application number
PCT/CN2020/078357
Other languages
English (en)
French (fr)
Inventor
王天宇
崔兆雪
刘韧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20869412.5A priority Critical patent/EP3950411A4/en
Priority to CN202080065613.7A priority patent/CN114746301A/zh
Publication of WO2021056976A1 publication Critical patent/WO2021056976A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/082Plural DC voltage, e.g. DC supply voltage with at least two different DC voltage levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53878Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • This application relates to the technical field of new energy vehicles, in particular to an OBC and DC/DC circuit, an OBC charger, a new energy vehicle and a charging pile.
  • the OBC charger mainly includes an OBC circuit and a control circuit that drives the operation of the OBC circuit.
  • OBC chargers mostly adopt a magnetic integration scheme, that is, the OBC circuit mainly includes a primary circuit, a first secondary circuit, and a second secondary circuit, and two of the three circuits are magnetically coupled.
  • the control circuit can control the primary circuit to convert the received charging electric energy into AC electric energy with a specific frequency, and provide a part of the AC electric energy to the first secondary circuit, and The other part of the AC power is provided to the second secondary circuit.
  • the control circuit can also control the first secondary circuit to convert the received AC power into DC power.
  • the DC power is usually high-voltage power and can be used to charge the power battery of a new energy vehicle.
  • the control circuit can also control the second secondary circuit to convert the received AC power into DC power.
  • the DC power is usually low-voltage power and can be used to power low-voltage batteries (such as lead-acid batteries) or load circuits in new energy vehicles. .
  • the frequency of the AC power provided by the primary side circuit in the OBC charger is mainly affected by the output demand of the first secondary side circuit. Therefore, the second secondary side circuit is often designed with a complex circuit structure to obtain it from the primary side circuit.
  • the AC power is converted into DC power suitable for low-voltage batteries or load circuits.
  • the present application provides an OBC and DC/DC circuit, an OBC charger, a new energy vehicle, and a charging pile.
  • the structure of the second secondary circuit in the OBC circuit is simple, which is beneficial to simplify the OBC circuit structure.
  • This application provides an on-board charging OBC and DC/DC circuit, including: a primary side circuit, a first secondary side circuit, and a second secondary side circuit.
  • the primary side circuit is connected to the first secondary side circuit and the first secondary side circuit.
  • the second secondary side circuit is magnetically coupled; the primary side circuit is used to provide the first AC power to the first secondary side circuit and the second AC power to the second secondary side circuit respectively; the second secondary side
  • the circuit includes: a first secondary winding, a first switching tube, a second secondary winding, a second switching tube, a first DC terminal and a second DC terminal; the first terminal of the first secondary winding and the The first electrode of the first switch tube is coupled, the second end of the first secondary winding is respectively coupled with the first DC terminal and the first end of the second secondary winding, and the first switch tube
  • the second electrode is coupled to the second DC terminal, the anode of the body diode of the first switch tube is coupled to the second DC terminal; the second terminal of the second secondary winding is coupled to
  • the embodiment of the present application provides an on-board charging OBC and DC/DC circuit, including: a primary side circuit, a first secondary side circuit, and a second secondary side circuit, the primary side circuit and the first secondary side circuit and The second secondary side circuit is magnetically coupled; the primary side circuit is used to provide a first AC power to the first secondary side circuit and a second AC power to the second secondary side circuit; the second The secondary circuit includes: a first secondary winding, a first switching tube, a second secondary winding, a second switching tube, a first DC terminal and a second DC terminal; the first terminal of the first secondary winding and The first electrode of the first switch tube is coupled, the second end of the first secondary winding is respectively coupled to the first DC end and the first end of the second secondary winding, and the first The second electrode of the switching tube is coupled to the second DC terminal, the anode of the body diode of the first switching tube is coupled to the second DC terminal; the second terminal of the second secondary winding is coupled to the first The first electrodes of the two switching tubes
  • the second secondary circuit further includes a filter capacitor and a filter inductor; one end of the filter inductor is coupled with the first end of the second secondary winding, and the other of the filter inductor is coupled to the first end of the second secondary winding. One end is coupled with the first electrode of the filter capacitor, and the second electrode of the filter capacitor is coupled with the second DC terminal.
  • an embodiment of the present application further provides an on-board charging OBC charger, including: a control circuit and the OBC circuit provided in the above first aspect, the control circuit is respectively connected to the primary circuit and the primary side circuit in the OBC circuit
  • the first secondary circuit is coupled; the control circuit is used to: in the first time period of the current first cycle, control the primary circuit to generate zero-level electrical energy of the primary AC power, and in the second period of the current first cycle In the time period, the primary side circuit is controlled to generate the positive-level power of the primary AC power, and in the third time period of the current first cycle, the primary side circuit is controlled to generate the zero-level power of the primary AC power, In the fourth time period of the current first cycle, control the primary side circuit to generate negative-level power of the primary side AC power; control the first secondary side circuit to obtain the first AC power from the primary side circuit Converted into first direct current electric energy, the first alternating current electric energy is part of the electric energy in the primary side alternating current electric energy; the control circuit is also connected with the control
  • the OBC charger further includes a power calibration PFC circuit, and the PFC circuit is coupled to the primary circuit; the PFC circuit is used to receive charging power in the form of alternating current, and to Perform power calibration on the charging electric energy, convert the calibrated charging electric energy into primary-side DC electric energy, and provide the primary-side DC electric energy to the primary-side circuit; the primary-side circuit is specifically used to: The side DC power is converted into the primary side AC power, and the first AC power in the primary side AC power is provided to the first secondary circuit, and the second AC power in the primary side AC power is provided Give the second secondary circuit.
  • the primary side circuit is a full-bridge inverter circuit or a half-bridge inverter circuit; the control circuit is also used to: adjust the primary side circuit by phase control and voltage regulation. The output voltage and transmission power of the second secondary circuit.
  • control circuit is further configured to: adjust the output voltage of the first secondary circuit by adjusting the outer phase shift angle of the primary circuit and the first secondary circuit And the transmission power, the output voltage and the transmission power of the second secondary circuit are adjusted by adjusting the internal phase shift angle of the primary circuit.
  • the embodiment of the present application provides an on-board charging OBC and DC/DC circuit, including: a primary side circuit, a first secondary side circuit, and a second secondary side circuit, the primary side circuit and the first secondary side circuit and The second secondary side circuit is magnetically coupled; the primary side circuit is used to provide a first AC power to the first secondary side circuit and a second AC power to the second secondary side circuit; the second The secondary circuit includes: a first secondary winding, a first switching tube, a second secondary winding, a second switching tube, a first DC terminal and a second DC terminal; the first terminal of the first secondary winding and The first electrode of the first switch tube is coupled, the second end of the first secondary winding is respectively coupled to the first DC end and the first end of the second secondary winding, and the first The second electrode of the switching tube is coupled to the second DC terminal, the anode of the body diode of the first switching tube is coupled to the second DC terminal; the second terminal of the second secondary winding is coupled to the first The first electrodes of the two switching tubes
  • the control circuit is also used to adjust the output voltage and transmission power of the second secondary circuit by performing phase control and voltage regulation on the primary circuit.
  • the second secondary circuit includes the first secondary winding, the first switching tube, the second secondary winding, and the second switching tube, which simplifies the structure of the OBC circuit, and can adjust the phase of the primary circuit
  • the output voltage and the transmission power of the second secondary circuit can be adjusted by the pressure, which simplifies the control strategy.
  • the OBC charger provided in the embodiments of the present application is also applicable to scenarios where a power battery supplies power to a low-voltage load.
  • an embodiment of the present application provides a power distribution device, including: the OBC charger provided in any one of the above second aspects; the first secondary circuit in the OBC charger is coupled with a power battery, Used to provide the first DC power to the power battery; the first DC terminal and the second DC terminal of the second secondary circuit in the OBC charger are coupled with the low-voltage load, and are used to provide the second DC power to the low-voltage load. DC power.
  • an embodiment of the present application provides a new energy vehicle, the new energy vehicle including: a power battery, a low-voltage load, a motor, wheels, and the OBC charger provided in any one of the above second aspects; wherein, the power The battery is coupled with the first secondary circuit in the OBC charger, and the low-voltage load is coupled with the first DC terminal and the second DC terminal of the second secondary circuit in the OBC charger; the OBC charger is used for The power battery provides the first DC power and the second DC power for the low-voltage load; the power battery is used to drive the motor; the motor is used to drive the wheels to rotate.
  • an embodiment of the present application provides a charging pile, which includes a power supply circuit and a charging gun; wherein the charging gun is used to couple with the OBC charger provided in any one of the above second aspects; and the power supply circuit , Used to power the OBC charger through the charging gun.
  • the embodiment of the present application provides an on-board charging OBC and DC/DC circuit, including: a primary side circuit, a first secondary side circuit, and a second secondary side circuit, the primary side circuit and the first secondary side circuit and The second secondary side circuit is magnetically coupled; the primary side circuit is used to provide a first AC power to the first secondary side circuit and a second AC power to the second secondary side circuit; the second The secondary circuit includes: a first secondary winding, a first switching tube, a second secondary winding, a second switching tube, a first DC terminal and a second DC terminal; the first terminal of the first secondary winding and The first electrode of the first switch tube is coupled, the second end of the first secondary winding is respectively coupled to the first DC end and the first end of the second secondary winding, and the first The second electrode of the switching tube is coupled to the second DC terminal, the anode of the body diode of the first switching tube is coupled to the second DC terminal; the second terminal of the second secondary winding is coupled to the first The first electrodes of the two switching tubes
  • the second secondary circuit includes the first secondary winding, the first switching tube, the second secondary winding, and the second switching tube, which simplifies the structure of the OBC circuit, and can adjust the phase of the primary circuit
  • the output voltage and the transmission power of the second secondary circuit can be adjusted by the pressure, which simplifies the control strategy.
  • Figure 1 is a schematic diagram of the system structure of a new energy vehicle
  • Figure 2 is a schematic diagram of the structure of an OBC charger
  • FIG. 3 is a schematic diagram of an OBC and DC/DC circuit structure provided by an embodiment of the application.
  • FIG. 4 is a timing diagram of various control signals in an embodiment of the application.
  • FIG. 5 is a timing diagram of various control signals in an embodiment of the application.
  • FIG. 6 is a schematic diagram of the structure of a power distribution device in an embodiment of the application.
  • Coupled in the embodiments of this application refers to the energy transfer relationship.
  • the coupling of A and B means that energy can be transferred between A and B.
  • energy can be transferred between A and B.
  • electric energy can be transferred between A and B, it is reflected in the circuit connection relationship, that is, A and B can be directly electrically connected, or indirectly electrically connected through other conductors or circuit elements.
  • the magnetic field potential energy can be transferred between A and B, it is reflected in the circuit connection relationship, that is, electromagnetic induction can occur between A and B, so that the magnetic field potential energy can be transferred from A to B.
  • Magnetic coupling specifically refers to the scenario where energy can be transferred between A and B through a magnetic field.
  • Fig. 1 exemplarily shows a schematic diagram of the system structure of a new energy vehicle.
