WO2021057340A1 - 能量转换装置的协同控制方法、装置、存储介质及车辆 - Google Patents

能量转换装置的协同控制方法、装置、存储介质及车辆 Download PDF

Info

Publication number
WO2021057340A1
WO2021057340A1 PCT/CN2020/109886 CN2020109886W WO2021057340A1 WO 2021057340 A1 WO2021057340 A1 WO 2021057340A1 CN 2020109886 W CN2020109886 W CN 2020109886W WO 2021057340 A1 WO2021057340 A1 WO 2021057340A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
axis current
current
phase
power
Prior art date
Application number
PCT/CN2020/109886
Other languages
English (en)
French (fr)
Inventor
廉玉波
凌和平
李吉成
潘华
牟利
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020227010262A priority Critical patent/KR102661775B1/ko
Priority to JP2022519102A priority patent/JP7346725B2/ja
Priority to US17/764,038 priority patent/US20220329184A1/en
Priority to EP20869465.3A priority patent/EP4019322A4/en
Publication of WO2021057340A1 publication Critical patent/WO2021057340A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/79Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/797Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/64Controlling or determining the temperature of the winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/54Windings for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/1552Boost converters exploiting the leakage inductance of a transformer or of an alternator as boost inductor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • H02M7/53876Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to the field of vehicle technology, and in particular to a method, device, storage medium, and vehicle for cooperative control of an energy conversion device.
  • the power batteries in electric vehicles usually use lithium-ion batteries.
  • the general operating temperature of lithium-ion batteries It is between -20°C and 55°C. Li-ion batteries are not allowed to be charged below low temperatures.
  • the solution for heating low-temperature batteries in the prior art is to use PTC heaters or electric heating wire heaters or engines or motors to heat the cooling liquid of the battery cooling circuit at low temperatures, and use the cooling liquid to heat the battery cells to a predetermined temperature. .
  • the purpose of this application is to provide a coordinated control method, device, storage medium, and vehicle for an energy conversion device, which can solve the cost increase caused by the use of heating equipment to heat the power battery in the low temperature state, as well as the charging and discharging process, the heating process and the torque The problem that two or three of the output process cannot work together.
  • the first aspect of the application provides a method for coordinated control of an energy conversion device.
  • the energy conversion device includes a reversible PWM rectifier and a motor coil.
  • the reversible PWM rectifier is connected to the motor coil and an external battery.
  • the positive and negative terminals of the reversible PWM rectifier are respectively connected to the first and second bus ends, and the first and second ends of the external charging and discharging ports are respectively connected to at least one neutral wire drawn from the motor coil And the second confluence end of the reversible PWM rectifier;
  • the coordinated control method includes:
  • the first quadrature axis current and the target heating power are adjusted according to the target driving power. From the first straight-axis current to the target quadrature-axis current and the target direct-axis current, so that the deviation between the sum of the first heating power and the second heating power and the target heating power is within a preset range;
  • the motor rotor position calculates the duty cycle of each phase of the bridge arm in the reversible PWM rectifier.
  • a second aspect of the present application provides a computer-readable storage medium that stores a computer program, and is characterized in that, when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a third aspect of the present application provides a cooperative control device for an energy conversion device.
  • the energy conversion device includes a reversible PWM rectifier and a motor coil, the reversible PWM rectifier is connected to the motor coil, and the positive and negative terminals of the external battery are respectively.
  • the first and second bus ends of the reversible PWM rectifier are connected, and the first and second ends of the external charging and discharging ports are respectively connected to at least one neutral wire drawn from the motor coil and the reversible PWM rectifier Second confluence end;
  • the cooperative control device includes:
  • Power acquisition module for acquiring target heating power, target driving power, and target charging and discharging power
  • the first heating power calculation module is configured to obtain the target charging and discharging current output by the external charging and discharging port according to the target charging and discharging power, and to obtain the first heating power of the motor coil according to the target charging and discharging current;
  • the second heating power calculation module is used to obtain the first quadrature axis current and the first straight axis current in the synchronous rotating coordinate system based on the motor rotor magnetic field orientation according to the target drive power, and according to the first quadrature axis current and Obtaining the second heating power of the motor coil by the first shaft current;
  • the target current obtaining module is configured to adjust the first heating power according to the target driving power when the deviation between the sum of the first heating power and the second heating power and the target heating power is not within a preset range
  • a quadrature axis current and the first straight axis current to the target quadrature axis current and the target direct axis current so that the deviation between the sum of the first heating power and the second heating power and the target heating power is within a preset range, and when the deviation between the sum of the first heating power and the second heating power and the target heating power is within a preset range, the first quadrature current and the The first straight axis current is set to the target quadrature axis current and the target direct axis current;
  • the duty cycle acquisition module is used to acquire the sampled current value on the coil of each phase and the rotor position of the motor, and according to the target quadrature axis current, the target direct axis current, the target charge and discharge current, and the coil of each phase Calculate the duty cycle of each phase bridge arm in the reversible PWM rectifier based on the sampled current value and the rotor position of the motor.
  • a fourth aspect of the present application provides a vehicle, which further includes the cooperative control device of the energy conversion device described in the third aspect.
  • the technical effect of the cooperative control method, device, storage medium, and vehicle of an energy conversion device proposed in this application is that the energy conversion device is connected to an external battery by using an energy conversion device including a reversible PWM rectifier and a motor coil, and When connected to power supply equipment or electrical equipment through the charging and discharging port, the target heating power, target driving power, and target charging and discharging power are obtained, the first heating power is obtained according to the target charging and discharging power, and the first quadrature current and the target driving power are obtained according to the target driving power.
  • the first straight axis current is used to obtain the second heating power of the motor coil according to the first quadrature axis current and the first straight axis current, and then according to the sum of the first heating power and the second heating power and the target
  • the relationship between the heating power adjusts the first quadrature axis current and the first straight axis current to obtain the target quadrature axis current and the target direct axis current, and then according to the target quadrature axis current, the target direct axis current, the target charge and discharge current, each phase coil Calculate the duty cycle of each phase bridge arm in the PWM rectifier based on the sampled current value and the motor rotor position, and control the on and off of the switching devices on each phase bridge arm in the PWM rectifier according to the duty cycle, thus realizing and enabling
  • the current output by the external battery or power supply device flows through the motor coil to generate heat to heat the coolant in the cooling pipe flowing through the motor coil.
  • the heating device reduces the cost of the entire device, ensures that the charging and discharging of the battery in a low temperature state are guaranteed, and at the same time realizes the coordination of two or three of the charging and discharging process, the heating process and the torque output process.
  • FIG. 1 is a schematic structural diagram of an energy conversion device provided by Embodiment 1 of the present application.
  • FIG. 2 is a flowchart of a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 3 is a flowchart of step S20 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 4 is a three-dimensional space transformation diagram in a cooperative control method of an energy conversion device provided in Embodiment 1 of the present application;
  • FIG. 5 is a coordinate transformation diagram in a coordinated control method of an energy conversion device provided in Embodiment 1 of the present application;
  • FIG. 6 is a torque curve diagram in a coordinated control method of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 7 is a flowchart of step S60 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 8 is a flowchart of step S601 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 9 is a flowchart of step S602 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 10 is another flowchart of step S602 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 11 is a flowchart of step S603 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 12 is a flowchart of step S610 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 13 is a flowchart of step S620 in a method for cooperative control of an energy conversion device according to Embodiment 1 of the present application;
  • FIG. 14 is a flowchart of a method for cooperative control of an energy conversion device according to Embodiment 2 of the present application.
  • FIG. 16 is a flowchart of a method for cooperative control of an energy conversion device according to a fourth embodiment of the present application.
  • FIG. 17 is a vector control diagram of a coordinated control method of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 18 is another vector control diagram of a coordinated control method of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 19 is another vector control diagram of a coordinated control method of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 20 is another vector control diagram of a coordinated control method of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 21 is a circuit diagram of an energy conversion device provided by Embodiment 1 of the present application.
  • FIG. 22 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present application.
  • FIG. 23 is another current flow diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 24 is another current flow diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 25 is another current flow diagram of an energy conversion device provided by Embodiment 1 of the present application.
  • FIG. 26 is another current flow diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 27 is another current flow diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 28 is another current flow diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 29 is a schematic diagram of a motor coil structure of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 30 is another circuit diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 31 is another circuit diagram of an energy conversion device provided by Embodiment 1 of the present application.
  • FIG. 32 is another circuit diagram of an energy conversion device according to Embodiment 1 of the present application.
  • FIG. 33 is a schematic structural diagram of a vehicle provided in Embodiment 7 of the present application.
  • the first embodiment of the present application provides a cooperative control method of an energy conversion device.
  • the energy conversion device includes a reversible PWM rectifier 102 and a motor coil 103.
  • the reversible PWM rectifier 102 is connected to the motor coil 103, and the positive of the external battery 101 is The extreme and negative ends are respectively connected to the first and second bus ends of the reversible PWM rectifier 102, and the first and second ends of the external charging and discharging port 104 are respectively connected to at least one neutral line and the reversible PWM derived from the motor coil 103 The second confluence end of the rectifier 102.
  • the motor can be a synchronous motor (including a brushless synchronous motor) or an asynchronous motor.
  • the number of phases of the motor coil 103 is greater than or equal to 2, and the number of sets of motor windings is greater than or equal to 1 (such as dual three-phase motors, three-phase motors, six-phase motors, Nine-phase motor, fifteen equal), and the connection point of the motor coil 103 forms a neutral point to lead to a neutral line.
  • the neutral line of the motor coil 103 can be drawn out by one or more.
  • the specific number of connection points of the motor coil 103 Depending on the parallel structure of the internal windings of the motor, the number of parallel connection points of the motor coil 103 inside the motor and the number of neutral points drawn by the connection points are determined by the use of the actual scheme; the PWM in the reversible PWM rectifier 102 is pulse Pulse width modulation.
  • the reversible PWM rectifier 102 includes multi-phase bridge arms. The multi-phase bridge arms are connected together to form a first bus end and a second bus end. The number of bridge arms is configured according to the number of phases of the motor coil 103.
  • the inverter bridge arm includes two power switch units.
  • the power switch units can be transistors, IGBTs, MOSFET tubes, SiC tubes and other device types.
  • connection point of the two power switch units in the bridge arm is connected to a phase coil in the motor, which is reversible.
  • the power switch unit in the PWM rectifier 102 can be turned on and off according to an external control signal;
  • the external charging and discharging port 104 is a DC charging and discharging port, and the DC charging and discharging port is used to connect DC power supply equipment or DC power equipment, and can receive DC
  • the external battery 101 may be a battery in the vehicle, such as a power battery.
  • the energy conversion device also includes a controller, which is connected to the reversible PWM rectifier 102 and sends a control signal to the reversible PWM rectifier 102.
  • the controller may include a vehicle controller, a reversible PWM rectifier 102 control circuit, and a BMS battery manager circuit.
  • the three are connected through the CAN line, and different modules in the controller control the on and off of the power switch unit in the reversible PWM rectifier 102 according to the acquired information to realize the conduction of different current loops; the controller is integrated into the energy conversion device
  • the reversible PWM rectifier 102 sends a control signal to make the current output by the external battery 101 or the power supply device connected to the charging and discharging port 104 flow through the motor coil 103 to generate heat, so as to heat the coolant in the cooling tube flowing through the motor coil 103, When the coolant flows through the power battery, the power battery is heated.
  • the cooperative control method of the energy conversion device includes:
  • Step 10 Obtain the target heating power, target driving power, and target charging and discharging power.
  • the target heating power refers to the heat that needs to be generated when the energy conversion device draws electricity from the external battery 101 or the power supply device connected to the external charging and discharging port 104 to generate heat through the motor coil 103;
  • the target driving power refers to The energy conversion device takes power from the external battery 101 or the power supply equipment connected to the external charging and discharging port 104 when passing through the motor coil 103 to make the motor output torque;
  • the target charging and discharging power refers to the external charging and discharging port 104 connected to the power The power generated when the external battery 101 discharges the electrical equipment through the energy conversion device or the power generated when the external charge and discharge port 104 is connected to the power supply equipment when the power supply equipment charges the external battery 101 through the energy conversion device.
  • the target heating power, target driving power, and target charging and discharging power can be one of zero and both of them are not zero, or one of them can be non-zero and both of them are zero, or none of the three can be. zero.
  • Step 20 Obtain the target charging and discharging current output from the external charging and discharging port to the neutral line according to the target charging and discharging power, and obtaining the first heating power of the motor coil according to the target charging and discharging current.
  • the target charging and discharging current is calculated according to the charging and discharging mode of the external power source.
  • an external power source for example, a DC power supply device
  • the target charging and discharging current may also be the current output from the external battery 101 to the motor coil 103.
  • obtaining the target charging and discharging current output from the external charging and discharging port to the neutral line according to the target charging and discharging power in step 20 includes:
  • Step 201 When the charging mode of the external power supply connected to the external charging and discharging port is the constant current charging and discharging mode, obtain the target voltage of the external power supply according to the target charging and discharging power.
  • Step 202 Obtain the actual voltage of the charge and discharge port, and obtain the voltage difference according to the target voltage and the actual voltage of the charge and discharge port;
  • Step 203 Perform closed-loop control on the voltage difference to obtain the target charge and discharge current output to the neutral line.
  • step 202 and step 203 the actual voltage of the charging and discharging port 104 is collected by the voltage sensor, and the target voltage and the actual voltage of the charging and discharging port 104 are calculated to obtain the voltage difference, and then the voltage difference is obtained through PID (proportion, integral, differential, proportional). Integral derivative) control to obtain the target charge and discharge current.
  • PID proportion, integral, differential, proportional
  • the target voltage of the external power supply is obtained according to the target charging and discharging power, and the target charging and discharging current is calculated according to the target voltage and the actual voltage of the charging and discharging port 104, Realize the acquisition of target charging and discharging current in constant current charging and discharging mode.
  • obtaining the target charging and discharging current output from the external charging and discharging port to the neutral line according to the target charging and discharging power in step 20 includes:
  • the current of the external charging and discharging port 104 is obtained according to the target charging and discharging power as the external charging and discharging port 104 and output to the neutral line target charging and discharging current.
  • obtaining the first heating power of the motor coil according to the target charging and discharging current in step S20 is:
  • m is the number of phases of the motor coil 103
  • R sn is the phase resistance of each phase winding branch connected to the neutral line
  • in* is the target charge and discharge current.
  • each phase connected to the neutral line The phase resistances of the winding branches are all equal.
  • Step 30 Obtain the first quadrature axis current and the first axis current in the synchronous rotating coordinate system based on the motor rotor magnetic field orientation according to the target drive power, and obtain the first quadrature axis current and the first axis current of the motor coil according to the first quadrature axis current and the first axis current. 2. Heating power.
  • the technical solution of the present application includes three coordinate systems, namely the motor's N-phase axis coordinate system, a stationary coordinate system, and a synchronous rotating coordinate system based on the orientation of the motor rotor magnetic field, as shown in Figures 4 and 5, when the motor is In the case of a three-phase motor, the N-phase axis coordinate system includes A-phase axis, B-phase axis and C-phase axis. A phase axis, B-phase axis and C-phase axis are 90 degrees apart in a three-dimensional state, which is mapped to the static coordinate system After the difference is 120 degrees, the static coordinate system includes the ⁇ axis and the ⁇ axis.
  • the synchronous rotating coordinate system based on the orientation of the motor rotor field is the dq coordinate system (direct axis-quadrature axis coordinate system).
  • This coordinate system rotates synchronously with the rotor and takes the rotor magnetic field.
  • the direction is the d-axis
  • the direction perpendicular to the rotor magnetic field is the q-axis (the q-axis is 90 degrees ahead of the d-axis); in order to facilitate the control of the three-phase variable of the A-phase axis, the B-phase axis and the C-phase axis
  • the A-phase axis and the B-phase axis are usually
  • the three-intersection variables of the phase axis and the C-phase axis are converted to the alternating variables of the ⁇ -axis and the ⁇ -axis in the stationary coordinate system, and then the alternating variables of the ⁇ -axis and ⁇ -axis are converted into the direct current d-axis and q-
  • the control of the d-axis and q-axis of the DC quantity realizes the control of the three-phase variable of the A-phase axis, the B-phase axis and the C-phase axis; the transformation between different coordinate systems can be realized through coordinate transformation, and the N-phase axis can be realized through Clark transformation
  • the system is transformed to a two-phase stationary coordinate system, which generally does not include the zero axis vector; the two-phase stationary coordinate system is transformed to the N-phase axis system through the inverse Clark transformation; the N-phase axis system is transformed to the two-phase stationary coordinate system through the expansion of the Clark transformation System, including the zero-axis vector; the two-phase static coordinate system is transformed to the synchronous rotating coordinate system through PARK transformation, generally does not include the zero-axis vector; the synchronous rotating coordinate system is transformed to the two-phase static coordinate system through the inverse PARK transformation; Expand PARK transformation to realize the transformation of two-phase static coordinate system to synchronous rotating coordinate system, including zero axis vector.
  • obtaining the first quadrature axis current and the first straight axis current in the synchronous rotating coordinate system based on the motor rotor magnetic field orientation according to the target drive power in step 30 includes:
  • the torque output command is obtained according to the target drive power, and the first quadrature axis current and the first straight axis current are obtained by looking up a table in a predetermined torque curve chart according to the torque output command.
  • T e1 , T e2 , and T e3 are the constant torque curves.
  • H, F, D, and A correspond to the points of the minimum id and iq on the constant torque curve.
  • the voltage ellipse is tangent to the constant torque curve at B, E, G, I, and intersect the composite current vector and voltage ellipse at A, B, connect the curve of BEGIC connection and the arc curve of the maximum current circle between A and B together to obtain the MTPV curve, which is the maximum rotation.
  • Moment-to-voltage ratio curve, MTPA&MTPV curve and constant torque curve can be pre-calculated and calibrated.
  • the method of table lookup or table lookup combined with interpolation or piecewise linear fitting is used to obtain the MTPA&MTPV curve or constant Different control quadrature axis current and direct axis current on the torque curve.
  • the electromagnetic torque Te generated during the working process of the motor is controlled by the d and q axis currents id and iq, and satisfies the following equation:
  • Te is the output torque of the motor shaft
  • m is the phase number of the motor coil
  • Pn is the number of pole pairs of the motor
  • ⁇ f is the permanent magnet flux linkage of the motor
  • Ld is the direct axis inductance
  • Lq is the quadrature axis inductance
  • id is the direct axis Current
  • iq is the quadrature axis current.
  • stator current equation satisfies:
  • ⁇ e is the electrical angular velocity
  • rs is the stator winding resistance
  • Ld and Lq are the winding inductances in the d-q axis coordinate system
  • ud and uq are the voltages in the d-q axis coordinate system.
  • the MTPA&MTPV curve look-up table in the torque curve diagram is performed to obtain the first axis current id1* and the first axis current id1* in the synchronous rotating coordinate system based on the motor rotor field orientation.
  • the axis current iq1*, the first straight axis current id1* and the first quadrature axis current iq1* can be the minimum values in the MTPA&MTPV curve.
  • obtaining the second heating power of the motor coil according to the first quadrature axis current and the first straight axis current in step 30 includes:
  • m is the phase number of the motor coil
  • R s is the phase resistance of the motor coil
  • id1* is the first straight axis current
  • iq1* is the first quadrature axis current.
  • Step 40 When the deviation between the sum of the first heating power and the second heating power and the target heating power is not within the preset range, adjust the first quadrature axis current and the first straight axis current to the target quadrature axis according to the target drive power The current and the target direct-axis current make the deviation between the sum of the first heating power and the second heating power and the target heating power within a preset range.
  • the deviation between the sum of the first heating power and the second heating power and the target heating power is not within the preset range means that the sum of the first heating power and the second heating power is greater than the maximum value of the preset range Or less than the minimum value of the preset range value, that is, when the sum of the first heating power and the second heating power is too large or too small, adjust the first quadrature axis current and the first straight axis current to adjust the second heating power so that the first
  • the deviation between the sum of the heating power and the second heating power and the target heating power is within a preset range, where the target heating power, the first heating power, and the second heating power satisfy the following formula:
  • the difference between the sum of the first heating power and the second heating power and the target heating power is calculated to obtain the difference.
  • the output torque is obtained according to the target drive power, and the torque curve is searched.
  • the constant torque curve corresponding to the output torque see the constant torque curves Te1, Te2, Te3 in the torque curve diagram, where Te1>Te2>Te3.
  • the constant torque curve in the torque curve diagram can be calculated in advance and calibrated by the bench. Use table lookup or linear fitting methods to obtain the control current command from the torque.
  • the preset range includes a preset upper limit range and a preset lower limit range.
  • the preset upper limit range is a value greater than zero, and the preset lower limit range is less than zero. Value.
  • the difference between the sum of the first heating power and the second heating power and the target heating power is less than the preset lower limit range, slide along the constant torque curve, increasing toward ((id*) 2 +(iq*) 2) Move in the direction of id*, either towards the increasing direction of id*'s positive semi-axis, or towards the decreasing direction of id*'s negative semi-axis.
  • the preferred choice is to move towards the increasing direction of id*'s positive semi-axis;
  • the difference between the sum of the first heating power and the second heating power and the target heating power is greater than the preset upper limit range, it slides along the constant torque curve toward ((id*) 2 +(iq*) 2 ) Move in the decreasing direction until the difference between the sum of the first heating power and the second heating power and the target heating power is less than the preset upper limit range, if it slides to ((id*) 2 +(iq* under the current torque and voltage) )
  • the minimum point of 2 ) is the target direct axis current and target quadrature axis current point of the MTPA&MTPV curve that meets the torque command, and the difference is still greater than the preset upper limit range to keep the current current point as the target direct axis current and target quadrature axis current.
  • the heating power can be calculated in advance and calibrated by the bench, and the target direct-axis current that meets the conditions can be obtained from the heating power by the method of look-up table or linear fitting. id* and target quadrature axis current iq*.
  • the technical effect of this embodiment is to obtain output torque according to the target drive power, search for a constant torque curve on the torque curve according to the output torque, obtain direct-axis current and quadrature-axis current according to the constant-torque curve, and obtain direct-axis current and quadrature-axis current according to the selected direct-axis current and alternating current.
  • the shaft current obtains the second heating power, and then adjusts the direct-axis current and the quadrature-axis current according to the relationship between the target heating power and the first heating power and the second heating power, so that the first heating power and the second heating power are the same as the target heating power. Matching to realize the coordination between the output torque process and the heating process and the charging process.
  • the collaborative control method further includes:
  • the target driving power is converted from the first target driving power to the second target driving power, obtaining the combined current vector amplitude according to the target quadrature axis current and the target direct axis current corresponding to the first target driving power;
