WO2021057105A1 - 一种电子设备及硬件地址配置方法 - Google Patents

一种电子设备及硬件地址配置方法 Download PDF

Info

Publication number
WO2021057105A1
WO2021057105A1 PCT/CN2020/095953 CN2020095953W WO2021057105A1 WO 2021057105 A1 WO2021057105 A1 WO 2021057105A1 CN 2020095953 W CN2020095953 W CN 2020095953W WO 2021057105 A1 WO2021057105 A1 WO 2021057105A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
circuit
wire
hardware address
circuits
Prior art date
Application number
PCT/CN2020/095953
Other languages
English (en)
French (fr)
Inventor
曾滔
王少华
葛静
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20867314.5A priority Critical patent/EP3965399B1/en
Publication of WO2021057105A1 publication Critical patent/WO2021057105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1113Address setting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/11Plc I-O input output
    • G05B2219/1122Program address module after installation, connect programmer into module
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25096Detect addresses of connected I-O, modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • This application relates to the field of electronic science and technology, and in particular to an electronic device and a hardware address configuration method.
  • an electronic device has multiple output circuits, and different output circuits may have the same or different output paths, and can output signals to the same or different output paths.
  • the control circuit in the current electronic device can control multiple output circuits through a communication bus, and the multiple output circuits are respectively configured with unique hardware addresses, so that the control circuit can independently control each output circuit.
  • configuration rules for configuring hardware addresses for output circuits, but most configuration rules require that the hardware addresses configured for any output circuit need to have a certain correspondence with the output path of the output circuit.
  • the hardware address of the output circuit is mostly manually configured manually.
  • the hardware address has K bits in total, and K dial switches are provided on the front panel of the output circuit, and the K dial switches correspond to the K bits of the hardware address one by one.
  • the operator first determines the hardware address of the output circuit according to the hardware address configuration rules and the output path corresponding to the output circuit, and then turns on or off the K dial switches mentioned above to make the K dial switches switch states Can characterize the K-bit hardware address.
  • the first dial switch corresponds to the first digit of the hardware address. When the first dial switch is turned on, the value of the first digit of the hardware address is "1", and when the first dial switch is turned off, the first digit of the hardware address is taken. The value is "0". After the output circuit is powered on, the output circuit can read the on or off status of the K dial switches on the front panel by itself, thereby obtaining and storing its own hardware address.
  • the embodiments of the present application provide an electronic device and a hardware address configuration method.
  • the control circuit inside the electronic device can configure the hardware address for each output circuit by itself, which not only helps reduce maintenance costs, but also improves the reliability of the electronic device. It also helps reduce the cost of electronic equipment.
  • an embodiment of the present application provides an electronic device.
  • the electronic device may be a multiple output device such as an electric vehicle charging pile. Specifically, it may be a charging pile with a fixed connection structure.
  • the electronic equipment mainly includes: a control circuit, N output circuits, and M output wires. Both M and N are integers greater than 1.
  • any output circuit of the N output circuits is the first output circuit, and the first output The output end of the circuit is coupled with the first output wire of the M output wires, and the first output circuit is used to send an output signal to the first output wire;
  • the control ends of the N output circuits are connected in parallel and coupled with the control circuit;
  • the control circuit includes M detection ports, the M detection ports are respectively coupled with M output wires;
  • the control circuit is used to turn on the first output circuit; the output signal sent by the first output circuit is received at any one of the M detection ports Then, it is determined that the output wire coupled to any detection port (that is, the detection port that receives the output signal) is the first output wire corresponding to the first output circuit; according to the configuration rule, the first output circuit is configured with the first output The hardware address corresponding to the wire; sending configuration information to the first output circuit, the configuration information is used to indicate the hardware address of the first output circuit; the first output circuit is also used to obtain and store the hardware address according to the configuration information.
  • the control circuit determines the first output wire corresponding to the first output circuit through the detection port that receives the output signal, and then can configure the hardware address corresponding to the first output wire for the first output circuit, and then pass the first output wire.
  • the configuration information indicates the hardware address to the first output circuit.
  • the electronic device further includes a detection circuit including M one-to-one corresponding input terminals and output terminals; the M input terminals of the detection circuit are respectively Coupled with M output wires, the M output terminals of the detection circuit are respectively coupled with M detection ports of the control circuit; the detection circuit can receive the output signal of the first output circuit through the first input terminal coupled with the first output wire, The received output signal is subjected to voltage division processing, and the output signal after the voltage division processing is provided to the control circuit through a first output terminal corresponding to the first input terminal.
  • the voltage value of the output signal after the voltage division of the detection circuit is reduced, which is beneficial to protect the control circuit from high voltage damage.
  • the control circuit may also determine one or the corresponding target output wire to be adjusted according to the configuration rule. Multiple target hardware addresses; sending a first control instruction to N output circuits, the first control instruction including control information and the one or more target hardware addresses; the first output circuit is also used to: receive a first control instruction; If one or more target hardware addresses include a stored hardware address, the control information is executed.
  • the first output circuit may also Send the identification information of the first output circuit to the control circuit; the control circuit is specifically configured to: send a second control instruction to N output circuits, the second control instruction includes the identification information of the first output circuit, and the second control instruction is used to turn on all the output circuits.
  • the first output circuit is unique, that is, one identification information can indicate only one output circuit. Exemplarily, the identification information may be the production serial number of the output circuit. In the embodiment of the present application, the control circuit can turn on the first output circuit through the identification information.
  • the control circuit may also be Before the N output circuits send the second control instruction, it is determined that the stored identification information does not include the identification information of the first output circuit; the identification information of the first output circuit is stored. It can also be understood that after determining that the stored identification information does not include the identification information of the first output circuit, the control circuit sends the second control instruction and saves the identification information of the first output circuit. Wherein, if the identification information stored by the control circuit does not include the identification information of the first output circuit, it means that the control circuit has not configured a hardware address for the first output circuit.
  • control circuit sends a second control instruction to execute the subsequent Hardware address configuration process.
  • control circuit can also save the identification information of the first output circuit. After the next power-on, the control circuit can no longer repeatedly configure the hardware address for the first output circuit to reduce the operating pressure of the control circuit.
  • the foregoing configuration rules include M The corresponding relationship between the output wire and the M hardware address ranges.
  • the M hardware address ranges do not overlap with each other; the control circuit is specifically configured to: obtain the hardware address range corresponding to the first output wire; The hardware address allocated to the first output circuit is determined from the unallocated hardware addresses in the hardware address range.
  • the above-mentioned electronic device may be charging Pile; electronic equipment also includes input wires, the input ends of the N output circuits are coupled with the input wires; the input wires are used to couple with the AC power source, which can receive the AC power provided by the AC power source, and provide the received AC power to the N output Circuit; a first output circuit, specifically used to: convert the alternating current received from the input wire into direct current, and output an output signal in the form of direct current to the corresponding first output wire.
  • an embodiment of the present application provides an electronic device, which may be a multiple output device such as an electric vehicle charging pile, and specifically, may be a charging pile with a flexible connection structure.
  • the electronic equipment mainly includes: control circuit, N output circuits, N switch circuits, M output wires, N and M are integers greater than 1; among them, the output terminals of N output circuits and the input of N switch circuits The control terminals of the N output circuits are coupled in parallel and coupled with the control circuit; any output circuit of the N output circuits is the first output circuit, and the output terminal of the first output circuit is connected to the first switch circuit.
  • the input end is coupled, the output end of the first switch circuit is coupled to M output wires; the control circuit is coupled to the detection wires of the M output wires; the first output circuit is used to send an output signal to the first switch circuit; the first switch The circuit is used to conduct the transmission path to any one of the M output wires under the control of the control circuit; the control circuit is used to turn on the first output circuit; and the N switch circuits are sequentially controlled to conduct to the detection wire If the output signal of the first output circuit is received from the detection wire after controlling any switching circuit to conduct to the transmission path of the detection wire, it is determined that any switching circuit (that is, after receiving the first output The switch circuit last turned on when the output signal of the circuit is the first switch circuit; according to the configuration rules, configure the first output circuit with a hardware address corresponding to the first switch circuit; send configuration information to the first output circuit, and the configuration information is used for Indicate the hardware address of the first output circuit; the first output circuit is also used to obtain and store the hardware address according to the configuration information.