  • a new energy vehicle mainly includes an on-board charging OBC charger 100, a low-voltage load 200, a power battery 300, a motor 400, and wheels 500.
  • the power battery 300 is a large-capacity, high-power storage battery.
  • the low-voltage load 200 is a functional circuit or on-board equipment inside the vehicle (new energy vehicle), and the rated voltage of the low-voltage load 200 is much lower than the rated voltage of the power battery 300.
  • the low-voltage load 200 may include, but is not limited to, a lead-acid battery, a car radio, a car navigator, etc. inside a new energy vehicle, which are not listed in the embodiment of the present application.
  • the power battery 300 can drive the motor 400 to work, and the motor 400 in turn drives the wheels 500 to rotate, thereby realizing the movement of the vehicle.
  • the power battery 300 can also supply power to the low-voltage load 200 through the OBC charger 100, or can also supply power to the external load of the new energy vehicle (such as another new energy vehicle) through the OBC charger 100.
  • charging piles When charging a new energy vehicle, it is generally possible to charge the new energy vehicle through a charging pile. Similar to the relationship between gas stations and conventional cars, charging piles can "refuel" new energy vehicles, that is, they can charge new energy vehicles.
  • the charging pile mainly includes a power supply circuit and a charging gun.
  • One end of the power circuit is coupled with the power frequency grid, and the other end is coupled with the charging gun through a cable.
  • the power supply circuit can use the power frequency power grid as an AC power source, receive the AC power provided by the power frequency power grid, and convert the received AC power into charging electrical energy compatible with new energy vehicles.
  • the operator can insert the charging gun into the charging socket of the new energy vehicle to couple the charging gun with the OBC charger 100 inside the vehicle, and the power circuit of the charging pile can then provide charging power to the OBC charger 100 through the charging gun.
  • the OBC charger 100 provides a part of the received charging electric energy to the power battery 300, and the power battery 300 then stores the part of the electric energy.
  • the OBC charger 100 can also provide another part of the received charging electric energy to the low-voltage load 200 for use by the low-voltage load 200.
  • the lead-acid battery in the low-voltage load 200 can store this part of the electric energy.
  • the car radio can also use this part of the electric energy to work.
  • the OBC charger 100 in a new energy vehicle has at least two working modes: a charging mode and a discharging mode.
  • the charging mode the OBC charger 100 receives the charging power provided by the charging pile, and provides the received charging power to the low-voltage load 200 and the power battery 300 respectively.
  • the discharge mode the OBC charger 100 receives the battery power provided by the power battery 300 and provides the battery power to the low-voltage load 200.
  • the OBC charger 100 can also provide the battery power provided by the power battery 300 to the vehicle. External load.
  • FIG. 2 exemplarily shows a schematic structural diagram of an OBC charger 100.
  • the OBC charger 100 mainly includes a control circuit 101 and an OBC circuit 102.
  • the OBC circuit 102 mainly includes a primary side circuit 1021, a first secondary side circuit 1022, and a second secondary side circuit 1023 that are magnetically coupled between the two. That is, the primary side circuit 1021 is connected to the first secondary side circuit 1022 and the first secondary side circuit 1022, respectively.
  • the second secondary circuit 1023 is magnetically coupled, and the first secondary circuit 1022 is magnetically coupled with the primary circuit 1021 and the second secondary circuit 1023 respectively.
  • the control circuit 101 can be a microprocessor (microcontroller unit, MCU) inside the OBC charger 100.
  • the control circuit 101 is respectively coupled with the primary circuit 1021, the first secondary circuit 1022, and the second secondary circuit 1023.
  • the control circuit 101 can Various control signals are generated to control the operations of the primary side circuit 1021, the first secondary side circuit 1022, and the second secondary side circuit 1023, respectively.
  • the OBC charger 100 may also include a power factor correction (power factor correction, PFC) circuit 103.
  • the PFC circuit can receive charging power in the form of alternating current. Under the control of the control circuit 101, the PFC circuit can The charging electric energy in the form of alternating current is calibrated for power, the charging electric energy after the power calibration is converted into the primary DC electric energy, and the primary DC electric energy is provided to the primary circuit 1021.
  • the power circuit of the charging pile in FIG. 1 can also convert the received AC power into DC charging power, and provide the charging power in DC power to the OBC charger 100.
  • the OBC charger 100 may also include a power distribution circuit (not shown in FIG. 2).
  • the first end of the power distribution circuit is used to receive charging electric energy, and the charging electric energy can be in the form of direct current or alternating current.
  • the second end of the power distribution circuit is coupled with the PFC circuit, and the third end is coupled with the primary circuit 1021.
  • the power distribution circuit can provide the charging power in the form of direct current as the primary DC power to the primary circuit 1021, provide the charging power in the form of alternating current to the PFC circuit, and the PFC circuit will charge the power in the form of alternating current. After being converted into the primary side DC electric energy, it is provided to the primary side circuit 1021.
  • a power distribution circuit is provided in the OBC charger 100, so that the new energy vehicle can be used not only with an AC charging pile, but also with a DC charging pile, so that the charging of the new energy vehicle can be more convenient.
  • the OBC circuit 102 can receive the primary DC power from the PFC circuit or the power distribution circuit, provide a part of the DC power to the power battery 300, and provide another part of the DC power to the low-voltage load 200.
  • the low-voltage load 200 can be a low-voltage battery 201 (such as a lead-acid battery), or a vehicle-mounted functional circuit 202 (such as a car audio, a car radio, a car navigator, etc.).
  • FIG. 3 exemplarily shows a schematic structural diagram of an OBC and DC/DC circuit 102 provided by an embodiment of the present application.
  • the primary side circuit 1021, the first secondary side circuit 1022, and the second secondary side circuit 1023 in the OBC circuit 102 are further described.
  • the primary side circuit 1021 can convert the received primary side DC power into the primary side AC power under the control of the control circuit 101.
  • the primary circuit 1021 may be a full-bridge inverter circuit, which mainly includes a switch tube S1, a switch tube S2, a switch tube S3, a switch tube S4, and a primary winding L1.
  • the primary circuit 1021 may also include at least one of capacitor Cr1 and inductor Lr1.
  • the switching tube S1, the switching tube S2, the switching tube S3, and the switching tube S4 form a bridge inverter circuit structure.
  • the first electrode of the switching tube S1 is respectively coupled with the first electrode of the switching tube S3 and the first DC terminal of the PFC circuit (the output terminal of which is V1 in FIG. 3)
  • the second electrode of the switching tube S1 is respectively Coupled with the first electrode of the switch tube S2 and the first electrode of the capacitor Cr1
  • the second electrode of the capacitor Cr1 is coupled with the first end of the primary winding L1;
  • the primary circuit 1021 may further include an inductor Lr1, the second electrode of the capacitor Cr1 is coupled to the first end of the inductor Lr1; the second end of the inductor Lr1 is coupled to the first end of the primary winding L1.
  • the second electrode of the switching tube S3 is respectively coupled with the second end of the primary winding L1 and the first electrode of the switching tube S4; the second electrode of the switching tube S2 is respectively connected with the second electrode of the switching tube S4 and the second direct current of the PFC circuit End coupling.
  • the control electrode of the switching tube S1, the control electrode of the switching tube S2, the control electrode of the switching tube S3, and the control electrode of the switching tube S4 are all coupled with the control circuit 101, respectively.
  • the low-voltage terminal can be coupled with the ground circuit, that is, the low-voltage terminal is at zero potential.
  • the second DC terminal is a low voltage terminal
  • the second DC terminal may be coupled with the ground circuit of the OBC charger 100, that is, the second DC terminal has a zero potential.
  • the second electrode of the switching tube S2 and the second electrode of the switching tube S4 can also be coupled with the ground circuit, that is, the second electrode of the switching tube S2 and the second electrode of the switching tube S4 can pass through the grounding circuit Indirectly coupled with the PFC circuit.
  • the DC terminal of the first secondary circuit 1022 is the same as the DC terminal of the second secondary circuit 1023, which will not be repeated in the embodiment of the present application.
  • the control circuit 101 can control the primary side circuit 1021 to convert the primary side DC power into the primary side AC power with a certain period (frequency) by sending periodic primary side control signals.
  • each switch of the primary side circuit 1021 in FIG. 3 is an N-channel metal oxide semiconductor (NMOS) transistor.
  • NMOS metal oxide semiconductor
  • Fig. 4 exemplarily shows a timing diagram of various control signals in an embodiment of the present application.
  • the control signal C1 is used to control the switching tube S1 to turn on and off
  • the control signal C2 is used to control the switching tube S2 to turn on and off
  • the control signal C3 is used to control the switching tube S3 to turn on and off
  • control signal C4 is used to control the on and off of the switch tube S4.
  • control signals C1 and C2 are complementary signals, that is, the control signals C1 and C2 have the same cycle duration T and the same duty cycle (t/T), but the two control signals C1 and C2
  • the high-level time period t does not overlap each other
  • control signals C3 and C4 are complementary signals, that is, the control signals C3 and C4 have the same cycle duration T and the same duty cycle (t/T), but the two The high-level time periods t of the control signals C3 and C4 do not overlap each other.
  • the time period between the rising edge of the control signal C1 and the rising edge of the control signal C4 is represented by the first time period (t0-t1), and the rising edge of the control signal C4 and the falling edge of the control signal C1
  • the time period between the edges is represented by the second time period (t1-t2)
  • the time period between the falling edge of the control signal C1 and the falling edge of the control signal C4 is represented by the third time period (t2-t3)
  • the time period between the falling edge of the control signal C4 and the rising edge of the control signal C1 is represented by the fourth time period (t3-t4).
  • the primary circuit 1021 outputs zero-level electrical energy; During the period when the tubes S2 and S3 are turned off (the second time period), the primary side circuit 1021 outputs positive level electric energy; during the period when the switches S2 and S4 are turned on and the switches S1 and S3 are turned off (the third time period), the primary side The circuit 1021 outputs zero-level electric energy; during the period when the switching tubes S2 and S3 are turned on and the switching tubes S1 and S4 are turned off (the fourth time period), the primary side circuit 1021 outputs negative-level electric power.
  • control circuit 101 controls the on and off of the switch tubes S1, S2, S3, and S4, so that the direction of the current at the primary winding is alternately changed, thereby obtaining the primary AC power at the primary winding.
  • the voltage transformation of the primary AC (energy) can be shown in Figure 4.
  • the switch tubes S1 to S4 of the primary side circuit all emit waves with a 50% duty cycle.
  • the upper and lower tubes S1/S2 and S3/S4 respectively emit complementary waves.
  • D2 *T There is a certain time difference between the two bridge arms, which is defined as D2 *T.
  • T is the half period
  • D2 is the comparison of the original side shift.
  • the first secondary circuit 1022 includes a secondary winding L2
  • the second secondary circuit 1023 includes secondary windings L3 and L4.
  • the primary circuit 1021 is magnetically coupled with the first secondary circuit 1022 and the second secondary circuit 1023, mainly through the magnetic coupling of the primary winding L1 with the secondary winding L2, the secondary winding L3, and the secondary winding L4. . Therefore, the primary AC power generated by the primary circuit 1021 at the primary winding L1 can be transferred to the secondary winding L2, the secondary winding L3, and the secondary winding L4 through electromagnetic induction, respectively.
  • the first secondary circuit 1022 can receive part of the primary AC power provided by the primary circuit 1021, that is, the first AC power. Under the control of the control circuit 101, the first secondary circuit 1022 can convert the first AC power into the first DC power, and the first DC power can be used to charge the power battery 300.
  • the first DC terminal of the first secondary circuit 1022 is coupled with the positive pole of the power battery 300, and the second DC terminal is coupled with the negative pole of the power battery 300.
  • the first secondary side circuit 1022 mainly includes a switching tube S5, a switching tube S6, a switching tube S7, a switching tube S8, and a secondary winding L2.
  • the first secondary circuit 1022 may further include one or more of the capacitor Cr2, the inductor Lr2, and the capacitor Cf1.
  • the first electrode of the switching tube S5 is coupled with the first electrode of the switching tube S7, and the second electrode of the switching tube S5 is respectively coupled with the second end of the secondary winding L2 and the first electrode of the switching tube S6; the secondary winding L2