  • intersection coordinate corresponding to the smaller value of the first distance and the second distance is determined as the target direct-axis current and the target quadrature-axis current of the second target driving power.
  • the second target driving power is obtained Current torque output command, find the current point that intersects with the target current circle radius ((id*) 2 +(iq*) 2 ) on the constant torque curve of the current torque value, and the current point closest to id* and iq*.
  • the target direct-axis current id* and the target quadrature-axis current iq* as the current torque value realize the coordinated work between the output torque process after the output torque change and the heating process and the charging process.
  • Step 50 When the deviation between the sum of the first heating power and the second heating power and the target heating power is within the preset range, set the first quadrature axis current and the first straight axis current as the target quadrature axis current and the target Straight axis current.
  • Step 60 Obtain the sampled current value on each phase coil and the motor rotor position, and calculate the reversible PWM rectifier based on the target quadrature axis current, target direct axis current, target charge and discharge current, sample current value on each phase coil, and motor rotor position The duty cycle of each phase bridge arm.
  • step S60 includes:
  • Step S601. Obtain the actual zero-axis current i0 of the motor coil 103 based on the synchronous rotating coordinate system according to the sampled current value on each phase coil, and obtain the actual quadrature axis of each set of windings according to the sampled current value on each phase coil and the motor rotor position Current iq and actual direct axis current id.
  • step S601 the zero axis of the motor coil 103 based on the synchronous rotating coordinate system refers to the axis perpendicular to the dq coordinate system of the synchronous rotating coordinate system, and the actual zero axis current refers to the conversion of the sampled current value on each phase coil to the zero axis The current value.
  • obtaining the actual zero-axis current i0 based on the synchronous rotating coordinate system according to the sampled current value on each phase coil in step S601 includes:
  • ia, ib...im are the sampled current values on the coils of each phase, and m is the number of motor phases.
  • the zero axis current can be regarded as the current of each phase coil, and its value can be the average value of the sampled current values of all coils, which has a linear relationship with the current on the neutral wire.
  • obtaining the actual quadrature axis current iq and the actual direct axis current id according to the sampled current value on each phase coil and the motor rotor position in step S601 includes:
  • Step S6011 Perform clark coordinate transformation on the sampled current value on each phase coil to obtain the current values i ⁇ and i ⁇ of the stationary coordinate system.
  • the three-phase or multi-phase current on the motor coil 103 is converted into the two-phase current i ⁇ , i ⁇ of the static coordinate system, and Clark coordinate transformation is usually used to convert the N-phase axis coordinate system into a two-phase static coordinate system.
  • Step S6012 Perform park coordinate transformation according to the current values i ⁇ , i ⁇ of the stationary coordinate system and the position of the motor rotor to obtain the actual quadrature axis current iq and the actual direct axis current id.
  • the two-phase current values i ⁇ , i ⁇ of the stationary coordinate system are converted to the quadrature axis current and the direct axis current of the synchronous rotating coordinate system based on the orientation of the motor rotor magnetic field.
  • the position of the motor rotor can be the motor rotor direct axis and the motor coil 103
  • the electrical angle ⁇ between the A-phase windings, if it is an asynchronous motor, ⁇ (rotor speed Wr+slip Ws)*t, read the rotor position through resolver or other position sensors or no position sensor to get ⁇ .
  • the actual quadrature axis current iq and the actual direct axis current id can be obtained through the following Park coordinate transformation:
  • Step S602. According to the target quadrature axis current iq* and the actual quadrature axis current iq, the target direct axis current id* and the actual direct axis current id respectively perform closed-loop control to obtain the direct axis reference voltage and the quadrature axis reference voltage, and according to the direct axis reference voltage, The quadrature axis reference voltage and the motor rotor position are used to obtain the first duty cycle of each phase bridge arm D 1 1, D 1 2...D 1 m, where m is the number of phases, and D 1 m represents the m-th phase motor coil 103 Duty cycle.
  • step S602 the direct-axis reference is obtained by closed-loop control according to the target quadrature-axis current iq* and the actual quadrature-axis current iq, the target direct-axis current id* and the actual direct-axis current id respectively.
  • Voltage and quadrature axis reference voltage include:
  • Step S6021 Calculate the target quadrature axis current iq* and the actual quadrature axis current iq to obtain the quadrature axis current difference, and calculate the target direct axis current id* and the actual straight axis current id to obtain the direct axis current difference;
  • Step S6022 The quadrature-axis current difference and the direct-axis current difference are respectively controlled (for example, PID control) to obtain the quadrature-axis reference voltage Uq and the direct-axis reference voltage Ud.
  • the target quadrature axis current iq* is subtracted from the actual quadrature axis current iq, and then the quadrature axis reference voltage Uq is obtained after control (such as PID control).
  • control such as PID control
  • the actual direct-axis current id is then controlled (for example, PID control) to obtain the direct-axis reference voltage Ud.
  • step S602 the first duty ratio D 1 1, D 1 2... of each phase bridge arm is obtained according to the direct-axis reference voltage, the quadrature-axis reference voltage, and the motor rotor position in step S602.
  • D 1 m including:
  • Step S6023 Perform inverse park coordinate transformation on the quadrature-axis reference voltage Uq, the direct-axis reference voltage Ud, and the motor rotor position to obtain the voltages U ⁇ and U ⁇ of the static coordinate system.
  • the voltage U ⁇ , U ⁇ of the stationary coordinate system can be obtained through the following inverse Park coordinate transformation formula:
  • Step S6024 Perform space vector pulse width modulation transformation on the voltages U ⁇ and U ⁇ of the stationary coordinate system to obtain the first duty ratio of each phase bridge arm.
  • the voltages U ⁇ and U ⁇ of the stationary coordinate system are subjected to the SVPWM (Space Vector Pulse Width Modulation, space vector pulse width modulation) algorithm to obtain the duty ratios D 1 1, D 1 of the bridge arms of the reversible PWM rectifier 102 2...D 1 m.
  • SVPWM Space Vector Pulse Width Modulation, space vector pulse width modulation
  • Step S603. Obtain the voltage adjustment value U0 of each phase bridge arm according to the target charging and discharging current in* and the actual zero-axis current i 0 , and obtain the second duty ratio D0 according to the voltage adjustment value U0 of each phase bridge arm.
  • obtaining the voltage adjustment value U0 of each phase bridge arm according to the target charging and discharging current in* and the actual zero-axis current i0 on the motor coil 103 in step S603 includes:
  • Step S6031 Calculate the target zero axis current i0* of the motor coil 103 according to the target charge and discharge current in* and the number of motor phases.
  • Step S6032 The actual zero-axis current i0 on the motor coil 103 and the target zero-axis current i0* of the motor coil 103 are calculated and then controlled (for example, PID control) to obtain the voltage adjustment value U0 of each phase bridge arm.
  • the proportional coefficient is the number of motor phases.
  • the actual zero axis current i0 on the motor coil 103 and the target zero axis of the motor coil 103 The current i0* is subtracted to obtain the current difference and then controlled (such as PID control) to obtain the voltage adjustment value U0 of each phase bridge arm
  • obtaining the second duty ratio D0 according to the voltage adjustment value U0 of each phase bridge arm in step S603 includes: modulating the voltage adjustment value U0 and the bus voltage to obtain the second duty ratio D0.
  • Step S603. Calculate and obtain the duty ratio of each phase bridge arm according to the first duty ratio D 1 1, D 12 ...D 1 m of each phase bridge arm and the second duty ratio D0 of each phase bridge arm.
  • the first duty cycle and the second duty cycle can be added or subtracted to obtain the duty cycle of each phase bridge arm.
  • the charging current flowing into the neutral point from the charging and discharging port is the positive direction
  • the direction of the multi-phase current is: the current flowing into the motor phase terminal is the positive direction
  • the current flowing out of the motor phase terminal is the negative direction.
  • step S60 includes step S601, step S602, and step S603. This embodiment solves the parameter values of the multi-phase motor into a synchronous rotating coordinate system for closed-loop control, and realizes the heating process, charging and discharging process, and Collaborative work of output torque process.
  • step S60 as a second embodiment, as shown in FIG. 12, the sampled current value and rotor position on the coil of each phase are acquired, and the target quadrature axis current, the target direct axis current, the target charge and discharge current, and each phase Calculate the duty cycle of each phase bridge arm in the reversible PWM rectifier 102 with the sampled current value on the coil and the motor rotor position, including:
  • Step S611 Obtain the target current value of each phase coil according to the target quadrature axis current, the target direct axis current, the motor rotor position, and the target charge and discharge current;
  • step S611 includes:
  • Step S612. Obtain the reference voltage of each phase of the bridge arm according to the sampled current value of each phase coil and the target current value of each phase coil.
  • Step S613. Obtain the duty cycle of each phase bridge arm according to the reference voltage of each phase bridge arm.
  • the sampling current value of each phase coil and the target current value of each phase coil are closed-loop adjusted, and the closed-loop adjustment method may be PID control, PR control, or synovial control, etc.
  • the difference between this embodiment and the foregoing embodiment is that the parameter values of the multi-phase motor are calculated into the phase axis coordinate system for closed-loop control, which realizes the coordinated work of the heating process, the charging and discharging process, and the output torque process.
  • step S60 as a third implementation manner, as shown in FIG. 13, step S60 includes:
  • Step S621. Obtain the target ⁇ -axis current and the target ⁇ -axis current of the motor stationary coordinate system according to the target quadrature axis current iq*, the target direct axis current id* and the rotor position;
  • Step S622. Obtain the actual zero-axis current i0 of each set of windings according to the sampled current value on each phase coil, and obtain the actual ⁇ -axis current and actual ⁇ -axis current of the motor stationary coordinate system according to the sampled current value on each phase coil;
  • Step S623. According to the target ⁇ -axis current, the target ⁇ -axis current, the actual ⁇ -axis current and the actual ⁇ -axis current, control (for example, PID control) to obtain the reference voltage U ⁇ , U ⁇ of the motor coil 103 in the stationary coordinate system;
  • control for example, PID control
  • Step S624. Perform space vector modulation transformation on the reference voltages U ⁇ and U ⁇ of the stationary coordinate system to obtain the first duty ratio of each phase bridge arm;
  • Step S625. According to the target charging and discharging current in* and the actual zero axis current i0, control (for example, PID control) to obtain the voltage adjustment value U0 of each phase bridge arm, and modulate the voltage adjustment value U0 and the bus voltage to obtain the second duty ratio ;
  • control for example, PID control
  • Step S626 Calculate and obtain the duty ratio of each phase bridge arm according to the first duty ratio of each phase bridge arm and the second duty ratio of each phase bridge arm.
  • the parameter values of the multi-phase motor are calculated into a static coordinate system for closed-loop control, which realizes the cooperative work of the heating process, the charging and discharging process, and the output torque process.
  • the first embodiment of the present application proposes a method for coordinated control of an energy conversion device.
  • an energy conversion device including a reversible PWM rectifier 102 and a motor coil 103
  • the energy conversion device is connected to an external battery 101 and is connected to an external battery 101 through a charging and discharging port 104.
  • the target heating power, target driving power, and target charging and discharging power are obtained, the first heating power is obtained according to the target charging and discharging power, and the first quadrature axis current and the first straight axis current are obtained according to the target driving power , Obtain the second heating power of the motor coil 103 according to the first quadrature axis current and the first straight axis current, and then adjust the first quadrature axis current according to the relationship between the sum of the first heating power and the second heating power and the target heating power And the first axis current to obtain the target quadrature axis current and the target direct axis current, and then calculate the PWM rectifier based on the target quadrature axis current, the target direct axis current, the target charge and discharge current, the sampled current value on each phase coil, and the motor rotor position
  • the duty cycle of each phase bridge arm in the PWM rectifier controls the on and off of the switching devices on each phase bridge arm in the PWM rectifier
  • the power battery heating device reduces the cost of the entire device, ensures that the charge and discharge of the battery at low temperatures are guaranteed, and at the same time realizes the coordinated work of the charge and discharge process, the heating process and the torque output process, that is, the external power supply equipment discharges (such as Charging pile) work together in the battery charging process, motor heating process and motor torque output process; or the battery discharges to external electrical equipment (such as vehicles) for power supply, motor heating process and motor torque output process. .
  • the second embodiment of the present application provides a cooperative control method for an energy conversion device. As shown in FIG. 14, when the target charging and discharging power is zero, and the target charging and discharging current and the first heating power are zero, the cooperative control method includes:
  • Step S11 Obtain target heating power and target driving power
  • Step S21 Obtain the first quadrature axis current and the first axis current in the synchronous rotating coordinate system based on the motor rotor magnetic field orientation according to the target drive power, and obtain the first quadrature axis current and the first axis current of the motor coil according to the first quadrature axis current and the first axis current. 2. Heating power;
  • Step S31 When the deviation between the second heating power and the target heating power is not within the preset range, adjust the first quadrature axis current and the first direct axis current to the target quadrature axis current and the target direct axis current according to the target driving power, Make the deviation between the second heating power and the target heating power within a preset range;
  • Step S41 When the deviation between the second heating power and the target heating power is within the preset range, the first quadrature axis current and the first straight axis current are set as the target quadrature axis current and the target direct axis current;
  • Step S51 Obtain the sampled current value on each phase coil and the motor rotor position, and calculate each phase bridge arm in the reversible PWM rectifier according to the target quadrature axis current, target direct axis current, sample current value on each phase coil, and motor rotor position The duty cycle.
  • the cooperative control method of the energy conversion device proposed in the second embodiment of the application is different from the first embodiment in that the target charging and discharging power is zero, and the heating of the motor coil and the control of the motor output torque are performed at the same time.
  • the method includes a reversible PWM rectifier and The energy conversion device of the motor coil, when the energy conversion device is connected to the external battery and connected to the power supply equipment or electrical equipment through the charge and discharge port, obtains the target heating power and the target driving power, and obtains the first quadrature axis according to the target driving power
  • the current and the first straight axis current, the second heating power of the motor coil is obtained according to the first quadrature current and the first straight axis current, and then the first quadrature current and the target heating power are adjusted according to the relationship between the second heating power and the target heating power
  • the first axis current is used to obtain the target quadrature axis current and the target direct axis current, and then the PWM rectifier is calculated based on the target quad
  • the power battery When the coolant flows through the power battery, the power battery is heated, which saves an additional power battery heating device, reduces the cost of the entire device, and ensures that the battery is in a low temperature state
  • the charging and discharging is guaranteed, and at the same time, it realizes the cooperation between the heating process and the torque output process.
  • the third embodiment of the present application provides a coordinated control method for an energy conversion device. As shown in FIG. 15, when the target heating power is zero, the coordinated control method includes:
  • Step S12. Obtain the target charging and discharging power and the target driving power
  • Step S22 Obtain the target charging and discharging current output from the external charging and discharging port to the neutral line according to the target charging and discharging power;
  • Step S32 Obtain the first quadrature axis current and the first straight axis current according to the target drive power, and set the first quadrature axis current and the first straight axis current as the target quadrature axis current and the target direct axis current;
  • Step S42 Obtain the sampled current value on each phase coil and the motor rotor position, and calculate the reversible PWM rectifier based on the target quadrature axis current, target direct axis current, target charge and discharge current, sample current value on each phase coil, and motor rotor position The duty cycle of each phase bridge arm.
  • the third embodiment of the present application proposes a coordinated control method for an energy conversion device.
  • the difference from the first embodiment is that the target heating power is zero, the charging and discharging of the motor coil and the control of the motor output torque are performed simultaneously, and the target charging and discharging power is obtained according to the target charging and discharging power.
  • Discharge current obtain the first quadrature axis current and the first axis current according to the target drive power, set the first quadrature axis current and the first axis current as the target quadrature axis current and the target direct axis current; according to the target quadrature axis current, Target direct-axis current, target charging and discharging current, sampling current value on each phase coil, and motor rotor position.
  • Calculate the duty cycle of each phase bridge arm in the reversible PWM rectifier realizing the coordination of the charging and discharging process and the torque output process. .
  • the fourth embodiment of the present application provides a coordinated control method for an energy conversion device. As shown in FIG. 16, when the target driving power is zero, the coordinated control method includes:
  • Step S13 Obtain target heating power and target charge and discharge power
  • Step S23 Obtain the target charging and discharging current output from the external charging and discharging port to the neutral line according to the target charging and discharging power, and obtaining the first heating power of the motor coil according to the target charging and discharging current;
  • Step S33 Obtain the target quadrature axis current and the target direct axis current according to the target heating power and the first heating power;
  • Step S43 Obtain the sampled current value on each phase coil and the motor rotor position, and calculate the reversible PWM rectifier based on the target quadrature axis current, target direct axis current, target charge and discharge current, sample current value on each phase coil, and motor rotor position The duty cycle of each phase bridge arm.
  • the fourth embodiment of the present application proposes a coordinated control method for an energy conversion device.
  • the difference from the first embodiment is that the target drive power is zero.
  • the motor coil is controlled to charge and discharge the battery and the motor coil is heated at the same time, according to the target charge and discharge power.
  • Obtain the target charge and discharge current obtain the first heating power of the motor coil according to the target charge and discharge current, and obtain the target quadrature axis current and the target direct axis current according to the relationship between the target heating power and the first heating power.
  • the target quadrature axis The current is zero; then the duty cycle of each phase bridge arm in the reversible PWM rectifier is calculated according to the target direct axis current, the target charge and discharge current, the sampled current value on each phase coil and the motor rotor position to realize the heating process and the charge and discharge process The two work together to achieve zero torque output at the same time.
  • Figure 17 is a vector control block diagram of an n-phase motor of the present application, involving vector control of a multi-phase motor.
  • the vector of the multi-phase motor is calculated on a synchronous rotating coordinate system for closed-loop control.
  • Figure 18 is a three-phase motor corresponding to Figure 17 as an example , Give an example to demonstrate the three-phase motor vector control system frame.
  • Control process The controller receives charging and discharging commands, torque output commands and heating power commands.
  • the charging and discharging commands are given voltage or current values.
  • the voltage target is obtained according to the charge and discharge command, and the charging port voltage is obtained and closed loop with the voltage target.
  • the target charging and discharging current in* is obtained, and the target quadrature axis current iq* and the target direct axis current id* are obtained after the instruction calculation process according to the output torque, heating power and target charging and discharging current in*, sampling
  • the three-phase current values ia, ib, and ic are converted to the synchronous rotating coordinate system through coordinate transformation to obtain the actual direct-axis current id and the actual quadrature-axis current iq, which are respectively different from the target direct-axis current id* and target quadrature-axis current iq*.
  • control such as PID control
  • the Ud target value and Uq target value are output.
  • Ud and Uq get U ⁇ and U ⁇ through inverse Park transformation, and U ⁇ and U ⁇ are transmitted to the space vector pulse width modulation algorithm (SVPWM) to obtain the inverter's Three-phase bridge arm duty cycle Da, Db, Dc.
  • SVPWM space vector pulse width modulation algorithm
  • the required current value in* calculates the required i0* and the actual i0 (i0 is extracted from the current sampling ia, ib, ic through the expansion of Clark coordinate transformation).
  • the current value is closed-loop control to obtain the required duty cycle D0, Da, Db, Dc Respectively subtract with D0 to obtain the actual duty ratio of the three-phase bridge arm, and perform closed-loop current control.
  • Fig. 19 is another control block diagram of an n-phase motor of the present application, which involves vector control of a multi-phase motor.
  • the vector of the multi-phase motor is calculated on the N-phase axis coordinate system for closed-loop control.
  • Fig. 20 is a three-phase motor corresponding to Fig. 19 as an example to demonstrate a three-phase motor vector control system block.
  • Control process The controller receives charging and discharging commands, torque output commands and heating power commands.
  • the charging and discharging commands are given voltage or current values.
  • the voltage target is obtained according to the charge and discharge command, and the charging port voltage is obtained and closed loop with the voltage target.
  • the target charging and discharging current in* is obtained, and the target quadrature axis current iq* and the target direct axis current id* are obtained after the instruction calculation process according to the output torque, heating power and target charging and discharging current in*.
  • the target quadrature-axis current iq* and target direct-axis current id* are expanded to reverse Park-Clark coordinate transformation, and the target value is solved to the stator winding shaft system ABC, namely Ia*, Ib*, Ic*;
  • the target values Ia*, Ib*, Ic* and the sampled actual values Ia, Ib, Ic are adjusted in a closed loop, and the duty ratios of the output bridge arms Da, Db, Dc are adjusted and the control current is adjusted to follow the target value.
  • the adjustment method can be PID or PR or synovial membrane and so on.
  • the first step instruction solving
  • the first working mode When the charge and discharge command, the torque output command and the heating power command (the command is the required power) are all zero, all switches are in the off state.
  • the second working mode only torque output command:
  • the command calculation process is based on the MTPA&MTPV curve in the torque curve diagram in Figure 6, and the torque output command and the current motor speed ⁇ e, look up the table or calculate The two demand values of target quadrature axis current iq* and target direct axis current id* corresponding to the dq coordinate axis of the synchronous rotating coordinate system are obtained to ensure the torque command demand. At this time, the current loop of the target charging and discharging current in* does not perform control calculations.
  • the energy required for the torque command comes from an external battery 101 or an external power supply device.
  • the third working mode only heating power command:
  • the heating power can be calculated in advance and calibrated by the bench, using a look-up table or linear fitting The method obtains the control current command id*, iq* from the heating power.
  • the motor controller adopts voltage and current double closed-loop control: the current command in* is the output after the charging and discharging voltage command U* and the voltage sampling closed-loop control.
  • the motor controller adopts single current upper closed-loop control: the current command in* is directly issued by the battery manager, and there is no voltage closed-loop link.
  • the target id*, iq*, in* are obtained through the vector control solution process.
  • the fifth working mode only charge and discharge command, heating power command, torque output command* is 0:
  • the motor controller can adopt voltage and current double closed-loop control: current command in* is the output after charging and discharging voltage command U* and voltage sampling closed-loop control ; Sampling the current in on line N for current closed-loop control.
  • the motor controller can also adopt single-current upper closed-loop control: the current command in* is directly issued by the battery manager, and there is no voltage closed-loop In the link, the current in on line N is sampled for current closed-loop control;
  • the motor controller can also adopt single-voltage upper closed-loop control: only the voltage closed-loop link, the output is directly after the voltage command U* and the voltage sampling closed-loop control It is converted into the duty ratio of the bridge arm, and the current in on the N line is sampled.
  • Heating power command In and given heating power are sampled, id* can be solved according to formula 5. id* can be positive or negative, the preferred id* value is positive to enhance the magnetic field direction; heating power can be calculated in advance and calibrated , Use look-up table or linear fitting method to obtain target current id*, iq* from heating power.
  • the target id*, iq*, and in* are obtained. In*>0 when charging, in* ⁇ 0 when discharging.
  • Equation 5 when there are multiple winding poles leading to multiple neutral wires, it is necessary to use equation 5 to calculate each neutral wire as a whole, and multiple neutral wires are superimposed.
  • the sixth working mode only charge and discharge command, torque output command, heating power command is 0:
  • the motor controller can adopt voltage and current upper closed-loop control: current command in* is the output after charging and discharging voltage command U* and voltage sampling closed-loop control , Sampling the current in on line N for current closed-loop control.
  • the motor controller can also adopt single-current upper closed-loop control: the current command in* is directly issued by the battery manager, and there is no voltage closed-loop In the link, the current in on line N is sampled for current closed-loop control.
  • the motor controller can also adopt single-voltage upper closed-loop control: only the voltage closed-loop link, the output is directly after the voltage command U* and the voltage sampling closed-loop control It is converted into the duty ratio of the bridge arm, and the current in on the N line is sampled.
  • Torque output command In accordance with the MTPA&MTPV curve in the torque curve diagram in Figure 6, the torque output command is used to find the corresponding id* and iq* two values on the dq coordinate axis of the synchronous rotating coordinate system and give it to ensure that Torque command demand;
  • the target id*, iq*, in* are obtained, in*>0 when charging, and in* ⁇ 0 when discharging.
  • the seventh working mode only heating power command, torque output command, charging and discharging command is 0:
  • Torque output command solve the constant torque curve, see the constant torque curves Te1, Te2, Te3 in the torque curve diagram, where Te1>Te2>Te3, the constant torque curve in the torque curve diagram can be calculated in advance and calibrated by the bench , Generally use the method of look-up table or linear fitting to obtain the control current command from the torque. First, find the id* and iq* that meet the torque command through the MTPA&MTPV curve, and substitute id* and iq* into Equation 7 to check whether the required heating power is met. If not, () will slide along the constant torque curve.
  • the difference between the sum of the first heating power and the second heating power and the target heating power is less than the preset lower limit range, and it can move in the direction where the positive semi-axis of id increases, or it can move in the direction where the negative semi-axis of id decreases.
  • the preferred option is to move toward the increasing direction of the positive semi-axis of id, and iterate until it satisfies Equation 7 or is within the error range specified in Equation 7.
  • the heating power can be calculated in advance and the bench calibrated, using a look-up table or linear simulation The combined method obtains the control current commands id*, iq* from the heating power.
  • the target in* current loop does not perform control calculations.
  • the target id*, iq*, and in* are obtained.
  • the eighth working mode charging and discharging commands, heating power commands, and torque output commands are all non-zero.
  • the motor controller can adopt voltage and current double closed loop control: the current command in* is the charging and discharging voltage command U* and the voltage sampling closed-loop control After the output, sample the current in on the N line for current closed-loop control.
  • the motor controller can adopt single-current upper closed-loop control: the current command in* is directly issued by the battery manager, and there is no voltage closed-loop link , Sampling the current in on line N for current closed-loop control.
  • the motor controller can adopt single-voltage upper closed-loop control: only the voltage closed-loop link, voltage command U* and voltage sampling closed-loop control after the output is directly converted For the duty ratio of the bridge arm, sample the current in on the N line.
  • Torque output command The constant torque curve is calculated.
  • the constant torque curve in the torque curve can be calculated in advance and calibrated by the bench.
  • the control current command is obtained from the torque by the method of table look-up or linear fitting. First find the id* and iq* that satisfy the torque command through the MTPA&MTPV curve, and substitute id* and iq* into Equation 8 to check whether the required heating power is met.
  • the preferred choice Move toward the increasing direction of the id* positive semi-axis, and iterate until it satisfies Equation 8 or is within the error range specified by Equation 8.
  • the heating power can be calculated and calibrated in advance, and the control current command id*, iq* can be obtained from the heating power by using a table look-up or linear fitting method.
  • the target id*, iq*, in* are obtained.
  • the usage scenarios for charging and discharging commands, heating power commands, and torque output commands are solar high-voltage line deicing vehicles or lunar rover.
  • Step 2 Judgment of closed-loop mode
  • control process
  • circuit structure of the energy conversion device For the circuit structure of the energy conversion device, the following circuit structure can be used:
  • the energy conversion device includes a reversible PWM rectifier 102, a motor coil 103, and also includes a switch K1, a switch K2, a resistor R, a switch K3, and a capacitor C1, and the positive pole of the external battery is connected
  • the first end of the switch K1 and the first end of the switch K2, the second end of the switch K1 is connected to the first end of the capacitor C1, the second end of the switch K2 is connected to the first end of the resistor R, and the second end of the resistor R is connected to the capacitor
  • the first terminal of C1, the negative terminal of the battery is connected to the first terminal of switch K3, the second terminal of switch K3 is connected to the second terminal of capacitor C1
  • the reversible PWM rectifier includes a three-phase bridge arm, and the first-phase bridge arm includes a series-connected first A power switch unit and a second power switch unit, the second phase bridge arm includes a third power switch unit and a fourth power switch unit connected in
  • the first power switch unit includes a first upper The bridge arm VT1 and the first upper bridge diode VD1
  • the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2
  • the third power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3
  • the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode VD4
  • the fifth power switch unit includes a fifth upper bridge arm VT5 and a fifth upper bridge diode VD5
  • the sixth power switch unit includes a sixth lower bridge.
  • the motor coil includes a set of three-phase windings, the first phase coil is connected to the midpoint of the first phase bridge arm, and the second phase coil is connected to the midpoint of the second phase bridge arm.
  • the three-phase coil is connected to the midpoint of the third-phase bridge arm.
  • the first-phase coil, the second-phase coil, and the third-phase coil are connected together to form a neutral point.
  • the neutral point leads to the neutral line.
  • the energy conversion module also includes a switch K4 , Switch K5, inductor L, capacitor C2, the first end of the charge and discharge port is connected to the second end of the inductor L and the first end of the capacitor C2, the first end of the inductor L is connected to the second end of the switch K4, the first end of the switch K4 One end is connected to the neutral line, the second end of the charge and discharge port 104 is connected to the second end of the switch K5, and the first end of the switch K5 and the second end of the capacitor C2 are commonly connected to the second bus terminal.
  • the difference between FIG. 22 and FIG. 21 is that the first end of the charge and discharge port 104 is connected to the second end of the switch K7 and the second end of the switch K5, and the first end of the switch K7 is connected to the first end of the inductor L.
  • the first terminal of the switch K4 is connected to the positive terminal of the battery, and the first terminal of the switch K5 is connected to the first terminal of the capacitor C1.
  • the reversible PWM rectifier 102 includes a first power switch unit, a second power switch unit, a third power switch unit, a fourth power switch unit, a fifth power switch, and a sixth power switch.
  • Each power switch unit The control end of the reversible PWM rectifier 102 is connected to the controller, the first power switch unit and the second power switch unit in the reversible PWM rectifier 102 constitute the first phase bridge arm, the third power switch unit and the fourth power switch unit constitute the second phase bridge arm, and the fifth The power switch unit and the sixth power switch unit constitute the third phase bridge arm, the first power switch unit includes a first upper bridge arm VT1 and a first upper bridge diode VD1, and the second power switch unit includes a second lower bridge arm VT2 and a first Two lower bridge diodes VD2, the third power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3, the fourth power switch unit includes a fourth lower bridge arm VT4 and a fourth lower
  • the bus capacitor C1 is connected between the first bus terminal and the second bus terminal, The first end of the bus capacitor C1 is connected to the first end of the switch K1 and the first end of the switch K2, the second end of the bus capacitor C1 is connected to the first end of the switch K3, and the second end of the switch K2 is connected to the first end of the resistor R The second end of the switch K1 is connected to the second end of the resistor R and the positive end of the battery 101, and the second end of the switch K3 is connected to the negative end of the battery 101.
  • the motor includes a first phase coil L1, a second phase coil L2, and a third phase coil.
  • Phase coil L3 one end of each phase coil is connected together to form a neutral point to connect to the DC power supply equipment, and the other end of each phase coil is respectively connected to the midpoint of a phase bridge arm.
  • the DC power supply equipment, the first phase coil L1 and the first phase coil L1 The two power switches form a DC energy storage circuit.
  • the DC energy storage circuit is not only used for charging and energy storage but also for driving.
  • the current flow is the positive pole of the DC power supply device, which flows through the first phase coil L1 and the second lower arm.
  • VT2 returns to the negative pole of the DC power supply device; the DC power supply device, the first phase coil L1, the first power switch, the bus capacitor C1, and the external battery form a battery charging circuit.
  • the battery charging circuit is not only used for energy storage but also used for driving, and current flows
  • the positive pole of the DC power supply device flows through the first phase coil L1, the first upper arm VT1, the battery 101 and the bus capacitor C1 back to the negative pole of the DC power supply device; the bus capacitor C1, the fifth power switch, the third power switch, and the third phase
  • the coil L3, the second phase coil L2, the first phase coil L1, and the second power switch form the first drive circuit of the motor.
  • the current flows from one end of the bus capacitor C1 through the fifth upper bridge arm VT5, the third phase coil L3, and the first When the phase coil L1 and the second lower arm VT2 return to the other end of the bus capacitor C1, the current flows through one end of the bus capacitor C1.
  • the third upper bridge arm VT3, the second phase coil L2, the first phase coil L1, and the second lower bridge arm VT2 return to the other end of the bus capacitor C1;
  • the second phase coil L2, the third phase coil L3, and the first phase coil L1, the first power switch, the third power switch, and the fifth power switch form the second drive circuit of the motor, and the current flows in the second phase coil L2,
  • the first phase coil L1, the first upper bridge diode VD1, and the third upper bridge Circulating currents are formed between the arms VT3 and the third phase coil L3, the first phase coil L1, the first upper bridge diode VD1 and the fifth upper bridge arm VT5 respectively;
  • the second power switch and the fourth power switch form a DC energy storage circuit.
  • the DC energy storage circuit is used not only for energy storage but also for driving.
  • the current flow direction is the positive pole of the DC power supply device and flows through the first phase coil L1.
  • the second lower leg VT2 returns to the negative pole of the DC power supply device, while the positive pole of the DC power supply device flows through the second phase coil L2 and the fourth lower leg VT4 back to the negative pole of the DC power supply device; the DC power supply device, the first phase coil L1 and the first phase coil L1
  • the two-phase coil L2, the first power switch, the third power switch, the bus capacitor C1, and the external battery form a battery charging circuit.
  • the battery charging circuit is not only used for energy storage but also for driving.
  • the one-phase coil L1, the first upper bridge diode VD1, the battery 101 and the bus capacitor C1 return to the negative pole of the DC power supply device.
  • the positive pole of the DC power supply device flows through the second phase coil L2, the second upper bridge diode VD3, the battery 101 and the bus.
  • the capacitor C1 returns to the negative pole of the DC power supply device; the bus capacitor C1, the fifth power switch, the third phase coil L3, the first phase coil L1, the second phase coil L2, the second power switch, and the fourth power switch form the first drive of the motor In the circuit, the current flows from one end of the bus capacitor C1 through the fifth upper bridge arm VT5, the third phase coil L3, the first phase coil L1, and the second lower bridge arm VT2 back to the other end of the bus capacitor C1.
  • the coil L1, the second phase coil L2, the first power switch, the third power switch, and the fifth power switch form the second drive circuit of the motor, and the current flows in the third phase coil L3, the first phase coil L1, and the first upper bridge
  • a circulating current is formed between the diode VD1 and the fifth upper bridge arm VT5 and the third phase coil L3, the second phase coil L2, the third upper bridge diode VD3 and the third upper bridge arm VT5, respectively.
  • the controller is based on the The driving power and the power to be charged of the battery control the conduction time and length of the first and second bridge arms, so that the current output by the DC power supply equipment in the DC energy storage loop flows through the first phase coil L1 and the second power switch in sequence Flow back to the DC power supply equipment, and at the same time make the current output by the bus capacitor C1 in the first drive circuit of the motor flow through the fifth power switch, the third power switch, the third phase coil L3, the second phase coil L2, and the first phase coil L1 in sequence , The second power switch flows back to the bus capacitor C1, so that the DC energy storage circuit and the first drive circuit of the motor work at the same time.
  • the controller controls the time and length of the conduction of the first and second bridge arms, so that the current output by the DC charging device in the battery charging circuit flows through the first phase coil L1,
  • the first power switch, the bus capacitor C1, and the battery flow back to the DC charging device, so that the current output from the second phase coil L2 and the third phase coil L3 of the second drive circuit of the motor can flow through the first phase coil L1 and the first power switch
  • the third power switch and the fifth power switch flow back to the second phase coil L2 and the third phase coil L3, so that the battery charging circuit and the second driving circuit of the motor work at the same time.
  • the controller is based on the drive of the motor.
  • the power and the charging power of the battery control the conduction time and length of the first bridge arm and the second bridge arm, so that the current output by the DC power supply equipment in the DC energy storage loop flows through the first phase coil L1, the second phase coil L2, and The second power switch and the fourth power switch flow back to the DC power supply equipment, and at the same time, the current output by the bus capacitor C1 in the first drive circuit of the motor flows through the fifth power switch, the third phase coil L3, the second phase coil L2, and the second power switch in sequence.
  • the one-phase coil L1, the second power switch, and the fourth power switch flow back to the bus capacitor C1, so that the DC energy storage circuit and the first drive circuit of the motor work at the same time.
  • the controller 104 controls the time and length of the conduction of the first bridge arm and the second bridge arm, so that the current output by the DC charging device in the battery charging circuit flows through the first phase coil L1 , The second phase coil L2, the first power switch, the third power switch, the bus capacitor C1, and the battery flows back to the DC charging device, so that the current output by the third phase coil L3 in the second drive circuit of the motor flows through the first phase coil L1 , The second phase coil L2, the first power switch, the third power switch, and the fifth power switch flow back to the third phase coil L3, so that the battery charging circuit and the motor second drive circuit work simultaneously.
  • the above embodiments only involve examples of the charging process and the driving process working together.
  • the heating process and the driving process are similar.
  • the first driving circuit of the motor and the second driving circuit of the motor can also be the first heating circuit and the second heating circuit at the same time.
  • the battery charging circuit, the first driving circuit of the motor, and the first heating circuit can be controlled to work at the same time
  • the battery charging circuit, the second driving circuit of the motor, and the second driving circuit can be controlled at the same time.
  • the heating circuit works at the same time.
  • the motor can have multiple sets of winding units, and all phase windings of each set of winding units are used as a basic unit. Using motor vector control for each basic unit can independently control the operation of the motor.
  • the reversible PWM rectifier 102 includes a set of M 1 bridge arms.
  • the M 1 bridge arms form a first bus terminal and a second bus terminal.
  • the positive and negative terminals of the power battery 101 are respectively connected to the first bus terminal and the second bus terminal, and the motor coil 103 includes a first winding unit and a second winding unit;
  • a first winding unit includes m 1-phase winding, each phase winding phase windings m 1 n 1 comprises a coil branches, n 1 coil branches connected in common for each phase winding to form a phase endpoint, m 1 m-phase winding phase endpoint and a bridge arm of the midpoint m of each bridge arm of a bridge arm are connected one to one, one coil for each phase winding branch n m 1 phase windings of a coil branch is Road also connected to a coil winding n 1 branch branches other phase winding in order to form connection points n 1, n 1 connection points form neutral point T 1, from T 1 neutral Point leads to J 1 neutral line; among them, n 1 ⁇ T 1 ⁇ 1, T 1 ⁇ J 1 ⁇ 1, m 1 ⁇ 2 and n 1 , m 1 , T 1 , and J 1 are all positive integers;
  • a second winding unit comprises phase windings m 2, m 2 of each phase winding in the phase winding comprises coils branches n 2, n 2 coils of each phase winding branches connected in common to a phase end is formed, m 2
  • the phase end point of the phase winding is connected to the midpoint of each bridge arm of the m 2 bridge arm in the M 1 bridge arm, one coil branch of the n 2 coil branches of each phase winding in the m 2 phase winding It is also connected to one of the n 2 coil branches in the other phase windings to form n 2 connection points, n 2 connection points form T 2 neutral points, from T 2 neutral points Lead out J 2 neutral wires; among them, n 2 ⁇ T 2 ⁇ 1, T 2 ⁇ J 2 ⁇ 1, m 2 ⁇ 2, M ⁇ m1+m2 and n 2 , m 2 , T 2 , J 2 are all Positive integer.
  • the first switch module 106 includes a switch K3, a switch K4, a resistor R, a switch K5, and a capacitor C1.
  • the positive pole of the external battery is connected to the first end of the switch K3 and the first end of the switch K4,
  • the second end of the switch K4 is connected to the first end of the resistor R
  • the second end of the switch K3 and the second end of the resistor R are connected to the first end of the capacitor C1
  • the negative electrode of the battery is connected to the first end of the switch K5, and the second end of the switch K5
  • the two ends are connected to the second end of the capacitor C1
  • the reversible PWM rectifier 102 includes a six-phase bridge arm
  • the first phase bridge arm includes a first power switch unit and a second power switch unit connected in series
  • the second phase bridge arm includes a series connected
  • the third phase bridge arm includes a fifth power switch unit and a sixth power switch unit connected in series
  • the fourth phase bridge arm includes a seventh power switch unit and an eighth power switch unit connected in series.
  • the fifth phase bridge arm includes a ninth power switch unit and a tenth power switch unit connected in series
  • the sixth phase bridge arm includes an eleventh power switch unit and a twelfth power switch unit connected in series.
  • the input terminal of the power switch unit, the input terminal of the third power switch unit, the input terminal of the fifth power switch unit, the input terminal of the seventh power switch unit, the input terminal of the ninth power switch unit, the input terminal of the eleventh power switch unit The input terminals are commonly connected to form a first bus terminal and connected to the first terminal of the capacitor C1, the output terminal of the second power switch unit, the output terminal of the fourth power switch unit, the output terminal of the sixth power switch unit, and the eighth power switch
  • the output end of the unit, the output end of the tenth power switch unit, and the output end of the twelfth power switch unit are commonly connected to form a second bus terminal and connected to the second end of the capacitor C1.
  • the first power switch unit includes a first upper bridge arm VT1 And the first upper bridge diode VD1, the second power switch unit includes a second lower bridge arm VT2 and a second lower bridge diode VD2, the third power switch unit includes a third upper bridge arm VT3 and a third upper bridge diode VD3, and the fourth The power switch unit includes a fourth lower bridge arm VT4 and a fourth lower bridge diode VD4, the fifth power switch unit includes a fifth upper bridge arm VT5 and a fifth upper bridge diode VD5, and the sixth power switch unit includes a sixth lower bridge arm VT6 And the sixth lower bridge diode VD6, the seventh power switch unit includes the seventh upper bridge arm VT7 and the seventh upper bridge diode VD7, the eighth power switch unit includes the eighth lower bridge arm VT8 and the eighth lower bridge diode VD8, the ninth The power switch unit includes a ninth upper bridge arm VT9 and a ninth upper bridge diode VD9, the tenth power switch unit includes a
  • the coil V1 and the coil V2 in the second phase coil are connected to the midpoint V of the fifth phase bridge arm, the coil W1 and the coil W2 in the third phase coil are connected to the midpoint W of the sixth phase bridge arm, and the coils U2 and The coil V2 and the coil W2 are connected together to form the first connection point n1, the first connection point n1 forms the first independent neutral point, the first independent neutral point leads to the first neutral line, and the coil U1, the coil V1 and the coil W1 are connected together A second connection point n2 is formed, and the second connection point n2 forms a second independent neutral point.
  • the second winding unit includes a set of three-phase windings, and each phase winding includes two coil branches.
  • Coil A2 is connected to the midpoint A of the first phase bridge arm, the second phase coil is connected to the midpoint B of the second phase bridge arm coil B1 and B2, and the third phase coil is connected to the coil C1 and coil C2.
  • coil A1, coil B1, and coil C1 are connected together to form a fourth connection point n4, coil A2, coil B2, and coil C2 are connected together to form a third connection point n3, and a third connection point n3
  • the third independent neutral point leads to a second neutral line.
  • the energy conversion module also includes a switch K1, a switch K2, a second switch module 107, and a third switch module 108.
  • the second switch module 107 includes Switch K6, switch K7, capacitor C2, the third switch module 108 includes switch K10, switch K11, and capacitor C3.
  • the first end and the second end of the external first DC charging and discharging port 109 are respectively connected to the second end of switch K6 And the second end of the switch K7, the first end of the switch K6 is connected to the second end of the switch K1 and the first end of the capacitor C2, the first end of the switch K1 is connected to the first neutral line, and the first end of the switch K7 is connected to the capacitor
  • the second terminal of the switch K10 is connected to the first terminal of the second DC charging and discharging port 105, the second terminal of the capacitor C3 is connected to the first terminal and the second bus
  • the first DC charging and discharging port 109 and the second DC charging and discharging port 105 are connected to the first neutral wire and the second neutral wire, respectively, so that the first DC charging and discharging port and the first
  • the winding unit and the reversible PWM rectifier 102 form a heating circuit
  • the second DC charging and discharging port, the second winding unit, and the reversible PWM rectifier 102 form a heating circuit
  • the first DC charging and discharging port 109 and the second DC charging and discharging port can also be realized.
  • 105 forms a charging and discharging circuit with the power battery 101 through the energy conversion device.
  • the difference from Fig. 30 is that the first neutral line drawn by the first winding unit is connected to the first end of the capacitor C3 and the first end of the switch K8 through the switch K5, and the second end of the capacitor C2,
  • the second end of the capacitor C3, the first end of the switch K3, the negative electrode of the first battery, the negative electrode of the second battery, and the first end of the switch K7 are connected together, and the second neutral wire from the second winding unit is connected to the switch K4.
  • the second end of the switch K4 is connected to the first end of the capacitor C2, the first end of the switch K1, the first end of the switch K2, and the first end of the switch K6.
  • the second end of the switch K2 is connected to the first end of the resistor R. At one end, the second end of the resistor R is connected to the second end of the switch K1 and the anode of the first battery, and the second end of the switch K8 is connected to the anode of the second battery.
  • the difference from Figure 30 is that the second DC charging and discharging port 105 is connected to the first and second ends of the capacitor C3 through a switch K9 and a switch K10, and the third DC charging and discharging port 110 is connected to the first and second ends of the capacitor C3 through a switch K13 and The switch K14 connects the first terminal and the second terminal of the capacitor C1.
  • the fifth embodiment of the present application provides a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the steps of the method described in the first to fourth embodiments are implemented.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Channel
  • memory bus Radbus direct RAM
  • RDRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM
  • the sixth embodiment of the present application provides a cooperative control device for an energy conversion device.
  • the energy conversion device includes a reversible PWM rectifier and a motor coil, the reversible PWM rectifier is connected to the motor coil, and the positive and negative terminals of the external battery are respectively.
  • the first and second bus ends of the reversible PWM rectifier are connected, and the first and second ends of the external charging and discharging ports are respectively connected to at least one neutral wire drawn from the motor coil and the reversible PWM rectifier Second confluence end;
  • the cooperative control device includes:
  • Power acquisition module for acquiring target heating power, target driving power, and target charging and discharging power
  • the first heating power calculation module is configured to obtain the target charging and discharging current output by the external charging and discharging port according to the target charging and discharging power, and to obtain the first heating power of the motor coil according to the target charging and discharging current;
  • the second heating power calculation module is used to obtain the first quadrature axis current and the first straight axis current in the synchronous rotating coordinate system based on the motor rotor magnetic field orientation according to the target drive power, and according to the first quadrature axis current and Obtaining the second heating power of the motor coil by the first shaft current;
  • the target current obtaining module is configured to adjust the first heating power according to the target driving power when the deviation between the sum of the first heating power and the second heating power and the target heating power is not within a preset range
  • a quadrature axis current and the first straight axis current to the target quadrature axis current and the target direct axis current so that the deviation between the sum of the first heating power and the second heating power and the target heating power is within a preset range, and when the deviation between the sum of the first heating power and the second heating power and the target heating power is within a preset range, the first quadrature current and the The first straight axis current is set to the target quadrature axis current and the target direct axis current;
  • the duty cycle acquisition module is used to acquire the sampled current value on the coil of each phase and the rotor position of the motor, and according to the target quadrature axis current, the target direct axis current, the target charge and discharge current, and the coil of each phase Calculate the duty cycle of each phase bridge arm in the reversible PWM rectifier based on the sampled current value and the position of the motor rotor.
  • the seventh embodiment of the present application provides a vehicle, and the vehicle further includes the energy conversion device provided in the sixth embodiment.
  • the heating and cooling circuit of the battery pack includes the following circuits: motor drive system cooling circuit, battery cooling system circuit, and air conditioning system cooling circuit.
  • the battery cooling system loop is integrated with the air conditioning cooling system through the heat exchange plate; the battery cooling system loop is connected through the four-way valve and the motor drive system cooling loop.
  • the cooling circuit of the motor drive system connects and disconnects the radiator through the switching of the three-way valve.
  • the motor drive system cooling circuit and the battery cooling system circuit are switched through the valve body to change the flow direction of the coolant in the pipeline, so that the coolant heated by the motor drive system flows to the battery cooling system, and completes the transfer of heat from the motor drive system to the battery cooling;
  • the driving system is in the non-heating mode, and the three-way valve and the four-way valve are switched.
  • the motor drive system coolant goes through the A circuit, and the battery cooling system coolant goes through the C circuit; the motor is in the heating mode and is switched by the three-way valve and the four-way valve.
  • the cooling liquid of the motor drive system goes through the B circuit, so that the cooling liquid after the heating of the motor drive system flows to the battery pack cooling circuit to heat the battery.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more, unless it is specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may be that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种能量转换装置的协同控制方法,协同控制方法包括:获取目标加热功率、目标驱动功率以及目标充放电功率;根据目标充放电功率获取电机线圈的第一加热功率;根据目标驱动功率获取电机线圈的第二加热功率;当第一加热功率与第二加热功率的和与目标加热功率之间的偏差不在预设范围内时,调节第一交轴电流和第一直轴电流至目标交轴电流和目标直轴电流,使第一加热功率与第二加热功率的和与目标加热功率之间的偏差在预设范围内;获取每相线圈上的采样电流值以及电机转子位置,并计算可逆PWM整流器中每相桥臂的占空比。