  • the control circuit determines by detecting the wire that when the output signal is received, the switch circuit that is last turned on is the first switch circuit corresponding to the first output circuit, and the first output circuit can be configured with the switch circuit corresponding to the first switch circuit.
  • the hardware address can then be used to indicate the hardware address to the first output circuit through the first configuration information.
  • the electronic device further includes a detection circuit, the input terminal of the detection circuit is coupled with the detection wire, and the output terminal of the detection circuit is coupled with the control circuit; the detection circuit may Receive the output signal of the first output circuit, perform voltage division processing on the output signal, and provide the output signal after the voltage division processing to the control circuit.
  • the control circuit may also determine one or more target switch circuits of the target output wire to be adjusted ; According to the configuration rules, determine one or more hardware addresses corresponding to one or more target switch circuits; send a third control instruction to N output circuits, the third control instruction includes control information and one or more hardware addresses, and /Or, send a fourth control instruction to one or more target switch circuits, the fourth control instruction is used to instruct the target switch circuit to disconnect or turn on the transmission path between the output signal and the target output wire to be adjusted; the first output The circuit may also receive a third control instruction; if one or more hardware addresses include a stored hardware address, the control information is executed.
  • the first output circuit may also Send the identification information of the first output circuit to the control circuit;
  • the control circuit is specifically configured to: send a second control instruction to N output circuits, the second control instruction includes the identification information of the first output circuit, and the second control instruction is used to turn on the first output circuit.
  • An output circuit is specifically configured to: send a second control instruction to N output circuits, the second control instruction includes the identification information of the first output circuit, and the second control instruction is used to turn on the first output circuit.
  • control circuit may also determine that the stored identification information before sending the second control instruction to the N output circuits The identification information of the first output circuit is not included; the identification information of the first output circuit is stored.
  • the configuration rule includes the first output
  • the hardware address of the circuit is the identification information of the first switch circuit.
  • the electronic device is a charging pile;
  • the electronic device also includes an input wire, the input ends of the N output circuits are coupled with the input wire;
  • the input wire is used to couple with the AC power source, receive the AC power provided by the AC power source, and provide the AC power to the N output circuits;
  • the first output circuit Specifically used for: converting the alternating current received from the input wire into direct current, and outputting an output signal in the form of direct current to the corresponding first switch circuit.
  • an embodiment of the present application provides a hardware address configuration method, which can be applied to the control circuit in the electronic device provided in any one of the above-mentioned first aspects.
  • the method mainly includes: turning on a first output circuit, the first output circuit is any output circuit of N output circuits, the output terminal of the first output circuit is coupled with the first output wire of the M output wires, M and N All are integers greater than 1; after receiving the output signal of the first output circuit, it is determined that the output wire transmitting the output signal is the first output wire; according to the configuration rule, the hardware corresponding to the first output wire is configured for the first output circuit Address; send configuration information to the first output circuit, the configuration information is used to indicate the hardware address of the first output circuit.
  • the method further includes: determining one or more targets corresponding to the target output wire to be adjusted according to the configuration rules Hardware address; send a first control instruction to N output circuits, the first control instruction includes control information and one or more target hardware addresses, the first control instruction can indicate one or more target hardware addresses corresponding to one or more Each output circuit executes the above-mentioned control information.
  • turning on the first output circuit includes: sending a second control command to N output circuits,
  • the second control instruction includes identification information of the first output circuit, and the second control instruction is used to turn on the first output circuit.
  • the third possible implementation of the third aspect before turning on the first output circuit , It further includes: determining that the stored identification information does not include the identification information of the first output circuit; and storing the identification information of the first output circuit.
  • the configuration rule includes M output The corresponding relationship between the wire and the M hardware address ranges, the M hardware address ranges do not overlap each other; according to the configuration rule, configuring the hardware address corresponding to the first output wire for the first output circuit includes: obtaining the corresponding hardware address of the first output wire Hardware address range; the hardware address configured to the first output circuit is determined from the unallocated hardware addresses in the hardware address range.
  • an embodiment of the present application provides a hardware address configuration method, which can be applied to the control circuit in the electronic device provided in any one of the above second aspects.
  • the method mainly includes: turning on a first output circuit, the first output circuit is any one of the N output circuits, the output terminals of the N output circuits and the input terminals of the N switch circuits are respectively coupled in a one-to-one correspondence, and the first The output terminal of the switch circuit is coupled with M output wires, and M and N are both integers greater than 1.
  • the N switch circuits are controlled to lead to the transmission path of the detection wire in the M output wires; if any switch circuit is being controlled After the transmission path leading to the detection wire is turned on, and the output signal of the first output circuit is received from the detection wire, it is determined that any one of the switching circuits is the first switching circuit; according to the configuration rules, it is the first switching circuit;
  • the output circuit is configured with a hardware address corresponding to the first switch circuit; the configuration information is sent to the first output circuit, and the configuration information is used to indicate the hardware address of the first output circuit.
  • the method further includes: determining one or more target switch circuits of the target output wire to be adjusted; Rules, determine one or more hardware addresses corresponding to one or more target switch circuits; send a third control instruction to N output circuits, the third control instruction includes control information and one or more hardware addresses, the third control The instruction may instruct one or more output circuits corresponding to the one or more hardware addresses to execute control information; and/or, send a fourth control instruction to one or more target switch circuits, and the fourth control instruction is used to instruct the target switch The circuit breaks or conducts the transmission path between the output signal and the target output wire to be adjusted.
  • turning on the first output circuit includes: sending a second control command to N output circuits ,
  • the second control instruction includes the identification information of the first output circuit, and the second control instruction is used to turn on the first output circuit.
  • the method further includes: determining that the stored identification information does not include the identification information of the first output circuit; and storing the identification information of the first output circuit.
  • the configuration rule includes the first output
  • the hardware address of the circuit is the identification information of the first switch circuit.
  • Figure 1 is a schematic diagram of the structure of a multi-output electronic device
  • Figure 2 is a schematic diagram of a front panel of an output circuit
  • FIG. 3 is a schematic flowchart of a hardware address configuration method provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a detection circuit provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a hardware address configuration method provided by an embodiment of the application.
  • Figure 6 is a schematic diagram of the structure of a multi-output electronic device
  • FIG. 7 is a schematic flowchart of a hardware address configuration method provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a connection relationship between an output circuit, a switch circuit, and a detection wire provided by an embodiment of the application;
  • FIG. 9 is a schematic flowchart of a hardware address configuration method provided by an embodiment of the application.
  • Multi-channel output is a common function in electronic equipment, and electronic equipment can output multiple signals from multiple output ports at the same time.
  • devices such as multi-gun electric vehicle charging piles that can charge multiple electric vehicles at the same time, and multi-plug chargers that can charge multiple terminals at the same time can achieve multiple outputs.
  • the signal may be an electrical signal, for example, the signal may be a current, a voltage, etc., the signal may be a communication signal used to transmit information, or a charging signal used to provide electrical energy. The embodiments of the application do not limit this.
  • Coupled in this application refers to an energy transfer relationship, specifically, it can be electrical energy.
  • a and B coupling means that A and B can transfer electric energy to each other. It can also be understood that A and B can transfer electric charge to each other.
  • the electrical connection relationship it can be a direct electrical connection between A and B, or an indirect electrical connection between A and B through other conductors or electronic devices, so that A and B can transfer electrical energy to each other.
  • Figure 1 exemplarily shows a schematic structural diagram of an electronic device capable of multiple outputs.
  • the electronic device mainly includes a control circuit 101 and N output circuits (output circuit 1, output circuit 2, ..., Output circuit N) and M output wires (output wire 1,..., output wire M), N and M are both integers greater than 1.