  • the first end of and the first end of the primary winding L1 are mutually homonymous, and the first end of the secondary winding L2 is coupled to the first end of the inductor Lr2; the second end of the inductor Lr2 is coupled to the first electrode of the capacitor Cr2 ,
  • the second electrode of the capacitor Cr2 is coupled with the second electrode of the switching tube S7;
  • the first electrode of the switching tube S7 is coupled with the first DC terminal of the first secondary circuit 1022, and the second electrode of the switching tube S7 is coupled with the switching tube S8
  • the first electrode of the switch tube S6 and the second electrode of the switch tube S8 are coupled with the second DC terminal of the first secondary circuit 1022.
  • the capacitor Cf1 is connected in parallel between the
  • control signals C1 and C2 are determined by the control circuit 101 according to the output demand of the first secondary circuit 1022. That is to say, the control circuit 101 can adjust the voltage value of the first DC power output by the first secondary circuit 1022 by changing the cycle duration and the duty ratio of the control signals C1 and C2.
  • the switching tubes S5 to S8 in the first secondary circuit 1022 can be turned on and off synchronously with the switching tubes S1 to S4 in the primary circuit 1021.
  • the control signal C1 can also control the on and off of the switching tubes S6 and S7
  • the control signal C2 can also control the on and off of the switching tubes S5 and S8.
  • the primary side circuit 1021 and the first secondary side circuit 1022 use the same control signal, which can realize synchronous rectification.
  • the primary side circuit 1021 generates the primary side AC power according to the output demand of the first secondary side circuit 1022, and provides the second AC power therein to the second secondary side circuit 1023.
  • the output demand of the second secondary circuit 1023 is often different from that of the first secondary circuit 1022.
  • the second secondary circuit 1023 not only needs to rectify the second AC power, but also needs to regulate the voltage of the second AC power to be applicable.
  • the second DC power to the low-voltage load 200 Therefore, the current circuit structure of the second secondary circuit 1023 is often too complicated, and further research is needed.
  • the embodiment of the present application provides a circuit structure of the second secondary circuit 1023.
  • the circuit structure can realize rectification and voltage regulation through basic circuit elements such as transistors and diodes.
  • the circuit structure is simpler, which is not only conducive to reducing OBC
  • the production cost of the charger 100 is also conducive to improving the energy utilization efficiency of the OBC charger 100.
  • the second secondary circuit 1023 provided in the embodiment of the present application will be further described through the following embodiments.
  • FIG. 3 includes a schematic structural diagram of a second secondary circuit 1023 provided by an embodiment of the present application.
  • the second secondary circuit 1023 includes a first secondary winding (secondary winding L3), a first switch tube (switch tube SR11), a second secondary winding (secondary winding L4), and a second switch. Tube (switch tube SR21), the first DC terminal P1 and the second DC terminal P2.
  • the first DC terminal P1 and the second DC terminal P2 of the second secondary circuit 1023 are coupled to the low-voltage load 200, and the second secondary circuit 1023 can be connected to the low-voltage load through the first DC terminal P1 and the second DC terminal P2. 200 provides the second direct current power.
  • the first end of the secondary winding L3 is coupled to the first electrode of the switch tube SR11, and the second end of the secondary winding L3 is respectively coupled to the first DC terminal P1 and the first end of the secondary winding L4 ,
  • the second electrode of the switching tube SR11 is coupled with the second DC terminal P2, the anode of the body diode of the switching tube SR11 is coupled with the second DC terminal P2;
  • the second terminal of the secondary winding L4 is coupled with the first electrode of the switching tube SR21,
  • the second electrode of the switch tube SR21 is coupled with the second DC terminal P2, and the anode of the body diode of the switch tube SR21 is coupled with the second DC terminal P2.
  • the first end of the secondary winding L3 and the first end of the secondary winding L4 are both ends of the same name as the first end of the primary winding L1.
  • the control circuit 101 can control the on and off of the switching tube SR11 through the control signal C9 in FIG. 4, and control the switching tube SR11 through the control signal C10
  • the switch tube SR21 is turned on and off.
  • the duration of the period T1 is T.
  • the period T2 is the next period of the period T1.
  • the first time period is between t0 and t1
  • the second time period is between t1 and t2
  • the third time period is between t2 and t3
  • the fourth time period is between t3 and t4.
  • the first time period no current flows in the primary winding.
  • the second time period current flows from the first end of the primary winding to the second end.
  • the fourth time period the current in the primary winding flows from the second end of the primary winding to the first end.
  • the control circuit 101 turns on the switch SR21 through the control signal C10. After the switching tube SR21 is turned on at the first time point, the switching tube SR11 is also turned on at this time.
  • the primary winding In the second time period (t1-t2), the primary winding outputs a positive voltage, and a positive voltage is coupled to the winding L4. At the same time, the SR21 is turned on. The winding L4 charges the inductor L2 and the load through the SR21, and the inductor current rises.
  • the primary sides S2 and S4 are turned on at the same time, the primary winding L1 is short-circuited, and the zero level is output.
  • SR11 and SR21 are also turned on at the same time, which is equivalent to forming two freewheeling paths for inductor L2: one of them is SR11, SR21, L3, and L4, which is also the current path of the traditional hard full bridge; in addition, there is another freewheeling path. It is SR21, S4, S2, C2.
  • the voltage drop of the two freewheeling paths is 0 (ignoring the tube voltage drop and parasitic resistance), and the current of the inductor L2 is reduced.
  • the primary switching circuit outputs a negative voltage, and at the same time a negative voltage is coupled to L4, which forces the winding current to rapidly decrease to zero.
  • the inductor L2 current is quickly taken over by another winding L3, and the current rises rapidly, as shown by the purple curve in the figure. Show.
  • another winding repeats the commutation process in the time t1-t2 and t2-t3, which will not be described in detail in this embodiment.
  • the overall characteristic is similar to that of a hard full bridge circuit.
  • the shift ratio D2 defined in the embodiment of the present application is equivalent to 1-D in the hard full bridge circuit.
  • the voltage and transmission power of the second conversion circuit on the secondary side can be controlled. That is, the output voltage and transmission power of the second secondary circuit can be adjusted by phase control and voltage regulation on the primary side circuit.
  • control circuit is further used to adjust the output voltage and the output voltage of the first secondary circuit by adjusting the external phase shift angle between the primary circuit and the first secondary circuit.
  • the transmission power is adjusted by adjusting the internal phase shift angle of the primary circuit to adjust the output voltage and transmission power of the second secondary circuit.
  • the controller can adjust the output voltage and transmission power of the first secondary circuit by adjusting the external phase shift angle (D1) between the primary circuit and the first secondary circuit.
  • the internal phase angle (D2) of the primary circuit is adjusted to adjust the output voltage and transmission power of the second secondary circuit.
  • the core of energy control between the primary circuit and the first circuit of the secondary side lies in the external phase shift angle between the two.
  • the two internal phase shift angles of the primary circuit and the first circuit of the secondary side are reasonable, the Affect the energy transfer from the primary circuit to the first secondary current.
  • the internal phase shift angle of the primary circuit is extracted and used for energy control from the primary circuit to the second secondary circuit. It is equivalent to the topology and control strategy fusion of the phase-shifted full bridge and the dual active full bridge. On the basis of the dual active full bridge control logic, no control signal is added, and the power control of the second circuit of the secondary side is realized.
  • the inductor Cf2 when the primary circuit fails, has two freewheeling paths: one of which is SR11, SR21, L3, and L4, which is also the current path of the traditional hard full bridge; in addition, there are two freewheeling paths for the inductor Cf2.
  • a freewheeling path is SR21, S4, S2, Cr1, which can avoid serious voltage stress.
  • the embodiment of the present application provides an on-board charging OBC and DC/DC circuit, including: a primary side circuit, a first secondary side circuit, and a second secondary side circuit, the primary side circuit and the first secondary side circuit and The second secondary side circuit is magnetically coupled; the primary side circuit is used to provide a first AC power to the first secondary side circuit and a second AC power to the second secondary side circuit; the second The secondary circuit includes: a first secondary winding, a first switching tube, a second secondary winding, a second switching tube, a first DC terminal and a second DC terminal; the first terminal of the first secondary winding and The first electrode of the first switch tube is coupled, the second end of the first secondary winding is respectively coupled to the first DC end and the first end of the second secondary winding, and the first The second electrode of the switching tube is coupled to the second DC terminal, the anode of the body diode of the first switching tube is coupled to the second DC terminal; the second terminal of the second secondary winding is coupled to the first The first electrodes of the two switching tubes
  • the second secondary circuit includes the first secondary winding, the first switching tube, the second secondary winding, and the second switching tube, which simplifies the structure of the OBC circuit, and can adjust the phase of the primary circuit
  • the output voltage and the transmission power of the second secondary circuit can be adjusted by the pressure, which simplifies the control strategy.
  • the OBC circuit and the OBC charger provided in this application have been described. It should be pointed out that the OBC circuit and OBC charger provided in the embodiments of the present application are also applicable to the discharge mode.
  • the power battery can input battery power in the form of direct current to the first secondary circuit 1022.
  • the control circuit can control the first secondary circuit 1022 to convert the battery power in the DC form into the battery power in the AC form.
  • the control circuit can control the primary side circuit 1021 to output the battery power obtained from the first secondary side circuit 1022 to the external load of the new energy vehicle.
  • the specific implementation can refer to the prior art, which will not be repeated here.
  • the control circuit can also control the second secondary side circuit 1023 to convert the battery power obtained from the first secondary side circuit 1022 into the second DC power and provide it to the low-voltage load.
  • the second secondary circuit 1023 obtains the secondary AC power from the first secondary circuit 1022 and converts it into the second DC power. The process is similar to the above-mentioned embodiment, and will not be repeated here.
  • FIG. 6 is a schematic diagram of the structure of a power distribution device provided by an embodiment of the application.
  • the first secondary circuit in the power distribution device is coupled with the power battery for The power battery provides a first DC power; the first DC terminal and the second DC terminal of the second secondary circuit in the OBC charger are coupled with a low-voltage load, and are used to provide the low-voltage load with a second DC power.
  • the power distribution device in this embodiment may be a power distribution unit (PDU), and the power distribution device in this embodiment may be used in vehicles to distribute electric energy for vehicles, or in other applications OBC In the power device of the charging circuit, this application is not limited.
  • PDU power distribution unit
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate.
  • the physical unit can be located in one place or distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the connection relationship between the modules indicates that they have a communication connection between them, which can be specifically implemented as one or more communication buses or signal lines.
  • this application can be implemented by means of software plus necessary general hardware.
  • it can also be implemented by dedicated hardware including dedicated integrated circuits, dedicated CPUs, dedicated memory, Dedicated components and so on to achieve.
  • all functions completed by computer programs can be easily implemented with corresponding hardware.
  • the specific hardware structures used to achieve the same function can also be diverse, such as analog circuits, digital circuits or special-purpose circuits. Circuit etc.
  • software program implementation is a better implementation in more cases.
  • the technical solution of this application essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a readable storage medium, such as a computer floppy disk. , U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk, etc., including several instructions to make a computer device (which can be a personal computer, training device, or network device, etc.) execute the various embodiments described in this application method.
  • a computer device which can be a personal computer, training device, or network device, etc.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, training device, or data.
  • the center transmits to another website, computer, training equipment, or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a training device or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

