WO2021057492A1 - 车载充电系统及具有其的车辆 - Google Patents

车载充电系统及具有其的车辆 Download PDF

Info

Publication number
WO2021057492A1
WO2021057492A1 PCT/CN2020/114492 CN2020114492W WO2021057492A1 WO 2021057492 A1 WO2021057492 A1 WO 2021057492A1 CN 2020114492 W CN2020114492 W CN 2020114492W WO 2021057492 A1 WO2021057492 A1 WO 2021057492A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch tube
terminal
capacitor
tube
control
Prior art date
Application number
PCT/CN2020/114492
Other languages
English (en)
French (fr)
Inventor
许兴发
吴昊
刘宇
杨柳
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2021057492A1 publication Critical patent/WO2021057492A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present disclosure relates to the field of vehicle technology, and in particular, to an on-board charging system and a vehicle including the on-board charging system.
  • Fig. 1 is a circuit diagram of an on-board charging system in the related art.
  • the system includes two-stage circuits Part1' and Part2'.
  • Part1' is connected to the power grid, and Part2' is connected to the battery pack.
  • Part1' realizes AC-DC conversion and power factor correction, and outputs DC voltage.
  • Part2’ is a DC-DC converter that outputs a suitable voltage to charge the battery pack.
  • a large-capacity electrolytic capacitor C1' is required between Part1' and Part2', which increases the volume and cost of the system, and the electrolytic capacitor C1' has problems such as short life and poor shock resistance. Conducive to the reliability of the system.
  • the present disclosure proposes a vehicle-mounted charging system and a vehicle with the vehicle-mounted charging system.
  • the vehicle-mounted charging system does not require a large-capacity electrolytic capacitor, which can reduce the system volume, reduce costs, and improve system stability.
  • the vehicle-mounted charging system of the embodiment of the first aspect of the present disclosure includes: a conversion circuit module, the first end of the conversion circuit module is connected to an electric unit, and is used to convert the input first alternating current signal into a first steamed bun wave signal; a resonance circuit A module for converting the input first steamed bread wave signal, including a first conversion unit, a transformer, and a second conversion unit, wherein the first end of the first conversion unit and the second end of the conversion circuit module Connected, the primary side of the transformer is connected to the second end of the first conversion unit, and the secondary side of the transformer is connected to the second conversion unit; the control module is used for charging control according to the charging mode Time sequence controls the conversion circuit module to convert the first alternating current signal into a first steamed bun wave signal, and controls the first conversion unit to convert the first steamed bun wave signal into a second alternating current signal.
  • the isolation and transformation of the transformer are transmitted to the second conversion unit, and the second conversion unit is controlled to convert and transform the second alternating current signal
  • a conversion circuit module and a resonance circuit module are provided.
  • the control module controls the conversion circuit module according to the charging control sequence to convert the first AC signal into the first steamed bun wave signal.
  • the output signal of the conversion circuit module is a steamed bun wave signal, so there is no need to set a large-capacity electrolytic capacitor between the conversion circuit module and the subsequent resonant circuit module, and control the second conversion unit to convert the transformed second AC signal It is the second steamed wave signal and output, that is, the output electrical signal of the resonant circuit module is also steamed wave.
  • the vehicle of the embodiment of the second aspect of the present disclosure includes a high-voltage battery pack, a low-voltage battery pack, and the on-board charging system of the above embodiment.
  • the cost can be reduced, the reliability can be improved, and the shock resistance level can be improved.
  • Figure 1 is a circuit diagram of a two-way vehicle-mounted charger system in the related art
  • Fig. 2 is a block diagram of an on-board charging system according to an embodiment of the present disclosure
  • FIG. 3 is a waveform diagram of the input electrical signal and the output electrical signal of the conversion circuit module and the output electrical signal of the resonance circuit module according to an embodiment of the present disclosure
  • Fig. 4 is a block diagram of an on-board charging system according to an embodiment of the present disclosure.
  • Fig. 5 is a circuit diagram of an on-board charging system according to an embodiment of the present disclosure.
  • Fig. 6 is a circuit diagram of a vehicle-mounted charging system according to another embodiment of the present disclosure.
  • FIG. 7 is a block diagram of a vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a block diagram of a vehicle-mounted charging system according to an embodiment of the present disclosure.
  • the vehicle-mounted charging system 100 of an embodiment of the present disclosure includes a conversion circuit module 10, a resonance circuit module 20 and a control module 30.
  • the resonance circuit module 20 includes a first conversion unit 21, a transformer T1 and a second conversion unit 22.
  • the first end of the conversion circuit module 10 is connected to the electric unit 60, and is used to convert the input first AC signal into the first steamed bread wave signal.
  • the electric unit 60 may be a power grid or an electric load, that is, when the electric unit 60 is a power grid, charging operation can be realized, or when the electric unit 60 is an electric load, a power battery discharging operation can be realized.
  • the conversion circuit module 10 may constitute a rectifier circuit, or, in the discharge mode, the conversion circuit module 10 may constitute an inverter circuit.
  • the output electrical signal of the conversion circuit module 10 is a steamed bun wave. Therefore, there is no need to use a large-capacity electrolytic capacitor for filtering between the conversion circuit module 10 and the subsequent circuit, that is, the resonant circuit module 20, but a small-capacity capacitor device such as a film capacitor is used for filtering. , Can reduce the cost and system volume, improve the reliability and life of the product, and improve the anti-vibration level of the vehicle power supply product.
  • the resonant circuit module 20 is used to convert the input first steamed bun wave signal, and includes a first conversion unit 21, a transformer T1, and a second conversion unit 22, wherein the first end of the first conversion unit 21 is connected to the first end of the conversion circuit module 10 The second end is connected, the primary side of the transformer T1 is connected to the second end of the first conversion unit 21, and the secondary side of the transformer T1 is connected to the second conversion unit 22.
  • the control module 30 is used to control the conversion circuit module 10 according to the charging control timing sequence in the charging mode to convert the first alternating current signal into the first steamed bun wave signal, and control the first conversion unit 21 to convert the first steamed bun wave signal into the first steamed bun wave signal.
  • the second alternating current signal is isolated and transformed by the transformer T1 and then transmitted to the second conversion unit 22, and the second transforming unit 22 is controlled to convert the transformed second alternating current signal into a second steamed bun wave signal and output it.
  • the waveform of the first AC signal input by the conversion circuit module 10 is shown in Figure 2 (a), and the output electrical signal of the conversion circuit module 10 is shown in Figure 3 (b), that is, the conversion circuit module 10 outputs a steamed bread wave; And, the electrical signal output by the second conversion unit 22 is shown in FIG. 3(c), that is, the electrical signal output by the second conversion unit 22 to the subsequent circuit is also a steamed bread wave signal.
  • a conversion circuit module 10 and a resonance circuit module 20 are provided.
  • the control module 30 controls the conversion circuit module 10 according to the charging control sequence to convert the first AC signal into a first Steamed bun wave signal. Since the electrical signal output by the conversion circuit module 10 is a steamed bun wave signal, there is no need to provide a large-capacity electrolytic capacitor between the conversion circuit module 10 and the subsequent resonant circuit module 20, and control the second conversion unit 22.
  • the second alternating current signal after the transformation is a second steamed bun wave signal and output, that is, the electrical signal output by the resonant circuit module 20 is also a steamed bun wave.
  • the on-board charging system 100 only needs small-capacity capacitors, such as film capacitors, which can reduce cost and system volume, improve product reliability and life, and improve the seismic level of the on-board power supply product.
  • the on-board charging system 100 of the embodiment of the present disclosure further includes a first DC conversion circuit module 40.
  • the first DC conversion circuit module 40 and the second conversion unit 22 are respectively
  • the high-voltage battery pack 70 is connected to convert the second steamed bun wave signal into the first direct current signal in the charging mode to charge the high-voltage battery pack 70.
  • the on-vehicle charging and discharging system 100 of the embodiment of the present disclosure has the first DC conversion circuit module 40 rear-mounted. Therefore, the duty cycle of the first DC conversion circuit module 40 can be controlled to adjust the charging output to the high-voltage battery pack 70.
  • the voltage or charging power can not only broaden the voltage range of the high-voltage battery pack 70, but also shorten the charging time of the high-voltage battery pack 70 and the charging efficiency of the high-voltage battery pack 70.
  • the first DC conversion circuit module 40 can also be used to convert the second DC signal output by the high-voltage battery pack 70 into a third steamed bun wave signal in the discharge mode, and the second conversion unit 22 can convert the third steamed bun wave signal.
  • the signal is a third alternating current signal, which is isolated and transformed by the transformer T1 and transmitted to the first conversion unit 21.
  • the first conversion unit 21 converts the transformed third alternating current signal into a fourth steamed bun wave signal, and the circuit module is converted 10 Convert the fourth steamed bun wave signal into a fourth alternating current signal and output it to the outside.
  • the first DC conversion circuit module 40 may be a boost circuit or a buck circuit.
  • the first DC conversion circuit module 40 adjusts the charging power and power factor correction.
  • the first DC conversion circuit module 40 realizes voltage regulation.
  • the conversion circuit module 10 outputs a steamed bread wave
  • the second conversion unit 22 outputs a steamed bread wave. Therefore, a small-capacity filter capacitor can be used between the conversion circuit module 10 and the first conversion unit 21.
  • a small-capacity filter capacitor can also be used between the second conversion unit 22 and the first DC conversion unit module 40; similarly, in the discharge mode, the first DC conversion circuit module 40 outputs a steamed bun wave, and the first conversion The output of the unit 21 is also a steamed bun wave. Therefore, the design without large-capacity electrolytic capacitor is satisfied, and the discharge mode can be realized.
  • the on-board charging system 100 of the embodiment of the present disclosure further includes a rectifier circuit unit 23 and a second DC conversion circuit module 50.
  • the rectifier circuit unit 23 is connected to the secondary side of the transformer T1, and the second DC conversion circuit module 50 is respectively connected to the rectifier circuit unit 23 and the low-voltage battery pack 71.
  • the rectifier circuit unit 23 is used for converting the transformed second alternating current signal into a fifth steamed bread wave signal and outputting it. Therefore, a small-capacity filter capacitor can also be applied between the rectifier circuit unit 23 and the second DC conversion circuit module 51, which reduces cost and system volume, and improves stability.
  • the second DC conversion circuit module 50 is used to convert the fifth steamed bun wave signal into a third DC signal in the charging mode, so as to charge the low-voltage battery pack 71.
  • the second DC conversion circuit module 50 may be a boost circuit.
  • the second DC conversion circuit module 50 may adjust the charging power and power factor correction.
  • the second DC conversion circuit module 50 is rear-mounted. Therefore, by controlling the duty cycle of the second DC conversion circuit module 50, the charging voltage or charging power output to the low-voltage battery pack 71 can be adjusted, which can broaden the adaptation.
  • the voltage range of the low-voltage battery pack 71 can also shorten the charging time of the low-voltage battery pack 71 and the charging efficiency of the low-voltage battery pack 71.
  • the first DC conversion circuit module 40 converts the fourth DC signal output by the high-voltage battery pack 70 into the sixth steamed bun wave signal, which satisfies the setting Condition of the capacity filter capacitor
  • the second conversion unit 22 converts the sixth steamed bun wave signal into a fifth alternating current signal, which is isolated and transformed by the transformer T1 and transmitted to the rectifier circuit unit 23.
  • the rectifier circuit unit 23 converts the transformed first
  • the fifth alternating current signal is the seventh steamed wave signal, which also satisfies the condition of using a small-capacity filter capacitor.
  • the second DC conversion circuit module 50 converts the seventh steamed wave signal into the fifth direct current battery signal to charge the low-voltage battery pack 71.
  • the on-board charging system 100 may further include a filter 80, one end of the filter 80 is connected to the electric unit 60, and the other end of the filter 80 is connected to the conversion circuit module 10.
  • the filter 80 can remove common mode and differential mode interference in the electrical signal.
  • the on-board charging system 100 of the embodiment of the present disclosure can be designed without a large-capacity electrolytic capacitor, and a small-capacity filter capacitor such as a film capacitor can be used, which reduces the cost, reduces the system volume, improves the stability, and, A charging mode, a discharging mode, and a mode in which the high-voltage battery pack 70 charges the low-voltage battery pack 71 can be realized.
  • Fig. 5 is a circuit diagram of an on-board charging system according to an embodiment of the present disclosure.