  • each output circuit can output a signal.
  • the output circuit can include an internal power supply, which can be used to provide electrical energy to the output circuit, and the output circuit can further process the electrical energy provided by the internal power supply.
  • the output circuit can also be coupled with an external power supply located outside the electronic device to receive the power provided by the external power supply, and can further process the power provided by the external power supply to output the signal. It should be pointed out that the specific implementation form of the output circuit is related to the type and function of the electronic device, and the embodiment of the present application does not limit this.
  • the electronic device shown in FIG. 1 may be a multi-gun electric vehicle charging pile.
  • the electric vehicle charging pile also includes an input wire 103, and the input ends of the N output circuits can be connected in parallel through the input wire 103.
  • the input wire 103 may also be referred to as an AC input bus.
  • the input wire 103 is also coupled with an AC power source external to the electric vehicle charging pile, and can receive AC power provided by the AC power source.
  • each output circuit of the electric vehicle charging pile may include an AC-DC converter, so that each output circuit can convert the AC power received through the input wire 103 into DC power, so as to output the output in the form of DC power.
  • Signal, the signal output by the electric vehicle charging pile can also be called the charging current (charging voltage).
  • the output wire can also be referred to as a DC output bus.
  • FIG. 1 there is a one-to-many correspondence between output wires 1 to M and output circuits 1 to N, that is, among M output wires, each output wire corresponds to one or more outputs of N output circuits.
  • the output terminals of the circuit are coupled, and among the N output circuits, the output terminal of each output circuit is coupled with only one output wire of the M output wires.
  • each output circuit can respectively output a signal to the output wire coupled to it.
  • each output wire can receive the output signal of one or more output circuits coupled with it, and output the received total output signal to the electronic device.
  • the total output signal may include the respective output signals of one or more output circuits coupled with the output wire.
  • the total output signal may also be the respective output signals of one or more output circuits.
  • the output signal constitutes a mixed signal.
  • the total output signal transmitted by the output wire 1 is actually a mixed current of the charging current output by one or more of the output circuit 1, the output circuit 2, and the output circuit 3.
  • the total output signal includes only the charging current output by output circuit 1.
  • the total output signal includes the mixed current composed of the charging current of the output circuit 1 and the charging current of the output circuit 2.
  • the total output signal includes a mixed current composed of the charging current of the output circuit 1, the charging current of the output circuit 2, and the charging current of the output circuit 3.
  • each output wire of the M output wires can also correspond to an output path, the output wire can transmit the total output signal to the corresponding output path, and the output path can receive The total output signal for further processing.
  • the output wire 1 in FIG. 1 corresponds to the output path 1.
  • the output path 1 may include functional devices such as amplifiers and filters, so that the output path 1 can amplify and filter the output signal transmitted by the output wire 1. , And then output to the outside of the electronic device. It can be understood that for electronic devices of different types and/or different functions, there are multiple possibilities for specific implementation of the output path, which is not limited in the embodiment of the present application.
  • each output path can also include a charging gun.
  • the electric vehicle charging pile shown in Figure 1 is an M gun electric vehicle charging pile, which can be used for up to M electric vehicles at the same time.
  • Car charging. Take the charging gun 1 as an example. When charging an electric vehicle, the operator can insert the charging gun 1 into the charging port of the electric vehicle to be charged, and the total output signal (charging current) transmitted by the output wire 1 is output to the electric vehicle through the charging gun 1. Cars, thereby providing charging current for electric vehicles.
  • control circuit 101 can be a processor chip installed with an executable program. During the operation of the electronic device, the control circuit 101 can run its internal executable program, generate control instructions, and control the electronic device through the control instructions. The working status of each output circuit. Exemplarily, the control circuit 101 can control the working state of the output circuit A. It can also be understood that the control circuit 101 can control the opening or closing of the output circuit A, and the control circuit 101 can also control the output power and output of the output circuit A.
  • the current value of the current, the voltage value of the output voltage, etc. are not limited in the embodiment of the present application.
  • the control terminals of the output circuits 1 to N are connected in parallel, and are coupled to the control circuit 101 through the communication bus 102. In this case, only the control circuit 101 is occupied.
  • the ports coupled with the communication bus 102 are used to control the output circuits 1 to N, which greatly reduces the number of ports occupied by the control circuit 101.
  • the communication bus 102 may be a peripheral component interconnect standard (PCI) bus extended industry standard architecture (EISA) bus, controller area network (controller area network, CAN), etc.
  • the communication bus 102 can be divided into an address bus, a data bus, a control bus, and so on. For ease of presentation, only one line is used to represent the embodiment of the present application, but it does not mean that there is only one bus or one type of bus.
  • the control circuit 101 can send a first control instruction to the communication bus 102 to control the working status of each output circuit, so that the total output transmitted by each output wire can be adjusted. signal.
  • the output circuits 1 to N are all configured with unique hardware addresses, that is, the hardware addresses of any two output circuits of the output circuits 1 to N are different.
  • the hardware address of output circuit 1, the hardware address of output circuit 2, and the hardware address of output circuit 3 are all the same as Output wire 1 corresponds.
  • the hardware address of each output circuit can indicate the coupling relationship between the output circuit and any output wire
  • the control circuit 101 can select one or more hardware addresses corresponding to the output wire to be adjusted, One or more hardware addresses are determined as the target hardware addresses, and the output conditions of the corresponding one or more output circuits are adjusted through the one or more target hardware addresses, so that the total output signal of the output wire can be adjusted.
  • the output wire to be adjusted may be a transmission wire that needs to adjust the output power of the total signal, or it may be an output wire that turns on or stops the total output signal.
  • the control circuit 101 can determine that the hardware address corresponding to the output wire 1 is hardware address 1, hardware address 2, and hardware address 3.
  • hardware address 1 is the hardware address of output circuit 1
  • hardware address 2 is the hardware address of output circuit 2
  • hardware address 3 is the hardware address of output circuit 3.
  • the control circuit 101 can determine one or more hardware addresses from the hardware address 1, the hardware address 2, and the hardware address 3 as the target hardware address.
  • the control circuit 101 may send a first control instruction to the communication bus 102, and the first control instruction may include one or more target hardware addresses and control information.
  • the communication bus 102 transmits the first control instruction. Since the control terminals of the output circuits 1 to N are connected in parallel, all the output circuits 1 to N can receive the first control instruction. For each output circuit of the output circuits 1 to N, the output circuit determines whether one or more target hardware addresses in the first control instruction includes its own hardware address, and if so, the output circuit executes the one in the first control instruction Control information, if not, the output circuit can ignore the first control instruction, that is, the output circuit will not execute the control information in the first control instruction.
  • the first control instruction includes the target hardware address (hardware address 1), and control information ("on"), for the output circuits 2 to N, because one or more targets of the first control instruction
  • the hardware address does not include the hardware address of the output circuit itself, so the output circuits 2 to N can ignore the first control instruction.
  • the output circuit 1 if one or more target hardware addresses of the first control instruction include its own hardware address, the output circuit 1 executes the control information in the first control instruction, that is, the output circuit 1 turns on and outputs to the output wire 1. signal.
  • control information may include multiple possible types such as turning on, turning off, increasing output power, reducing output power, etc., which are not limited in the embodiment of the present application.
  • the control circuit 101 can select appropriate control information according to adjustment requirements. Exemplarily, if the power of the total output signal transmitted by the output wire 1 needs to be increased, the control circuit 101 can select the "on" type of control information to increase the output circuit that provides the output signal for the output wire 1 to increase the output. The power of the total output signal transmitted by the wire 1, the control circuit 101 can also select the "increase output power" type of control information to increase the output power of one or more output circuits coupled with the output wire 1, thereby increasing The power of the total output signal transmitted by the output wire 1.
  • FIG. 2 exemplarily shows a schematic diagram of a front panel of an output circuit. As shown in Figure 2, there are 8 dial switches on the front panel of the output circuit. The 8 dial switches can represent an 8-digit hardware address, and there is a one-to-one correspondence between the 8 dial switches and the 8-digit value of the hardware address.