一种车载充电OBC与DC/DC电路,应用于车载充电领域,OBC与DC/DC电路中的第二副边电路(1023)包括:第一开关管(SR21)和第二开关管(SR11);第一副边绕组(L4)的第一端与所述第一开关管(SR21)的第一电极耦合,所述第一副边绕组(L4)的第二端分别与第一直流端(P1)和第二副边绕组(L3)的第一端耦合,所述第一开关管(SR21)的第二电极与第二直流端(P2)耦合,所述第一开关管(SR21)的体二极管的阳极与所述第二直流端(P2)耦合;所述第二副边绕组(L3)的第二端与所述第二开关管(SR11)的第一电极耦合,所述第二开关管(SR11)的第二电极与所述第二直流端(P2)耦合,所述第二开关管(SR11)的体二极管的阳极与所述第二直流端(P2)耦合。该第二副边电路(1023)的结构简单,有利于简化OBC充电器中OBC电路结构。

Description

一种OBC与DC/DC电路、OBC充电器、新能源汽车及充电桩
本申请要求于2019年09月23日提交中国国家知识产权局、申请号为201910899755.2、发明名称为“一种OBC电路、OBC充电器、新能源汽车及充电桩”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新能源汽车技术领域,尤其涉及一种OBC与DC/DC电路、OBC充电器、新能源汽车及充电桩。
背景技术
随着新能源汽车的发展,车载充电(on board charger,OBC)充电器得到了越来越广泛的应用。OBC充电器主要包括OBC电路和驱动该OBC电路工作的控制电路。目前,OBC充电器多采用磁集成方案,即OBC电路中主要包括原边电路、第一副边电路和第二副边电路,且三个电路中两两之间磁耦合。控制电路可以根据第一副边电路的输出需求,控制原边电路将接收到的充电电能转换为具有特定频率的交流电能,并将其中的一部分交流电能提供给第一副边电路,将其中的另一部分交流电能提供给第二副边电路。控制电路还可以控制第一副边电路将接收到的交流电能转换为直流电能,该直流电能通常为高压电能,可以用于为新能源汽车的动力电池充电。控制电路还可以控制第二副边电路将接受到的交流电能转换为直流电能,该直流电能通常为低压电能,可以用于为新能源汽车中的低压电池(如铅酸蓄电池)或负载电路供电。
然而,OBC充电器中原边电路所提供的交流电能的频率主要受第一副边电路的输出需求影响,因此第二副边电路往往设计有复杂的电路结构,才可以将从原边电路获得的交流电能转换为适用于低压电池或负载电路的直流电能。
综上,目前的OBC充电器中OBC电路的结构较为复杂,因此还需要进一步研究。
发明内容
有鉴于此,本申请提供一种OBC与DC/DC电路、OBC充电器、新能源汽车及充电桩,OBC电路中的第二副边电路的结构简单,有利于简化OBC电路结构。
本申请提供了一种车载充电OBC与DC/DC电路,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第二交流电能;所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所 述第二直流端耦合;所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。
本申请实施例提供了一种车载充电OBC与DC/DC电路,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第二交流电能;所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所述第二直流端耦合;所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。通过上述方式,第二副边电路包括第一副边绕组、第一开关管、第二副边绕组、第二开关管,简化了OBC电路的结构。
在一种可能的实现方式中,所述第二副边电路还包括滤波电容和滤波电感;所述滤波电感的一端与所述第二副边绕组的第一端耦合,所述滤波电感的另一端与所述滤波电容的第一电极耦合,所述滤波电容的第二电极与所述第二直流端耦合。
第二方面,本申请实施例还提供一种车载充电OBC充电器,包括:控制电路和如上述第一方面所提供的OBC电路,所述控制电路分别与所述OBC电路中的原边电路和第一副边电路耦合;所述控制电路用于:在当前第一周期的第一时间段,控制所述原边电路产生原边交流电能的零电平电能,在当前第一周期的第二时间段,控制所述原边电路产生原边交流电能的正电平电能,在所述当前第一周期的第三时间段,控制所述原边电路产生原边交流电能的零电平电能,在所述当前第一周期的第四时间段,控制所述原边电路产生原边交流电能的负电平电能;控制所述第一副边电路将从所述原边电路得到的第一交流电能转换为第一直流电能,所述第一交流电能为所述原边交流电能中的部分电能;所述控制电路还分别与所述第二副边电路中第一开关管的控制电极和所述第二开关管的控制电极耦合,所述控制电路还用于:在所述第一时间段内的第一时间点,导通所述第一开关管;在所述第三时间段内的第二时间点,断开所述第一开关管,所述第二时间点晚于所述第一时间点;在所述第二时间段内的第三时间点,导通所述第二开关管;在所述第三时间段内的第四时间点,导通所述第二开关管,所述第三时间点晚于所述第四时间点。
在一种可能的实现方式中,所述OBC充电器还包括功率校准PFC电路,所述PFC电路与所述原边电路耦合;所述PFC电路,用于接收交流电形式的充电电能,对所述充电电能进行功率校准,将功率校准后的充电电能转换为原边直流电能,并将所述原边直流电能提供给所述原边电路;所述原边电路,具体用于:将所述原边直流电能转换为所述原边交流电能,并将所述原边交流电能中的第一交流电能提供给所述第一副边电路,将所述原边交流电能 中的第二交流电能提供给所述第二副边电路。
在一种可能的实现方式中,所述原边电路为全桥逆变电路或半桥逆变电路;所述控制电路,还用于:通过对所述原边电路进行相位控制调压来调整所述第二副边电路的输出电压和传输功率。
在一种可能的实现方式中,所述控制电路,还用于:通过调整所述原边电路和所述第一副边电路的外移相角来调整所述第一副边电路的输出电压和传输功率,通过调整所述原边电路的内移相角来调整所述第二副边电路的输出电压和传输功率。
本申请实施例提供了一种车载充电OBC与DC/DC电路,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第二交流电能;所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所述第二直流端耦合;所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。所述控制电路,还用于:通过对所述原边电路进行相位控制调压来调整所述第二副边电路的输出电压和传输功率。通过上述方式,第二副边电路包括第一副边绕组、第一开关管、第二副边绕组、第二开关管,简化了OBC电路的结构,且可以通过对原边电路进行相控调压来调整所述第二副边电路的输出电压和传输功率,简化了控制策略。
本申请实施例所提供的OBC充电器同样适用于动力电池向低压负载供电的场景。
第三方面,本申请实施例提供一种配电装置,包括:如上述第二方面中任一项所提供的OBC充电器;所述OBC充电器中的第一副边电路与动力电池耦合,用于为所述动力电池提供第一直流电能;所述OBC充电器中第二副边电路的第一直流端和第二直流端与低压负载耦合,用于为所述低压负载提供第二直流电能。
第四方面,本申请实施例提供一种新能源汽车,该新能源汽车包括:动力电池、低压负载、电机、车轮和如上述第二方面中任一项所提供的OBC充电器;其中,动力电池与OBC充电器中的第一副边电路耦合,低压负载与OBC充电器中第二副边电路的所述第一直流端和所述第二直流端耦合;OBC充电器,用于为动力电池提供第一直流电能,为低压负载提供第二直流电能;动力电池,用于驱动电机;电机用于驱动车轮转动。
第五方面,本申请实施例提供一种充电桩,该充电桩包括电源电路和充电枪;其中,充电枪,用于与上述第二方面中任一项所提供的OBC充电器耦合;电源电路,用于通过充电枪为OBC充电器供电。
本申请实施例提供了一种车载充电OBC与DC/DC电路,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第 二交流电能;所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所述第二直流端耦合;所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。通过上述方式,第二副边电路包括第一副边绕组、第一开关管、第二副边绕组、第二开关管,简化了OBC电路的结构,且可以通过对原边电路进行相控调压来调整所述第二副边电路的输出电压和传输功率,简化了控制策略。
附图说明
图1为一种新能源汽车的系统结构示意图;
图2为一种OBC充电器结构示意图;
图3为本申请实施例提供的一种OBC与DC/DC电路结构示意图;
图4为本申请实施例中各个控制信号时序图;
图5为本申请实施例中各个控制信号时序图;
图6为本申请实施例中的一种配电装置的结构示意。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请实施例中“耦合”指的是能量传递关系,例如,A与B耦合,指的是A与B之间能够传递能量,其中,能量的具体形式存在多种可能,例如电能、磁场势能等。在A与B之间能够传递电能时,反应在电路连接关系上,便是A与B之间可以直接电连接,也可以通过其它导体或电路元件间接电连接。在A与B之间能够传递磁场势能时,反应在电路连接关系上,便是A与B之间可以发生电磁感应,使得磁场势能可以从A传递至B,有鉴于此,本申请实施例中,以“磁耦合”特指A与B之间可以通过磁场传递能量的场景。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。新能源汽车多以电能驱动,图1示例性示出了一种新能源汽车的系统结构示意图。如图1所示,新能源汽车主要包括车载充电OBC充电器100、低压负载200、动力电池300电机400 和车轮500。其中,动力电池300为大容量、高功率的蓄电池。低压负载200为车辆(新能源汽车)内部的功能电路或车载设备,且低压负载200的额定电压远低于动力电池300的额定电压。示例性的,低压负载200可以包括但不限于新能源汽车内部的铅酸蓄电池、车载收音机、车载导航器等等,本申请实施例对此不再一一列举。