  • the conversion circuit module 10 includes a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, and a fourth switching tube Q4.
  • the first end of the first switch tube Q1 is connected to the first end of the first conversion unit 21
  • the second end of the first switch tube Q1 is connected to the first end of the second switch tube Q2, and the first end of the first switch tube Q1
  • the control end is connected to the control module 30,
  • the second end of the second switch tube Q2 is connected to the second end of the first conversion unit 21,
  • the control end of the second switch tube Q2 is connected to the control module 30, and the second end of the first switch tube Q1 is connected to the control module 30.
  • first node O1 between the two ends and the first end of the second switch tube Q2, and the first node O1 is connected to the first end of the electric unit 60, or, when the filter 80 is provided, the first node O1 passes through the filter
  • the device 80 is connected to the first end of the electric unit 60.
  • the first end of the third switch tube Q3 is respectively connected to the first end of the first switch tube Q1 and the first end of the first conversion unit 21, and the second end of the third switch tube Q3 is connected to the first end of the fourth switch tube Q4.
  • the control terminal of the third switch tube Q3 is connected to the control module 30, and the second terminal of the fourth switch tube Q4 is connected to the second terminal of the second switch tube Q2 and the second terminal of the first conversion unit 21 respectively.
  • the control terminal of the four switching tube Q4 is connected to the control module 30, a second node O2 is provided between the second terminal of the third switching tube Q3 and the first terminal of the fourth switching tube Q4, and the second node O2 is connected to the first terminal of the electric unit 60.
  • the two ends are connected, or, when the filter 80 is provided, the second node O2 can be connected to the second end of the electric unit 60 through the filter 80.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 form a rectifier circuit
  • the control module 30 controls the first switching tube Q1 and the fourth switching tube Q4 to be turned on synchronously Or turn off, and control the second switching tube Q2 and the third switching tube Q3 to be turned on or off synchronously, and the midpoints of the first switching tube Q1 and the second switching tube Q2 are the first node O1 and the third switching tube Q3.
  • the AC input voltage between the second node O2 and the midpoint of the fourth switch tube Q4 is rectified into a DC voltage to convert the first AC signal provided by the electric unit 60 into a first steamed bun wave signal.
  • the output waveform is shown in Figure 3.
  • the first conversion unit 21 includes a first capacitor C1, a fifth switching tube Q5, a sixth switching tube Q6, a seventh switching tube Q7, and an eighth switching tube Q8.
  • the first terminal of the first capacitor C1 is connected to the first terminal of the third switch tube Q3, and the second terminal of the first capacitor C1 is connected to the second terminal of the fourth switch tube Q4.
  • the conversion circuit module 10 provides The voltage, that is, the voltage signal at both ends of the first capacitor C1, is a steamed bun wave. Therefore, the first capacitor C1 can be a small-capacity capacitor such as a film capacitor to reduce cost and volume.
  • the first terminal of the fifth switching tube Q5 is connected to the first terminal of the first capacitor C1
  • the second terminal of the fifth switching tube Q5 is connected to the first terminal of the sixth switching tube Q6, and the control terminal of the fifth switching tube Q5 is connected to
  • the control module 30 is connected
  • the second terminal of the sixth switch tube Q6 is connected to the second terminal of the first capacitor C1
  • the control terminal of the sixth switch tube Q6 is connected to the control module 30, and the second terminal of the fifth switch tube Q5 is connected to the second terminal of the first capacitor C1.
  • the first terminal of the seventh switching tube Q7 is connected to the first terminal of the fifth switching tube Q5, the second terminal of the seventh switching tube Q7 is connected to the first terminal of the eighth switching tube Q8, and the control terminal of the seventh switching tube Q7 Connected to the control module 30, the second end of the eighth switch tube Q8 is connected to the second end of the sixth switch tube Q6, the control end of the eighth switch tube Q8 is connected to the control module 30, and the second end of the seventh switch tube Q7 There is a fourth node O4 between the eighth switch tube Q8 and the first end.
  • the primary side of the transformer T1 includes a first coil W1.
  • the first end of the first coil W1 is connected to the third node O3 through a first inductor L1, and the second end of the first coil W1 is connected to the fourth node O4 through a second capacitor C2.
  • the secondary side of the transformer T1 includes a second coil W2, a third coil W3 and a fourth coil W4, the second coil W2 is connected to the second conversion unit 22, and the third coil W3 and the fourth coil W4 are connected to the rectifier circuit unit 23 .
  • the second end of the third coil W3 and the first end of the fourth coil W4 are the first common end.
  • the second conversion unit 22 includes an eleventh switch tube Q11, a twelfth switch tube Q12, a thirteenth switch tube Q13, a fourteenth switch tube Q14, and a fourth capacitor C4.
  • the first end of the twelfth switch tube Q12 is connected to the first end of the first DC conversion circuit module 40, and the second end of the twelfth switch tube 12 is connected to the first end of the eleventh switch tube Q11
  • the control terminal of the twelfth switch tube Q12 is connected to the control module 30, the second terminal of the eleventh switch tube Q11 is connected to the second terminal of the first DC conversion circuit module 40, and the control terminal of the eleventh switch tube Q11 is connected to
  • the control module 30 is connected, there is a fifth node O5 between the first end of the eleventh switch tube Q11 and the second end of the twelfth switch tube Q12, and the fifth node O5 passes through the second inductor L2 and the second end of the second coil W1. Connected at one end.
  • the first end of the thirteenth switch tube Q13 is connected to the first end of the twelfth switch tube Q12 and the first end of the first DC conversion circuit 40 module respectively, and the second end of the thirteenth switch tube Q13 is connected to the tenth end of the first DC conversion circuit 40 module.
  • the first terminal of the four switching tube Q14 is connected, the control terminal of the thirteenth switching tube Q13 is connected to the control module 30, and the second terminal of the fourteenth switching tube Q14 is connected to the second terminal and the first terminal of the eleventh switching tube Q11.
  • the second end of the DC conversion circuit module 40 is connected, the control end of the fourteenth switch tube Q14 is connected to the control module 30, and the second end of the thirteenth switch tube Q13 is connected to the first end of the fourteenth switch tube Q14.
  • the first end of the fourth capacitor C4 is connected to the first end of the thirteenth switch tube Q13, and the second end of the fourth capacitor C4 is connected to the second end of the fourteenth switch tube Q14.
  • the eleventh switching tube Q11 and the thirteenth switching tube Q13 are controlled to be turned on or off synchronously, and the twelfth switching tube Q12 and the fourteenth switching tube Q14 are controlled to be turned on or off synchronously
  • the fourth capacitor C4 can be a small-capacity capacitor such as a film capacitor, The cost is reduced, the system volume is reduced, and the stability is improved.
  • the first DC conversion circuit module 40 includes a seventeenth switch tube Q17, an eighteenth switch tube Q18, and a seventh capacitor C7.
  • the first terminal of the seventeenth switching tube Q17 is connected to the first terminal of the fourth capacitor C4 through the fourth inductor L4, and the second terminal of the seventeenth switching tube Q17 is respectively connected to the second terminal of the fourth capacitor C4 and the high voltage
  • the second terminal of the battery pack 70 is connected, the control terminal of the seventeenth switch tube Q17 is connected to the control module 30, and the first terminal of the eighteenth switch tube Q18 is connected to the fourth inductor L4 and the first terminal of the seventeenth switch tube Q17.
  • the second end of the eighteenth switch tube Q18 is connected to the first end of the high-voltage battery pack 70, and the control end of the eighteenth switch tube Q18 is connected to the control module 30.
  • the first terminal of the seventh capacitor C7 is respectively connected to the second terminal of the eighteenth switch tube Q18 and the first terminal of the high-voltage battery pack 70, and the second terminal of the seventh capacitor C7 is respectively connected to the second terminal of the seventeenth switch tube Q17. Terminal and the second terminal of the high-voltage battery pack 70 are connected.
  • the first DC conversion circuit module 40 is a boost circuit, which implements power factor correction and adjustment of output power.
  • the seventeenth switch Q17 when the seventeenth switch Q17 is turned on, the current of the fourth inductor L4 rises, and the current flows in the direction of A ⁇ L4 ⁇ Q17 ⁇ B; and, as shown in Figure 5, the seventeenth switch The tube Q17 is turned off, the current of the fourth inductor L4 drops, and the current flows from A ⁇ L4 ⁇ Q18 ⁇ high voltage battery pack ⁇ B.
  • the current waveform of the inductor can track the voltage of the fourth capacitor C4, thereby achieving power factor correction and voltage regulation.
  • the current amplitude of the fourth inductor L4 depends on the charging power of the high-voltage battery pack.
  • the first DC conversion circuit module 40 may further include a nineteenth switching tube Q19 and a twentieth switching tube Q20.
  • the first terminal of the twentieth switch tube Q20 is connected to the first terminal of the eighteenth switch tube Q18 and the first terminal of the high-voltage battery pack 70 respectively, and the second terminal of the twentieth switch tube Q20 is connected to the first terminal of the nineteenth switch tube Q20.
  • the first end of the tube Q19 is connected, the control end of the twentieth switch tube Q20 is connected to the control module 30, and the second end of the nineteenth switch tube Q19 is connected to the second end of the seventeenth switch tube Q17 and the high-voltage battery pack 70 respectively.
  • the second end of the nineteenth switch tube Q19 is connected to the control module 30, and the seventh node O7 is located between the second end of the twentieth switch tube Q20 and the first end of the nineteenth switch tube Q19, The seventh node O7 is connected to the first end of the fourth capacitor C4 through the fifth inductor L5.
  • the seventeenth switching tube Q17, the eighteenth switching tube Q18, and the fourth inductor L4 form a boost/buck circuit
  • the nineteenth switching tube Q19, the twentieth switching tube Q20 and the fifth inductor L5 form another boost/buck circuit.
  • the control process of the two boost/buck circuits is the same, but in the charging mode, the control signal for the seventeenth switch tube is different from the control signal for the nineteenth switch tube by a preset phase, and the control There is a preset phase difference between the control signal of the eighteenth switch tube and the control signal of the nineteenth switch tube, that is, the control sequence of the two boost/buck circuits has a certain phase difference, so as to achieve interlaced control, which can reduce The current ripple, at the same time, to ensure that the total output power is the same, it can also reduce the single-channel DC conversion unit (that is, the boost/ composed of the seventeenth switching tube Q17, the eighteenth switching tube Q18, and the fourth inductor L4 buck circuit) output power.
  • the single-channel DC conversion unit that is, the boost/ composed of the seventeenth switching tube Q17, the eighteenth switching tube Q18, and the fourth inductor L4 buck circuit
  • the rectifier circuit unit 23 includes a ninth switch tube Q9, a tenth switch tube Q10, and a fifth capacitor C5.
  • the first end of the ninth switch tube Q9 is connected to the first end of the third coil W3.
  • the control terminal of the ninth switch tube Q9 is connected to the control module 30, the first terminal of the fifth capacitor C5 is respectively connected to the first common terminal and the first terminal of the second DC conversion circuit module 50, and the first terminal of the tenth switch tube Q10 One end is connected to the second end of the fourth coil W4, and the second end of the tenth switch tube Q10 is respectively connected to the second end of the ninth switch tube Q9, the second end of the fifth capacitor C5, and the second DC conversion circuit module 50 The second end of the tenth switch tube Q10 is connected to the control module 30.
  • the second DC conversion circuit module 50 includes a fifteenth switching tube Q15, a sixteenth switching tube Q16, and a sixth capacitor C6.
  • the first terminal of the fifteenth switching tube Q15 is connected to the first terminal of the fifth capacitor C5 through the third inductor L3, and the second terminal of the fifteenth switching tube Q15 is respectively connected to the second terminal of the fifth capacitor C5, low voltage
  • the second end of the battery pack 71 is connected, the control end of the fifteenth switching tube Q15 is connected to the control module 30, and the first end of the sixteenth switching tube Q16 is connected to the third inductor L3 and the first terminal of the fifteenth switching tube Q15 respectively.
  • the second end of the sixteenth switch tube Q16 is connected to the first end of the low-voltage battery pack 71, and the control end of the sixteenth switch tube Q16 is connected to the control module 30.
  • the first end of the sixth capacitor C6 is respectively connected to the second end of the sixteenth switch tube Q16 and the first end of the low-voltage battery pack 71, and the second end of the sixth capacitor C16 is respectively connected to the second end of the fifteenth switch tube Q15. Terminal and the second terminal of the low-voltage battery pack 71 are connected.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 of the conversion circuit module 10 constitute a rectifier circuit, wherein the first switching tube Q1 and the fourth switching tube Q4 are turned on or off synchronously Off, the second switching tube Q2 and the third switching tube Q3 are turned on or off synchronously, and the midpoints of the first switching tube Q1 and the second switching tube Q2 are the first node O1, the third switching tube Q3 and the fourth switch.