Description

能量转换装置的协同控制方法、装置、存储介质及车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年9月25日提交的、申请名称为“能量转换装置的协同控制方法、装置、存储介质及车辆”的、中国专利申请号“201910912731.6”的优先权。
技术领域
本申请涉及车辆技术领域,尤其涉及一种能量转换装置的协同控制方法、装置、存储介质及车辆。
背景技术
随着电动车辆的不断普及,越来越多的电动车辆将进入社会和家庭,为人们的出行带来很大便利,电动车辆中的动力电池通常采用锂离子电池,锂离子电池的一般工作温度为-20℃到55℃,锂离子电池在低温以下不允许充电。现有技术中对低温电池进行加热的方案是利用PTC加热器或者电热丝加热器或者发动机或者电机在低温时对电池冷却回路的冷却液进行加热,通过冷却液来给电池电芯加热到预定温度。并且当电池处于低温低电量状态下,比如极端条件-19℃,SOC=0,电池不容许放电,只允许小电流充电,大功率加热小功率充电,甚至0功率加热,0功率充电启动,PTC加热器难以胜任,无法边充电边加热,导致电池充电时间长。
综上所述,现有技术中存在低温状态下采用加热设备对动力电池进行加热时导致成本增加,以及充放电过程、加热过程和扭矩输出过程中的两者或者三者不能协同工作的问题。
发明内容
本申请的目的在于提供一种能量转换装置的协同控制方法、装置、存储介质及车辆,能够解决低温状态下采用加热设备对动力电池进行加热时导致成本增加,以及充放电过程、加热过程和扭矩输出过程中的两者或者三者不能协同工作的问题。
本申请是这样实现的,本申请第一方面提供一种能量转换装置的协同控制方法,所述能量转换装置包括可逆PWM整流器和电机线圈,所述可逆PWM整流器连接所述电机线圈,外部的电池的正极端和负极端分别连接所述可逆PWM整流器的第一汇流端和第二汇流端,外部的充放电口的第一端和第二端分别连接所述电机线圈引出的至少一条中性线和所述可逆PWM整流器的第二汇流端;
所述协同控制方法包括:
获取目标加热功率、目标驱动功率以及目标充放电功率;
根据所述目标充放电功率获取所述外部的充放电口输出到所述中性线的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差不在预设范围内时,根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内;
获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
本申请第二方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现第一方面所述方法的步骤。
本申请第三方面提供一种能量转换装置的协同控制装置,所述能量转换装置包括可逆PWM整流器和电机线圈,所述可逆PWM整流器连接所述电机线圈,外部的电池的正极端和负极端分别连接所述可逆PWM整流器的第一汇流端和第二汇流端,外部的充放电口的第一端和第二端分别连接所述电机线圈引出的至少一条中性线和所述可逆PWM整流器的第二汇流端;
所述协同控制装置包括:
功率获取模块,用于获取目标加热功率、目标驱动功率以及目标充放电功率;
第一加热功率计算模块,用于根据所述目标充放电功率获取所述外部的充放电口输出的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
第二加热功率计算模块,用于根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
目标电流获取模块,用于当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差不在预设范围内时,根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内,以及当所述第一加热功率与所述第二 加热功率的和与所述目标加热功率之间的偏差在预设范围内时,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流;
占空比获取模块,用于获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
本申请第四方面提供一种车辆,所述车辆还包括第三方面所述的能量转换装置的协同控制装置。
本申请提出的一种能量转换装置的协同控制方法、装置、存储介质及车辆的技术效果在于:通过采用包括可逆PWM整流器和电机线圈的能量转换装置,使该能量转换装置与外部的电池连接以及通过充放电口与供电设备或者用电设备连接时,获取目标加热功率、目标驱动功率以及目标充放电功率,根据目标充放电功率获取第一加热功率,根据目标驱动功率获取第一交轴电流和第一直轴电流,根据所述第一交轴电流和第一直轴电流获取所述电机线圈的第二加热功率,再根据第一加热功率与所述第二加热功率的和与所述目标加热功率之间的关系调节第一交轴电流和第一直轴电流以得到目标交轴电流和目标直轴电流,再根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算所述PWM整流器中每相桥臂的占空比,根据占空比控制PWM整流器中每相桥臂上开关器件的导通和关断,实现了并使外部的电池或者供电设备输出的电流流经电机线圈以产生热量,以加热流经电机线圈的冷却管中的冷却液,当该冷却液流经动力电池时加热动力电池,可省去额外动力电池加热装置,降低了整个装置的成本,确保电池在低温状态下的充放电得到保障,同时实现了充放电过程、加热过程和扭矩输出过程中的两者或者三者协同工作。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请实施例一提供的一种能量转换装置的结构示意图;
图2是本申请实施例一提供的一种能量转换装置的协同控制方法的流程图;
图3是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S20的流程图;
图4是本申请实施例一提供的一种能量转换装置的协同控制方法中的三维空间变换图;
图5是本申请实施例一提供的一种能量转换装置的协同控制方法中的坐标变换图;
图6是本申请实施例一提供的一种能量转换装置的协同控制方法中的扭矩曲线图;
图7是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S60的流程图;
图8是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S601的流程图;
图9是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S602的流程图;
图10是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S602的另一流程图;
图11是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S603的流程图;
图12是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S610的流程图;
图13是本申请实施例一提供的一种能量转换装置的协同控制方法中的步骤S620的流程图;
图14是本申请实施例二提供的一种能量转换装置的协同控制方法的流程图;
图15是本申请实施例三提供的一种能量转换装置的协同控制方法的流程图;
图16是本申请实施例四提供的一种能量转换装置的协同控制方法的流程图;
图17是本申请实施例一提供的一种能量转换装置的协同控制方法的矢量控制图;
图18是本申请实施例一提供的一种能量转换装置的协同控制方法的另一矢量控制图;
图19是本申请实施例一提供的一种能量转换装置的协同控制方法的另一矢量控制图;
图20是本申请实施例一提供的一种能量转换装置的协同控制方法的另一矢量控制图;
图21是本申请实施例一提供的一种能量转换装置的电路图;
图22是本申请实施例一提供的一种能量转换装置的另一电路图;
图23是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图24是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图25是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图26是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图27是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图28是本申请实施例一提供的一种能量转换装置的另一电流流向图;
图29是本申请实施例一提供的一种能量转换装置的电机线圈结构示意图;
图30是本申请实施例一提供的一种能量转换装置的另一电路图;
图31是本申请实施例一提供的一种能量转换装置的另一电路图;
图32是本申请实施例一提供的一种能量转换装置的另一电路图;
图33是本申请实施例七提供的一种车辆的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了说明本申请的技术方案,下面通过具体实施例来进行说明。
本申请实施例一提供一种能量转换装置的协同控制方法,如图1所示,能量转换装置包括可逆PWM整流器102和电机线圈103,可逆PWM整流器102连接电机线圈103,外部的电池101的正极端和负极端分别连接可逆PWM整流器102的第一汇流端和第二汇流端,外部的充放电口104的第一端和第二端分别连接电机线圈103引出的至少一条中性线和可逆PWM整流器102的第二汇流端。
其中,电机可以是同步电机(含无刷同步机)或者异步电机,电机线圈103的相数大于等于2,电机绕组的套数大于等于1(如双三相电机、三相电机、六相电机、九相电机、十五相等),且电机线圈103的连接点形成中性点引出中性线,电机线圈103的中性线可以是一根或者多根数引出,具体电机线圈103的连接点数量取决于电机内部绕组并联结构,电机线圈103在电机内部的并联连接点的数量以及连接点形成中性点引出中性线的数量由实际方案的使用情况确定;可逆PWM整流器102中的PWM为脉冲宽度调制(Pulse width modulation),可逆PWM整流器102包括多相桥臂,多相桥臂共接形成第一汇流端和第二汇流端,桥臂数量根据电机线圈103的相数进行配置,每相逆变器桥臂包括两个功率开关单元,功率开关单元可以是晶体管、IGBT、MOSFET管、SiC管等器件类型,桥臂中两个功率开关单元的连接点连接电机中的一相线圈,可逆PWM整流器102中的功率开关单元可以根据外部控制信号实现导通和关闭;外部的充放电口104为直流充放电口,直流充放电口用于连接直流供电设备或者直流用电设备,可以接收直流供电设备输出的电流或者向直流用电设备输出电流,外部的电池101可以为车辆内的电池,例如动力电池等。
其中,能量转换装置还包括控制器,控制器与可逆PWM整流器102连接,并向可逆PWM整流器102发送控制信号,控制器可以包括整车控制器、可逆PWM整流器102控制电路和BMS电池管理器电路,三者通过CAN线连接,控制器中的不同模块根据所获取的信息控制可逆PWM整流器102中功率开关单元的导通和关断以实现不同电流回路的导通; 控制器向能量转换装置中的可逆PWM整流器102发送控制信号,使外部的电池101或者充放电口104连接的供电设备输出的电流流经电机线圈103以产生热量,以加热流经电机线圈103的冷却管中的冷却液,当该冷却液流经动力电池时加热动力电池。
如图2所示,能量转换装置的协同控制方法包括:
步骤10.获取目标加热功率、目标驱动功率以及目标充放电功率。
其中,在本步骤中,目标加热功率是指能量转换装置从外部的电池101或者外部的充放电口104连接的供电设备取电通过电机线圈103产热时需要生成的热量;目标驱动功率是指能量转换装置从外部的电池101或者外部的充放电口104连接的供电设备取电通过电机线圈103时使电机输出扭矩时产生的功率;目标充放电功率是指外部的充放电口104连接用电设备时外部的电池101通过能量转换装置对用电设备进行放电产生的功率或者外部的充放电口104连接供电设备时供电设备通过能量转换装置对外部的电池101进行充电产生的功率。
其中,目标加热功率、目标驱动功率以及目标充放电功率三者之中可以一者为零以及两者不为零,也可以一者不为零以及两者为零,也可以三者均不为零。
步骤20.根据目标充放电功率获取外部的充放电口输出到中性线的目标充放电电流,并根据目标充放电电流获取电机线圈的第一加热功率。
其中,在本步骤中,当外部的充放电口104连接外部电源(例如,直流供电设备)时,根据外部电源的充放电方式计算目标充放电电流。
其中,在本步骤中,目标充放电电流也可以是外部的电池101输出到电机线圈103的电流。
作为一种实施方式,如图3所示,步骤20中的根据目标充放电功率获取外部的充放电口输出到中性线的目标充放电电流,包括:
步骤201.当连接到外部的充放电口的外部的电源的充电模式为恒流充放电模式,根据目标充放电功率获取外部的电源的目标电压。
其中,在本步骤中,根据外部的电池101需求的目标充放电功率按照公式P=U*×I,获取外部的电源的目标电压U*,I为外部的电源的充电电流。
步骤202.获取充放电口的实际电压,根据目标电压和充放电口的实际电压获取电压差值;
步骤203.对电压差值进行闭环控制获取输出到中性线的目标充放电电流。
在步骤202和步骤203中,通过电压传感器采集充放电口104的实际电压,将目标电压和充放电口104的实际电压进行差值运算获取电压差值再经过PID(proportion、integral、differential,比例积分微分)控制得到目标充放电电流。
本实施方式当检测到外部的电源的充电模式为恒流充放电模式,根据目标充放电功率获取外部的电源的目标电压,根据目标电压和充放电口104的实际电压计算获取目标充放电电流,实现了恒流充放电模式下目标充放电电流的获取。
作为另一种实施方式,步骤20中的根据目标充放电功率获取外部的充放电口输出到中性线的目标充放电电流,包括:
当连接到外部的充放电口104的外部电源为恒压充放电模式,根据目标充放电功率获取外部的充放电口104的电流作为外部的充放电口104输出到中性线目标充放电电流。
在本步骤中,充电设备输出恒定的电压U,根据电池需求的目标充放电功率按照公式P=U×in*计算获取目标充放电电流in*(即中性线上的电流)。
作为一种实施方式,步骤S20中的根据目标充放电电流获取电机线圈的第一加热功率为:
根据以下公式计算电机线圈的第一加热功率:
公式1:
Figure PCTCN2020109886-appb-000001
其中,m为电机线圈103的相数,R sn为与中性线连接的各相绕组支路的相电阻,in*为目标充放电电流,本实施方式中,与中性线连接的各相绕组支路的相电阻均相等。
步骤30.根据目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据第一交轴电流和第一直轴电流获取电机线圈的第二加热功率。
其中,本申请的技术方案中包括三个坐标系,分别为电机N相轴坐标系、静止坐标系以及基于电机转子磁场定向的同步旋转坐标系,如图4和图5所示,当电机为三相电机时,N相轴坐标系包括A相轴、B相轴和C相轴,A相轴、B相轴和C相轴立体状态时两两之间相差90度,映射到静止坐标系后相差120度,静止坐标系包括α轴和β轴,基于电机转子磁场定向的同步旋转坐标系为d-q坐标系(直轴-交轴坐标系),此坐标系与转子同步转动,取转子磁场方向为d轴,垂直于转子磁场方向为q轴(q轴超前d轴90度);为了便于对A相轴、B相轴和C相轴三相交变量的控制,通常将A相轴、B相轴和C相轴三相交变量转换至静止坐标系中的α轴和β轴的交变量,再将α轴和β轴交变量转换为同步旋转坐标系的直流量d轴和q轴,通过对直流量d轴和q轴的控制实现对A相轴、B相轴和C相轴三相交变量的控制;可以通过坐标变换实现不同坐标系之间的变换,通过Clark变换实现将N相轴系变换到两相静止坐标系,一般不包含零轴矢量;通过反Clark变换实现将两相静止坐标系变换到N相轴系;通过拓展Clark变换实现将N相轴系变换到两相静止坐标系,包含零轴矢量;通过PARK变换实现将两相静止坐标系变换到同步旋转坐标系,一般不包 含零轴矢量;通过反PARK变换实现将同步旋转坐标系变换到两相静止坐标系;通过拓展PARK变换实现两相静止坐标系变换到同步旋转坐标系,包含零轴矢量。
作为一种实施方式,步骤30中根据目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,包括:
根据目标驱动功率获取扭矩输出指令,根据扭矩输出指令在预定的扭矩曲线图中进行查表获取第一交轴电流和第一直轴电流。
其中,如图6所示为扭矩曲线图,横轴和纵轴分别为直轴和交轴,T e1、T e2、T e3分别为恒扭矩曲线,电压椭圆形虚线指在一个转速ω下达到某一电压值时id和iq的取值范围,以原点为圆心,id和iq的合成电流矢量为半径画圆分别与恒扭矩曲线相切于H、F、D、A,将O-H-F-D-A连接在一起即得到MTPA曲线即最大转矩电流比曲线,H、F、D、A对应恒扭矩曲线上id和iq最小值的点,以C点为圆心,电压椭圆分别与恒扭矩曲线相切于B、E、G、I,并与合成电流矢量和电压椭圆相交于A、B,将B-E-G-I-C连接的曲线以及A和B之间的最大电流圆的圆弧曲线共接在一起即得到MTPV曲线即最大转矩电压比曲线,MTPA&MTPV曲线和恒扭矩曲线可以预先计算并台架标定好,一般使用查表或者查表和插值结合或者分段线性拟合的方法由转矩Te结合转速ω获得MTPA&MTPV曲线或者恒扭矩曲线上不同的控制交轴电流和直轴电流。
对于MTPA曲线:电机工作过程中产生的电磁力矩Te受到d、q轴电流id和iq的控制,并且满足以下方程:
公式2:
Figure PCTCN2020109886-appb-000002
其中,Te为电机轴端输出转矩,m为电机线圈的相数,Pn为电机极对数,ψf表示电机永磁体磁链,Ld为直轴电感,Lq为交轴电感,id为直轴电流,iq为交轴电流。
在电机中,定子电流方程满足:
公式3:
Figure PCTCN2020109886-appb-000003
故MTPA控制电流的求解等效于下公式3极值求解
公式4:
Figure PCTCN2020109886-appb-000004
联合公式3和公式4,求解MTPA曲线,即图6扭矩曲线图中的O-H-F-D-A;
MTPV曲线:
公式5:
Figure PCTCN2020109886-appb-000005
其中,ωe为电角速度,rs为定子绕组电阻,Ld、Lq分别为d-q轴坐标系下绕组电感,ud、uq分别为d-q轴坐标系下的电压。
公式6:
Figure PCTCN2020109886-appb-000006
图6扭矩曲线图,在电流平面上,上式可分别表示为以O点(0,0)为圆心的电流极限圆和以C点(-ψf/Ld,0)为圆心的电压极限椭圆,电机工作在电流极限圆和电压极限椭圆的相交区域,联合公式4、公式5,MTPV曲线即图6扭矩曲线图中的A-B-E-G-I-C曲线。
其中,本步骤中,根据电机线圈103需要产生的扭矩,进行扭矩曲线图中的MTPA&MTPV曲线查表,获得基于电机转子磁场定向的同步旋转坐标系中的第一直轴电流id1*和第一交轴电流iq1*,第一直轴电流id1*和第一交轴电流iq1*可以为MTPA&MTPV曲线中的最小值。
作为一种实施方式,步骤30中根据第一交轴电流和第一直轴电流获取电机线圈的第二加热功率,包括:
根据以下公式计算电机线圈的第二加热功率:
公式7:
Figure PCTCN2020109886-appb-000007
其中,m为电机线圈的相数,R s为电机线圈的相电阻,id1*为第一直轴电流,iq1*为第一交轴电流。
步骤40.当第一加热功率与第二加热功率的和与目标加热功率之间的偏差不在预设范围内时,根据目标驱动功率调节第一交轴电流和第一直轴电流至目标交轴电流和目标直轴电流,使第一加热功率与第二加热功率的和与目标加热功率之间的偏差在预设范围内。
在本步骤中,第一加热功率与第二加热功率的和与目标加热功率之间的偏差不在预设范围内是指第一加热功率与第二加热功率的和大于预设范围值的最大值或者小于预设范围值的最小值,即当第一加热功率与第二加热功率的和过大或者过小时,调节第一交轴电流和第一直轴电流进而调节第二加热功率使第一加热功率与第二加热功率的和与目标加热功率之间的偏差在预设范围内,其中,目标加热功率、第一加热功率以及第二加热功率满足 以下公式:
公式8:
Figure PCTCN2020109886-appb-000008
将第一加热功率与第二加热功率的和与目标加热功率进行差值运算获取差值,当该差值不在预设范围内时,根据目标驱动功率获取输出扭矩,在扭矩曲线图上查找该输出扭矩对应的恒扭矩曲线,见图6扭矩曲线图中的恒扭矩曲线Te1、Te2、Te3,其中Te1>Te2>Te3,扭矩曲线图中的恒扭矩曲线可以事先计算并台架标定好,一般使用查表或者线性拟合的方法由转矩获得控制电流指令,其中预设范围包括预设上限范围和预设下限范围,其中预设上限范围是个大于零的值,预设下限范围是个小于零的值。首先通过MTPA&MTPV曲线找出满足扭矩指令的目标直轴电流id*、目标交轴电流iq*,将目标直轴电流id*、目标交轴电流iq*代入公式8进行检验是否满足需求的加热功率。当第一加热功率与第二加热功率的和与目标加热功率的差值小于预设下限范围时沿着恒扭矩曲线进行滑动,朝着((id*) 2+(iq*) 2)增大的方向移动,既可以朝着id*正半轴增大的方向移动,也可以朝着id*负半轴减小的方向移动,优选的选择朝着id*正半轴增大的方向移动;当第一加热功率与第二加热功率的和与目标加热功率的差值大于预设上限范围时,就沿着恒扭矩曲线进行滑动,朝着((id*) 2+(iq*) 2)减小的方向移动,直到第一加热功率与第二加热功率的和与目标加热功率的差值小于预设上限范围,假若滑动到当前扭矩、电压下的((id*) 2+(iq*) 2)的最小点即MTPA&MTPV曲线满足扭矩指令的目标直轴电流、目标交轴电流点,差值仍然大于预设上限范围就保持当前电流点作为目标直轴电流、目标交轴电流。
进行上述迭代直到满足公式8或者在公式8规定的误差范围内即可,加热功率可以事先计算并台架标定好,使用查表或者线性拟合的方法由加热功率获得满足条件的目标直轴电流id*和目标交轴电流iq*。
本实施方式的技术效果在于根据目标驱动功率获取输出扭矩,根据输出扭矩在扭矩曲线图上查找恒扭矩曲线,根据恒扭矩曲线获取直轴电流和交轴电流,根据所选择的直轴电流和交轴电流获取第二加热功率,再根据目标加热功率与第一加热功率和第二加热功率之间的关系调节直轴电流和交轴电流,使第一加热功率和第二加热功率与目标加热功率相匹配,实现输出扭矩过程与加热过程以及充电过程之间的协同工作。
进一步的,该协同控制方法还包括:
当目标驱动功率由第一目标驱动功率转换为第二目标驱动功率时,根据第一目标驱动功率对应的目标交轴电流和目标直轴电流获取合成电流矢量幅值;
获取以预定的扭矩曲线图中的原点为圆心以及合成电流矢量幅值为半径的圆与第二目标驱动功率对应的扭矩曲线所形成的的第一交点坐标和第二交点坐标;
分别获取第一交点坐标与目标交轴电流和目标直轴电流形成的坐标点之间的第一距离以及所述第二交点坐标与所述目标交轴电流和所述目标直轴电流形成的坐标点之间的第二距离;
将第一距离和第二距离中的较小值所对应的交点坐标确定为所述第二目标驱动功率的目标直轴电流和目标交轴电流。