在新能源汽车行驶时,动力电池300可以驱动电机400工作,电机400进而驱动车轮500转动,从而实现车辆移动。此外,动力电池300还可以通过OBC充电器100为低压负载200供电,或者,也可以通过OBC充电器100为新能源汽车的外部负载(如另一辆新能源汽车)供电。
在新能源汽车充电时,一般可以通过充电桩为新能源汽车充电。类似于加油站与常规汽车之间的关系,充电桩可以为新能源汽车“加油”,也就是可以为新能源汽车充电。
如图1所示,充电桩主要包括电源电路和充电枪。电源电路的一端与工频电网耦合,另一端通过线缆与充电枪耦合。一般来说,电源电路可以将工频电网作为交流电源,接收工频电网提供的交流电,将接收到的交流电转换为与新能源汽车相适配的充电电能。操作人员可以将充电枪插入新能源汽车的充电插口,使充电枪与车辆内部的OBC充电器100耦合,充电桩的电源电路进而可以通过充电枪将充电电能提供给OBC充电器100。
OBC充电器100将接收到的一部分充电电能提供给动力电池300,动力电池300进而存储该部分电能。此外,OBC充电器100还可以将接收到的另一部分充电电能提供给低压负载200,以供低压负载200使用,例如,低压负载200中的铅酸蓄电池可以存储该部分电能,低压负载200中的车载收音机也可以使用该部分电能工作。
一般,新能源汽车中的OBC充电器100至少具有两种工作模式:充电模式和放电模式。具体来说,在充电模式下,OBC充电器100接收充电桩提供的充电电能,并将所接收到的充电电能分别提供给低压负载200和动力电池300。在放电模式下,OBC充电器100接收动力电池300提供的电池电能,并将电池电能提供给低压负载200,在一些场景下,OBC充电器100也可以将动力电池300提供的电池电能提供给车辆外部负载。
接下来,以充电模式为例,对OBC充电器100作进一步说明。图2示例性示出了一种OBC充电器100结构示意图,如图2所示,OBC充电器100主要包括控制电路101和OBC电路102。
其中,OBC电路102主要包括两两之间磁耦合的原边电路1021、第一副边电路1022和第二副边电路1023,也就是说,原边电路1021分别与第一副边电路1022和第二副边电路1023磁耦合,第一副边电路1022分别与原边电路1021和第二副边电路1023磁耦合。
控制电路101可以是OBC充电器100内部的微处理器(microcontroller unit,MCU),控制电路101分别与原边电路1021、第一副边电路1022、第二副边电路1023耦合,控制电路101可以生成多种控制信号以分别控制原边电路1021、第一副边电路1022、第二副边电路1023的工作。
在一些可能的实现方式中,OBC充电器100还可以包括功率因数校正(power factor correction,PFC)电路103,PFC电路可以接收交流电形式的充电电能,在控制电路101的控制下,PFC电路可以对交流电形式的充电电能进行功率校准,将功率校准后的充电电能转换为原边直流电能,并将原边直流电能提供给原边电路1021。
可以理解,图1中充电桩的电源电路也可以将接收到的交流电能转换为直流电形式的充 电电能,并将直流电形式的充电电能提供给OBC充电器100。有鉴于此,OBC充电器100中还可以包括配电电路(图2中未示出)。配电电路的第一端用于接收充电电能,该充电电能既可以是直流电形式,也可以是交流电形式。配电电路的第二端与PFC电路耦合,第三端与原边电路1021耦合。在控制电路101的控制下,配电电路可以将直流电形式的充电电能作为原边直流电能提供给原边电路1021,将交流电形式的充电电能提供给PFC电路,由PFC电路将交流电形式的充电电能转换为原边直流电能后提供给原边电路1021。在OBC充电器100中设置配电电路,使得新能源汽车不仅可以适用交流充电桩,还可以适用直流充电桩,从而可以使新能源汽车的充电更加便捷。
OBC电路102可以接收来自于PFC电路或配电电路的原边直流电能,将一部分直流电能提供给动力电池300,将另一部分直流电能提供给低压负载200。其中,低压负载200可以是低压电池201(如铅酸蓄电池),也可以是车载功能电路202(如车载音响、车载收音机、车载导航器等)。
图3示例性示出了本申请实施例提供的一种OBC与DC/DC电路102结构示意图。接下来以图3为例,对OBC电路102中的原边电路1021、第一副边电路1022和第二副边电路1023作进一步说明。
原边电路1021
原边电路1021可以在控制电路101的控制下,将接收到的原边直流电能转换为原边交流电能。如图3所示,原边电路1021可以是全桥逆变电路,主要包括开关管S1、开关管S2、开关管S3、开关管S4、和原边绕组L1,在一种可能的实现方式中,还可以包括电容Cr1、电感Lr1中的至少一个。
其中,开关管S1、开关管S2、开关管S3和开关管S4构成了桥式逆变电路结构。具体来说,开关管S1的第一电极分别与开关管S3的第一电极和PFC电路(其输出端为图3中的V1)的第一直流端耦合,开关管S1的第二电极分别与开关管S2的第一电极和电容Cr1的第一电极耦合;电容Cr1的第二电极与原边绕组L1的第一端耦合;需要说明的是,尽管图3中未示出,原边电路1021还可以包括电感Lr1,电容Cr1的第二电极与电感Lr1的第一端耦合;电感Lr1的第二端与原边绕组L1的第一端耦合。
开关管S3的第二电极分别与原边绕组L1的第二端和开关管S4的第一电极耦合;开关管S2的第二电极分别与开关管S4的第二电极和PFC电路的第二直流端耦合。开关管S1的控制电极、开关管S2的控制电极、开关管S3的控制电极和开关管S4的控制电极皆分别与控制电路101耦合。
一般来说,用于输出直流电能的两个直流端中,其中一个为高压端,另一个为低压端。其中,低压端可以与接地电路耦合,即低压端为0电势。例如,PFC电路的第一直流端和第二直流端中,第二直流端为低压端,第二直流端可以与OBC充电器100的接地电路耦合,即第二直流端为0电势。在此情况下,开关管S2的第二电极和开关管S4的第二电极也可以与接地电路耦合,也就是说,开关管S2的第二电极和开关管S4的第二电极可以通过接地电路与PFC电路间接耦合。第一副边电路1022的直流端和第二副边电路1023的直流端同理,本申请实施例对此不再赘述。
基于图3所示的原边电路1021,控制电路101可以通过发送周期性的原边控制信号以控制原边电路1021将原边直流电能转换为具有一定周期时长(频率)的原边交流电能。假设图3中原边电路1021的各个开关管皆为N沟道金属氧化物半导体晶体管(N metal oxide semiconductor,NMOS)。
图4示例性示出了本申请实施例中各个控制信号时序图。其中,控制信号C1用于控制开关管S1导通及断开;控制信号C2用于控制开关管S2的导通及断开,控制信号C3用于控制开关管S3导通及断开;控制信号C4用于控制开关管S4导通及断开。如图4所示,控制信号C1和C2为互补信号,也就是说,控制信号C1和C2具有相同的周期时长T和相同的占空比(t/T),但两个控制信号C1和C2的高电平时间段t互不重叠,控制信号C3和C4为互补信号,也就是说,控制信号C3和C4具有相同的周期时长T和相同的占空比(t/T),但两个控制信号C3和C4的高电平时间段t互不重叠。
可以理解,在理想情况下,控制信号C1的下降沿与控制信号C2的上升沿位于同一时间点,控制信号C1的上升沿与控制信号C2的下降沿位于同一时间点。如图4所示,考虑到开关延迟等因素的存在,控制信号C1的下降沿与控制信号C2的上升沿之间可以间隔一定时延,控制信号C1的上升沿与控制信号C2的下降沿也可以间隔一定时延。
可以理解,在理想情况下,控制信号C3的下降沿与控制信号C4的上升沿位于同一时间点,控制信号C3的上升沿与控制信号C4的下降沿位于同一时间点。如图4所示,考虑到开关延迟等因素的存在,控制信号C3的下降沿与控制信号C4的上升沿之间可以间隔一定时延,控制信号C3的上升沿与控制信号C4的下降沿也可以间隔一定时延。
在本申请实施例中,控制信号C1的上升沿与控制信号C4的上升沿之间间隔的时间段以第一时间段(t0-t1)表示,控制信号C4的上升沿与控制信号C1的下降沿之间间隔的时间段以第二时间段(t1-t2)表示,控制信号C1的下降沿与控制信号C4的下降沿之间间隔的时间段以第三时间段(t2-t3)表示,控制信号C4的下降沿与控制信号C1的上升沿之间间隔的时间段以第四时间段(t3-t4)表示。
本申请实施例中,在开关管S1和S3导通、开关管S2和S4关断期间(第一时间段),原边电路1021输出零电平电能;在开关管S1和S4导通、开关管S2和S3关断期间(第二时间段),原边电路1021输出正电平电能;在开关管S2和S4导通、开关管S1和S3关断期间(第三时间段),原边电路1021输出零电平电能;在开关管S2和S3导通、开关管S1和S4关断期间(第四时间段),原边电路1021输出负电平电能。
由此可见,控制电路101通过控制开关管S1、S2、S3、S4的导通及断开,使得原边绕组处的电流方向交替变换,从而在原边绕组处得到原边交流电能。原边交流电(能)的电压变换可以如图4所示。
原边电路的开关管S1至S4均为50%占空比发波,其中上下管S1/S2、S3/S4分别互补发波,两个桥臂之间发波时序存在一定时间差,定义为D2*T。其中T为半周期,D2为原边移相比。如图4所示。
如图3所示,第一副边电路1022包括副边绕组L2,第二副边电路1023包括副边绕组L3和L4。原边电路1021分别与第一副边电路1022和第二副边电路1023磁耦合,主要是通过原 边绕组L1分别与副边绕组L2、副边绕组L3和副边绕组L4的磁耦合实现的。因此,原边电路1021在原边绕组L1处产生的原边交流电能可以通过电磁感应分别传递给副边绕组L2、副边绕组L3和副边绕组L4。
第一副边电路1022
第一副边电路1022可以接收原边电路1021提供的部分原边交流电能,即第一交流电能。在控制电路101的控制下,第一副边电路1022可以将第一交流电能转换为第一直流电能,该第一直流电能可以用于动力电池300充电。第一副边电路1022的第一直流端与动力电池300的正极耦合,第二直流端与动力电池300的负极耦合。如图3所示,第一副边电路1022主要包括开关管S5、开关管S6、开关管S7、开关管S8和副边绕组L2。在一种可能的实现方式中,第一副边电路1022还可以包括电容Cr2、电感Lr2和电容Cf1中的一个或多个。