  • the AC input voltage at the midpoint of the tube Q4, the second node O2 is rectified to the first steamed wave signal, that is, the voltage across the first capacitor C1, the voltage across the first capacitor C1 is the rectified steamed wave voltage, the input voltage waveform As shown in Figure 3(a), the voltage waveform across the first capacitor C1 is as shown in Figure 3(b). Therefore, the first capacitor C1 can be a small-capacity capacitor such as a film capacitor, which reduces the cost and system The volume improves the stability.
  • the fifth switching tube Q5, the eighth switching tube Q8, the sixth switching tube Q6, and the seventh switching tube Q7 in the first conversion unit 21 are controlled to be turned on or off at a fixed frequency and a fixed duty cycle, and the first
  • the voltage across the capacitor C1 is transformed into an AC voltage, that is, between the midpoint of the fifth switching tube Q5 and the sixth switching tube Q6 that is the third node O3 and the midpoint of the seventh switching tube Q7 and the eighth switching tube Q8 that is the fourth node O4
  • the voltage is isolated and transformed through the transformer T1 and transmitted to the second conversion unit 22.
  • the eleventh switching tube Q11, the twelfth switching tube Q12, the thirteenth switching tube Q13, and the fourteenth switching tube Q14 of the second conversion unit 22 constitute a rectifier circuit, which controls the eleventh switching tube Q11 and the thirteenth switching tube Q13 is turned on or off synchronously.
  • the midpoint of the eleventh switch tube Q11 and the twelfth switch tube Q12 is the fifth node O5
  • the midpoint of the thirteenth switch tube Q13 and the fourteenth switch tube Q14 is the sixth node O6.
  • the alternating voltage therebetween is converted into a direct current voltage, that is, the second steamed bun wave signal, that is, the voltage across the fourth capacitor C4.
  • the voltage at both ends of the fourth capacitor C4 is the steamed wave voltage, so the fourth capacitor C4 can be filtered by a small-capacity capacitor and does not require a large-capacity electrolytic capacitor, thereby reducing the cost and volume of the electrolytic capacitor part, and improving product reliability and The service life improves the anti-vibration level of the vehicle power supply product.
  • the amplitude of the voltage waveform across the fourth capacitor C4 is determined by the input voltage and the turns ratio of W1 and W2 of the transformer T1, and the waveform is shown in Figure 3 (c).
  • the first DC conversion circuit module 40 is a boost circuit, which implements power factor correction and adjustment of output power. Specifically, as shown in Figure 5, when the seventeenth switch Q17 is turned on, the current of the fourth inductor L4 rises, and the current flows in the direction of A ⁇ L4 ⁇ Q17 ⁇ B; or, as shown in Figure 5, the seventeenth switch The tube Q17 is turned off, the eighteenth switch is turned off and Q18 is turned on, the current of the fourth inductor L4 drops, and the current flows from A ⁇ L4 ⁇ Q18 ⁇ high-voltage battery pack ⁇ B.
  • the current waveform of the inductor can track the voltage of the fourth capacitor C4, thereby achieving power factor correction and voltage regulation.
  • the current amplitude of the fourth inductor L4 depends on the charging power of the high-voltage battery pack.
  • two boost circuits are used. After the seventeenth switching tube Q17 is turned on for a preset time, the nineteenth switching tube Q19 is turned on, and the currents of the fourth inductor L4 and the fifth inductor L5 rise successively.
  • the current flow direction is A ⁇ L4 ⁇ Q17 ⁇ B, and the current flow direction is A ⁇ L5 ⁇ Q19 ⁇ B; as shown in Figure 6, the seventeenth switching tube Q17 is turned off and the eighteenth switching tube Q18 is turned on for a preset time After that, the nineteenth switching tube Q19 is turned off and the twentieth switching tube Q20 is turned on, and the currents of the fourth inductor L4 and the fifth inductor L5 decrease successively, thereby achieving interleaved control, and the current flow is A ⁇ L4 ⁇ Q18 ⁇ high voltage battery Package ⁇ B, and A ⁇ L5 ⁇ Q20 ⁇ High-voltage battery package ⁇ B.
  • the current waveform of the inductor can track the voltage of the fourth capacitor C4, thereby realizing power factor correction and voltage regulation.
  • the current amplitude of the inductor depends on the charging power of the high-voltage battery pack.
  • the use of two boost circuits for DC conversion to achieve interleaved control can reduce the current ripple, and at the same time, ensure that the total output power is small, and can also reduce the single-channel DC conversion unit (that is, the seventeenth The output power of the boost/buck circuit composed of the switching tube Q17, the eighteenth switching tube Q18, and the fourth inductor L4).
  • the rectifier circuit unit 23 may be a vehicle-mounted DCDC rectifier circuit, and rectification is realized by turning on or off the ninth switching tube Q9 and the tenth switching tube Q10.
  • the specific process is: when the windings of the third coil W3 and the fourth coil W4 are positive and negative, the tenth switching tube Q10 is turned on, and the ninth switching tube Q9 is not turned on, and the DC voltage is output; When the winding of the coil W4 is positive and negative, the tenth switching tube Q10 is not conducting, and the ninth switching tube Q9 is conducting, outputting a DC voltage, and converting the AC signal transformed by the transformer T1 into a steamed bun wave signal, that is, the fifth capacitor C5 There is voltage at both ends. The voltage across the fifth capacitor C5 is the steamed wave voltage. Therefore, a small-capacity capacitor device such as a film capacitor can be used, which reduces the cost, reduces the system volume, and improves the stability.
  • the second DC conversion circuit module 50 is a boost circuit, which implements power factor correction and adjustment of output power.
  • the specific process is: when the fifteenth switching tube Q15 is turned on, the third inductor L3 is in the energy storage stage, and the current rises, as shown in Figure 4, the current direction is C ⁇ L3 ⁇ Q15 ⁇ D; the fifteenth switching tube Q15 is off When it is off, the third inductor L3 releases energy and the current drops.
  • the current direction is C ⁇ L3 ⁇ Q16 ⁇ low-voltage battery pack ⁇ D.
  • the current waveform of the third inductor L3 tracks the voltage of the fifth capacitor C5 to achieve power factor correction.
  • the current amplitude of the third inductor L3 depends on the low-voltage battery Charging power.
  • the first DC conversion circuit module 40 may be a buck circuit.
  • the fourth inductor L4 is in the energy storage stage, and the current rises.
  • the twentieth switching tube Q20 is turned on, the fourth inductor L4 and the fifth inductor L5 are both in the energy storage stage, the current rises, and the high-voltage battery
  • the package 70 transfers energy to the subsequent stage circuit; and, as shown in Figure 5, when the eighteenth switching tube Q18 is turned off, the current of the fourth inductor L4 decreases.
  • the fourth inductor L4 provides energy to the subsequent stage, or, When the eighteenth switching tube Q18 is turned off for a preset time, the twentieth switching tube Q20 is turned off, and the current of the fourth inductor L4 and the fifth inductor L5 decreases successively, and the fourth inductor L4 and the fifth inductor L5 descend from the fourth inductor L4 to the fifth inductor L5 at this stage.
  • the output voltage of the buck circuit is the voltage across the fourth capacitor C4.
  • the voltage across the fourth capacitor C4 can be adjusted by adjusting the duty cycle of the eighteenth switching tube Q18 or the eighteenth switching tube Q18 and the twentieth switching tube Q20. .
  • the eleventh switching tube Q11, the twelfth switching tube Q12, the thirteenth switching tube Q13, and the fourteenth switching tube Q14 are turned on or off at a certain frequency and duty cycle, and the The voltage across the four capacitors C4 is converted into AC voltage, that is, at the midpoint of the eleventh switch tube Q11 and the twelfth switch tube Q12, that is, the fifth node O5, and the midpoint of the thirteenth switch tube Q13 and the fourteenth switch tube Q14.
  • An AC voltage is formed between the sixth node O6, which achieves AC-AC isolation and voltage transformation through the transformer T1, and is transmitted to the rectifier circuit unit 23 through the third coil W3 and the fourth coil W4 on the secondary side of the transformer T1.
  • rectification is realized by turning on or off the ninth switching tube Q9 and the tenth switching tube Q10.
  • the specific process is: when the third coil W3 and the fourth coil W4 are positive and negative, the tenth switching tube Q10 is turned on, and the ninth switching tube Q9 is not turned on, and the DC voltage is output; when the third coil W3 and the fourth coil When W4 is positive and negative, the tenth switching tube Q10 is not conducting, and the ninth switching tube Q9 is conducting, outputting a DC voltage, that is, converting the AC signal after the transformer T1 into a steamed bun wave signal, that is, the fifth capacitor C5 two The terminal is the voltage.
  • the second DC conversion circuit module 50 is a filter circuit
  • the fifteenth switching tube Q15 remains off
  • the sixteenth switching tube Q16 remains on to achieve
  • the LC circuit filters and charges the low-voltage battery pack 71.
  • the electric unit 60 can be an electric load, and the working process is as follows:
  • the eightheenth switch tube Q18 when the eighteenth switch tube Q18 is turned on, the fourth inductor L4 is in the energy storage phase and the current rises, or, as shown in FIG. 6, the eighteenth switch After the tube Q18 is turned on for a preset time, the twentieth switching tube Q20 is turned on, the fourth inductor L4 and the fifth inductor L5 are both in the energy storage stage, the current rises, and the high-voltage battery pack 70 transfers energy to the subsequent circuit; and, as shown in the figure As shown in Fig.
  • the direct current signal output by the high-voltage battery pack 70 is converted into a steamed bun wave signal, that is, the voltage across the fourth capacitor C4.
  • the voltage across the fourth capacitor C4 is the steamed wave voltage, so the fourth capacitor C4 can be a small-capacity capacitor such as a film capacitor, which reduces the cost, reduces the system volume, and improves the stability.
  • the eleventh switching tube Q11, the twelfth switching tube Q12, the thirteenth switching tube Q13, and the fourteenth switching tube Q14 are turned on or off at a fixed frequency and a fixed duty cycle, and the The voltage across the fourth capacitor C4 is converted into an AC voltage, that is, at the midpoint of the eleventh switching tube Q11 and the twelfth switching tube Q12, which is the five node O5, and the midpoint of the thirteenth switching tube Q13 and the fourteenth switching tube Q14.
  • An AC voltage is formed between the sixth node O6.
  • the transformer T1 realizes voltage isolation and transformation, and transforms the alternating current signal transmitted by the second transformation unit 22 and transmits it to the first transformation unit 21.
  • the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7, and the eighth switching tube Q8 implement a rectifying function.
  • the fifth switching tube Q5 and the sixth switch By controlling the fifth switching tube Q5 and the eighth switching tube Q8 to turn on or off synchronously, and controlling the sixth switching tube Q6 and the seventh switching tube Q7 to turn on or off synchronously, the fifth switching tube Q5 and the sixth switch
  • the AC voltage between the midpoint of the tube Q6, that is the third node O3, the seventh switch tube Q7, and the midpoint of the eighth switch tube Q8, that is the fourth node O4 is converted into a steamed-wave DC voltage, that is, the voltage across the first capacitor C1.
  • the voltage at both ends of the first capacitor C1 is the steamed wave voltage. Therefore, the first capacitor C1 can be a small-capacity capacitor such as a film capacitor, which reduces the cost, reduces the system volume, and improves the stability.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 form an inverter circuit.
  • the second switching tube Q2 and the third switching tube Q3 are turned on or off synchronously to convert the voltage across the first capacitor C1 into power frequency alternating current, that is, the first switching tube Q1 and the second switching tube
  • the midpoint of Q2 is the voltage between the first node O1 and the third switching tube Q3, and the midpoint of the fourth switching tube Q4 is the second node O2, thereby realizing power supply to the electric load.
  • the switch tube can be a MOS tube or a triode or other suitable switching devices.
  • Part 2'in Fig. 1 is an LLC topology
  • the switching frequency deviates from the resonant frequency by a large amount, resulting in low charging efficiency.
  • the on-vehicle charging system 100 of the embodiment of the present disclosure can adjust the duty cycle of the subsequent first DC conversion circuit module 40 or the second DC conversion circuit module 50 through the control module 30 to control the charging power.
  • the battery voltage range is wider.
  • the vehicle-mounted charging system 100 of the embodiment of the present disclosure is provided with a conversion circuit module 10 and a resonance circuit module 20.
  • the control module 30 controls the conversion circuit module 10 according to the charging control sequence to convert the first AC signal It is the first steamed bun wave signal. Since the electrical signal output by the conversion circuit module 10 is a steamed bun wave signal, there is no need to provide a large-capacity electrolytic capacitor between the conversion circuit module 10 and the subsequent resonant circuit module 20, and control the first
  • the second conversion unit 22 converts the transformed second AC electric signal into a second steamed bun wave signal and outputs it, that is, the electric signal output by the resonant circuit module 20 is also a steamed bun wave.
  • the resonance circuit module 20 is also connected to the subsequent circuit.
  • the DC conversion circuit module 40 adopts two boost/buck circuits to achieve interleaved control, thereby reducing current ripple and reducing the output power of a single channel; and the rectifier circuit unit 23 is provided to charge the low-voltage battery pack .
  • the duty cycle of the DC conversion circuit module a larger battery voltage range can be adapted and the charging power can be improved.
  • FIG. 7 is a block diagram of a vehicle according to an embodiment of the present disclosure.
  • the vehicle 1000 of the embodiment of the present disclosure includes a high-voltage battery pack 70, a low-voltage battery pack 71, and the on-board charging system 100 of the above embodiment.
  • the composition of the on-board charging system 100 refer to the description of the above embodiment.
  • the vehicle 1000 also includes other systems such as a transmission system, a power system, a steering system, etc., which are not listed here.
  • the cost can be reduced, the reliability is improved, and the earthquake resistance level is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)