  • the operator When installing the output circuit, the operator first determines the hardware address of the output circuit according to the hardware address configuration rules and the corresponding output wire of the output circuit, and then turns on or off the 8 dial switches on the front panel to make 8 dial switches.
  • the switch state of can be characterized as the 8-bit hardware address of the output circuit configuration.
  • the 8 switches in Figure 2 correspond to the first to eighth digits of the hardware address in the order from left to right, and the switch on state indicates that the corresponding hardware address digit value is "1", and the switch off state indicates the corresponding value.
  • the value of the number of bits in the hardware address is "0"
  • the first switch, the fourth switch and the sixth switch in Figure 2 are in the on state, and the other switches are in the off state, which can represent the hardware address 10010100.
  • the output circuit After the output circuit is powered on, the output circuit can read the on or off status of the eight dial switches on the front panel by itself, thereby obtaining and storing its own hardware address.
  • the embodiment of the present application provides a hardware address configuration method and electronic equipment, and the control circuit 101 can Configure the hardware address for each output circuit, thus eliminating the manual process of manually configuring the hardware address.
  • the technical solutions provided by the embodiments of the present application will be further explained. It can be understood that other types of multi-output electronic devices can also be applied to the technical solution, and for specific implementation, reference may be made to the following embodiments, which will not be repeated in the embodiments of the present application.
  • the first embodiment of the present application provides an electronic device. Please refer to the electric vehicle charging pile shown in FIG. 1, the control module 101 can perform one or more hardware address assignment operations after the electric vehicle charging pile is powered on. Every time a hardware address assignment operation is performed, a hardware address can be assigned to an output circuit.
  • the output circuit i is any one of the output circuits 1 to N, and it can also be understood that the value of i is any integer in [1, N].
  • the control circuit 101 can configure a hardware address for any one of the output circuits (output circuit i) according to the method shown in FIG. 3 after being powered on. As shown in Figure 3, it mainly includes the following steps:
  • the control circuit 101 turns on the output circuit i. Specifically, the control circuit 101 may send a second control instruction to the N output circuits through the communication bus 102, and the second control instruction includes the production serial number of the output circuit i.
  • each output circuit can broadcast its own identification information, for example, each output circuit broadcasts its own production serial number, so that the control circuit 101 can receive the production serial number of each output circuit.
  • the production serial number of the output circuit can be burned inside the output circuit during the production process of the output circuit, and can identify the production batch of the output circuit, manufacturer and other information.
  • the production serial number is unique, that is, one output circuit corresponds to a production serial number, and each output circuit in the electric vehicle charging pile broadcasts the production serial number after power-on, so that the control circuit 101 can identify the electric vehicle according to the received production serial number.
  • the various output circuits installed in the vehicle charging pile can also be understood as the control circuit 101 can identify which output circuits exist in the electric vehicle charging pile according to the received production serial number.
  • control circuit 101 can configure the hardware addresses for the output circuits 1 to N in sequence, that is, the value of i starts from “1” and the value is sequentially reached to "N", which can also be understood as taking i Integers in [1,N]. It should be pointed out that the different value of i in the embodiment of the present application is only to distinguish different output circuits in terms of expression, and does not mean that in actual applications, there are different values of "i" between different output circuits. The following variables "j", “h”, etc. are all the same and will not be repeated.
  • control circuit 101 and the output circuits 1 to N both include non-power-down volatile memories, such as electrically erasable programmable read only memory (EEPROM).
  • the control circuit 101 can store the production serial number of the output circuit configured with the hardware address in the non-power-down volatile memory, and the output circuits 1 to N can be stored in the non-power-down volatile memory.
  • the hardware address to be configured.
  • the control circuit 101 can determine whether the output circuit corresponding to the production serial number has been configured with a hardware address before executing S301 according to the stored production serial number .
  • the control circuit 101 does not store the identification information of the output circuit, that is, the identification information of the output circuit already stored in the control circuit 101 does not include the identification information of the output circuit. Therefore, the control circuit 101 needs to configure a hardware address for the newly installed output circuit.
  • the control circuit 101 may first determine whether the production serial number of the output circuit i has been stored. If the production serial number of the output circuit i has been stored, it means that the hardware address has been configured for the output circuit i, so there is no need to perform the configuration process shown in FIG. 3 again. If the production serial number of the output circuit i is not stored, it means that the output circuit i is an output circuit newly installed in the electric vehicle charging station. In this case, the control circuit 101 can continue to execute S301 and store the hardware address of the output circuit i . After the next power-on, the control circuit 101 can determine that the output circuit i has been configured with a hardware address according to the stored production serial number, and there is no need to configure the hardware address for the output circuit i again.
  • the output circuits 1 to N can all include receivers, so that all the output circuits 1 to N can receive the second control command.
  • the output circuit i determines that the production serial number in the second control instruction is its own production serial number, so the output circuit i turns on the output signal according to the second control instruction.
  • the second control command that is, no signal is output.
  • the control circuit 101 determines the output wire j corresponding to the output circuit i.
  • the output wire j is the output wire coupled to the output circuit i among the output wires 1 to M. Since the value of i is any integer in [1,N], the value of j can also be in [1,M] Any integer of. It should be pointed out that the coupling relationship between the output circuit i and the output wire j is preset by the operator. Among them, "pre-set" can be understood as, for the control circuit 101, the coupling relationship between the output circuit i and the output wire j is objectively existing, and only the operator can disassemble or install the output circuit i and the output wire j. The coupling relationship between output wires j.
  • control circuit 101 without considering the coupling relationship between the input and output circuit i and the output circuit j by the operator, the control circuit 101 usually does not know the output circuit i before assigning the hardware address to the output circuit i.
  • the coupling relationship with the output circuit j that is, the control circuit 101 does not know which output wire is specifically coupled with any output circuit, so the control circuit 101 needs to first determine which output wire is coupled with the output circuit i.
  • the control circuit 101 includes M detection ports, and the M detection ports are respectively coupled to the M output wires in a one-to-one correspondence.
  • the control circuit 101 can respectively detect through the M detection ports after sending the second control command.
  • the detection port j coupled with the output wire j can detect the high-voltage input, and the other detection ports can detect the low-voltage input (or no input), so the control circuit 101 can Make sure that the output terminal of the output circuit i is coupled with the output wire j.
  • the second control instruction can control the output circuit i to output a signal with a smaller output voltage, so as to protect the control circuit 101 from high voltage damage.
  • the output circuit i can be instructed to output an output signal with a voltage value of 200V through the second control.
  • the control circuit 101 and each output wire may be directly electrically connected, or may be indirectly electrically connected.
  • the electric vehicle charging pile may further include a detection circuit 104, that is, the control circuit 101 and each output wire are indirectly electrically connected through the detection circuit 104.
  • the detection circuit 104 includes M one-to-one corresponding input terminals and output terminals, wherein the M input terminals are respectively coupled to the M output wires in a one-to-one correspondence, and the M output terminals are respectively coupled to the M detection ports of the control circuit.
  • the input terminal j of the detection port is coupled with the output wire j
  • the output terminal j is coupled with the detection port j of the control circuit 101.
  • the detection circuit can detect the total output signal transmitted by the output wire j through the input terminal j, and perform voltage division processing on the total output signal according to a certain voltage division ratio, and provide the total output signal after the voltage division processing to the control through the output terminal j Detection port j of the circuit.
  • the detection circuit 104 may include M independent voltage dividers.
  • the voltage divider circuit between the input terminal 1 and the output terminal 1 includes a voltage divider resistor R1a and a voltage divider R1b
  • the voltage divider circuit between the input terminal j and the output terminal j includes a voltage divider resistor Rja and a voltage divider resistor R1b.
  • Voltage divider Rjb, the voltage divider circuit between the input terminal M and the output terminal M includes a voltage divider RMa and a voltage divider RMb.