特别地,由加热功率获得满足条件的目标直轴电流id*和目标交轴电流iq*后,例如,当第一目标驱动功率发生变化至第二目标驱动功率时,根据第二目标驱动功率获取当前扭矩输出指令,在当前扭矩值的恒扭矩曲线上找到与目标的电流圆半径为((id*) 2+(iq*) 2)相交的点,且距离id*和iq*最近的电流点作为当前扭矩值的目标直轴电流id*和目标交轴电流iq*,实现输出扭矩变化后的输出扭矩过程与加热过程以及充电过程之间的协同工作。
步骤50.当第一加热功率与第二加热功率的和与目标加热功率之间的偏差在预设范围内时,将第一交轴电流和第一直轴电流设置为目标交轴电流和目标直轴电流。
本步骤中,通过扭矩曲线图中的MTPA&MTPV曲线获取满足扭矩指令的第一直轴电流iq1*和第一交轴电流id1*,将第一直轴电流iq1*和第一交轴电流id1*代入公式8进行检验是否满足需求的加热功率,如果第一加热功率和第二加热功率在目标加热功率误差的预设范围内,直接将第一交轴电流和第一直轴电流设置为目标交轴电流和目标直轴电流。
步骤60.获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器中每相桥臂的占空比。
本步骤中,作为第一种实施方式,如图7所示,步骤S60包括:
步骤S601.根据每相线圈上的采样电流值获取电机线圈103基于同步旋转坐标系的实际零轴电流i0,并根据每相线圈上的采样电流值和电机转子位置获取每套绕组的实际交轴电流iq和实际直轴电流id。
在步骤S601中,电机线圈103基于同步旋转坐标系的零轴是指垂直于同步旋转坐标系d-q坐标系的轴,实际零轴电流是指将每相线圈上的采样电流值折算到零轴上的电流值。
作为一种实施方式,步骤S601中的根据每相线圈上的采样电流值获取基于同步旋转坐标系的实际零轴电流i0,包括:
根据以下计算公式获取同步旋转坐标系的实际零轴电流i0:
Figure PCTCN2020109886-appb-000009
其中,ia、ib......im为每相线圈上的采样电流值,m为电机相数。
其中,零轴电流可以视为每相线圈均有的电流,其数值可以为所有线圈的采样电流值 的平均值,其与中性线上的电流存在线性关系。
作为一种实施方式,如图8所示,步骤S601中的根据每相线圈上的采样电流值和电机转子位置获取实际交轴电流iq和实际直轴电流id,包括:
步骤S6011.将每相线圈上的采样电流值进行clark坐标变换得到静止坐标系的电流值iα、iβ。
本步骤中,将电机线圈103上的三相或者多相电流转换为静止坐标系的两相电流iα、iβ,通常采用Clark坐标变换将N相轴坐标系转换为两相静止坐标系。
多相电机的拓展的Clark(2/m是恒幅值Clark,恒功率变换类似)变换公式:
Figure PCTCN2020109886-appb-000010
多相电机的拓展的反Clark(恒幅值Clark)变换公式:
Figure PCTCN2020109886-appb-000011
其中,电机相数m,α=2π/m,为每套绕组中相邻两相绕组之间相差的电角度;例如,以三相四线电机为实施例进行描述:m=3,α=120,
Figure PCTCN2020109886-appb-000012
测量三相线圈中的3相电流ia,ib和ic,根据
Figure PCTCN2020109886-appb-000013
计算出i0,将电流(ia、ib、ic)通过克拉克(恒幅值Clark)转换到两相静止坐标系上的电流值iα、iβ,iα=2/3*(ia–ib/2-ic/2)、iβ=(ib-ic)/
Figure PCTCN2020109886-appb-000014
其中,Clark坐标变换公式如下:
Figure PCTCN2020109886-appb-000015
步骤S6012.根据静止坐标系的电流值iα、iβ以及电机转子位置进行park坐标变换得 到实际交轴电流iq和实际直轴电流id。
本步骤中,将静止坐标系的两相电流值iα、iβ转换至基于电机转子磁场定向的同步旋转坐标系的交轴电流和直轴电流,电机转子位置可以为电机转子直轴与电机线圈103的A相绕组间的电角度θ,如果是异步电机,θ=(转子转速Wr+转差Ws)*t,通过旋变或者其他位置传感器或者无位置传感器读取转子位置,得到θ。
可以通过以下Park坐标变换获取实际交轴电流iq和实际直轴电流id:
Figure PCTCN2020109886-appb-000016
拓展的Park坐标变换:
Figure PCTCN2020109886-appb-000017
拓展的反Park坐标变换:
Figure PCTCN2020109886-appb-000018
其中,θ电机转子位置。
步骤S602.根据目标交轴电流iq*和实际交轴电流iq、目标直轴电流id*和实际直轴电流id分别进行闭环控制获取直轴参考电压和交轴参考电压,根据直轴参考电压、交轴参考电压以及电机转子位置获取每相桥臂的的第一占空比D 11、D 12…D 1m,其中,m为相数,D 1m表示第m相电机线圈103的占空比。
作为一种实施方式,如图9所示,步骤S602中的根据目标交轴电流iq*和实际交轴电流iq、目标直轴电流id*和实际直轴电流id分别进行闭环控制获取直轴参考电压和交轴参考电压包括:
步骤S6021.对目标交轴电流iq*和实际交轴电流iq进行运算得到交轴电流差值并对目标直轴电流id*和实际直轴电流id进行运算得到直轴电流差值;
步骤S6022.分别对交轴电流差值和直轴电流差值进行控制(例如PID控制)后得到交轴参考电压Uq和直轴参考电压Ud。
上述两个步骤中,用目标交轴电流iq*减去实际交轴电流iq再经过控制(例如PID控制)后得到交轴参考电压Uq,同理,用目标交轴直轴电流id*减去实际直轴电流id再经过控制(例如PID控制)后得到直轴参考电压Ud。
作为一种实施方式,如图10所示,步骤S602中的根据直轴参考电压、交轴参考电压 以及电机转子位置获取每相桥臂的的第一占空比D 11、D 12…D 1m,包括:
步骤S6023.对交轴参考电压Uq、直轴参考电压Ud以及电机转子位置进行反park坐标变换得到静止坐标系的电压Uα、Uβ。
在本步骤中,可以通过以下反Park坐标变换公式获取静止坐标系的电压Uα、Uβ:
Figure PCTCN2020109886-appb-000019
步骤S6024.对静止坐标系的电压Uα、Uβ进行空间矢量脉宽调制变换后得到每相桥臂的第一占空比。
在本步骤中,将静止坐标系的电压Uα、Uβ经过SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制变换)算法后得到可逆PWM整流器102中桥臂的占空比D 11、D 12…D 1m。
步骤S603.根据目标充放电电流in*和实际零轴电流i 0获取每相桥臂的电压调节值U0,根据每相桥臂的电压调节值U0获取第二占空比D0。
作为一种实施方式,如图11所示,步骤S603中的根据目标充放电电流in*和电机线圈103上的实际零轴电流i0获取每相桥臂的电压调节值U0,包括:
步骤S6031.根据目标充放电电流in*和电机相数计算电机线圈103的目标零轴电流i0*。
步骤S6032.将电机线圈103上的实际零轴电流i0和电机线圈103的目标零轴电流i0*进行运算再经过控制(例如PID控制)后得到每相桥臂的电压调节值U0。
其中,上述步骤中目标充放电电流in*与目标零轴电流i0*之间存在比例关系,比例系数为电机相数,将电机线圈103上的实际零轴电流i0和电机线圈103的目标零轴电流i0*进行减法运算获取电流差值再进行控制(例如PID控制)即可得到每相桥臂的电压调节值U0
作为一种实施方式,步骤S603中的根据每相桥臂的电压调节值U0获取第二占空比D0包括:将电压调节值U0与母线电压进行调制得到第二占空比D0。
步骤S603.根据每相桥臂的第一占空比D 11、D 12…D 1m和每相桥臂的第二占空比D0计算获取每相桥臂的占空比。
其中,在本步骤中,第一占空比与第二占空比之间可以通过相加或者相减的方式得到每相桥臂的占空比。
其中,以从充放电口流入中性点的充电电流为正方向,多相相电流的方向为:以电流流入电机相端子为正方向,电流流出电机相端子为负方向,当直流供电设备通过充放电口对外部的电池进行充电时为每相桥臂的第一占空比分别减去占空比D0计算获取每相桥臂 的占空比。
步骤S60的第一种实施方式包括步骤S601、步骤S602以及步骤S603,本实施方式通过将多相电机的参数值解算到同步旋转坐标系中进行闭环控制,实现了加热过程、充放电过程以及输出扭矩过程的协同工作。
对于步骤S60中,作为第二种实施方式,如图12所示,获取每相线圈上的采样电流值以及转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器102中每相桥臂的占空比,包括:
步骤S611.根据目标交轴电流、目标直轴电流、电机转子位置以及目标充放电电流获取每相线圈的目标电流值;
作为一种实施方式,步骤S611包括:
对目标充放电电流in*进行线性变化获取每套绕组的目标零轴电流i0*,根据目标交轴电流iq*、目标直轴电流id*、转子位置以及目标零轴电流i0*进行拓展反park和拓展反clark坐标变换获取每相线圈的目标电流值。
步骤S612.根据每相线圈上的采样电流值和每相线圈的目标电流值获取每相桥臂的参考电压。
步骤S613.根据每相桥臂的参考电压获取每相桥臂的占空比。
其中,在上述两个中,将每相线圈上的采样电流值和每相线圈的目标电流值进行闭环调节,闭环调节的方式可以是PID控制或者PR控制或者滑膜控制等等。
本实施方式与上述实施方式的不同点在于将多相电机的参数值解算到相轴坐标系中进行闭环控制,实现了加热过程、充放电过程以及输出扭矩过程的协同工作。
对于步骤S60中,作为第三种实施方式,如图13所示,步骤S60包括:
步骤S621.根据目标交轴电流iq*、目标直轴电流id*和转子位置获取电机静止坐标系的目标α轴电流和目标β轴电流;
步骤S622.根据每相线圈上的采样电流值获取每套绕组的实际零轴电流i0,并根据每相线圈上的采样电流值获取电机静止坐标系的实际α轴电流和实际β轴电流;
步骤S623.根据目标α轴电流、目标β轴电流、实际α轴电流和实际β轴电流进行控制(例如PID控制)获取电机线圈103在静止坐标系的参考电压Uα、Uβ;
步骤S624.对静止坐标系的参考电压Uα、Uβ进行空间矢量调制变换后得到每相桥臂的第一占空比;
步骤S625.根据目标充放电电流in*和实际零轴电流i0进行控制(例如PID控制)获 取每相桥臂的电压调节值U0,将电压调节值U0与母线电压进行调制得到第二占空比;
步骤S626.根据每相桥臂的第一占空比和每相桥臂的第二占空比计算获取每相桥臂的占空比。
本实施方式与上述实施方式的不同点在于将多相电机的参数值解算到静止坐标系中进行闭环控制,实现了加热过程、充放电过程以及输出扭矩过程的协同工作。
本申请实施例一提出一种能量转换装置的协同控制方法,通过采用包括可逆PWM整流器102和电机线圈103的能量转换装置,使该能量转换装置与外部的电池101连接以及通过充放电口104与供电设备或者用电设备连接时,获取目标加热功率、目标驱动功率以及目标充放电功率,根据目标充放电功率获取第一加热功率,根据目标驱动功率获取第一交轴电流和第一直轴电流,根据第一交轴电流和第一直轴电流获取电机线圈103的第二加热功率,再根据第一加热功率与第二加热功率的和与目标加热功率之间的关系调节第一交轴电流和第一直轴电流以得到目标交轴电流和目标直轴电流,再根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算PWM整流器中每相桥臂的占空比,根据占空比控制PWM整流器中每相桥臂上开关器件的导通和关断,实现了并使外部的电池101或者供电设备输出的电流流经电机线圈103以产生热量,以加热流经电机线圈103的冷却管中的冷却液,当该冷却液流经动力电池时加热动力电池且结合电池本身充电或者放电产热一起加热动力电池,可省去额外动力电池加热装置,降低了整个装置的成本,确保电池在低温状态下的充放电得到保障,同时实现了充放电过程、加热过程和扭矩输出过程中三者协同工作,即外部供电设备放电(如充电桩)给电池充电过程、电机加热过程和电机扭矩输出过程中三者协同工作;或者电池放电给外部用电设备(如车辆)进行供电、电机加热过程和电机扭矩输出过程中三者协同工作。
本申请实施例二提供一种能量转换装置的协同控制方法,如图14所示,当目标充放电功率为零时,目标充放电电流和第一加热功率为零,则协同控制方法包括:
步骤S11.获取目标加热功率以及目标驱动功率;
步骤S21.根据目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据第一交轴电流和第一直轴电流获取电机线圈的第二加热功率;
步骤S31.当第二加热功率与目标加热功率之间的偏差不在预设范围内时,根据目标驱动功率调节第一交轴电流和第一直轴电流至目标交轴电流和目标直轴电流,使第二加热功率与目标加热功率之间的偏差在预设范围内;
步骤S41.当第二加热功率与目标加热功率之间的偏差在预设范围内时,将第一交轴电 流和第一直轴电流设置为目标交轴电流和目标直轴电流;
步骤S51.获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器中每相桥臂的占空比。
本申请实施例二提出的一种能量转换装置的协同控制方法,与实施例一不同点在于目标充放电功率为零,控制电机线圈加热和控制电机输出扭矩同时进行,通过采用包括可逆PWM整流器和电机线圈的能量转换装置,使该能量转换装置与外部的电池连接以及通过充放电口与供电设备或者用电设备连接时,获取目标加热功率以及目标驱动功率,根据目标驱动功率获取第一交轴电流和第一直轴电流,根据第一交轴电流和第一直轴电流获取电机线圈的第二加热功率,再根据第二加热功率与目标加热功率之间的关系调节第一交轴电流和第一直轴电流以得到目标交轴电流和目标直轴电流,再根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算PWM整流器中每相桥臂的占空比,根据占空比控制PWM整流器中每相桥臂上开关器件的导通和关断,实现了并使外部的电池或者供电设备输出的电流流经电机线圈以产生热量,以加热流经电机线圈的冷却管中的冷却液,当该冷却液流经动力电池时加热动力电池,可省去额外动力电池加热装置,降低了整个装置的成本,确保电池在低温状态下的充放电得到保障,同时实现了加热过程和扭矩输出过程中的两者协同工作。
本申请实施例三提供一种能量转换装置的协同控制方法,如图15所示,当目标加热功率为零时,协同控制方法包括:
步骤S12.获取目标充放电功率以及目标驱动功率;
步骤S22.根据目标充放电功率获取外部的充放电口输出到中性线的目标充放电电流;
步骤S32.根据目标驱动功率获取第一交轴电流和第一直轴电流,将第一交轴电流和第一直轴电流设置为目标交轴电流和目标直轴电流;
步骤S42.获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器中每相桥臂的占空比。
本申请实施例三提出一种能量转换装置的协同控制方法,与实施例一不同点在于目标加热功率为零,控制电机线圈充放电和控制电机输出扭矩同时进行,根据目标充放电功率获取目标充放电电流;根据目标驱动功率获取第一交轴电流和第一直轴电流,将第一交轴电流和第一直轴电流设置为目标交轴电流和目标直轴电流;根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器 中每相桥臂的占空比,实现了充放电过程和扭矩输出过程中两者协同工作。
本申请实施例四提供一种能量转换装置的协同控制方法,如图16所示,当目标驱动功率为零时,则协同控制方法包括:
步骤S13.获取目标加热功率以及目标充放电功率;
步骤S23.根据目标充放电功率获取外部的充放电口输出到中性线的目标充放电电流,并根据目标充放电电流获取电机线圈的第一加热功率;
步骤S33.根据目标加热功率和第一加热功率获取目标交轴电流和目标直轴电流;
步骤S43.获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器中每相桥臂的占空比。
本申请实施例四提出一种能量转换装置的协同控制方法,与实施例一不同点在于目标驱动功率为零,控制电机线圈对电池进行充放电和控制电机线圈加热同时进行,根据目标充放电功率获取目标充放电电流,根据目标充放电电流获取电机线圈的第一加热功率,根据目标加热功率和第一加热功率之间的关系获取目标交轴电流和目标直轴电流,此时,目标交轴电流为零;再根据目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算可逆PWM整流器中每相桥臂的占空比,实现了加热过程和充放电过程两者协同工作,同时实现零扭矩输出。
下面通过具体的矢量控制图对本申请进行具体说明:
图17是本申请n相电机的矢量控制框图,涉及多相电机的矢量控制,将多相电机矢量解算到同步旋转坐标系上进行闭环控制,图18是对应图17以三相电机为例,举例示范三相电机矢量控制系统框。控制过程:控制器接收充放电指令、扭矩输出指令和加热功率指令,充放电指令是给定电压值或者给定电流值,根据充放电指令获取电压目标,获取充电口电压并与电压目标进行闭环控制(例如PID控制)后得到目标充放电电流in*,根据输出扭矩和加热功率以及目标充放电电流in*进行指令解算过程后得到目标交轴电流iq*和目标直轴电流id*,采样三相电流值ia、ib、ic,通过坐标变换换算到同步旋转坐标系上得到实际直轴电流id和实际交轴电流iq,分别与目标直轴电流id*和目标交轴电流iq*做差后,经过控制(例如PID控制)输出Ud目标值和Uq目标值,Ud、Uq通过反Park变换得到Uα、Uβ,Uα、Uβ被传输至空间矢量脉宽调制算法(SVPWM)得到逆变器的三相桥臂占空比Da、Db、Dc。需求的电流值in*计算出需求的i0*和实际i0(由电流采样ia、ib、ic通过拓展Clark坐标变换提取i0)电流值闭环控制得出需求的占空比D0,Da、Db、Dc分别与D0相 减得到实际的三相桥臂占空比,进行闭环电流控制。
图19是本申请n相电机的另一种控制框图,涉及多相电机的矢量控制,将多相电机矢量解算到N相轴坐标系上进行闭环控制。图20是对应图19的以三相电机为例,举例示范三相电机矢量控制系统框。控制过程:控制器接收充放电指令、扭矩输出指令和加热功率指令,充放电指令是给定电压值或者给定电流值,根据充放电指令获取电压目标,获取充电口电压并与电压目标进行闭环控制(例如PID控制)后得到目标充放电电流in*,根据输出扭矩和加热功率以及目标充放电电流in*进行指令解算过程后得到目标交轴电流iq*和目标直轴电流id*,对目标交轴电流iq*和目标直轴电流id*通过拓展反Park-Clark坐标变换,将目标值解算到定子绕组轴系ABC上即Ia*、Ib*、Ic*;将定子绕组轴系上目标值Ia*、Ib*、Ic*和采样得到的实际值Ia、Ib、Ic进行闭环调节,输出桥臂占空比Da、Db、Dc进行调节控制电流以跟随目标值,调节的方式可以是PID或者PR或者滑膜等等。
以三相四线电机为实施例,m=3,测量3相电流(ia、ib、ic),将测量的电流(ia、ib、ic)通过拓展的克拉克(clark)转换到两相静止坐标系上的iα、iβ、i0,其中零电流矢量i0,N线电流是零电流分量的负三倍(in=-3*i0);iα、iβ通过帕克变换(park)变换到磁场定向的电流矢量id、iq,id是直轴电流,iq是交轴电流,θ为电机转子直轴与电机绕组A相绕组间的电角度【若是异步电机,θ=(转子转速Wr+转差Ws)*t】,通过旋变或者其他位置传感器或者无位置传感器读取转子位置,得到θ。
零轴电流矢量i0:
Figure PCTCN2020109886-appb-000020
i n=-(ia+ib+ic)=-3i 0
电流指令*:N线上电流in=-3*i0,对0轴上的矢量i0*电流进行给定,对充放电的功率进行控制。
下面根据能量转换装置所处的不同模式对本申请进行具体说明,以电机为三相电机为例:
第一步:指令解算
当充放电指令、扭矩输出指令和加热功率指令:三个指令中最多只有一个不为零时,按照下面的方式进行指令解算分配:
第一种工作模式:充放电指令、扭矩输出指令和加热功率指令(指令即为需求功率)全为零时,所有开关处于关断状态。
第二种工作模式:只有扭矩输出指令:
充放电指令为0,即充放电电流in*=0,加热功率指令为0,指令解算过程按照图6扭 矩曲线图中的MTPA&MTPV曲线,由扭矩输出指令和电机当前转速ωe,查表或者计算出同步旋转坐标系dq坐标轴上对应的目标交轴电流iq*和目标直轴电流id*两个需求值,保证扭矩指令需求,此时目标充放电电流in*的电流回路不进行控制运算,扭矩指令所需能量来源于外部的电池101或外部供电设备。
第三种工作模式:只有加热功率指令:
充电放电指令为0,即充放电电流in*=0,扭矩输出指令为0或者一个较小值,即目标交轴电流iq*=0或者iq*为一个较小的值(啮合齿轮间隙,防止电机转子抖动),对目标直轴电流id*方向上的矢量进行给定;给定加热功率根据公式4公式求解出id*,id*可正可负,优选的id*取正值即增强磁场方向,或者将得到的id*叠加一个正弦的高频信号,利用电池阻抗越大发热越大,增大电池的发热;加热功率可以事先计算并台架标定好,使用查表或者线性拟合的方法由加热功率获得控制电流指令id*、iq*。
公式4:
Figure PCTCN2020109886-appb-000021
根据当前指令给定判断模式,解算过程后,得到id*、iq*、in*,此时目标in*电流回路不进行控制运算,加热指令所需能量来源于电池或外部供电设备。
第四种工作模式:只有充放电指令:扭矩输出指令为0,加热功率指令为0,iq*=0,id*=0,in*≠0。
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器采用电压电流双闭环控制:电流指令in*是充放电电压指令U*和电压采样闭环控制后的输出量。
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器还可以采用单电压上闭环控制:只有电压闭环的环节,电压指令U*和电压采样闭环控制后输出量直接转化为桥臂占空比,in采样获得(in=-ia-ib-ic)。
当连接到外部的充放电口104的外部电源为恒压充放电模式,电机控制器采用单电流上闭环控制:电流指令in*是直接由电池管理器下发给定,没有电压闭环的环节。
通过矢量控制解算过程得到目标id*、iq*、in*。
其中,充电时in*>0,放电时in*<0。
当充放电指令、扭矩输出指令和加热功率指令:三个指令中至少只两个不为零时,按照下面的方式进行指令解算分配:
第五种工作模式:只有充放电指令、加热功率指令,扭矩输出指令*为0:
充放电指令:
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器可以采用电压电流双闭环控制:电流指令in*是充放电电压指令U*和电压采样闭环控制后的输出量;采样N线上电流in,进行电流闭环控制。
当连接到外部的充放电口104的外部电源为恒压充放电模式,电机控制器还可以采用单电流上闭环控制:电流指令in*是直接由电池管理器下发给定,没有电压闭环的环节,采样N线上电流in,进行电流闭环控制;
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器还可以采用单电压上闭环控制:只有电压闭环的环节,电压指令U*和电压采样闭环控制后输出量直接转化为桥臂占空比,采样N线上电流in。
加热功率指令:采样得到in和给定加热功率,根据公式5求解出id*,id*可正可负,优选的id*取正值即增强磁场方向;加热功率可以事先计算并台架标定好,使用查表或者线性拟合的方法由由加热功率获得目标电流id*、iq*。
公式5:
Figure PCTCN2020109886-appb-000022
根据充放电指令和加热功率指令的解算过程后,得到目标id*、iq*、in*。充电时in*>0,放电时in*<0。
对于式5,当存在多个绕组极点引出多条中性线时,需要以每一条中性线为一体用式5进行计算,多条中性线计算叠加。
第六种工作模式:只有充放电指令、扭矩输出指令,加热功率指令为0:
充放电指令:
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器可以采用电压电流上闭环控制:电流指令in*是充放电电压指令U*和电压采样闭环控制后的输出量,采样N线上电流in,进行电流闭环控制。
当连接到外部的充放电口104的外部电源为恒压充放电模式,电机控制器还可以采用单电流上闭环控制:电流指令in*是直接由电池管理器下发给定,没有电压闭环的环节,采样N线上电流in,进行电流闭环控制。
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器还可以采用单电压上闭环控制:只有电压闭环的环节,电压指令U*和电压采样闭环控制后输出量直接转化为桥臂占空比,采样N线上电流in。
扭矩输出指令:指令解算过程按照图6扭矩曲线图中的MTPA&MTPV曲线,由扭矩输出指令找出同步旋转坐标系dq坐标轴上对应的id*、iq*两个值的需求进行给定,保证扭矩指令需求;
解算过程后,得到目标id*、iq*、in*,充电时in*>0,放电时in*<0。
第七种工作模式:只有加热功率指令、扭矩输出指令,充放电指令为0:
加热功率指令:
公式7:
Figure PCTCN2020109886-appb-000023
扭矩输出指令:解算出恒扭矩曲线,见图6扭矩曲线图中的恒扭矩曲线Te1、Te2、Te3,其中Te1>Te2>Te3,扭矩曲线图中的恒扭矩曲线可以事先计算并台架标定好,一般使用查表或者线性拟合的方法由转矩获得控制电流指令。首先通过MTPA&MTPV曲线找出满足扭矩指令的id*、iq*,将id*、iq*代入式7进行检验是否满足需求的加热功率,不满足的话()就沿着恒扭矩曲线进行滑动,当第一加热功率与第二加热功率的和与目标加热功率的差值小于预设下限范围,可以朝着id正半轴增大的方向移动,也可以朝着id负半轴减小的方向移动,优选的选择朝着id正半轴增大的方向移动,进行迭代直到满足式7或者在式7规定的误差范围内即可,加热功率可以事先计算并台架标定好,使用查表或者线性拟合的方法由加热功率获得控制电流指令id*、iq*。
此时目标in*电流回路不进行控制运算,解算过程后,得到目标id*、iq*、in*。
第八种工作模式:充放电指令、加热功率指令、扭矩输出指令均不为零。
充放电指令:当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器可以采用电压电流双闭环控制:电流指令in*是充放电电压指令U*和电压采样闭环控制后的输出量,采样N线上电流in,进行电流闭环控制。
当连接到外部的充放电口104的外部电源为恒压充放电模式,电机控制器可以采用单电流上闭环控制:电流指令in*是直接由电池管理器下发给定,没有电压闭环的环节,采样N线上电流in,进行电流闭环控制。
当连接到外部的充放电口104的外部电源为恒流充放电模式,电机控制器可以采用单电压上闭环控制:只有电压闭环的环节,电压指令U*和电压采样闭环控制后输出量直接转化为桥臂占空比,采样N线上电流in。
加热功率指令:
公式8:
Figure PCTCN2020109886-appb-000024
扭矩输出指令:解算出恒扭矩曲线,扭矩曲线图中的恒扭矩曲线可以事先计算并台架标定好,一般使用查表或者线性拟合的方法由转矩获得控制电流指令。首先通过MTPA&MTPV曲线找出满足扭矩指令的id*、iq*,将id*、iq*代入式8进行检验是否满足需求的加热功率,不满足的话就沿着恒扭矩曲线进行滑动,朝着((id*) 2+(iq*) 2)增大的方向移动,既可以朝着id*正半轴增大的方向移动,也可以朝着id*负半轴减小的方向移动,优选的选择朝着id*正半轴增大的方向移动,进行迭代知道满足式8或者在式8规定的误差范围内即可。加热功率可以事先计算并台架标定好,使用查表或者线性拟合的方法由由加热功率获得控制电流指令id*、iq*。
解算过程后,得到目标id*、iq*、in*。
充放电指令、加热功率指令、扭矩输出指令均有的使用场景为太阳能高压线上除冰车或者月球车。
第二步:闭环方式判断
在模式判断第一步里面除了所有指令为0,不进行控制外,还有充放电指令in*=0的情况需要处理判断,in*=0时,对充放电电流或者电压都不控制,从电池取电进行电机驱动、加热或者驱动加热的控制。in*≠0,充放电指令参与闭环控制。
第三步:控制过程:
将充放电指令、加热功率指令、扭矩输出指令经过解算过程后,得到目标参数值id*、iq*、in*。
对于能量转换装置的电路结构,可以采用以下电路结构:
图21为本实施方式提供的能量转换装置的电路图,能量转换装置包括可逆PWM整流器102、电机线圈103,还包括开关K1、开关K2,电阻R、开关K3以及电容C1,外部的电池的正极连接开关K1的第一端和开关K2的第一端,开关K1的第二端连接电容C1的第一端,开关K2的第二端连接电阻R的第一端,电阻R的第二端连接电容C1的第一端,电池的负极连接开关K3的第一端,开关K3的第二端连接电容C1的第二端,可逆PWM整流器包括三相桥臂,第一相桥臂包括串联连接的第一功率开关单元和第二功率开关单元,第二相桥臂包括串联连接的第三功率开关单元和第四功率开关单元,第三相桥臂包括串联连接的第五功率开关单元和第六功率开关单元,第一功率开关单元的输入端、第三功率开关单元的输入端、第五功率开关单元的输入端共接形成第一汇流端并与电容C1的第一端连接,第二功率开关单元的输出端、第四功率开关单元的输出端、第六功率开关单元的输出端的输出端共接形成第二汇流端并与电容C1的第二端连接,第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,电机线圈包括一套三相绕组,第一相线圈连接第一相桥臂的中点,第二相线圈连接于第二相桥臂的中点,第三相线圈连接于第三相桥臂的中点,第一相线圈、第二相线圈、第三相线圈共接形成中性点,中性点引出中性线,能量转换模块还包括开关K4、开关K5、电感L、电容C2,充放电口的第一端连接电感L的第二端和电容C2的第一端,电感L的第一端连接开关K4的第二端,开关K4的第一端连接中性线,充放电口104的第二端连接开关K5的第二端,开关K5的第一端、电容C2的第二端共接于第二汇流端。
如图22所示,图22与图21的不同点在于,充放电口104的第一端连接开关K7的第二端和开关K5的第二端,开关K7的第一端连接电感L的第二端和电容C2的第一端,电感L的第一端连接开关K6的第二端,开关K6的第一端连接中性线,充放电口104的第二端连接连接电容C2的第二端和第二汇流端,开关K4的第一端连接电池的正极,开关K5的第一端连接电容C1的第一端。
如图23和图24所示,当能量转换装置与外部车辆连接时,进行储能过程和储能释放过程。
下面以图25为例说明获取到目标驱动功率以及目标充放电功率时,对目标驱动功率以及目标充放电功率经过解算后的电流流向的实现方式:
如图25所示,可逆PWM整流器102包括第一功率开关单元、第二功率开关单元、第三功率开关单元、第四功率开关单元、第五功率开关以及第六功率开关,每个功率开关单元的控制端连接控制器,可逆PWM整流器102中第一功率开关单元和第二功率开关单元构成第一相桥臂,第三功率开关单元和第四功率开关单元构成第二相桥臂,第五功率开关单元和第六功率开关单元构成第三相桥臂,第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,第一功率开关单元、第三功率开关单元以及第五功率开关单元共接形成第一汇流端,第二功率开关单元、第四功率开关以及第六功率开关共接形成第二汇流端,第一汇流端和第二汇流端之间连接母线电容C1,母线电容C1的第一端连接开关K1的第一端和开关K2的第一端,母线电容C1的第二端连接开关K3的第一端,开关K2的第二端连接电阻R的第一端,开关K1的第二端连接电阻R的第二端以及电池101的正极端,开关K3的第二端连接电池101的负极端,电机包括第一相线圈L1、第二相线圈L2以及第三相线圈L3,每相线圈的一端共接后形成中性点连接直流供电设备,每相线圈的另一端分别连接一相桥臂的中点,其中,直流供电设备、第一相线圈L1、第二功率开关形成直流储能回路,直流储能回路不仅用于充电储能同时用于驱动,作为一种实施方式,电流流向为直流供电设备正极流经第一相线圈L1、第二下桥臂VT2回到直流供电设备负极;直流供电设备、第一相线圈L1、第一功率开关、母线电容C1、外部的电池形成电池充电回路,电池充电回路不仅用于储能同时用于驱动,电流流向为直流供电设备正极流经第一相线圈L1、第一上桥臂VT1、电池101及母线电容C1回到直流供电设备负极;母线电容C1、第五功率开关、第三功率开关、第三相线圈L3、第二相线圈L2、第一相线圈L1、第二功率开关形成电机第一驱动电路,电流从母线电容C1 的一端流经第五上桥臂VT5、第三相线圈L3、第一相线圈L1、第二下桥臂VT2回到母线电容C1的另一端的同时电流从母线电容C1的一端流经第三上桥臂VT3、第二相线圈L2、第一相线圈L1、第二下桥臂VT2回到母线电容C1的另一端;第二相线圈L2、第三相线圈L3、第一相线圈L1、第一功率开关、第三功率开关以及第五功率开关形成电机第二驱动电路,电流的流向在第二相线圈L2、第一相线圈L1、第一上桥二极管VD1及第三上桥臂VT3间和第三相线圈L3、第一相线圈L1、第一上桥二极管VD1及第五上桥臂VT5间分别形成环流;直流供电设备、第一相线圈L1、第二相线圈L2、第二功率开关、第四功率开关形成直流储能回路,直流储能回路不仅用于储能同时用于驱动,作为一种实施方式,电流流向为直流供电设备正极流经第一相线圈L1、第二下桥臂VT2回到直流供电设备负极,同时直流供电设备正极流经第二相线圈L2、第四下桥臂VT4回到直流供电设备负极;直流供电设备、第一相线圈L1、第二相线圈L2、第一功率开关、第三功率开关、母线电容C1、外部的电池形成电池充电回路,电池充电回路不仅用于储能同时用于驱动,电流流向为直流供电设备正极流经第一相线圈L1、第一上桥二极管VD1、电池101及母线电容C1回到直流供电设备负极,同时,直流供电设备正极流经第二相线圈L2、第二上桥二极管VD3、电池101及母线电容C1回到直流供电设备负极;母线电容C1、第五功率开关、第三相线圈L3、第一相线圈L1、第二相线圈L2、第二功率开关、第四功率开关形成电机第一驱动电路,电流流向从母线电容C1的一端流经第五上桥臂VT5、第三相线圈L3、第一相线圈L1、第二下桥臂VT2回到母线电容C1的另一端,同时电流流向从母线电容C1的一端流经第五上桥臂VT5、第三相线圈L3、第二相线圈L2、第四下桥臂VT4回到母线电容C1的另一端;第三相线圈L3、第一相线圈L1、第二相线圈L2、第一功率开关、第三功率开关以及第五功率开关形成电机第二驱动电路,电流的流向在第三相线圈L3、第一相线圈L1、第一上桥二极管VD1及第五上桥臂VT5间和第三相线圈L3、第二相线圈L2、第三上桥二极管VD3及第三上桥臂VT5间分别形成环流。
对于直流供电,当第一线圈为第一相线圈L1,第二线圈为第二相线圈L2和第三相线圈L3时,如图25所示,在第一工作阶段,控制器根据电机的待驱动功率和电池的待充电功率控制第一桥臂和第二桥臂的导通时刻及时长,使直流储能回路中直流供电设备输出的电流依次流经第一相线圈L1、第二功率开关流回直流供电设备,同时使电机第一驱动电路中母线电容C1输出的电流依次流经第五功率开关、第三功率开关、第三相线圈L3、第二相线圈L2、第一相线圈L1、第二功率开关流回母线电容C1,使直流储能回路和电机第一驱动电路同时工作。
如图26所示,在第二工作阶段,控制器控制第一桥臂、第二桥臂导通的时刻及时长,使电池充电回路中直流充电设备输出的电流流经第一相线圈L1、第一功率开关、母线电容 C1、电池流回直流充电设备,使电机第二驱动电路之能够第二相线圈L2和第三相线圈L3输出的电流流经第一相线圈L1、第一功率开关、第三功率开关以及第五功率开关流回第二相线圈L2和第三相线圈L3,使电池充电回路和电机第二驱动电路同时工作。
对于直流供电,当第一线圈为第一相线圈L1和第二相线圈L2,第二线圈为第三相线圈L3时,如图27所示,在第一工作阶段,控制器根据电机的驱动功率和电池的充电功率控制第一桥臂和第二桥臂的导通时刻及时长,使直流储能回路中直流供电设备输出的电流依次流经第一相线圈L1、第二相线圈L2、第二功率开关、第四功率开关流回直流供电设备,同时使电机第一驱动电路中母线电容C1输出的电流依次流经第五功率开关、第三相线圈L3、第二相线圈L2、第一相线圈L1、第二功率开关、第四功率开关流回母线电容C1,使直流储能回路和电机第一驱动电路同时工作。
如图28所示,在第二工作阶段,控制器104控制第一桥臂、第二桥臂导通的时刻及时长,使电池充电回路中直流充电设备输出的电流流经第一相线圈L1、第二相线圈L2、第一功率开关、第三功率开关、母线电容C1、电池流回直流充电设备,使电机第二驱动电路中第三相线圈L3输出的电流流经第一相线圈L1、第二相线圈L2、第一功率开关、第三功率开关以及第五功率开关流回第三相线圈L3,使电池充电回路和电机第二驱动电路同时工作。
上述实施方式仅涉及充电过程和驱动过程协同工作的例子,加热过程和驱动的过程相似,上述电机第一驱动电路和电机第二驱动电路也可以同时为第一加热电路和第二加热电路,当同时接收到目标加热功率、目标驱动功率以及目标充放电功率时,可以控制电池充电回路、电机第一驱动电路、第一加热电路同时工作,以及控制电池充电回路、电机第二驱动电路、第二加热电路同时工作。
如图29所示,电机可以有多套绕组单元,每一套绕组单元的所有相绕组作为一个基本单元,对每一个基本单元采用电机矢量控制都可以独立的控制电机运行。可逆PWM整流器102包括一组M 1路桥臂,M 1路桥臂形成第一汇流端和第二汇流端,动力电池101的正极端和负极端分别连接第一汇流端和第二汇流端,电机线圈103包括第一绕组单元和第二绕组单元;
第一绕组单元包括一套m 1相绕组,m 1相绕组中的每一相绕组包括n 1个线圈支路,每一相绕组的n 1个线圈支路共接形成一个相端点,m 1相绕组的相端点与M 1路桥臂中的m 1路桥臂的每路桥臂的中点一一对应连接,m 1相绕组中的每一相绕组的n 1个线圈支路中的一个线圈支路还分别与其他相绕组中的n 1个线圈支路中的一个线圈支路连接,以形成n 1个连接点,n 1个连接点形成T 1个中性点,从T 1个中性点引出J 1条中性线;其中,n 1≥T 1≥1,T 1≥J 1≥ 1,m 1≥2且n 1,m 1,T 1,J 1均为正整数;
第二绕组单元包括一套m 2相绕组,m 2相绕组中的每一相绕组包括n 2个线圈支路,每一相绕组的n 2个线圈支路共接形成一个相端点,m 2相绕组的相端点与M 1路桥臂中m 2路桥臂的每路桥臂的中点一一对应连接,m 2相绕组中的每一相绕组的n 2个线圈支路中的一个线圈支路还分别与其他相绕组中的n 2个线圈支路中的一个线圈支路连接,以形成n 2个连接点,n 2个连接点形成T 2个中性点,从T 2个中性点引出J 2条中性线;其中,n 2≥T 2≥1,T 2≥J 2≥1,m 2≥2,M≥m1+m2且n 2,m 2,T 2,J 2均为正整数。
图30为本实施方式提供的能量转换装置的电路图,以m 1=m 2=3,M 1=6,n 1=n 2=2为例,能量转换装置包括可逆PWM整流器102、电机线圈103,还包括第一开关模块106,第一开关模块106包括开关K3、开关K4、电阻R、开关K5以及电容C1,外部的电池的正极连接开关K3的第一端和开关K4的第一端,开关K4的第二端连接电阻R的第一端,开关K3的第二端和电阻R的第二端连接电容C1的第一端,电池的负极连接开关K5的第一端,开关K5的第二端连接电容C1的第二端,可逆PWM整流器102包括六相桥臂,第一相桥臂包括串联连接的第一功率开关单元和第二功率开关单元,第二相桥臂包括串联连接的第三功率开关单元和第四功率开关单元,第三相桥臂包括串联连接的第五功率开关单元和第六功率开关单元,第四相桥臂包括串联连接的第七功率开关单元和第八功率开关单元,第五相桥臂包括串联连接的第九功率开关单元和第十功率开关单元,第六相桥臂包括串联连接的第十一功率开关单元和第十二功率开关单元,第一功率开关单元的输入端、第三功率开关单元的输入端、第五功率开关单元的输入端、第七功率开关单元的输入端、第九功率开关单元的输入端、第十一功率开关单元的输入端共接形成第一汇流端并与电容C1的第一端连接,第二功率开关单元的输出端、第四功率开关单元的输出端、第六功率开关单元的输出端、第八功率开关单元的输出端、第十功率开关单元、第十二功率开关单元的输出端共接于形成第二汇流端并与电容C1的第二端连接,第一功率开关单元包括第一上桥臂VT1和第一上桥二极管VD1,第二功率开关单元包括第二下桥臂VT2和第二下桥二极管VD2,第三功率开关单元包括第三上桥臂VT3和第三上桥二极管VD3,第四功率开关单元包括第四下桥臂VT4和第四下桥二极管VD4,第五功率开关单元包括第五上桥臂VT5和第五上桥二极管VD5,第六功率开关单元包括第六下桥臂VT6和第六下桥二极管VD6,第七功率开关单元包括第七上桥臂VT7和第七上桥二极管VD7,第八功率开关单元包括第八下桥臂VT8和第八下桥二极管VD8,第九功率开关单元包括第九上桥臂VT9和第九上桥二极管VD9,第十功率开关单元包括第十下桥臂VT10和第十下桥二极管VD10,第十一功率开 关单元包括第十一上桥臂VT11和第十一上桥二极管VD11,第十二功率开关单元包括第十二下桥臂VT12和第十二下桥二极管VD12,第一绕组单元包括一套三相绕组,每相绕组包括两个线圈支路,第一相线圈中的线圈U1、线圈U2共接于第四相桥臂的中点U,第二相线圈中线圈V1、线圈V2共接于第五相桥臂的中点V,第三相线圈中线圈W1、线圈W2共接于第六相桥臂的中点W,线圈U2、线圈V2、线圈W2共接形成第一连接点n1,第一连接点n1形成第一独立中性点,第一独立中性点引出第一中性线,线圈U1、线圈V1、线圈W1共接形成第二连接点n2,第二连接点n2形成第二独立中性点,第二绕组单元包括一套三相绕组,每相绕组包括两个线圈支路,第一相线圈中的线圈A1、线圈A2共接于第一相桥臂的中点A,第二相线圈中线圈B1、线圈B2共接于第二相桥臂的中点B,第三相线圈中线圈C1、线圈C2共接于第三相桥臂的中点C,线圈A1、线圈B1、线圈C1共接形成第四连接点n4,线圈A2、线圈B2、线圈C2共接形成第三连接点n3,第三连接点n3形成第三独立中性点,第三独立中性点引出第二中性线,能量转换模块还包括开关K1、开关K2、第二开关模块107、第三开关模块108,第二开关模块107包括开关K6、开关K7、电容C2,第三开关模块108包括开关K10、开关K11以及电容C3,外部的第一直流充放电口109的第一端和第二端分别连接开关K6的第二端和开关K7的第二端,开关K6的第一端连接开关K1的第二端和电容C2的第一端,开关K1的第一端连接第一中性线,开关K7的第一端连接电容C2的第二端和可逆PWM整流器102的第二汇流端,第二中性线连接开关K2的第一端,开关K2的第二端连接电容C3的第一端和开关K10的第一端,开关K10的第二端连接第二直流充放电口105的第一端,电容C3的第二端连接开关K11的第一端和第二汇流端,开关K11的第二端连接第二直流充放电口105的第二端。
本实施方式中,通过设置第一直流充放电口109和第二直流充放电口105分别与第一中性线和第二中性线连接,可以使第一直流充放电口、第一绕组单元、可逆PWM整流器102形成加热电路,使第二直流充放电口、第二绕组单元、可逆PWM整流器102形成加热电路,还可以实现第一直流充放电口109与第二直流充放电口105通过能量转换装置与动力电池101形成充放电回路。
如图31所示,与图30的不同点在于:第一绕组单元引出的第一中性线通过开关K5连接电容C3的第一端和开关K8的第一端,电容C2的第二端、电容C3的第二端、开关K3的第一端、第一电池的负极、第二电池的负极以及开关K7的第一端共接,第二绕组单元引出的第二中性线连接开关K4的第一端,开关K4的第二端连接电容C2的第一端、开关K1的第一端、开关K2的第一端、开关K6的第一端,开关K2的第二端连接电阻R的第一端,电阻R的第二端连接开关K1的第二端和第一电池的正极,开关K8的第二端连接第二电池的正极。
如图32所示,与图30的不同点在于:第二直流充放电口105通过开关K9和开关K10连接电容C3的第一端和第二端,第三直流充放电口110通过开关K13和开关K14连接电容C1的第一端和第二端。
本申请实施例五提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如实施例一至实施例四所述方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
本申请实施例六提供一种能量转换装置的协同控制装置,所述能量转换装置包括可逆PWM整流器和电机线圈,所述可逆PWM整流器连接所述电机线圈,外部的电池的正极端和负极端分别连接所述可逆PWM整流器的第一汇流端和第二汇流端,外部的充放电口的第一端和第二端分别连接所述电机线圈引出的至少一条中性线和所述可逆PWM整流器的第二汇流端;
所述协同控制装置包括:
功率获取模块,用于获取目标加热功率、目标驱动功率以及目标充放电功率;
第一加热功率计算模块,用于根据所述目标充放电功率获取所述外部的充放电口输出的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
第二加热功率计算模块,用于根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
目标电流获取模块,用于当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差不在预设范围内时,根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内,以及当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内时,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流;
占空比获取模块,用于获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
本申请实施例七提供一种车辆,车辆还包括上述实施例六提供的能量转换装置。
如图33所示,电池包的加热和冷却回路包含以下回路:电机驱动系统冷却回路、电池冷却系统回路、空调系统的冷却回路。电池冷却系统回路通过换热板和空调冷却系统融合;电池冷却系统回路通过四通阀和电机驱动系统冷却回路贯通。电机驱动系统冷却回路通过三通阀的切换将散热器连接和断开。电机驱动系统冷却回路与电池冷却系统回路通过阀体切换,改变管道中冷却液流向,使电机驱动系统加热后的冷却液的流向电池冷却系统,完成热量从电机驱动系统到电池冷却的传递;电机驱动系统处于非加热模式,通过三通阀和四通阀切换,电机驱动系统冷却液走A回路,电池冷却系统的冷却液走C回路;电机处于加热模式,通过三通阀和四通阀切换,电机驱动系统冷却液走B回路,实现电机驱动系统加热后的冷却液流向电池包冷却回路来给电池加热。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个 元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