Abstract

一种车载充电系统(100)及具有其的车辆(1000),涉及车辆技术领域,该车载充电系统(100)包括转换电路模块(10)、谐振电路模块(20)和控制模块(30),转换电路模块(10)转换输入的第一交流电信号为第一馒头波信号;谐振电路模块(20)包括第一转换单元(21)、变压器(T1)和第二转换单元(22);控制模块(30),用于在充电模式时,根据充电控制时序控制所述转换电路模块(10),以将所述第一交流电信号转换为第一馒头波信号,并控制所述第一转换单元(21)转换所述第一馒头波信号为第二交流电信号,经所述变压器(T1)的隔离和变压后传输至所述第二转换单元(22),以及控制所述第二转换单元(22)转换变压后的第二交流电信号为第二馒头波信号并输出,该车载充电系统(100),可以降低成本,提高可靠性,提升抗震等级。

Description

车载充电系统及具有其的车辆
相关申请的交叉引用
本公开要求于2019年9月29日提交的申请号为201910936697.6、名称为“车载充电系统及具有其的车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及车辆技术领域,尤其是涉及一种车载充电系统,以及包括该车载充电系统的车辆。
背景技术
图1是相关技术中的一种车载充电系统的电路图,该系统包括Part1’和Part2’两级电路,Part1’与电网相连,Part2’与电池包相连。正向充电时,Part1’实现交流-直流转换和功率因数矫正,输出直流电压。Part2’是直流-直流转换器,输出适合的电压给电池包充电。为了给part2’提供平稳的电压,Part1’和Part2’之间需要大容量的电解电容C1’,由此使得系统的体积和成本增加,且电解电容C1’存在寿命短、抗震差等问题,不利于系统的可靠性。
发明内容
本公开提出了一种车载充电系统和具有所述车载充电系统的车辆,该车载充电系统无需大容量的电解电容,可以减小系统体积,降低成本,提高系统稳定性。
本公开第一方面实施例的车载充电系统包括:转换电路模块,所述转换电路模块的第一端与电单元相连,用于转换输入的第一交流电信号为第一馒头波信号;谐振电路模块,用于对输入的第一馒头波信号进行转换,包括第一转换单元、变压器和第二转换单元,其中,所述第一转换单元的第一端与所述转换电路模块的第二端相连,所述变压器的初级侧与所述第一转换单元的第二端相连,所述变压器的次级侧与所述第二转换单元相连;控制模块,用于在充电模式时,根据充电控制时序控制所述转换电路模块,以将所述第一交流电信号转换为第一馒头波信号,并控制所述第一转换单元转换所述第一馒头波信号为第二交流电信号,经所述变压器的隔离和变压后传输至所述第二转换单元,以及控制所述第二转换单元转换变压后的第二交流电信号为第二馒头波信号并输出。
根据本公开实施例的车载充电系统,设置转换电路模块和谐振电路模块,在充电 模式时,控制模块根据充电控制时序控制转换电路模块,以将第一交流信号转换为第一馒头波信号,由于转换电路模块输出信号为馒头波信号,所以,转换电路模块及其后级的谐振电路模块之间无需设置大容量的电解电容,以及,控制第二转换单元转换变压后的第二交流电信号为第二馒头波信号并输出,即谐振电路模块输出电信号也为馒头波,因此,谐振电路模块与后级电路之间也无需采用大容量的电解电容,只需小容量的电容器件例如薄膜电容即可,可以降低成本和系统体积,提高了产品可靠性和寿命,提升了该车载电源产品的抗震等级。
本公开第二方面实施例的车辆,包括高压电池包、低压电池包和上面实施例的车载充电系统。
根据本公开实施例的车辆,通过采用上面实施例的车载充电系统,可以降低成本,提高可靠性,提升抗震等级。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是相关技术中的一种双向车载充电机系统的电路图;
图2是根据本公开的一个实施例的车载充电系统的框图;
图3是根据本公开的一个实施例的转换电路模块输入电信号和输出电信号以及谐振电路模块输出电信号的波形图;
图4是根据本公开的一个实施例的车载充电系统的框图;
图5是根据本公开的一个实施例的车载充电系统的电路图;
图6是根据本公开的另一个实施例的车载充电系统的电路图;
图7是根据本公开的一个实施例的车辆的框图。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考图2-图6描述根据本公开实施例的车载充电系统。
图2是根据本公开的一个实施例的车载充电系统的框图,如图2所示,本公开实施例的车载充电系统100包括转换电路模块10、谐振电路模块20和控制模块30。其中,谐振电路模块20包括第一转换单元21、变压器T1和第二转换单元22。
其中,转换电路模块10的第一端与电单元60相连,用于转换输入的第一交流信号为第一馒头波信号。在本公开实施例中,电单元60可以为电网或用电负载,即当电单元60为电网时,可实现充电操作,或当电单元60为用电负载时,可实现动力电池放电操作。在充电模式时,转换电路模块10可以组成整流电路,或者,在放电模式时,转换电路模块10可以组成逆变电路。
转换电路模块10输出电信号为馒头波,因而,转换电路模块10与其后级电路即谐振电路模块20之间无需使用大容量的电解电容进行滤波,采用小容量的电容器件例如薄膜电容滤波即可,可以降低成本和系统体积,提高了产品可靠性和寿命,提升了该车载电源产品的抗震等级。
谐振电路模块20用于对输入的第一馒头波信号进行转换,包括第一转换单元21、变压器T1和第二转换单元22,其中,第一转换单元21的第一端与转换电路模块10的第二端相连,变压器T1的初级侧与第一转换单元21的第二端相连,变压器T1的次级侧与第二转换单元22相连。
控制模块30用于在充电模式时,根据充电控制时序控制转换电路模块10,以将第一交流电信号转换为第一馒头波信号,并控制第一转换单元21转换第一馒头波信号为第二交流电信号,经变压器T1的隔离和变压后传输至第二转换单元22,以及控制第二转换单元22转换变压后的第二交流电信号为第二馒头波信号并输出。
其中,转换电路模块10输入的第一交流信号的波形如图2中(a)所示,转换电路模块10输出电信号如图3中(b)所示,即转换电路模块10输出馒头波;以及,第二转换单元22输出的电信号如图3中(c)所示,即第二转换单元22输出给后级电路的电信号也为馒头波信号。
根据本公开实施例的车载充电系统100,设置转换电路模块10和谐振电路模块20,在充电模式时,控制模块30根据充电控制时序控制转换电路模块10,以将第一交流信号转换为第一馒头波信号,由于转换电路模块10输出的电信号为馒头波信号,所以,转换电路模块10及其后级的谐振电路模块20之间无需设置大容量的电解电容,以及,控制第二转换单元22转换变压后的第二交流电信号为第二馒头波信号并输出,即谐振电路模块20输出的电信号也为馒头波,因此,谐振电路模块20与后级电路之间也无 需采用大容量的电解电容。由此,车载充电系统100只需小容量的电容器件例如薄膜电容即可,可以降低成本和系统体积,提高了产品可靠性和寿命,提升了该车载电源产品的抗震等级。
在本公开的一个实施例中,如图4所示,本公开实施例的车载充电系统100还包括第一直流转换电路模块40,第一直流转换电路模块40分别与第二转换单元22、高压电池包70相连,用于在充电模式时,转换第二馒头波信号为第一直流电信号,以为高压电池包70充电。
本公开实施例的车载充放电系统100,将第一直流转换电路模块40后置,因此,可以通过控制第一直流转换电路模块40的占空比,调整输出至高压电池包70的充电电压或充电功率,既可以拓宽适配高压电池包70的电压范围,也可以缩短高压电池包70的充电时长以及高压电池包70的充电效率。
在该实施例中,第一直流转换电路模块40还可用于在放电模式时,转换高压电池包70输出的第二直流电信号为第三馒头波信号,第二转换单元22转换第三馒头波信号为第三交流电信号,经变压器T1的隔离和变压后传输至第一转换单元21,第一转换单元21转换变压后的第三交流电信号为第四馒头波信号,转换电路模块10转换第四馒头波信号为第四交流电信号并输出至外部。
在该实施例中,第一直流转换电路模块40可以为boost电路或buck电路,在高压电池包70正向充电时,第一直流转换电路模块40调节充电功率和功率因数矫正,在高压电池包反向放电时,第一直流转换电路模块40实现电压调节。
其中,在充电模式时,转换电路模块10输出馒头波,以及第二转换单元22输出馒头波,因此,转换电路模块10与第一转换单元21之间可以采用小容量的滤波电容,同样地,第二转换单元22与第一直流转换单元模块40之间也可以采用小容量的滤波电容;同样地,在放电模式时,第一直流转换电路模块40输出为馒头波,以及第一转换单元21输出也为馒头波,因此,满足无大容量电解电容的设计,可以实现放电模式。
在本公开的一个实施例中,如图4所示,本公开实施例的车载充电系统100还包括整流电路单元23和第二直流转换电路模块50。
其中,整流电路单元23与变压器T1的次级侧相连,第二直流转换电路模块50分别与整流电路单元23、低压电池包71相连。整流电路单元23用于转换变压后的第二交流电信号为第五馒头波信号并输出。因此,整流电路单元23与第二直流转换电路模块51之间也可以适用小容量滤波电容,降低成本和系统体积,提高稳定性。
第二直流转换电路模块50用于在充电模式时,转换第五馒头波信号为第三直流电信号,以为低压电池包71充电。在该实施例中,第二直流转换电路模块50可以为boost电路,在低压电池包71正向充电时,第二直流转换电路模块50可以调节充电功率和功率因数矫正。
同样地,将第二直流转换电路模块50后置,因此,可以通过控制第二直流转换电路模块50的占空比,调整输出至低压电池包71的充电电压或充电功率,既可以拓宽适配低压电池包71的电压范围,也可以缩短低压电池包71的充电时长以及低压电池包71的充电效率。
在该实施例中,在高压电池包70为低压电池包71充电的模式时,第一直流转换电路模块40转换高压电池包70输出的第四直流电信号为第六馒头波信号,满足设置小容量滤波电容的条件,第二转换单元22转换第六馒头波信号为第五交流电信号,经变压器T1的隔离和变压后传输至整流电路单元23,整流电路单元23转换变压后的第五交流电信号为第七馒头波信号,也满足使用小容量滤波电容的条件,第二直流转换电路模块50转换第七馒头波信号为第五直流电池信号,以为低压电池包71充电。
在一些实施例中,如图4所示,车载充电系统100还可以包括滤波器80,滤波器80的一端与电单元60相连,滤波器80的另一端与转换电路模块10相连。滤波器80可以去除电信号中共模和差模的干扰。
因此,本公开实施例的车载充电系统100,可以采用无大容量的电解电容设计,使用小容量滤波电容例如薄膜电容即可,降低了成本,减小了系统体积,提高了稳定性,并且,可以实现充电模式、放电模式以及高压电池包70对低压电池包71充电的模式。