其中,开关管S5的第一电极与开关管S7的第一电极耦合,开关管S5的第二电极分别与副边绕组L2的第二端和开关管S6的第一电极耦合;副边绕组L2的第一端与原边绕组L1的第一端互为同名端,且副边绕组L2的第一端与电感Lr2的第一端耦合;电感Lr2的第二端与电容Cr2的第一电极耦合,电容Cr2的第二电极与开关管S7的第二电极耦合;开关管S7的第一电极与第一副边电路1022的第一直流端耦合,开关管S7的第二电极与开关管S8的第一电极耦合,开关管S6的第二电极和开关管S8的第二电极与第一副边电路1022的第二直流端耦合。电容Cf1并联在第一副边电路1022的第一直流端和第二直流端之间。
一般来说,控制信号C1和C2是控制电路101根据第一副边电路1022的输出需求确定的。也就是说,控制电路101可以通过改变控制信号C1和C2的周期时长、占空比等因素调节第一副边电路1022输出的第一直流电能的电压值。在此情况下,第一副边电路1022中的开关管S5至S8可以与原边电路1021中的开关管S1至S4同步导通和断开。也就是说,控制信号C1也可以控制开关管S6和S7的导通和断开,控制信号C2也可以控制开关管S5和S8的导通和断开。
需要指出的是,以上原边电路1021和第一副边电路1022的电路结构仅为示例。在具体实现结构中,原边电路1021和第一副边电路1022还存在多种可能的实现方式,本申请实施例对此不再一一列举。
第二副边电路1023
由上述过程可见,原边电路1021和第一副边电路1022使用相同的控制信号,可以实现同步整流。原边电路1021依据第一副边电路1022的输出需求生成原边交流电能,并将其中的第二交流电能提供给了第二副边电路1023。然而,第二副边电路1023的输出需求往往不同于第一副边电路1022,第二副边电路1023不仅需要对第二交流电能整流,还需要对第二交流电能调压,才可以得到适用于低压负载200的第二直流电能。因此,目前第二副边电路1023的电路结构往往过于复杂,还需要进一步研究。
有鉴于此,本申请实施例提供了一种第二副边电路1023的电路结构,该电路结构可以通过三极管和二极管等基础电路元件实现整流和调压,电路结构更加简单,不仅有利于降低OBC充电器100的生产成本,还有利于提高OBC充电器100的能量利用效率。接下来,通过以下实施例对本申请实施例所提供的第二副边电路1023作进一步说明。
图3包括本申请实施例提供的一种第二副边电路1023结构示意图。如图3所示,第二副 边电路1023包括第一副边绕组(副边绕组L3)、第一开关管(开关管SR11)、第二副边绕组(副边绕组L4)、第二开关管(开关管SR21)、第一直流端P1和第二直流端P2。其中,第二副边电路1023的第一直流端P1以及第二直流端P2与低压负载200耦合,第二副边电路1023可以通过第一直流端P1和第二直流端P2向低压负载200提供第二直流电能。
如图3所示,副边绕组L3的第一端与开关管SR11的第一电极耦合,副边绕组L3的第二端分别与第一直流端P1和副边绕组L4的第一端耦合,开关管SR11的第二电极与第二直流端P2耦合,开关管SR11的体二极管的阳极与第二直流端P2耦合;副边绕组L4的第二端与开关管SR21的第一电极耦合,开关管SR21的第二电极与第二直流端P2耦合,开关管SR21的体二极管的阳极与第二直流端P2耦合。其中,副边绕组L3的第一端和副边绕组L4的第一端皆与原边绕组L1的第一端互为同名端。
基于图3所示的第二副边电路1023,假设所有的开关管皆为NMOS,控制电路101可以通过图4中的控制信号C9控制开关管SR11的导通和断开,通过控制信号C10控制开关管SR21的导通和关闭。
以原边交流电能的一个周期T1(t0-t4)为例,周期T1的时长为T。周期T2为周期T1的下一个周期。在周期T1中,t0与t1之间为第一时间段,t1与t2之间为第二时间段,t2与t3之间为第三时间段,t3与t4之间为第四时间段。在第一时间段,原边绕组中没有电流流过。在第二时间段,电流由原边绕组的第一端流向第二端。在第三时间段,原边绕组中没有电流流过。在第四时间段,原边绕组中的电流由原边绕组的第二端流向第一端。即在原边桥臂中点也即绕组L1上,产生正、负、零的三电平方波。经过变压器耦合后,在绕组L3与L4上分别产生两个彼此反向的三电平电压。
如果将S9、S10看做二极管不控整流,那么在电感L2前会经过全波整流产生V3sL所示电压波形。由于副边第二转换电路流经的电流大,SR11、SR21需要做同步整流控制策略,发波时序如图4。流过绕组L4与功率管SR21的电流与流过绕组L3余功率管SR11的电流的叠加为流过电感L buck的电流。
具体的,在第一时间段内的第一时间点t0,控制电路101通过控制信号C10导通开关管SR21。在第一时间点导通开关管SR21之后,此时开关管SR11也是导通的。
在第二时间段内(t1-t2)原边绕组输出正电压,在绕组L4上耦合出正压,同时SR21开通,绕组L4经过SR21为电感L2与负载充电,电感电流上升。
在第三时间段内(t2-t3)内,原边S2、S4同时开通,将原边绕组L1短路,并输出零电平。此阶段内SR11与SR21也同时开通,等同于为电感L2构成两条续流通路:其中一条为SR11、SR21、L3、L4,这也是传统硬全桥的电流路径;此外还有一条续流路径为SR21、S4、S2、C2。两条续流路径压降均为0(忽略管压降与寄生电阻),电感L2电流减小。
在t3时刻原边转换电路输出负压,同时L4上耦合负压,迫使该绕组电流迅速减小到零,电感L2电流被另一绕组L3迅速接管,电流迅速升高,如图中紫色曲线所示。在t3-t4、t4-t5时间内,另一绕组重复了t1-t2、t2-t3时间内的换流过程,本实施例不再详述。整体特性与硬全桥电路相似,本申请实施例中所定义的移相比D2相当于硬全桥电路中的1-D。因此控制D2的大小,即可控制副边第二转换电路的电压与传输功率,即可以通过对所述原边电路 进行相位控制调压来调整所述第二副边电路的输出电压和传输功率。具体控制公式可以如下述公式:V3=V1*n3/n1*(1-D2);其中,n3表示第二副边第电路的绕组匝数,n1表示原边电路的绕组匝数。
本申请实施例中,所述控制电路,还用于:通过调整所述原边电路和所述第一副边电路之间的外移相角来调整所述第一副边电路的输出电压和传输功率,通过调整所述原边电路的内移相角来调整所述第二副边电路的输出电压和传输功率。
参照图5,控制器可以通过调整所述原边电路和所述第一副边电路之间的外移相角(D1)来调整所述第一副边电路的输出电压和传输功率,通过调整所述原边电路的内移相角(D2)来调整所述第二副边电路的输出电压和传输功率。
本申请实施例中,原边电路到副边第一电路的能量控制核心在于二者之间的外移相角,只要原边电路和副边第一电路的两个内移相角合理,不影响原边电路到第一副边电流的传能。本申请实施例中,把原边电路的内移相角提取出来用作原边电路到第二副边电路的能量控制。相当于将移相全桥与双有源全桥做了拓扑与控制策略融合。在双有源全桥控制逻辑的基础上,没有增加任何控制信号,实现了副边第二电路的功率控制。
此外,本申请实施例中,当原边电路发波故障时,电感Cf2存在两条续流通路:其中一条为SR11、SR21、L3、L4,这也是传统硬全桥的电流路径;此外还有一条续流路径为SR21、S4、S2、Cr1,可以避免严重的电压应力。
本申请实施例提供了一种车载充电OBC与DC/DC电路,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第二交流电能;所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所述第二直流端耦合;所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。通过上述方式,第二副边电路包括第一副边绕组、第一开关管、第二副边绕组、第二开关管,简化了OBC电路的结构,且可以通过对原边电路进行相控调压来调整所述第二副边电路的输出电压和传输功率,简化了控制策略。
以上,以充电模式下的OBC充电器为例,对本申请所提供的OBC电路及OBC充电器进行了说明。需要指出的是,本申请实施例所提供的OBC电路及OBC充电器同样适用于放电模式。
具体来说,动力电池可以向第一副边电路1022输入直流形式的电池电能。控制电路可以控制第一副边电路1022将直流形式的电池电能转换为交流形式的电池电能。控制电路可以控制原边电路1021将从第一副边电路1022得到的电池电能输出至新能源汽车的外部负载,具体实现可以参考现有技术,对此不再赘述。
控制电路也可以控制第二副边电路1023将从第一副边电路1022得到的电池电能转换为 第二直流电能,并提供给低压负载。
第二副边电路1023从第一副边电路1022获取副边交流电能,并将其转换为第二直流电能,该过程类似于上述实施例,对此不再赘述。
参照图6,图6为本申请实施例提供的一种配电装置的结构示意,如图6中示出的那样,配电装置中的第一副边电路与动力电池耦合,用于为所述动力电池提供第一直流电能;所述OBC充电器中第二副边电路的第一直流端和第二直流端与低压负载耦合,用于为所述低压负载提供第二直流电能。
需要说明的是,本实施例中的配电装置可以为电源分配单元(power distribution unit,PDU),本实施例中的配电装置可以应用在车辆中,为车辆分配电能,或者在其他应用OBC充电电路的动力装置中,本申请并不限定。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,训练设备,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、训练设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、训练设备或数据中心进行传输。所述计算机可读存储介质可以 是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的训练设备、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。