  • the voltage divider resistors in different voltage divider circuits are connected in the same way, and then the input terminal j and the output terminal
  • the voltage divider circuit between j is described as an example, and other voltage dividers will not be described in detail.
  • one end of the voltage dividing resistor Rja is coupled to the output wire j through the input terminal j
  • the other end of the voltage dividing resistor Rja is coupled to one end of the voltage dividing resistor Rjb
  • the other end of the voltage dividing resistor Rjb is grounded.
  • the voltage divider circuit composed of the voltage divider resistor Rja and the voltage divider resistor Rjb can divide the total output signal of the output wire j detected by the input terminal j according to a certain voltage divider ratio, and the voltage divider can be processed as follows: Shown:
  • r ja is the resistance of the voltage dividing resistor Rja
  • r jb is the resistance of the voltage dividing resistor Rjb
  • V j is the voltage value of the total output signal of the output wire j
  • V′ j is the voltage of the output wire j after the voltage dividing process. The voltage value of the total output signal.
  • the control circuit 101 allocates a hardware address corresponding to the output wire j to the output circuit i according to the configuration rule.
  • the hardware address assigned to the output circuit i needs to meet the corresponding relationship with the output wire j, and the corresponding relationship is the configuration rule.
  • the configuration rule may be expressed as the correspondence between M output wires and M hardware address ranges. Furthermore, the M hardware address ranges may not overlap each other.
  • the configuration rule may be as shown in Table 1 below:
  • the output wires 1 to M respectively correspond to different hardware address ranges. It should be pointed out that the above hardware addresses are in decimal notation.
  • the control circuit 101 can also be assigned to the output circuit i. After the hardware address is determined, the hardware address allocated for the output circuit i is converted into a binary representation, and the hardware address in the binary form is sent to the output circuit i, or the hardware address range in the binary form can be directly set in the control circuit 101, The embodiments of the application do not limit this.
  • the control circuit 101 determines that the output circuit 2 is coupled with the output wire 1, according to the table
  • the configuration rule shown in 1 determines that the hardware address range corresponding to output wire 1 is [1,10].
  • the control circuit 101 can then determine an unallocated hardware address from the hardware address range [1, 10], such as the hardware address "2" as the hardware address of the output circuit 2.
  • the control circuit 101 can assign addresses to the output circuits coupled to the output wire 1 in order from small to large. For example, when determining the hardware address for the output circuit 2, the address may never be The hardware address with the smallest value among the allocated hardware addresses is allocated to the output circuit 2.
  • the control circuit 101 sends configuration information to the output circuit i, where the configuration information is used to indicate the hardware address allocated for the output circuit i.
  • the configuration information can also be sent in the form of configuration instructions.
  • the configuration instruction includes the production serial number and configuration information of output circuit i, and output circuits 1 to N can all receive the configuration instruction.
  • the output circuit i can obtain the hardware address allocated to it by the control circuit 101 according to the configuration information, and store the hardware address.
  • the configuration instruction may also instruct the output circuit i to close, thereby stopping the output signal.
  • the configuration instruction can carry control information ("closed") indicating that the output circuit i is closed, or the output circuit i can be closed by default after receiving the configuration information. The embodiment of the present application does not limit this. .
  • the hardware address is configured for the output circuit i.
  • the second embodiment of the present application also provides a possible implementation manner in which the control circuit 101 sequentially configures hardware addresses for the output circuits 1 to N, as shown in FIG. 5, which mainly includes the following steps:
  • the control circuit 101 starts the recognition. Generally, after the electric vehicle charging pile is powered on, the control unit 101 can automatically start the identification. Of course, the recognition can also be manually triggered by the operator, which is not limited in the embodiment of the present application. During the identification process, the control circuit 101 can identify the production serial number sent by each output circuit.
  • the control circuit 101 turns on the output circuit corresponding to the k-th production serial number. Specifically, the control circuit 101 may execute the hardware address assignment operation multiple times according to a preset execution sequence, thereby sequentially assigning hardware addresses to each output circuit. Exemplarily, the control circuit 101 may arrange the production serial numbers of each output circuit in the order of execution after obtaining the generation serial numbers of the N output circuits, and turn on the output circuits corresponding to each production serial number in turn according to the sorting result, so as to be N output circuits are assigned hardware addresses.
  • the control circuit 101 detects the respective total output signals of the output wires 1 to M respectively.
  • the control circuit 101 determines the output wire h coupled to the output circuit corresponding to the k-th production serial number.
  • the control circuit 101 closes the output circuit corresponding to the k-th production serial number, and allocates the hardware address corresponding to the output wire h to the output circuit corresponding to the k-th production serial number.
  • the electric vehicle charging pile also includes a discharging circuit 105.
  • the input terminals of the discharge circuit 105 are respectively coupled with the output wires 1 to N, and the control terminal of the discharge circuit 105 is coupled with the control circuit 101.
  • the discharge circuit 105 includes a grounding circuit, which can release the residual charges in the output wires 1 to M to the ground.
  • the method further includes S506: the control circuit 101 turns on the discharge circuit 105, and detects the total output signal of the output wire h.
  • S507 The control circuit 101 judges whether the voltage value of the total output signal of the output wire h is lower than the preset threshold value, if yes, continue to execute S508, if not, return to S506. It can be understood that there may be a certain time delay between successively executed S506, which is not limited in the embodiment of the present application.
  • S508 The control circuit 101 turns off the discharge circuit 105, and determines whether the current value of k is greater than N. If yes, execute S511 to end the process of configuring the hardware address. If not, continue to execute S509.
  • control circuit 101 can also determine whether the stored production serial number includes the k-th production serial number, if not, then continue to execute S510, if so, it can return and continue. Go to S508. In this case, when S508 is performed next, the operation of turning off the discharge circuit 105 may not be performed.
  • the third embodiment of the present application provides another electronic device.
  • the output circuit and the output wire are in a fixed coupling mode, that is, the coupling mode between the output circuit and the output wire is fixed.
  • the output circuit and The coupling relationship between the output wires will not change.
  • FIG. 6 it is a schematic structural diagram of another electronic device provided in the third embodiment of this application, and the electronic device is also an electronic device with multiple outputs.
  • the electronic device shown in FIG. 6 may also be used as an electric vehicle charging pile.
  • the electronic device includes a control circuit 101, N output circuits (output circuits 1 to N), N switch circuits (switch circuits K1 to KN), and M output wires (output wires 1 to M).
  • control terminals of the output circuits 1 to N are connected in parallel via the communication bus 102 and coupled with the control circuit 101.
  • the specific implementation form of the output circuits 1 to N, the specific implementation form of the control circuit 101, and the control method of the control circuit 101 to the output circuits 1 to N are similar to the electronic device shown in FIG. 1 and will not be repeated here.
  • the control terminals of the N switch circuits are respectively coupled with the control circuit 101, and the input terminals of the N switch circuits and the output terminals of the N output circuits are respectively coupled in a one-to-one correspondence, which can also be expressed as the output terminal of the output circuit i It is coupled with the input terminal of the switch circuit Ki, where the value of i is any integer in [1, N], or i takes an integer in [1, N].
  • the output terminal of each switch circuit can be coupled with M output wires, that is, the switch circuit Ki includes M output terminals, and the M output terminals are respectively coupled to the M output wires in a one-to-one correspondence.
  • the switch circuit Ki can conduct the transmission path between the output circuit i and any one of the M output wires.
  • the switch circuit may be a switch device or a switch circuit such as a relay and a switch transistor, which is not limited.
  • each output circuit is also configured with a unique hardware address, that is, the hardware addresses of any two output circuits of the output circuits 1 to N are different. Moreover, there is a corresponding relationship between the hardware address of the output circuit and the switch circuit coupled to the output circuit.
  • the hardware address of the output circuit 1 corresponds to the switch circuit K1
  • the hardware address of the output circuit 2 corresponds to the switch circuit K2.