下面结合附图,对本公开实施例的每个模块的电路结构进一步说明。
图5是根据本公开的一个实施例的车载充电系统的电路图。
如图5所示,转换电路模块10包括第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4。其中,第一开关管Q1的第一端与第一转换单元21的第一端相连,第一开关管Q1的第二端与第二开关管Q2的第一端相连,第一开关管Q1的控制端与控制模块30相连,第二开关管Q2的第二端与第一转换单元21的第二端相连,第二开关管Q2的控制端与控制模块30相连,第一开关管Q1的第二端与第二开关管Q2的第一端之间具有第一节点O1,第一节点O1与电单元60的第一端相连,或者,在设置有滤波器80时,第一节点O1通过滤波器80与电单元60的第一端相连。
第三开关管Q3的第一端分别与第一开关管Q1的第一端、第一转换单元21的第一 端相连,第三开关管Q3的第二端与第四开关管Q4的第一端相连,第三开关管Q3的控制端与控制模块30相连,第四开关管Q4的第二端分别与第二开关管Q2的第二端、第一转换单元21的第二端相连,第四开关管Q4的控制端与控制模块30相连,第三开关管Q3的第二端与第四开关管Q4的第一端之间具有第二节点O2,第二节点O2与电单元60的第二端相连,或者,在设置有滤波器80时,第二节点O2可以通过滤波器80与电单元60的第二端相连。
在充电模式时,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4构成整流电路,控制模块30控制第一开关管Q1、第四开关管Q4同步导通或关断,以及控制第二开关管Q2、第三开关管Q3同步导通或关断,将第一开关管Q1、第二开关管Q2的中点即第一节点O1和第三开关管Q3和第四开关管Q4中点即第二节点O2之间的交流输入电压整流为直流电压,以将电单元60提供的第一交流电信号转换为第一馒头波信号,输出波形如图3中(b)所示,并提供给第一转换单元21,即第一转换单元21输入电压为整流后的馒头波电压,因此,转换电路模块10与第一转换单元21之间无需设置大容量电解电容,采用小容量滤波电容器件即可,降低了成本,减小了系统体积,提高了稳定性。
如图5所示,第一转换单元21包括第一电容C1、第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8。
第一电容C1的第一端与第三开关管Q3的第一端相连,第一电容C1的第二端与第四开关管Q4的第二端相连,如上面说明,转换电路模块10提供的电压即第一电容C1两端的电压信号为馒头波,因此,第一电容C1可以采用小容量的电容例如薄膜电容,降低成本和体积。
第五开关管Q5的第一端与第一电容C1的第一端相连,第五开关管Q5的第二端与第六开关管Q6的第一端相连,第五开关管Q5的控制端与控制模块30相连,第六开关管Q6的第二端与第一电容C1的第二端相连,第六开关管Q6的控制端与控制模块30相连,第五开关管Q5的第二端与第六开关管Q6的第一端之间具有第三节点O3。
第七开关管Q7的第一端与第五开关管Q5的第一端相连,第七开关管Q7的第二端与第八开关管Q8的第一端相连,第七开关管Q7的控制端与控制模块30相连,第八开关管Q8的第二端与第六开关管Q6的第二端相连,第八开关管Q8的控制端与控制模块30相连,第七开关管Q7的第二端与第八开关管Q8的第一端之间具有第四节点O4。
变压器T1的初级侧包括第一线圈W1,第一线圈W1的第一端通过第一电感L1与第 三节点O3相连,第一线圈W1的第二端通过第二电容C2与第四节点O4相连;变压器T1的次级侧包括第二线圈W2、第三线圈W3和第四线圈W4,第二线圈W2与第二转换单元22相连,第三线圈W3、第四线圈W4与整流电路单元23相连。第三线圈W3的第二端与第四线圈W4的第一端为第一公共端。
如图5所示,第二转换单元22包括第十一开关管Q11、第十二开关管Q12、第十三开关管Q13、第十四开关管Q14和第四电容C4。
其中,第十二开关管Q12的第一端与第一直流转换电路模块40的第一端相连,第十二开关管12的第二端与第十一开关管Q11的第一端相连,第十二开关管Q12的控制端与控制模块30相连,第十一开关管Q11的第二端与第一直流转换电路模块40的第二端相连,第十一开关管Q11的控制端与控制模块30相连,第十一开关管Q11的第一端与第十二开关管Q12的第二端之间具有第五节点O5,第五节点O5通过第二电感L2与第二线圈W1的第一端相连。
第十三开关管Q13的第一端分别与第十二开关管Q12的第一端、第一直流转换电路40模块的第一端相连,第十三开关管Q13的第二端与第十四开关管Q14的第一端相连,第十三开关管Q13的控制端与控制模块30相连,第十四开关管Q14的第二端分别与第十一开关管Q11的第二端、第一直流转换电路模块40的第二端相连,第十四开关管Q14的控制端与控制模块30相连,第十三开关管Q13的第二端与第十四开关管Q14的第一端之间具有第六节点O6,第六节点O6通过第三电容C3与第二线圈W2的第二端相连。
第四电容C4的第一端与第十三开关管Q13的第一端相连,第四电容C4的第二端与第十四开关管Q14的第二端相连。
其中,在充电模式时,控制第十一开关管Q11、第十三开关管Q13同步导通或关断,以及,控制第十二开关管Q12、第十四开关管Q14同步导通或关断,以将变压器T1转换、变压后传输的第二交流电信号转换为第二馒头波信号,即第四电容C4两端的电压,因此,第四电容C4可以采用小容量电容器件例如薄膜电容,降低了成本和减小了系统体积,提高了稳定性。
如图5所示,第一直流转换电路模块40包括第十七开关管Q17、第十八开关管Q18和第七电容C7。
其中,第十七开关管Q17的第一端通过第四电感L4与第四电容C4的第一端相连,第十七开关管Q17的第二端分别与第四电容C4的第二端、高压电池包70的第二端相 连,第十七开关管Q17的控制端与控制模块30相连,第十八开关管Q18的第一端分别与第四电感L4、第十七开关管Q17的第一端相连,第十八开关管Q18的第二端与高压电池包70的第一端相连,第十八开关管Q18的控制端与控制模块30相连。
第七电容C7的第一端分别与第十八开关管Q18的第二端、高压电池包70的第一端相连,第七电容C7的第二端分别与第十七开关管Q17的第二端、高压电池包70的第二端相连。
在该实施例中,第一直流转换电路模块40为boost电路,实现功率因素矫正和调节输出功率。具体为,如图5所示,第十七开关管Q17导通时,第四电感L4的电流上升,电流流向为A→L4→Q17→B;以及,如图5所示,第十七开关管Q17关断,第四电感L4的电流下降,电流流向为A→L4→Q18→高压电池包→B。通过对第十七开关管Q17进行高频开通或关断的控制,使得电感的电流波形跟踪第四电容C4的电压,实现功率因素矫正和调压。第四电感L4的电流幅值取决于高压电池包充电功率。
图6为根据本公开的另一个实施例的车载充电系统的电路图,其中,转换电路模块10、谐振电路模块20、整流转换单元23以及第二直流转换模块50的电路结构与图5所示的电路结构相同,可以参照对图5电路结构的说明。其中,在一些实施例中,如图6所示,第一直流转换电路模块40还可以包括第十九开关管Q19和第二十开关管Q20。
其中,第二十开关管Q20的第一端分别与第十八开关管Q18的第一端、高压电池包70的第一端相连,第二十开关管Q20的第二端与第十九开关管Q19的第一端相连,第二十开关管Q20的控制端与控制模块30相连,第十九开关管Q19的第二端分别与第十七开关管Q17的第二端、高压电池包70的第二端相连,第十九开关管Q19的控制端与控制模块30相连,第二十开关管Q20的第二端与第十九开关管Q19的第一端之间具有第七节点O7,第七节点O7通过第五电感L5与第四电容C4的第一端相连。
其中,第十七开关管Q17、第十八开关管Q18、第四电感L4组成一路boost/buck电路,以及第十九开关管Q19、第二十开关管Q20和第五电感L5组成另一路boost/buck电路,两路boost/buck电路的控制过程相同,但是,在充电模式时,控制第十七开关管的控制信号与控制第十九开关管的控制信号之间相差预设相位,以及控制第十八开关管的控制信号与控制第十九开关管的控制信号之间相差预设相位,即两路boost/buck电路的控制时序具有一定的相位差,从而实现交错控制,既可以减小电流纹波,与此同时,保证总输出功率相同的情况小,也可以减小单路直流转换单元(即 第十七开关管Q17、第十八开关管Q18、第四电感L4组成的boost/buck电路)的输出功率。
如图5或图6所示,整流电路单元23包括第九开关管Q9和第十开关管Q10、第五电容C5,第九开关管Q9的第一端与第三线圈W3的第一端相连,第九开关管Q9的控制端与控制模块30相连,第五电容C5的第一端分别与第一公共端、第二直流转换电路模块50的第一端相连,第十开关管Q10的第一端与第四线圈W4的第二端相连,第十开关管Q10的第二端分别与第九开关管Q9的第二端、第五电容C5的第二端、第二直流转换电路模块50的第二端相连,第十开关管Q10的控制端与控制模块30相连。
如图5或图6所示,第二直流转换电路模块50包括第十五开关管Q15、第十六开关管Q16和第六电容C6。
其中,第十五开关管Q15的第一端通过第三电感L3与第五电容C5的第一端相连,第十五开关管Q15的第二端分别与第五电容C5的第二端、低压电池包71的第二端相连,第十五开关管Q15的控制端与控制模块30相连,第十六开关管Q16的第一端分别与第三电感L3、第十五开关管Q15的第一端相连,第十六开关管Q16的第二端与低压电池包71的第一端相连,第十六开关管Q16的控制端与控制模块30相连。
第六电容C6的第一端分别与第十六开关管Q16的第二端、低压电池包71的第一端相连,第六电容C16的第二端分别与第十五开关管Q15的第二端、低压电池包71的第二端相连。
下面参照附图5和图6对本公开实施例的车载充电系统100的充电模式、放电模式以及高压电池包70为低压电池包71充电的模式的实现进一步说明。
在系统处于对电池包的充电模式时,工作过程如下。
转换电路模块10的第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4构成整流电路,其中,第一开关管Q1与第四开关管Q4同步导通或关断,第二开关管Q2与第三开关管Q3同步导通或关断,将第一开关管Q1、第二开关管Q2的中点即第一节点O1和第三开关管Q3和第四开关管Q4中点即第二节点O2之间的交流输入电压整流为第一馒头波信号,即第一电容C1两端的电压,第一电容C1两端电压为整流后的馒头波电压,输入电压波形如图3中的(a)所示,第一电容C1两端电压波形如图3中(b)所示,因此,第一电容C1可以采用小容量电容器件例如薄膜电容,降低了成本和系统体积,提高了稳定性。