Claims (9)

  1. 一种车载充电OBC与直流转直流DC/DC电路,其特征在于,包括:原边电路、第一副边电路和第二副边电路,所述原边电路分别与所述第一副边电路和所述第二副边电路磁耦合;
    所述原边电路用于分别向所述第一副边电路提供第一交流电能,向所述第二副边电路提供第二交流电能;
    所述第二副边电路包括:第一副边绕组、第一开关管、第二副边绕组、第二开关管、第一直流端和第二直流端;所述第一副边绕组的第一端与所述第一开关管的第一电极耦合,所述第一副边绕组的第二端分别与所述第一直流端和所述第二副边绕组的第一端耦合,所述第一开关管的第二电极与所述第二直流端耦合,所述第一开关管的体二极管的阳极与所述第二直流端耦合;
    所述第二副边绕组的第二端与所述第二开关管的第一电极耦合,所述第二开关管的第二电极与所述第二直流端耦合,所述第二开关管的体二极管的阳极与所述第二直流端耦合。
  2. 根据权利要求1所述的OBC与DC/DC电路,其特征在于,所述第二副边电路还包括滤波电容和滤波电感;
    所述滤波电感的一端与所述第二副边绕组的第一端耦合,所述滤波电感的另一端与所述滤波电容的第一电极耦合,所述滤波电容的第二电极与所述第二直流端耦合。
  3. 一种车载充电OBC充电器,其特征在于,包括:控制电路和如权利要求1或2所述的OBC电路,所述控制电路分别与所述OBC电路中的原边电路和第一副边电路耦合;
    所述控制电路用于:
    在当前第一周期的第一时间段,控制所述原边电路产生原边交流电能的零电平电能,在当前第一周期的第二时间段,控制所述原边电路产生原边交流电能的正电平电能,在所述当前第一周期的第三时间段,控制所述原边电路产生原边交流电能的零电平电能,在所述当前第一周期的第四时间段,控制所述原边电路产生原边交流电能的负电平电能;
    控制所述第一副边电路将从所述原边电路得到的第一交流电能转换为第一直流电能,所述第一交流电能为所述原边交流电能中的部分电能;
    所述控制电路还分别与所述第二副边电路中第一开关管的控制电极和所述第二开关管的控制电极耦合,所述控制电路还用于:
    在所述第一时间段内的第一时间点,导通所述第一开关管;
    在所述第三时间段内的第二时间点,断开所述第一开关管,所述第二时间点晚于所述第一时间点;
    在所述第二时间段内的第三时间点,导通所述第二开关管;
    在所述第三时间段内的第四时间点,导通所述第二开关管,所述第三时间点晚于所述第四时间点。
  4. 根据权利要求3所述的OBC充电器,其特征在于,所述OBC充电器还包括功率校准PFC电路,所述PFC电路与所述原边电路耦合;
    所述PFC电路,用于接收交流电形式的充电电能,对所述充电电能进行功率校准,将功 率校准后的充电电能转换为原边直流电能,并将所述原边直流电能提供给所述原边电路;
    所述原边电路,具体用于:
    将所述原边直流电能转换为所述原边交流电能,并将所述原边交流电能中的第一交流电能提供给所述第一副边电路,将所述原边交流电能中的第二交流电能提供给所述第二副边电路。
  5. 根据权利要求3或4所述的OBC充电器,其特征在于,所述原边电路为全桥逆变电路或半桥逆变电路;
    所述控制电路,还用于:
    通过对所述原边电路进行相位控制调压来调整所述第二副边电路的输出电压和传输功率。
  6. 根据权利要求5所述的OBC充电器,其特征在于,所述控制电路,还用于:通过调整所述原边电路和所述第一副边电路的外移相角来调整所述第一副边电路的输出电压和传输功率,通过调整所述原边电路的内移相角来调整所述第二副边电路的输出电压和传输功率。
  7. 一种配电装置,其特征在于,包括:如权利要求3至6中任一项所述的OBC充电器;
    所述OBC充电器中的第一副边电路与动力电池耦合,用于为所述动力电池提供第一直流电能;所述OBC充电器中第二副边电路的第一直流端和第二直流端与低压负载耦合,用于为所述低压负载提供第二直流电能。
  8. 一种新能源汽车,其特征在于,包括:动力电池、低压负载、电机、车轮和如权利要求3至6中任一项所述的OBC充电器;
    所述动力电池与所述OBC充电器中的第一副边电路耦合,所述低压负载与所述OBC充电器中第二副边电路的所述第一直流端和所述第二直流端耦合;
    所述OBC充电器,用于为所述动力电池提供所述第一直流电能,为所述低压负载提供所述第二直流电能;
    所述动力电池,用于驱动所述电机;
    所述电机用于驱动所述车轮转动。
  9. 一种充电桩,其特征在于,包括电源电路和充电枪;
    所述充电枪,用于与如权利要求3至6中任一项所提供的OBC充电器耦合;
    所述电源电路,用于通过所述充电枪为所述OBC充电器供电。
PCT/CN2020/078357 2019-09-23 2020-03-09 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩 WO2021056976A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869412.5A EP3950411A4 (en) 2019-09-23 2020-03-09 DC/DC CIRCUIT OF ON-BOARD CHARGER, ON-BOARD CHARGER, NEW ENERGY AUTOMOTIVE AND CHARGING BATTERY
CN202080065613.7A CN114746301A (zh) 2019-09-23 2020-03-09 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910899755.2 2019-09-23
CN201910899755.2A CN110774909A (zh) 2019-09-23 2019-09-23 一种obc电路、obc充电器、新能源汽车及充电桩

Publications (1)