  • the hardware address of each output circuit can indicate the coupling relationship between the output circuit and the switch circuit, and the control circuit 101 can adjust the total output signal of the target output wire by the following methods, including:
  • Step 1 The control circuit 101 determines one or more target switch circuits of the target output wire to be adjusted.
  • the target output wire is output wire 1, that is, the control circuit 101 needs to adjust the total output signal of output wire 1.
  • the control circuit 101 can control one or more switch units to turn on or off the transmission path between the corresponding output circuit and the output wire 1 according to the adjustment requirement.
  • the power of the total output signal of the output wire 1 needs to be increased, it is possible to control some of the switching units to turn on the corresponding output circuit and the transmission path of the output wire 1, and increase the output circuit of the output signal to the output wire 1. Quantity, thereby increasing the total output power of the output wire 1.
  • Step 2 The control circuit 101 determines one or more hardware addresses respectively corresponding to one or more target switch circuits according to the configuration rules.
  • the configuration rule is the rule for configuring the hardware address for the output circuit, which can indicate the corresponding relationship between the hardware address and the switch circuit. Based on the configuration rules, one or more hardware addresses corresponding to one or more target switch circuits can be determined.
  • Step 3 The control circuit 101 sends a third control instruction to the N output circuits through the communication bus, and/or sends a fourth control instruction to one or more target switch circuits.
  • the third control instruction is similar to the first control instruction in Embodiment 1, which will not be repeated here.
  • the fourth control instruction is used to instruct the target switch circuit to disconnect or turn on the transmission path between the output signal and the target output wire to be adjusted.
  • the fourth control instruction may include the identification information of the output terminal coupled to the target output wire among the M output terminals of the switch circuit Ki, and the switch circuit Ki may follow the instructions in the fourth control instruction The identification information is connected to the corresponding output terminal, thereby turning on the transmission path between the output circuit i and the target output wire.
  • control circuit 101 when the control circuit 101 adjusts the total output signal of the target output wire, it may only adjust the working state of one or more target output circuits (for example, increase or decrease the output power of one or more target output circuits). ), or only control the target switch circuit (such as disconnecting the transmission path between the target switch circuit and the target output wire), or adjust the working state of one or more target output circuits, and control the target switch circuit (such as disconnecting The transmission path between the target switch circuit and the target output wire is turned off while the target switch circuit is turned off), which can be flexibly selected according to adjustment requirements in a specific application process, which will not be listed in the embodiment of the present application.
  • the embodiment of the present application also provides a hardware address configuration method.
  • the control circuit 101 can configure a hardware address for each output circuit, thereby eliminating the need for manual hardware address configuration.
  • the control circuit 101 can configure a hardware address for any one of the output circuits according to the method shown in FIG. 7 after being powered on. As shown in Figure 7, it mainly includes the following steps:
  • S701 The control circuit 101 turns on the output circuit i.
  • S301 For a specific implementation manner, refer to S301, which will not be repeated here.
  • the control circuit 101 determines the switch circuit Ki corresponding to the output circuit i.
  • the coupling relationship between the output circuit i and the switch circuit Ki is preset, that is, it exists objectively. Only the operator can disassemble or install the operation to change the relationship between the output circuit i and the switch circuit Ki. Coupling relationship.
  • the control circuit 101 without considering the coupling relationship between the operator’s artificial input and output circuit i and the switch circuit Ki, the control circuit 101 usually does not know the output circuit i before assigning the hardware address to the output circuit i. The coupling relationship with the switching circuit Ki, therefore, the control circuit 101 needs to first determine which switching circuit the output circuit i is coupled with.
  • control circuit 101 is also coupled with the detection wire (output wire 1) among the M output wires, and the control circuit 101 can detect the total output signal on the detection wire.
  • the output wire 1 as a detection wire is only a specific example. In a specific implementation process, any output wire of the M output wires can be used as a detection wire.
  • control circuit 101 can sequentially control the N switching circuits to turn on the transmission path of the detection wire. After receiving the total output signal transmitted by the detection wire, it is determined that the switch is finally turned on before the total output signal is received.
  • the switch circuit of is the switch circuit Ki corresponding to the output circuit i. At this time, the total output signal transmitted by the detection wire is actually the output signal of the output circuit i.
  • the control circuit 101 sequentially controls the N switching circuits to conduct the transmission path of the detection wire (output wire 1). For each switch circuit except the switch circuit Ki, after the control circuit 101 controls the switch circuit to conduct to the transmission path of the detection wire, since the other output circuits except the output circuit i are in the off state, the detection wire is There will be no output signal transmission, and the control circuit 101 will detect a low voltage input (or no input) on the detection wire. As shown in FIG. 8, after the control circuit 101 controls the switch circuit Ki to conduct the transmission path of the detection wire (output wire 1), the output signal of the output circuit i can be output to the detection wire via the switch circuit Ki. At this time, the control circuit 101 Then, the high voltage input can be detected on the detection wire, and the control circuit 101 can then determine that the switch circuit last turned on is the switch circuit Ki corresponding to the output circuit i.
  • control circuit 101 in order to protect the control circuit 101 from high voltage damage, can control the output circuit i to output a signal with a smaller output voltage, for example, can control the output circuit i to output an output signal with a voltage value of 200V.
  • the control circuit 101 and the detection wire may be directly electrically connected, or may be indirectly electrically connected.
  • a detection circuit 104 can also be provided between the control circuit 101 and the detection wire, that is, the control circuit 101 and the detection wire are indirectly electrically connected through the detection circuit 104.
  • the input terminal of the detection circuit 104 is coupled with the detection wire, and the output terminal of the detection circuit 104 is coupled with the control circuit 101.
  • the detection circuit 104 may perform voltage division processing on the total output signal of the detection wire, and provide the control circuit 101 with the total output signal after the voltage division processing.
  • the detection circuit 104 may include a voltage divider circuit, for example, it may be a voltage divider circuit formed by Rja and Rjb in FIG. 4, which will not be repeated here.
  • the configuration rule configure a hardware address corresponding to the switch circuit Ki for the output circuit i.
  • the hardware address allocated for the output circuit i needs to meet the corresponding relationship with the switch circuit Ki, and the corresponding relationship is the configuration rule.
  • the configuration rule may be expressed as the hardware address of the output circuit i as the identification information of the first switch circuit Ki.
  • the identification information of the switch circuit Ki may be the serial number of the switch circuit Ki.
  • the serial numbers of the switch circuits K1 to KN in the electronic device are 1 to N, respectively, and the hardware addresses corresponding to the switch circuits K1 to KN are 1 to N, that is, the hardware addresses of output circuits 1 to N are 1 to N, respectively.
  • the sequence number of the switch circuit Ki is i
  • the hardware address of the corresponding output circuit i is i.
  • serial numbers of the switch circuits K1 to KN in the electronic device can also be of other types, for example, the serial numbers of K1 to KN are N to 1, respectively, and the hardware addresses of the output circuits 1 to N are N to 1, respectively.
  • the serial number of the switch circuit and the hardware address of the output circuit can also be expressed in binary form, which is not limited in the embodiment of the present application.
  • S704 Send configuration information to the output circuit i, where the configuration information is used to indicate the hardware address allocated for the output circuit i.
  • the configuration information is used to indicate the hardware address allocated for the output circuit i.
  • S304 which will not be repeated here.
  • the hardware address is configured for the output circuit i.
  • the fourth embodiment of the present application also provides a method for configuring hardware addresses, which can configure the hardware addresses for the output circuits 1 to N in FIG. 6 in sequence.
  • a method for configuring hardware addresses which can configure the hardware addresses for the output circuits 1 to N in FIG. 6 in sequence.
  • it mainly includes the following steps:
  • S901 The control circuit 101 starts the recognition.
  • S901 reference may be made to step S501 described in the second embodiment, and the rest will not be described in detail.
  • S902 The control circuit 101 turns on the output circuit corresponding to the k-th production serial number.
  • S902 refer to the above S502, and other details will not be described in detail.
  • S903 The control circuit 101 sequentially turns on the switch circuit.