控制第一转换单元21中的第五开关管Q5、第八开关管Q8和第六开关管Q6、第七 开关管Q7以固定的频率、固定的占空比导通或关断,将第一电容C1两端的电压转变为交流电压,即第五开关管Q5、第六开关管Q6中点即第三节点O3和第七开关管Q7、第八开关管Q8中点即第四节点O4之间的电压,并通过变压器T1进行隔离和变压并传输至第二转换单元22。第二转换单元22的第十一开关管Q11、第十二开关管Q12、第十三开关管Q13、第十四开关管Q14构成整流电路,控制第十一开关管Q11与第十三开关管Q13同步导通或关断,将第十一开关管Q11、第十二开关管Q12中点即第五节点O5和第十三开关管Q13、第十四开关管Q14中点即第六节点O6之间的交流电压转换为直流电压即第二馒头波信号,即第四电容C4两端的电压。第四电容C4两端电压为馒头波电压,故第四电容C4可采用小容量的电容滤波,不需要大容量的电解电容,从而降低了电解电容部分的成本和体积,提高了产品可靠性和寿命,提升了该车载电源产品的抗震等级。其中,第四电容C4两端电压波形幅值由输入电压以及变压器T1的W1、W2的匝比决定,波形如图3中(c)所示。
第一直流转换电路模块40为boost电路,实现功率因素矫正和调节输出功率。具体为,如图5所示,第十七开关管Q17导通时,第四电感L4的电流上升,电流流向为A→L4→Q17→B;或者,如图5所示,第十七开关管Q17关断,第十八开关断Q18导通,第四电感L4的电流下降,电流流向为A→L4→Q18→高压电池包→B。通过对第十七开关管Q17进行高频开通或关断的控制,使得电感的电流波形跟踪第四电容C4的电压,实现功率因素矫正和调压。第四电感L4的电流幅值取决于高压电池包充电功率。
进一步地,如图6所示,采用两路boost电路,第十七开关管Q17导通预设时间后第十九开关管Q19导通,第四电感L4与第五电感L5的电流先后上升,电流流向为A→L4→Q17→B,以及电流流向为A→L5→Q19→B;如图6所示,第十七开关管Q17关断且第十八开关管Q18导通,预设时间后,第十九开关管Q19关断且第二十开关管Q20导通,第四电感L4与第五电感L5的电流先后下降,从而实现交错控制,电流流向为A→L4→Q18→高压电池包→B,以及A→L5→Q20→高压电池包→B。通过对第十七开关管Q17和第十九开关管Q19进行高频开通或关断的控制,使得电感的电流波形跟踪第四电容C4的电压,实现功率因素矫正和调压。电感的电流幅值取决于高压电池包充电功率。
其中,采用两路boost电路进行直流转换,实现交错控制,既可以减小电流纹波,与此同时,保证总输出功率相同的情况小,也可以减小单路直流转换单元(即第十七开关管Q17、第十八开关管Q18、第四电感L4组成的boost/buck电路)的输出功率。
整流电路单元23可以为车载DCDC的整流电路,通过第九开关管Q9和第十开关管Q10的导通或关断,实现整流。具体过程为:当第三线圈W3、第四线圈W4绕组上正下负时,第十开关管Q10导通,第九开关管Q9不导通,输出直流电压;当第三线圈W3、第四线圈W4绕组下正上负时,第十开关管Q10不导通,第九开关管Q9导通,输出直流电压,将变压器T1变压后的交流信号转换为馒头波信号,即第五电容C5两端为电压。第五电容C5两端电压为馒头波电压,因此,可以采用小容量电容器件例如薄膜电容,降低了成本,减小了系统体积,提高了稳定性。
第二直流转换电路模块50为boost电路,实现功率因素矫正和调节输出功率。具体过程为:第十五开关管Q15导通时,第三电感L3处于储能阶段,电流上升,如图4所示,电流方向为C→L3→Q15→D;第十五开关管Q15关断时,第三电感L3释放能量,电流下降,电流方向为C→L3→Q16→低压电池包→D。通过第十五开关管Q15的高频开通和关断,使得第三电感L3的电流波形跟踪第五电容C5的电压,实现功率因素矫正,其中,第三电感L3的电流幅值取决于低压电池充电功率。
当系统处于高压电池包70向低压电池包71放电模式时,工作过程如下。
第一直流转换电路模块40可以为buck电路,在第一直流转换电路模块40中,如图5所示,第十八开关管Q18开通时,第四电感L4处于储能阶段,电流上升,或者,如图6所示,第十八开关管Q18导通预设时间后第二十开关管Q20导通,第四电感L4和第五电感L5均处于储能阶段,电流上升,高压电池包70向后级电路传输能量;以及,如图5所示,当第十八开关管Q18关断时,第四电感L4电流下降,此阶段由第四电感L4向后级提供能量,或者,当第十八开关管Q18关断预设时间后第二十开关管Q20关断,第四电感L4与第五电感L5先后电流下降,此阶段由第四电感L4和第五电感L5向后级提供能量,实现交错控制,将高压电池包70输出的直流电信号转换为馒头波信号,即第四电容C4两端电压。该buck电路输出电压为第四电容C4两端电压,通过调节第十八开关管Q18或第十八开关管Q18、第二十开关管Q20的占空比,可以调节第四电容C4两端电压。
在第二转换单元22中,通过十一开关管Q11、第十二开关管Q12、第十三开关管Q13、第十四开关管Q14以一定的频率和占空比开通或关断,把第四电容C4两端电压转换为交流电压,即在第十一开关管Q11、第十二开关管Q12中点即第五节点O5和第十三开关管Q13、第十四开关管Q14中点即第六节点O6之间形成交流电压,经过变压器T1实现交流-交流隔离和变压,并通过变压器T1的次级侧的第三线圈W3和第四线 圈W4传输至整流电路单元23。
在整流电路单元23中,通过第九开关管Q9和第十开关管Q10的导通或关断,实现整流。具体过程为:当第三线圈W3、第四线圈W4上正下负时,第十开关管Q10导通,第九开关管Q9不导通,输出直流电压;当第三线圈W3、第四线圈W4下正上负时,第十开关管Q10不导通,第九开关管Q9导通,输出直流电压,即将变压器T1变压后的交流电信号转换为馒头波信号,即第五电容C5两端为电压。
其中,当系统处于高压电池包70向低压电池包71放电过程中,第二直流转换电路模块50为滤波电路,第十五开关管Q15保持关断,第十六开关管Q16保持导通,实现LC电路滤波,并对低压电池包71充电。
当系统工作在高压电池包反向放电模式时,电单元60可以为用电负载,工作过程如下:
在第一直流转换电路模式40中,如图5所示,第十八开关管Q18导通时,第四电感L4处于储能阶段电流上升,或者,如图6所示,第十八开关管Q18导通预设时间后第二十开关管Q20导通,第四电感L4和第五电感L5均处于储能阶段,电流上升,高压电池包70向后级电路传递能量;以及,如图5所示,第十八开关管Q18关断时,第四电感L4电流下降,通过第十七开关管Q17续流,向后级传递能量,或者,当第十八开关管Q18关断预设时间后第二十开关管Q20关断,第四电感L4与第五电感L5先后电流下降,通过第十七开关管Q17、第十九开关管Q19续流,向后级提供能量,实现交错控制。将高压电池包70输出的直流电信号转换为馒头波信号,即第四电容C4两端电压。第四电容C4两端电压为馒头波电压,因此第四电容C4可以采用小容量电容器件例如薄膜电容,降低了成本,减小了系统体积,提高了稳定性。
在第二转换单元22中,通过第十一开关管Q11、第十二开关管Q12、第十三开关管Q13、第十四开关管Q14以固定频率、固定占空比开通或关断,把第四电容C4两端的电压转换为交流电压,即在第十一开关管Q11、第十二开关管Q12中点即五节点O5和第十三开关管Q13、第十四开关管Q14中点即第六节点O6之间形成交流电压。
变压器T1实现电压隔离和变压,并将第二转换单元22传输的交流电信号变压后传输给第一转换单元21。
在第一转换单元21中,第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8实现整流功能。通过控制第五开关管Q5、第八开关管Q8同步导通或关断,以及控制第六开关管Q6、第七开关管Q7同步导通或关断,将第五开关管Q5、第六开关 管Q6中点即第三节点O3和第七开关管Q7、第八开关管Q8中点即第四节点O4之间的交流电压转换为馒头波的直流电压,即第一电容C1两端电压。第一电容C1两端电压为馒头波电压,因此,第一电容C1可以采用小容量电容例如薄膜电容,降低了成本,减小了系统体积,提高了稳定性。
在转换电路模块10中,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4组成逆变电路,通过第一开关管Q1、第四开关管Q4的同步导通或关断,以及第二开关管Q2、第三开关管Q3同步的导通或关断,将第一电容C1两端电压转换为工频交流电,即第一开关管Q1、第二开关管Q2中点即第一节点O1和第三开关管Q3、第四开关管Q4中点即第二节点O2之间的电压,从而实现对用电负载供电。
在本公开的实施例中,开关管可以选择MOS管或者三极管或者其它适用的开关器件。
并且,对于图1中的Part2’部分为LLC拓扑,当输出电压范围较宽时,开关频率偏离谐振频率较大,导致充电效率低。本公开实施例的车载充电系统100,可以通过控制模块30对后级的第一直流转换电路模块40或第二直流转换电路模块50工作的占空比进行调节,以控制充电功率,可适配的电池电压范围更宽。
概括来说,本公开实施例的车载充电系统100,设置转换电路模块10和谐振电路模块20,在充电模式时,控制模块30根据充电控制时序控制转换电路模块10,以将第一交流信号转换为第一馒头波信号,由于转换电路模块10输出的电信号为馒头波信号,所以,转换电路模块10及其后级的谐振电路模块20之间无需设置大容量的电解电容,以及,控制第二转换单元22转换变压后的第二交流电信号为第二馒头波信号并输出,即谐振电路模块20输出的电信号也为馒头波,因此,谐振电路模块20与后级电路之间也无需采用大容量的电解电容,只需小容量的电容器件例如薄膜电容即可,可以降低成本和系统体积,提高了产品可靠性和寿命,提升了该车载电源产品的抗震等级;以及,第一直流转换电路模块40采用两路boost/buck电路,实现交错控制,从而减小电流纹波,并减小单路的输出功率;以及,设置整流电路单元23,可以实现对低压电池包的充电。以及,通过对直流转换电路模块的工作占空比调节,可以适配更大的电池电压范围,提高充电功率。
基于上面实施例的车载充放电系统,下面参照附图描述根据本公开第二方面实施例的车辆。
图7是根据本公开的一个实施例的车辆的框图。如图7所示,本公开实施例的车 辆1000包括高压电池包70、低压电池包71和上面实施例的车载充电系统100,其中,车载充电系统100的组成可以参照上面实施例的说明,当然该车辆1000还包括其它系统例如传动系统、动力系统、转向系统等等,在此不一一列举。
根据本公开实施例的车辆1000,通过采用上面实施例的车载充电系统100,可以降低成本,提高可靠性,提升抗震等级。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (10)