  1. 一种能量转换装置的协同控制方法,其特征在于,所述能量转换装置包括可逆PWM整流器和电机线圈,所述可逆PWM整流器连接所述电机线圈,外部的电池的正极端和负极端分别连接所述可逆PWM整流器的第一汇流端和第二汇流端,外部的充放电口的第一端和第二端分别连接所述电机线圈引出的至少一条中性线和所述可逆PWM整流器的第二汇流端;
    所述协同控制方法包括:
    获取目标加热功率、目标驱动功率以及目标充放电功率;
    根据所述目标充放电功率获取所述外部的充放电口输出到所述中性线的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
    根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
    当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差不在预设范围内时,根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内;
    获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
  2. 如权利要求1所述的协同控制方法,其特征在于,所述根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率之后还包括:
    当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内时,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流。
  3. 如权利要求1或2所述的协同控制方法,其特征在于,当所述目标充放电功率为零时,所述目标充放电电流和所述第一加热功率为零,则所述协同控制方法包括:
    获取目标加热功率以及目标驱动功率;
    根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
    当所述第二加热功率与所述目标加热功率之间的偏差不在预设范围内时,根据所述目 标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第二加热功率与所述目标加热功率之间的偏差在预设范围内;
    当所述第二加热功率与所述目标加热功率之间的偏差在预设范围内时,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流;
    获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比;
    或者,当所述目标加热功率为零时,所述协同控制方法包括:
    获取目标充放电功率以及目标驱动功率;
    根据目标充放电功率获取所述外部的充放电口输出到所述中性线的目标充放电电流;
    根据所述目标驱动功率获取第一交轴电流和第一直轴电流,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流;
    获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比;
    或者,当所述目标驱动功率为零时,则所述协同控制方法包括:
    获取目标加热功率以及目标充放电功率;
    根据所述目标充放电功率获取所述外部的充放电口输出到所述中性线的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
    根据所述目标加热功率和所述第一加热功率获取目标交轴电流和目标直轴电流;
    获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
  4. 如权利要求1-3中任意一项所述的协同控制方法,其特征在于,所述根据目标充放电功率获取所述外部的充放电口输出到所述中性线的目标充放电电流,包括:
    当连接到所述外部的充放电口的所述外部的电源的充电模式为恒流充放电模式,根据所述目标充放电功率获取所述外部的电源的目标电压;
    获取充放电口的实际电压,根据所述目标电压和所述充放电口的实际电压获取电压差值;
    对所述电压差值进行闭环控制获取输出到所述中性线的目标充放电电流;
    或,当连接到所述外部的充放电口的所述外部电源为恒压充放电模式,根据所述目标充放电功率获取所述外部的充放电口的电流作为所述外部的充放电口输出到所述中性线目 标充放电电流。
  5. 如权利要求1-4中任意一项所述的协同控制方法,其特征在于,所述根据目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,包括:
    根据所述目标驱动功率在预定的扭矩曲线图中进行查表获取第一交轴电流和第一直轴电流。
  6. 如权利要求1-5中任意一项所述的协同控制方法,其特征在于,所述根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内,包括:
    在预定的扭矩曲线图中进行查表获取另一组交轴电流和直轴电流,直至使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内。
  7. 如权利要求4所述的协同控制方法,其特征在于,所述获取每相线圈上的采样电流值以及电机转子位置,并根据目标交轴电流、目标直轴电流、目标充放电电流、每相线圈上的采样电流值以及电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比,包括:
    根据所述每相线圈上的采样电流值获取电机线圈基于同步旋转坐标系的实际零轴电流,并根据所述每相线圈上的采样电流值和所述电机转子位置获取每套绕组的实际交轴电流和实际直轴电流;
    根据所述目标交轴电流和所述实际交轴电流、所述目标直轴电流和所述实际直轴电流分别进行闭环控制获取直轴参考电压和交轴参考电压,根据所述直轴参考电压、交轴参考电压以及所述电机转子位置获取每相桥臂的的第一占空比;
    根据所述目标充放电电流和所述实际零轴电流获取每相桥臂的电压调节值,根据每相桥臂的电压调节值获取第二占空比;
    根据每相桥臂的第一占空比和所述每相桥臂的第二占空比计算获取每相桥臂的占空比。
  8. 如权利要求7所述的协同控制方法,其特征在于,所述根据所述每相线圈上的采样电流值获取基于同步旋转坐标系的实际零轴电流,包括:
    根据以下计算公式获取同步旋转坐标系的实际零轴电流:
    Figure PCTCN2020109886-appb-100001
    其中,io为实际零轴电流,ia、ib......im为每相线圈上的采样电流值,m为电机相数。
  9. 如权利要求7或8所述的协同控制方法,其特征在于,所述根据所述每相线圈上的采样电流值和所述电机转子位置获取实际交轴电流和实际直轴电流,包括:
    将所述每相线圈上的采样电流值进行clark坐标变换得到静止坐标系的电流值;
    根据所述静止坐标系的电流值以及所述电机转子位置进行park坐标变换得到实际交轴电流和实际直轴电流。
  10. 如权利要求7-9中任意一项所述的协同控制方法,其特征在于,根据所述目标交轴电流和所述实际交轴电流、所述目标直轴电流和所述实际直轴电流分别进行闭环控制获取直轴参考电压和交轴参考电压包括:
    对所述目标交轴电流和所述实际交轴电流进行运算得到交轴电流差值并对所述目标直轴电流和所述实际直轴电流进行运算得到直轴电流差值;
    分别对所述交轴电流差值和所述直轴电流差值进行闭环控制后得到交轴参考电压和直轴参考电压;
    根据所述直轴参考电压、交轴参考电压以及所述电机转子位置获取每相桥臂的第一占空比,包括:
    对所述交轴参考电压、直轴参考电压以及所述电机转子位置进行反park坐标变换得到静止坐标系的电压;
    对所述静止坐标系的电压进行空间矢量调制变换后得到每相桥臂的第一占空比。
  11. 如权利要求7-10中任意一项所述的协同控制方法,其特征在于,根据所述目标充放电电流和所述电机线圈上的实际零轴电流获取每相桥臂的电压调节值,包括:
    根据所述目标充放电电流和电机相数计算电机线圈的目标零轴电流;
    将所述电机线圈上的实际零轴电流和所述电机线圈的目标零轴电流进行运算再经过PID控制后得到每相桥臂的电压调节值;
    所述根据每相桥臂的电压调节值获取第二占空比,包括:
    将所述电压调节值与母线电压进行调制得到第二占空比。
  12. 如权利要求4所述的协同控制方法,其特征在于,所述根据目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比,包括:
    根据所述目标交轴电流、所述目标直轴电流、所述电机转子位置以及所述目标充放电电流获取每相线圈的目标电流值;
    根据所述每相线圈上的采样电流值和所述每相线圈的目标电流值获取每相桥臂的参考电压;
    根据每相桥臂的参考电压获取每相桥臂的占空比。
  13. 如权利要求12所述的协同控制方法,其特征在于,所述根据所述目标交轴电流、所述目标直轴电流、所述电机转子位置以及所述目标充放电电流获取每相线圈的目标电流 值,包括:
    对所述目标充放电电流进行线性变化获取每套绕组的目标零轴电流,根据所述目标交轴电流、所述目标直轴电流、所述转子位置以及所述目标零轴电流进行反park和反clark坐标变换获取每相线圈的目标电流值。
  14. 如权利要求4所述的协同控制方法,其特征在于,所述根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比,包括:
    根据所述目标交轴电流、所述目标直轴电流和所述转子位置获取电机静止坐标系的目标α轴电流和目标β轴电流;
    根据所述每相线圈上的采样电流值获取每套绕组的实际零轴电流,并根据所述每相线圈上的采样电流值获取电机静止坐标系的实际α轴电流和实际β轴电流;
    根据目标α轴电流、目标β轴电流、实际α轴电流和实际β轴电流获取电机线圈在静止坐标系的参考电压;
    对所述静止坐标系的参考电压进行空间矢量调制变换后得到每相桥臂的第一占空比;
    根据所述目标充放电电流和所述实际零轴电流获取每相桥臂的电压调节值,将所述电压调节值与母线电压进行调制得到第二占空比;
    根据每相桥臂的第一占空比和所述每相桥臂的第二占空比计算获取每相桥臂的占空比。
  15. 如权利要求1-14中任意一项所述的协同控制方法,其特征在于,所述协同控制方法还包括:
    当所述目标驱动功率由第一目标驱动功率转换为第二目标驱动功率时,根据所述第一目标驱动功率对应的目标交轴电流和目标直轴电流获取合成电流矢量幅值;
    获取以预定的扭矩曲线图中的原点为圆心以及所述合成电流矢量幅值为半径的圆与所述第二目标驱动功率对应的扭矩曲线所形成的第一交点坐标和第二交点坐标;
    分别获取所述第一交点坐标与所述目标交轴电流和所述目标直轴电流形成的坐标点之间的第一距离以及所述第二交点坐标与所述目标交轴电流和所述目标直轴电流形成的坐标点之间的第二距离;
    将所述第一距离和第二距离中的较小值所对应的交点坐标确定为所述第二目标驱动功率的目标直轴电流和目标交轴电流。
  16. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至15任一项所述方法的步骤。
  17. 一种车辆,其特征在于,所述车辆还包括能量转换装置的协同控制装置,所述能量 转换装置包括可逆PWM整流器和电机线圈,所述可逆PWM整流器连接所述电机线圈,外部的电池的正极端和负极端分别连接所述可逆PWM整流器的第一汇流端和第二汇流端,外部的充放电口的第一端和第二端分别连接所述电机线圈引出的至少一条中性线和所述可逆PWM整流器的第二汇流端;
    所述协同控制装置包括:
    功率获取模块,用于获取目标加热功率、目标驱动功率以及目标充放电功率;
    第一加热功率计算模块,用于根据所述目标充放电功率获取所述外部的充放电口输出的目标充放电电流,并根据所述目标充放电电流获取所述电机线圈的第一加热功率;
    第二加热功率计算模块,用于根据所述目标驱动功率获取基于电机转子磁场定向的同步旋转坐标系中的第一交轴电流和第一直轴电流,并根据所述第一交轴电流和所述第一直轴电流获取所述电机线圈的第二加热功率;
    目标电流获取模块,用于当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差不在预设范围内时,根据所述目标驱动功率调节所述第一交轴电流和所述第一直轴电流至目标交轴电流和目标直轴电流,使所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内,以及当所述第一加热功率与所述第二加热功率的和与所述目标加热功率之间的偏差在预设范围内时,将所述第一交轴电流和所述第一直轴电流设置为目标交轴电流和目标直轴电流;
    占空比获取模块,用于获取每相线圈上的采样电流值以及电机转子位置,并根据所述目标交轴电流、所述目标直轴电流、所述目标充放电电流、所述每相线圈上的采样电流值以及所述电机转子位置计算所述可逆PWM整流器中每相桥臂的占空比。
PCT/CN2020/109886 2019-09-25 2020-08-18 能量转换装置的协同控制方法、装置、存储介质及车辆 WO2021057340A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020227010262A KR102661775B1 (ko) 2019-09-25 2020-08-18 에너지 변환 장치를 위한 협력 제어 방법, 저장 매체, 및 차량
JP2022519102A JP7346725B2 (ja) 2019-09-25 2020-08-18 エネルギー変換装置の協調制御方法、コンピュータ可読記憶媒体及び車両
US17/764,038 US20220329184A1 (en) 2019-09-25 2020-08-18 Cooperative control method and apparatus for energy conversion apparatus, storage medium, and vehicle
EP20869465.3A EP4019322A4 (en) 2019-09-25 2020-08-18 COOPERATIVE CONTROL METHOD AND DEVICE FOR ENERGY CONVERSION DEVICES, STORAGE MEDIA AND VEHICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910912731.6A CN112644339B (zh) 2019-09-25 2019-09-25 能量转换装置的协同控制方法、装置、存储介质及车辆
CN201910912731.6 2019-09-25