  • each switch circuit can also be turned on sequentially in a variety of possible sequences from 2 to N+1, from N to 1, and so on.
  • S904 The control circuit 101 detects the total output signal of the detection wire.
  • S905 The control circuit 101 judges whether the voltage value of the total output signal is greater than the voltage threshold. If yes, continue to execute S907, if not, continue to execute S906.
  • the control circuit 101 can turn off the output circuit corresponding to the kth production serial number.
  • the switch circuit coupled to the output circuit corresponding to the k-th production serial number is determined, so that the hardware address can be assigned to the k-th production serial number. For the specific implementation of this step, refer to the third embodiment above, which will not be repeated here.
  • a discharge circuit 105 may also be provided between the detection wire and the control circuit 101.
  • the discharge circuit refer to the second embodiment above, which will not be repeated here.
  • the method further includes S908: the control circuit 101 turns on the discharge circuit 105, and detects the total output signal of the detection wire.
  • S909 The control circuit 101 judges whether the voltage value of the total output signal of the detection wire is lower than the preset threshold value, if so, continues to execute S910, if not, returns to S908.
  • S910 to S912 refer to the foregoing S508 to S510, which will not be repeated here. After S912 is executed, return and continue to execute S903.
  • the electronic device and hardware address configuration method provided by the embodiments of the present application wherein the control circuit inside the electronic device can configure the hardware address for each output circuit by itself, eliminating the need for manual hardware configuration.
  • the addressing process can not only reduce maintenance costs, but also reduce manual intervention, thereby reducing errors and improving the reliability of electronic equipment.
  • there is no need to provide a dial switch on the front panel of the output circuit which is beneficial to reduce the cost of the output circuit, and therefore, is beneficial to reduce the cost of electronic equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electronic Switches (AREA)

Abstract

本申请提供一种电子设备及硬件地址配置方法,该电子设备可以是电动汽车充电桩。其中,电子设备包括控制电路、N个输出电路、M个输出导线,其中,N个输出电路中的任一输出电路为第一输出电路。控制电路通过接收到输出信号的检测端口确定与第一输出电路对应的第一输出导线,进而可以为第一输出电路配置与第一输出导线对应的硬件地址,进而通过第一配置信息向第一输出电路指示该硬件地址。采用本申请所提供的技术方案,有利于减少维护成本,提高电子设备的可靠性,降低电子设备的生产成本。

Description

一种电子设备及硬件地址配置方法
相关申请的交叉引用
本申请要求在2019年09月23日提交中国专利局、申请号为201910900517.9、申请名称为“一种电子设备及硬件地址配置方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子科学技术领域,尤其涉及一种电子设备及硬件地址配置方法。
背景技术
随着电子市场的发展,大多数电子设备都具备了多路输出的功能。一般来说,电子设备中具有多个输出电路,不同的输出电路可以具有相同或不同的输出路径,能够向相同或不同的输出路径输出信号。
当前的电子设备中的控制电路可以通过一条通信总线控制多个输出电路,上述多个输出电路中分别配置有具有唯一性的硬件地址,使控制电路可以独立控制各个输出电路。通常,为输出电路配置硬件地址的配置规则存在多种形式,但大多数配置规则都要求为任一输出电路配置的硬件地址需要与该输出电路的输出路径存在一定的对应关系。
目前,输出电路的硬件地址多是通过人工手动配置的。例如,硬件地址共有K位,输出电路的前面板上设置有K个拨号开关,K个拨号开关与硬件地址的K位一一对应。操作人员在安装输出电路时,首先根据硬件地址配置规则和输出电路对应的输出路径,确定该输出电路的硬件地址,之后,分别开启或关闭上述K个拨号开关,使K个拨号开关的开关状态可以表征K位硬件地址。例如,第一个拨号开关对应硬件地址第一位,第一个拨号开关开启时表示硬件地址的第一位取值为“1”,第一个拨号开关关闭时表示硬件地址的第一位取值为“0”。在输出电路上电后,输出电路可以自行读取前面板上K个拨号开关的开启或关闭状态,从而得到并存储自身的硬件地址。
然而,通过人工手动配置硬件地址的实现方式较为繁琐,对维护人员要求较高,且容易出现操作失误。
发明内容
有鉴于此,本申请实施例提供一种电子设备及硬件地址配置方法,电子设备内部的控制电路可以自行为各个输出电路配置硬件地址,既有利于减少维护成本,又有利于提高电子设备的可靠性,还有利于降低电子设备的成本。
第一方面,本申请实施例提供一种电子设备,该电子设备可以是电动汽车充电桩等多路输出设备,具体来说,可以是固定连接结构的充电桩。电子设备中主要包括:控制电路、N个输出电路、M个输出导线,M和N皆为大于1的整数;其中,N个输出电路中的任一输出电路为第一输出电路,第一输出电路的输出端与M个输出导线中的第一输出导线耦合,第一输出电路用于向第一输出导线发送输出信号;N个输出电路的控制端并联,且与控制 电路耦合;控制电路包括M个检测端口,该M个检测端口分别与M个输出导线耦合;控制电路,用于开启第一输出电路;在M个检测端口中的任一检测端口接收到第一输出电路发送的输出信号后,确定与该任一检测端口(也就是接收到输出信号的检测端口)耦合的输出导线为与第一输出电路对应的第一输出导线;根据配置规则为第一输出电路配置与第一输出导线对应的硬件地址;向第一输出电路发送配置信息,配置信息用于指示第一输出电路的硬件地址;第一输出电路,还用于根据配置信息获得并存储硬件地址。采用上述技术方案,控制电路通过接收到输出信号的检测端口确定与第一输出电路对应的第一输出导线,进而可以为第一输出电路配置与第一输出导线对应的硬件地址,进而通过第一配置信息向第一输出电路指示该硬件地址。上述过程中省去了人工为第一输出电路配置硬件地址的过程,因此,有利于减少维护成本。而且,避免了人工操作失误的干扰,又有利于提高电子设备的可靠性。此外,输出电路中也无需设置用于配置硬件地址的拨号开关,还有利于降低电子设备整体上的生产成本。