  1. 一种车载充电系统,其特征在于,包括:
    转换电路模块,所述转换电路模块的第一端与电单元相连,用于转换输入的第一交流电信号为第一馒头波信号;
    谐振电路模块,用于对输入的第一馒头波信号进行转换,包括第一转换单元、变压器和第二转换单元,其中,所述第一转换单元的第一端与所述转换电路模块的第二端相连,所述变压器的初级侧与所述第一转换单元的第二端相连,所述变压器的次级侧与所述第二转换单元相连;
    控制模块,用于在充电模式时,根据充电控制时序控制所述转换电路模块,以将所述第一交流电信号转换为第一馒头波信号,并控制所述第一转换单元转换所述第一馒头波信号为第二交流电信号,经所述变压器的隔离和变压后传输至所述第二转换单元,以及控制所述第二转换单元转换变压后的第二交流电信号为第二馒头波信号并输出。
  2. 根据权利要求1所述的车载充电系统,其特征在于,所述车载充电系统还包括:
    第一直流转换电路模块,所述第一直流转换电路模块分别与所述第二转换单元、高压电池包相连,用于在充电模式时,转换所述第二馒头波信号为第一直流电信号,以为所述高压电池包充电;或,用于在放电模式时,转换所述高压电池包输出的第二直流电信号为第三馒头波信号;
    其中,在放电模式时,所述第二转换单元转换所述第三馒头波信号为第三交流电信号,经所述变压器的隔离和变压后传输至所述第一转换单元,所述第一转换单元转换变压后的第三交流电信号为第四馒头波信号,所述转换电路模块转换所述第四馒头波信号为第四交流电信号并输出至外部。
  3. 根据权利要求2所述的车载充电系统,其特征在于,所述车载充电系统还包括:
    整流电路单元,所述整流电路单元与所述变压器的次级侧相连,用于转换变压后的第二交流电信号为第五馒头波信号;
    第二直流转换电路模块,所述第二直流转换电路模块分别与所述整流电路单元、低压电池包相连;用于在充电模式时,转换所述第五馒头波信号为第三直流电信号,以为所述低压电池包充电;
    其中,在所述高压电池包为所述低压电池包充电的模式时,所述第一直流转换电路模块转换所述高压电池包输出的第四直流电信号为第六馒头波信号,所述第二转换 单元转换所述第六馒头波信号为第五交流电信号,经所述变压器的隔离和变压后传输至所述整流电路单元,所述整流电路单元转换变压后的第五交流电信号为第七馒头波信号,所述第二直流转换电路模块转换所述第七馒头波信号为第五直流电池信号,以为所述低压电池包充电。
  4. 根据权利要求3所述的车载充电系统,其特征在于,所述转换电路模块包括:
    第一开关管和第二开关管,所述第一开关管的第一端与所述第一转换单元的第一端相连,所述第一开关管的第二端与所述第二开关管的第一端相连,所述第一开关管的控制端与所述控制模块相连,所述第二开关管的第二端与所述第一转换单元的第二端相连,所述第二开关管的控制端与所述控制模块相连,所述第一开关管的第二端与所述第二开关管的第一端之间具有第一节点,所述第一节点与所述电单元的第一端相连;
    第三开关管和第四开关管,所述第三开关管的第一端分别与所述第一开关管的第一端、所述第一转换单元的第一端相连,所述第三开关管的第二端与所述第四开关管的第一端相连,所述第三开关管的控制端与所述控制模块相连,所述第四开关管的第二端分别与所述第二开关管的第二端、所述第一转换单元的第二端相连,所述第四开关管的控制端与所述控制模块相连,所述第三开关管的第二端与所述第四开关管的第一端之间具有第二节点,所述第二节点与所述电单元的第二端相连;
    在所述充电模式时,所述控制模块控制所述第一开关管、所述第四开关管同步导通或关断,以及控制所述第二开关管、所述第三开关管同步导通或关断,以将所述第一交流电信号转换为所述第一馒头波信号。
  5. 根据权利要求4所述的车载充电系统,其特征在于,
    所述第一转换单元包括第一电容、第五开关管、第六开关管、第七开关管和第八开关管,其中,所述第一电容的第一端与所述第三开关管的第一端相连,所述第一电容的第二端与所述第四开关管的第二端相连,所述第五开关管的第一端与所述第一电容的第一端相连,所述第五开关管的第二端与所述第六开关管的第一端相连,所述第五开关管的控制端与所述控制模块相连,所述第六开关管的第二端与所述第一电容的第二端相连,所述第六开关管的控制端与所述控制模块相连,所述第五开关管的第二端与所述第六开关管的第一端之间具有第三节点,所述第七开关管的第一端与所述第五开关管的第一端相连,所述第七开关管的第二端与所述第八开关管的第一端相连,所述第七开关管的控制端与所述控制模块相连,所述第八开关管的第二端与所述第六 开关管的第二端相连,所述第八开关管的控制端与所述控制模块相连,所述第七开关管的第二端与所述第八开关管的第一端之间具有第四节点;
    所述变压器的初级侧包括第一线圈,所述第一线圈的第一端通过第一电感与所述第三节点相连,所述第一线圈的第二端通过第二电容与所述第四节点相连;
    所述变压器的次级侧包括第二线圈、第三线圈和第四线圈,所述第二线圈与所述第二转换单元相连,所述第三线圈、所述第四线圈与所述整流电路单元相连,所述第三线圈的第二端与所述第四线圈的第一端为第一公共端;
    所述第二转换单元包括第十一开关管、第十二开关管、第十三开关管、第十四开关管和第四电容,其中,所述第十二开关管的第一端与所述第一直流转换电路模块的第一端相连,所述第十二开关管的第二端与所述第十一开关管的第一端相连,所述第十二开关管的控制端与所述控制模块相连,所述第十一开关管的第二端与所述第一直流转换电路模块的第二端相连,所述第十一开关管的控制端与所述控制模块相连,所述第十一开关管的第一端与所述第十二开关管的第二端之间具有第五节点,所述第五节点通过第二电感与所述第二线圈的第一端相连,所述第十三开关管的第一端分别与所述第十二开关管的第一端、所述第一直流转换电路模块的第一端相连,所述第十三开关管的第二端与所述第十四开关管的第一端相连,所述第十三开关管的控制端与所述控制模块相连,所述第十四开关管的第二端分别与所述第十一开关管的第二端、所述第一直流转换电路模块的第二端相连,所述第十四开关管的控制端与所述控制模块相连,所述第十三开关管的第二端与所述第十四开关管的第一端之间具有第六节点,所述第六节点通过第三电容与所述第二线圈的第二端相连,所述第四电容的第一端与所述第十三开关管的第一端相连,所述第四电容的第二端与所述第十四开关管的第二端相连;
    其中,在充电模式时,所述控制模块控制所述第十一开关管、所述第十三开关管同步导通或关断,以及控制所述第十二开关管、所述第十四开关管同步导通或关断,以将所述第二交流电信号转换为所述第二馒头波信号。
  6. 根据权利要求5所述的车载充电系统,其特征在于,所述第一直流转换电路模块包括:
    第十七开关管和第十八开关管,所述第十七开关管的第一端通过第四电感与所述第四电容的第一端相连,所述第十七开关管的第二端分别与所述第四电容的第二端、所述高压电池包的第二端相连,所述第十七开关管的控制端与所述控制模块相连,所 述第十八开关管的第一端分别与所述第四电感、所述第十七开关管的第一端相连,所述第十八开关管的第二端与所述高压电池包的第一端相连,所述第十八开关管的控制端与所述控制模块相连;
    第七电容,所述第七电容的第一端分别与所述第十八开关管的第二端、所述高压电池包的第一端相连,所述第七电容的第二端分别与所述第十七开关管的第二端、所述高压电池包的第二端相连。
  7. 根据权利要求6所述的车载充电系统,其特征在于,所述第一直流转换电路模块还包括:
    第十九开关管和第二十开关管,所述第二十开关管的第一端分别与所述第十八开关管的第一端、所述高压电池包的第一端相连,所述第二十开关管的第二端与所述第十九开关管的第一端相连,所述第二十开关管的控制端与所述控制模块相连,所述第十九开关管的第二端分别与所述第十七开关管的第二端、所述高压电池包的第二端相连,所述第十九开关管的控制端与所述控制模块相连,所述第二十开关管的第二端与所述第十九开关管的第一端之间具有第七节点,所述第七节点通过第五电感与所述第四电容的第一端相连;
    其中,在充电模式时,所述控制模块控制所述第十七开关管的控制信号与控制所述第十九开关管的控制信号之间相差预设相位,以及控制所述第十八开关管的控制信号与控制所述第十九开关管的控制信号之间相差预设相位。
  8. 根据权利要求6或7所述的车载充电系统,其特征在于,
    所述整流电路单元包括第九开关管和第十开关管、第五电容,所述第九开关管的第一端与所述第三线圈的第一端相连,所述第九开关管的控制端与所述控制模块相连,所述第五电容的第一端分别与所述第一公共端、所述第二直流转换电路模块的第一端相连,所述第十开关管的第一端与所述第四线圈的第二端相连,所述第十开关管的第二端分别与所述第九开关管的第二端、所述第五电容的第二端、所述第二直流转换电路模块的第二端相连,所述第十开关管的控制端与所述控制模块相连;
    所述第二直流转换电路模块包括第十五开关管、第十六开关管和第六电容,所述第十五开关管的第一端通过第三电感与所述第五电容的第一端相连,所述第十五开关管的第二端分别与所述第五电容的第二端、所述低压电池包的第二端相连,所述第十五开关管的控制端与所述控制模块相连,所述第十六开关管的第一端分别与所述第三电感、所述第十五开关管的第一端相连,所述第十六开关管的第二端与所述低压电池 包的第一端相连,所述第十六开关管的控制端与所述控制模块相连,所述第六电容的第一端分别与所述第十六开关管的第二端、所述低压电池包的第一端相连,所述第六电容的第二端分别与所述第十五开关管的第二端、所述低压电池包的第二端相连。
  9. 根据权利要求8所述的车载充电系统,其特征在于,所述车载充电系统还包括:
    滤波器,所述滤波器的一端与所述电单元相连,所述滤波器的另一端与所述转换电路模块相连。
  10. 一种车辆,其特征在于,包括高压电池包、低压电池包和如权利要求1-9任一项所述的车载充电系统。
PCT/CN2020/114492 2019-09-29 2020-09-10 车载充电系统及具有其的车辆 WO2021057492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910936697.6 2019-09-29
CN201910936697.6A CN112572193B (zh) 2019-09-29 2019-09-29 车载充电系统及具有其的车辆