Publications (1)

Publication Number Publication Date
WO2021057340A1 true WO2021057340A1 (zh) 2021-04-01

Family

ID=75166416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109886 WO2021057340A1 (zh) 2019-09-25 2020-08-18 能量转换装置的协同控制方法、装置、存储介质及车辆

Country Status (6)

Country Link
US (1) US20220329184A1 (zh)
EP (1) EP4019322A4 (zh)
JP (1) JP7346725B2 (zh)
KR (1) KR102661775B1 (zh)
CN (1) CN112644339B (zh)
WO (1) WO2021057340A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789679A (zh) * 2022-06-23 2022-07-26 长安新能源南京研究院有限公司 一种动力电池的脉冲加热电流控制方法、系统及电动汽车
CN115366705A (zh) * 2022-04-22 2022-11-22 宁德时代新能源科技股份有限公司 充放电电路的控制方法、装置、设备、系统及存储介质
CN116067401A (zh) * 2023-03-31 2023-05-05 清华大学 转子加热方法、装置、电子设备、存储介质和程序产品
EP4322394A1 (en) * 2022-08-04 2024-02-14 Milwaukee Electric Tool Corporation Power tool including current-based field weakening
US11975632B2 (en) 2021-08-05 2024-05-07 Contemporary Amperex Technology Co., Limited Power battery heating system and control method and control circuit thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111354999B (zh) * 2018-12-21 2021-07-09 比亚迪股份有限公司 一种车辆及其动力电池加热装置与方法
CN112977094B (zh) * 2021-04-26 2021-09-03 比亚迪股份有限公司 电驱动系统控制方法、电驱动系统及车辆
CN115871471A (zh) * 2021-09-29 2023-03-31 比亚迪股份有限公司 控制车辆电驱系统加热的方法、装置和加热系统以及车辆
CN114094901B (zh) * 2021-11-30 2023-05-02 重庆长安新能源汽车科技有限公司 一种动力电池脉冲加热过程中的电机转子位置控制方法
CN115139829B (zh) * 2022-07-29 2024-06-18 潍柴动力股份有限公司 一种充电加热控制方法、装置、电子设备及存储介质
CN116674425B (zh) * 2023-06-07 2023-12-01 湖南文理学院 一种基于总量一致的动力电池组协同控制方法及系统
CN117175759B (zh) * 2023-11-02 2024-01-30 小米汽车科技有限公司 低压电池的充电电路、方法、装置、车辆和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134700A1 (en) * 2007-11-22 2009-05-28 Denso Corporation Power supply system with multiphase motor and multiphase inverter
CN103419651A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
CN109789799A (zh) * 2016-10-05 2019-05-21 沃土电机股份有限公司 电动车辆
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211908C (zh) 2001-02-14 2005-07-20 丰田自动车株式会社 动力输出装置及装有该装置的车辆、动力输出装置的控制方法和存储媒体及程序、驱动装置及装有该装置的车辆、驱动装置的控制方法和存储媒体及程序
JP4797476B2 (ja) * 2005-07-12 2011-10-19 トヨタ自動車株式会社 二次電池の制御装置
JP2010051092A (ja) * 2008-08-21 2010-03-04 Toyota Motor Corp 充電システムおよびそれを備えた車両
JP5259752B2 (ja) 2011-02-04 2013-08-07 株式会社日立製作所 車両走行用モータの制御装置及びそれを搭載した車両
JP6024601B2 (ja) * 2012-11-26 2016-11-16 株式会社豊田自動織機 インバータの暖機制御装置
JP6247189B2 (ja) * 2014-10-02 2017-12-13 ファナック株式会社 直流リンク残留エネルギーの放電機能を有するモータ制御装置
CN205595426U (zh) * 2016-03-25 2016-09-21 东风商用车有限公司 一种车辆用电池温控系统
CN106785120B (zh) * 2016-12-29 2019-10-08 洛阳宝盈智控科技有限公司 一种电动汽车电源系统充电加热控制方法
CN109473752A (zh) * 2018-09-25 2019-03-15 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池的加热方法和加热装置
CN109728382B (zh) * 2019-01-02 2021-03-16 北京交通大学 电池充电预热装置和系统
CN110015202B (zh) * 2019-03-28 2021-01-22 清华大学 电动汽车电池加热方法
CN110126678A (zh) * 2019-05-15 2019-08-16 北京长城华冠汽车科技股份有限公司 一种电动汽车的动力电池加热方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090134700A1 (en) * 2007-11-22 2009-05-28 Denso Corporation Power supply system with multiphase motor and multiphase inverter
CN103419651A (zh) * 2012-05-22 2013-12-04 比亚迪股份有限公司 电动汽车、电动汽车的动力系统及电池加热方法
CN103560304A (zh) * 2013-11-19 2014-02-05 东风汽车公司 一种电动汽车动力电池组加热控制方法
CN105762434A (zh) * 2016-05-16 2016-07-13 北京理工大学 一种具有自加热功能的电源系统和车辆
CN109789799A (zh) * 2016-10-05 2019-05-21 沃土电机股份有限公司 电动车辆
CN108306078A (zh) * 2018-03-07 2018-07-20 苏州汇川联合动力系统有限公司 动力电池加热系统及方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN109823234A (zh) * 2019-04-23 2019-05-31 上海汽车集团股份有限公司 一种驱动系统的控制方法、驱动系统及新能源汽车

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11975632B2 (en) 2021-08-05 2024-05-07 Contemporary Amperex Technology Co., Limited Power battery heating system and control method and control circuit thereof
JP7483760B2 (ja) 2021-08-05 2024-05-15 寧徳時代新能源科技股▲分▼有限公司 動力電池加熱システム、その制御方法及び制御回路
CN115366705A (zh) * 2022-04-22 2022-11-22 宁德时代新能源科技股份有限公司 充放电电路的控制方法、装置、设备、系统及存储介质
CN115366705B (zh) * 2022-04-22 2024-03-22 宁德时代新能源科技股份有限公司 充放电电路的控制方法、装置、设备、系统及存储介质
CN114789679A (zh) * 2022-06-23 2022-07-26 长安新能源南京研究院有限公司 一种动力电池的脉冲加热电流控制方法、系统及电动汽车
CN114789679B (zh) * 2022-06-23 2022-09-02 长安新能源南京研究院有限公司 一种动力电池的脉冲加热电流控制方法、系统及电动汽车
EP4322394A1 (en) * 2022-08-04 2024-02-14 Milwaukee Electric Tool Corporation Power tool including current-based field weakening
CN116067401A (zh) * 2023-03-31 2023-05-05 清华大学 转子加热方法、装置、电子设备、存储介质和程序产品
CN116067401B (zh) * 2023-03-31 2023-06-27 清华大学 转子加热方法、装置、电子设备、存储介质

Also Published As

Publication number Publication date
KR20220051256A (ko) 2022-04-26
EP4019322A4 (en) 2022-10-26
JP2022550332A (ja) 2022-12-01
CN112644339B (zh) 2022-01-07
CN112644339A (zh) 2021-04-13
EP4019322A1 (en) 2022-06-29
US20220329184A1 (en) 2022-10-13
KR102661775B1 (ko) 2024-05-02
JP7346725B2 (ja) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2021057340A1 (zh) 能量转换装置的协同控制方法、装置、存储介质及车辆
CN112550062B (zh) 能量转换装置的协同控制方法、装置、存储介质及车辆
CN112550078B (zh) 能量转换装置的协同控制方法、装置、存储介质及车辆
CN111347925B (zh) 一种车辆、电机控制电路、动力电池充电方法与加热方法
CN112550063B (zh) 能量转换装置、车辆、协同控制方法及装置、存储介质
CN111355000B (zh) 一种车辆及其动力电池加热装置与方法
WO2021057338A1 (zh) 能量转换装置及车辆
WO2021000784A1 (zh) 能量转换装置及车辆
CN112550077B (zh) 能量转换装置及车辆
CN109004883B (zh) 一种小电容电机驱动系统的母线电压低压区控制方法
WO2021000739A1 (zh) 一种能量转换装置、动力系统及车辆
JP2023179422A (ja) エネルギー変換装置及び車両
CN105871293B (zh) 一种低成本的双pwm功率变换器模型预测控制方法
CN112644338B (zh) 能量转换装置的协同控制方法、装置、存储介质及车辆
WO2021000741A1 (zh) 充电控制方法、装置、电路拓扑、能量转换装置及车辆
CN108023474A (zh) Pfc电路、电机控制系统及变频空调器
CN208063042U (zh) Pfc电路、电机控制系统及变频空调器
JP2022175119A (ja) 電力変換装置、及びプログラム
Rajini et al. Investigation of Integrated Bidirectional Converter with Eight Switch Inverter for Electric Vehicle Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022519102

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227010262

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020869465

Country of ref document: EP

Effective date: 20220323