Publication Number Publication Date
WO2021056976A1 true WO2021056976A1 (zh) 2021-04-01

Family

ID=69383700

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/078357 WO2021056976A1 (zh) 2019-09-23 2020-03-09 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩
PCT/CN2020/101451 WO2021057195A1 (zh) 2019-09-23 2020-07-10 一种obc电路、obc充电器、新能源汽车及充电桩
PCT/CN2020/117070 WO2021057780A1 (zh) 2019-09-23 2020-09-23 一种双输出端口充电电路

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/101451 WO2021057195A1 (zh) 2019-09-23 2020-07-10 一种obc电路、obc充电器、新能源汽车及充电桩
PCT/CN2020/117070 WO2021057780A1 (zh) 2019-09-23 2020-09-23 一种双输出端口充电电路

Country Status (3)

Country Link
EP (2) EP3950411A4 (zh)
CN (3) CN110774909A (zh)
WO (3) WO2021056976A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110774909A (zh) * 2019-09-23 2020-02-11 华为技术有限公司 一种obc电路、obc充电器、新能源汽车及充电桩
CN111769743A (zh) * 2020-07-02 2020-10-13 深圳盛世新能源科技有限公司 一种一个变压器控制的双路充电电路及其控制方法
US11594973B2 (en) * 2020-08-04 2023-02-28 Delta Electronics Inc. Multiple-port bidirectional converter and control method thereof
CN114337289A (zh) * 2020-11-30 2022-04-12 华为数字能源技术有限公司 一种转换电路、转换器和电子设备
WO2022133793A1 (zh) * 2020-12-23 2022-06-30 深圳欣锐科技股份有限公司 一种充电系统和汽车
CN112821483B (zh) * 2020-12-31 2024-01-05 维沃移动通信有限公司 充电器
CN113511084B (zh) * 2021-04-25 2023-06-09 深圳威迈斯新能源股份有限公司 一种输出端可进行串并联切换的车载充电机
CN113580989B (zh) * 2021-09-29 2021-12-07 四川智多鑫新能源有限公司 一种新能源电动汽车超充系统及控制方法
CN115276253B (zh) * 2022-09-19 2023-02-10 国网江西省电力有限公司电力科学研究院 基于多绕组结构的多输出磁场感应取能系统及其控制方法
EP4358381A1 (en) * 2022-10-20 2024-04-24 Siemens Gamesa Renewable Energy Innovation & Technology S.L. Zero voltage switching control method for power converters
CN116494794A (zh) * 2023-05-05 2023-07-28 广州小鹏汽车科技有限公司 车载充电电路以及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746419A (zh) * 2013-12-30 2014-04-23 联合汽车电子有限公司 车载充电器电路
CN106611975A (zh) * 2015-10-23 2017-05-03 通用电气公司 能量转换系统
CN106685039A (zh) * 2015-11-11 2017-05-17 上海汽车集团股份有限公司 一种充放电装置及其控制方法
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
EP3374228A1 (fr) * 2015-11-09 2018-09-19 RENAULT s.a.s. Procédé de charge sans contact d'une batterie d'un véhicule automobile en mouvement, et système correspondant
CN207926248U (zh) * 2018-03-20 2018-09-28 北京新能源汽车股份有限公司 车载电源和车辆
CN208638083U (zh) * 2018-08-01 2019-03-22 联合汽车电子有限公司 电动汽车充电电路
CN109703399A (zh) * 2018-12-27 2019-05-03 台达电子企业管理(上海)有限公司 车载充放电系统及其所适用的控制方法
CN110774909A (zh) * 2019-09-23 2020-02-11 华为技术有限公司 一种obc电路、obc充电器、新能源汽车及充电桩

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000057341A2 (en) * 1999-03-22 2000-09-28 Escript, Inc. Method and apparatus for medical covering group request processing, review and management
CN1315251C (zh) * 2002-10-08 2007-05-09 中国科学院电工研究所 基于数字信号处理器dsp的移相全桥高频链逆变器
JP4400632B2 (ja) * 2007-02-20 2010-01-20 Tdk株式会社 スイッチング電源装置
US8779717B2 (en) * 2011-12-02 2014-07-15 Lear Corporation Offline power supply and charging apparatus
US9450452B2 (en) * 2012-04-03 2016-09-20 Micorsoft Technology Licensing, LLC Transformer coupled current capping power supply topology
FR2993728A1 (fr) * 2012-07-20 2014-01-24 Ies Synergy Convertisseur reversible
CN104980037B (zh) * 2015-07-07 2017-09-15 南京航空航天大学 一种副边调整型定频谐振变换器及其控制方法
JP6962687B2 (ja) * 2016-03-29 2021-11-05 ローム株式会社 スイッチング電源装置
KR20170126053A (ko) * 2016-05-04 2017-11-16 현대자동차주식회사 양방향 파워링이 가능한 차량용 충전기, 이를 포함하는 차량 전력 공급 시스템 및 그 제어방법
CN205666757U (zh) * 2016-05-19 2016-10-26 山东大学 基于三端口全桥dc/dc变换器的零功率电流控制系统及储能系统
CN106004489B (zh) * 2016-06-01 2018-08-28 深圳市科列技术股份有限公司 一种电动汽车用车载充电机、充电方法及电动汽车
US9748853B1 (en) * 2016-11-01 2017-08-29 Macau University Of Science And Technology Semi-dual-active-bridge converter system and methods thereof
US10427532B2 (en) * 2017-04-05 2019-10-01 Ford Global Technologies, Llc On-board and wireless vehicle charging systems with shared components
CN207156960U (zh) * 2017-07-11 2018-03-30 深圳市永联科技股份有限公司 一种集成dc/dc转换器的车载充电机主电路及其控制环路
CN107623365A (zh) * 2017-09-30 2018-01-23 深圳威迈斯电源有限公司 一种带逆变功能的三端口充电机
CN108237943B (zh) * 2018-01-17 2019-05-17 深圳威迈斯新能源股份有限公司 一种双输出端口充电电路及其控制方法
CN109038736B (zh) * 2018-08-10 2019-10-18 深圳威迈斯新能源股份有限公司 一种充电电路移相控制方法
CN209046338U (zh) * 2018-09-18 2019-06-28 深圳欣锐科技股份有限公司 一种集成车载充电机及电路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746419A (zh) * 2013-12-30 2014-04-23 联合汽车电子有限公司 车载充电器电路
CN106611975A (zh) * 2015-10-23 2017-05-03 通用电气公司 能量转换系统
EP3374228A1 (fr) * 2015-11-09 2018-09-19 RENAULT s.a.s. Procédé de charge sans contact d'une batterie d'un véhicule automobile en mouvement, et système correspondant
CN106685039A (zh) * 2015-11-11 2017-05-17 上海汽车集团股份有限公司 一种充放电装置及其控制方法
CN106936184A (zh) * 2017-03-14 2017-07-07 深圳威迈斯电源有限公司 一种车载充电机和dcdc的集成电路
CN207926248U (zh) * 2018-03-20 2018-09-28 北京新能源汽车股份有限公司 车载电源和车辆
CN208638083U (zh) * 2018-08-01 2019-03-22 联合汽车电子有限公司 电动汽车充电电路
CN109703399A (zh) * 2018-12-27 2019-05-03 台达电子企业管理(上海)有限公司 车载充放电系统及其所适用的控制方法
CN110774909A (zh) * 2019-09-23 2020-02-11 华为技术有限公司 一种obc电路、obc充电器、新能源汽车及充电桩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950411A4

Also Published As

Publication number Publication date
WO2021057780A1 (zh) 2021-04-01
EP3971019A1 (en) 2022-03-23
EP3950411A4 (en) 2022-09-28
WO2021057195A1 (zh) 2021-04-01
CN110774909A (zh) 2020-02-11
EP3971019A4 (en) 2022-07-13
EP3950411A1 (en) 2022-02-09
EP3971019B1 (en) 2023-06-28
CN111251916B (zh) 2021-09-07
CN111251916A (zh) 2020-06-09
CN114746301A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021056976A1 (zh) 一种obc与dc/dc电路、obc充电器、新能源汽车及充电桩
CN106740220B (zh) 一种恒流恒压复合拓扑的无线充电电路
EP3787169A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
CN103746419B (zh) 车载充电器电路
CN110719046B (zh) 一种用于老化电源装置的控制方法
CN109560711B (zh) 一种隔离型双向dc-dc变换器及其调制方法
CN111355398B (zh) 一种集成dc/dc转换器的双向车载充电机电路
WO2021143263A1 (zh) 一种能量均衡控制装置、电池系统及其能量均衡控制方法
CN110620517B (zh) 一种并联输入串联输出的老化电源装置
CN108964469B (zh) 一种并串联结构的全桥双llc谐振变换器
CN102111008A (zh) 电动汽车的高压电池充电系统架构
CN104811047A (zh) 双向dc/dc变换器及其控制方法
CN106961220B (zh) 一种具有均流特性的高效并联llc谐振变换器
CN110601525B (zh) 新能源汽车集成车载充电变换系统
CN110649813B (zh) 一种隔离型集成化三端口双向dcdc变换器
WO2022116413A1 (zh) 一种可切换无线电能传输线圈与补偿电容的可变电路拓扑
CN111245078A (zh) 集成dc/dc转换器的双向车载充电机电路
WO2024016601A1 (zh) 一种基于双绕组电机控制拓扑等效实现车载充电器充电的装置
CN113511084A (zh) 一种输出端可进行串并联切换的车载充电机
CN114132189B (zh) 电动汽车大功率多端口无线充电桩
WO2021062788A1 (zh) 一种车载充、放电装置及其充放电系统和新能源汽车
CN112572189B (zh) 车载充放电系统及具有其的车辆
CN114228520A (zh) 一种用于无线充电的组合供电系统
CN110557026A (zh) 高压直流变换电路及车载充电机
CN112572186B (zh) 车载充电系统及具有其的车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020869412

Country of ref document: EP

Effective date: 20211105

NENP Non-entry into the national phase

Ref country code: DE