Publications (1)

Publication Number Publication Date
WO2021057492A1 true WO2021057492A1 (zh) 2021-04-01

Family

ID=75110840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114492 WO2021057492A1 (zh) 2019-09-29 2020-09-10 车载充电系统及具有其的车辆

Country Status (2)

Country Link
CN (1) CN112572193B (zh)
WO (1) WO2021057492A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115765516A (zh) * 2023-01-09 2023-03-07 西安图为电气技术有限公司 双向储能变换器和双向电源
CN115864833A (zh) * 2022-12-09 2023-03-28 广东工业大学 一种内嵌型多电平的可重构开关电容变换器
CN115954911A (zh) * 2023-03-13 2023-04-11 坎德拉(深圳)新能源科技有限公司 飞轮储能系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972570A (zh) * 2017-04-14 2017-07-21 南通大学 适用于大型停车场的直流慢充桩及鲁棒控制器设计方法
CN107231032A (zh) * 2017-06-02 2017-10-03 广东万城万充电动车运营股份有限公司 一种集中散热式大功率的直流充电模块
CN107244255A (zh) * 2017-06-26 2017-10-13 江苏师范大学 基于h桥和高频变压器的电动汽车充电与驱动集成变换器
CN108237943A (zh) * 2018-01-17 2018-07-03 深圳威迈斯电源有限公司 一种双输出端口充电电路及其控制方法
US20190148973A1 (en) * 2017-11-13 2019-05-16 Ejins Co., Ltd. Complex circuit for charging and low-voltage coversion for electric vehicle
CN110549889A (zh) * 2018-03-29 2019-12-10 比亚迪股份有限公司 车载充电器及其控制方法
CN110588395A (zh) * 2019-09-09 2019-12-20 国网山东省电力公司金乡县供电公司 一种车载充电机控制电路、方法、充电机及电动汽车

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111008A (zh) * 2009-12-29 2011-06-29 台达电子工业股份有限公司 电动汽车的高压电池充电系统架构
CN103872728A (zh) * 2014-03-03 2014-06-18 同济大学 一种多功能一体化电动汽车车载充电机
CN205724952U (zh) * 2016-03-30 2016-11-23 比亚迪股份有限公司 车载充电器和车辆
CN107370360B (zh) * 2017-08-30 2023-05-05 广东工业大学 一种无桥apfc有源因数功率校正电路
CN207345714U (zh) * 2017-10-31 2018-05-11 北京新能源汽车股份有限公司 一种车载电源系统及汽车

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106972570A (zh) * 2017-04-14 2017-07-21 南通大学 适用于大型停车场的直流慢充桩及鲁棒控制器设计方法
CN107231032A (zh) * 2017-06-02 2017-10-03 广东万城万充电动车运营股份有限公司 一种集中散热式大功率的直流充电模块
CN107244255A (zh) * 2017-06-26 2017-10-13 江苏师范大学 基于h桥和高频变压器的电动汽车充电与驱动集成变换器
US20190148973A1 (en) * 2017-11-13 2019-05-16 Ejins Co., Ltd. Complex circuit for charging and low-voltage coversion for electric vehicle
CN108237943A (zh) * 2018-01-17 2018-07-03 深圳威迈斯电源有限公司 一种双输出端口充电电路及其控制方法
CN110549889A (zh) * 2018-03-29 2019-12-10 比亚迪股份有限公司 车载充电器及其控制方法
CN110588395A (zh) * 2019-09-09 2019-12-20 国网山东省电力公司金乡县供电公司 一种车载充电机控制电路、方法、充电机及电动汽车

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864833A (zh) * 2022-12-09 2023-03-28 广东工业大学 一种内嵌型多电平的可重构开关电容变换器
CN115864833B (zh) * 2022-12-09 2023-06-16 广东工业大学 一种内嵌型多电平的可重构开关电容变换器
CN115765516A (zh) * 2023-01-09 2023-03-07 西安图为电气技术有限公司 双向储能变换器和双向电源
CN115954911A (zh) * 2023-03-13 2023-04-11 坎德拉(深圳)新能源科技有限公司 飞轮储能系统

Also Published As

Publication number Publication date
CN112572193A (zh) 2021-03-30
CN112572193B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
WO2021057492A1 (zh) 车载充电系统及具有其的车辆
CN103746419B (zh) 车载充电器电路
EP3787169A1 (en) Dcdc converter, vehicle-mounted charger and electric vehicle
WO2021000742A1 (zh) 一种车辆及其能量转换装置与动力系统
KR101295317B1 (ko) 전기 자동차(xEV)의 전력변환장치용 복합형 충전 시스템
CN112572189B (zh) 车载充放电系统及具有其的车辆
CN112572190B (zh) 车载充电系统及具有其的车辆
CN112583061B (zh) 车载充电系统及具有其的车辆
CN112583094B (zh) 车载充电系统及具有其的车辆
CN112572192B (zh) 车载充电系统及具有其的车辆
WO2021057491A1 (zh) 车载充电系统及具有其的车辆
Heo et al. Integration of OBC and LDC using adaptive DC link voltage
CN112572194B (zh) 车载充电系统及具有其的车辆
CN112572186B (zh) 车载充电系统及具有其的车辆
WO2021057488A1 (zh) 车载充电系统及具有其的车辆
CN112572188B (zh) 车载充电系统及具有其的车辆
CN112572185B (zh) 车载充放电系统及具有其的车辆
CN112583093B (zh) 车载充电系统及具有其的车辆
CN112583095B (zh) 车载充电系统及具有其的车辆
CN112572187B (zh) 车载充电系统及具有其的车辆
CN112572195B (zh) 车载充电系统及具有其的车辆
CN112583091B (zh) 车载充电系统及具有其的车辆
CN112583089B (zh) 车载充电系统及具有其的车辆
CN112572191B (zh) 车载充电系统及具有其的车辆
CN213007663U (zh) 充放电装置和电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20868224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20868224

Country of ref document: EP

Kind code of ref document: A1