根据第一方面,在第一方面的第一种可能的实现方式中,电子设备还包括检测电路,该检测电路包括M个一一对应的输入端和输出端;检测电路的M个输入端分别与M个输出导线耦合,检测电路的M个输出端分别与控制电路的M个检测端口耦合;检测电路可以通过与第一输出导线耦合的第一输入端接收第一输出电路的输出信号,对接收到的输出信号进行分压处理,并将分压处理后的输出信号通过第一输入端对应的第一输出端提供给控制电路。采用上述技术方案,经检测电路分压后的输出信号的电压值降低,有利于保护控制电路不受高压损坏。
根据第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,控制电路还可以根据配置规则,确定待调整的目标输出导线对应的一个或多个目标硬件地址;向N个输出电路发送第一控制指令,第一控制指令包括控制信息和所述一个或多个目标硬件地址;第一输出电路,还用于:接收第一控制指令;若一个或多个目标硬件地址中包括已存储的硬件地址,则执行该控制信息。采用上述技术方案,可以减少需要配置硬件地址的输出模块的数量,有利于节省控制电路的计算资源。
根据第一方面,或第一方面的第一至第二种可能的实现方式中的任一种可能的实现方式,在第一方面的第三种可能的实现方式中,第一输出电路还可以向控制电路发送第一输出电路的标识信息;控制电路具体用于:向N个输出电路发送第二控制指令,第二控制指令包括第一输出电路的标识信息,第二控制指令用于开启所述第一输出电路。标识信息具有唯一性,即一个标识信息可以指示唯一一个输出电路。示例性的,该标识信息可以是输出电路的生产序列号。本申请实施例中,控制电路可以通过标识信息开启第一输出电路。
根据第一方面,或第一方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第一方面的第四种可能的实现方式中,控制电路还可以在向N个输出电路发送第二控制指令之前,确定已存储的标识信息中不包括第一输出电路的标识信息;存储第一输出电路的标识信息。也可以理解为,控制电路在确定已存储的标识信息中不包括第一输出电路的标识信息后,再发送第二控制指令,并保存该第一输出电路的标识信息。其中,若控制电路已存储的标识信息中不包括第一输出电路的标识信息,说明控制电路尚未为第一输出电路配置硬件地址,在此情况下,控制电路发送第二控制指令,以执行后续硬件地址配置过程。此外,控制电路还可以保存第一输出电路的标识信息,则在下一次上电后,控制电路便可以不再重复为第一输出电路配置硬件地址,以降低控制电路的运行压力。
根据第一方面,或第一方面的第一至第四种可能的实现方式中的任一种可能的实现方式,在第一方面的第五种可能的实现方式中,上述配置规则包括M个输出导线与M个硬件地址范围之间的对应关系,在一种可能的实现方式中,该M个硬件地址范围互不重叠;控制电路具体用于:获取第一输出导线对应的硬件地址范围;从硬件地址范围内的、未被分配的硬件地址中确定配置给第一输出电路的硬件地址。
根据第一方面,或第一方面的第一至第五种可能的实现方式中的任一种可能的实现方式,在第一方面的第六种可能的实现方式中,上述电子设备可以为充电桩;电子设备还包括输入导线,N个输出电路的输入端与输入导线耦合;输入导线,用于与交流电源耦合,可以接收交流电源提供的交流电,并将接收到的交流电提供给N个输出电路;第一输出电路,具体用于:将从输入导线接收到的交流电转换为直流电,并向对应的第一输出导线输出直流电形式的输出信号。
第二方面,本申请实施例提供一种电子设备,该电子设备可以是电动汽车充电桩等多路输出设备,具体来说,可以是柔性连接结构的充电桩。电子设备中主要包括:控制电路、N个输出电路、N个开关电路,M个输出导线,N和M皆为大于1的整数;其中,N个输出电路的输出端和N个开关电路的输入端分别一一对应耦合,N个输出电路的控制端并联且与控制电路耦合;N个输出电路中的任一输出电路为第一输出电路,第一输出电路的输出端与第一开关电路的输入端耦合,第一开关电路的输出端与M个输出导线耦合;控制电路与M个输出导线中的检测导线耦合;第一输出电路,用于向第一开关电路发送输出信号;第一开关电路,用于在控制电路的控制下,导通向M个输出导线中的任一输出导线的传输路径;控制电路,用于开启第一输出电路;依次控制N个开关电路导通向检测导线的传输路径;若在控制任一开关电路导通向检测导线的传输路径后,从检测导线接收到第一输出电路的输出信号,则确定该任一开关电路(也就是在接收到第一输出电路的输出信号时最后开启的开关电路)为第一开关电路;根据配置规则,为第一输出电路配置与第一开关电路对应的硬件地址;向第一输出电路发送配置信息,配置信息用于指示第一输出电路的硬件地址;第一输出电路,还用于根据配置信息获得并存储硬件地址。采用上述技术方案,控制电路通过检测导线确定在接收到输出信号时,最后开启的开关电路为第一输出电路对应的第一开关电路,进而可以为第一输出电路配置与第一开关电路对应的硬件地址,进而可以通过第一配置信息向第一输出电路指示该硬件地址。上述过程中省去了人工为第一输出电路配置硬件地址的过程,因此,有利于减少维护成本。而且,避免了人工操作失误的干扰,又有利于提高电子设备的可靠性。此外,输出电路中也无需设置用于配置硬件地址的拨号开关,还有利于降低电子设备整体上的生产成本。
根据第二方面,在第二方面的第一种可能的实现方式中,电子设备中还包括检测电路,检测电路的输入端与检测导线耦合,检测电路的输出端与控制电路耦合;检测电路可以接收第一输出电路的输出信号,对输出信号进行分压处理,将分压处理后的输出信号提供给控制电路。
根据第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,控制电路还可以确定待调整的目标输出导线的一个或多个目标开关电路;根据配置规则,确定一个或多个目标开关电路分别对应的一个或多个硬件地址;向N个输出电路发送第三控制指令,第三控制指令包括控制信息和一个或多个硬件地址,和/或,向一个或多个目标开关电路发送第四控制指令,第四控制指令用于指示目标开关电路断开或导通输 出信号与待调整的目标输出导线之间的传输路径;第一输出电路,还可以接收第三控制指令;若一个或多个硬件地址中包括已存储的硬件地址,则执行控制信息。
根据第二方面,或第二方面的第一至第二种可能的实现方式中的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,第一输出电路还可以向控制电路发送第一输出电路的标识信息;控制电路具体用于:向N个输出电路发送第二控制指令,第二控制指令包括第一输出电路的标识信息,第二控制指令用于开启第一输出电路。
根据第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,控制电路还可以向N个输出电路发送第二控制指令之前,确定已存储的标识信息中不包括第一输出电路的标识信息;存储第一输出电路的标识信息。
根据第二方面,或第二方面的第一至第四种可能的实现方式中的任一种可能的实现方式,在第二方面的第五种可能的实现方式中,配置规则包括第一输出电路的硬件地址为第一开关电路的标识信息。
根据第二方面,或第二方面的第一至第五种可能的实现方式中的任一种可能的实现方式,在第二方面的第六种可能的实现方式中,电子设备为充电桩;电子设备还包括输入导线,N个输出电路的输入端与输入导线耦合;输入导线,用于与交流电源耦合,接收交流电源提供的交流电,并将交流电提供给N个输出电路;第一输出电路,具体用于:将从输入导线接收到的交流电转换为直流电,并向对应的第一开关电路输出直流电形式的输出信号。
第三方面,本申请实施例提供一种硬件地址配置方法,该方法可以应用于上述第一方面中任一项所提供的电子设备中的控制电路。该方法主要包括:开启第一输出电路,第一输出电路为N个输出电路中的任一输出电路,第一输出电路的输出端与M个输出导线中的第一输出导线耦合,M和N皆为大于1的整数;在接收到第一输出电路的输出信号后,确定传输该输出信号的输出导线为第一输出导线;根据配置规则为第一输出电路配置与第一输出导线对应的硬件地址;向第一输出电路发送配置信息,该配置信息用于指示第一输出电路的硬件地址。
根据第三方面,在第三方面的第一种可能的实现方式中,向第一输出电路发送配置信息之后,还包括:根据配置规则,确定待调整的目标输出导线对应的一个或多个目标硬件地址;向N个输出电路发送第一控制指令,第一控制指令包括控制信息和一个或多个目标硬件地址,该第一控制指令可以指示一个或多个目标硬件地址分别对应的一个或多个输出电路执行上述控制信息。
根据第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,开启第一输出电路,包括:向N个输出电路发送第二控制指令,第二控制指令包括第一输出电路的标识信息,第二控制指令用于开启第一输出电路。
根据第三方面,或第三方面的第一至第二种可能的实现方式中的任一种可能的实现方式,在第三方面的第三种可能的实现方式中,开启第一输出电路之前,还包括:确定已存储的标识信息中不包括第一输出电路的标识信息;存储第一输出电路的标识信息。
根据第三方面,或第三方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第三方面的第四种可能的实现方式中,配置规则包括M个输出导线与M个硬件地址范围之间的对应关系,M个硬件地址范围互不重叠;根据配置规则为第一输出电路配置与第一输出导线对应的硬件地址,包括:获取第一输出导线对应的硬件地址范围;从硬件 地址范围内的未被分配的硬件地址中确定配置给第一输出电路的硬件地址。
第四方面,本申请实施例提供一种硬件地址配置方法,该方法可以应用于上述第二方面中任一项所提供的电子设备中的控制电路。该方法主要包括:开启第一输出电路,第一输出电路为N个输出电路中的任一输出电路,N个输出电路的输出端与N个开关电路的输入端分别一一对应耦合,第一开关电路的输出端与M个输出导线耦合,M和N皆为大于1的整数;依次控制N个开关电路导通向M个输出导线中的检测导线的传输路径;若在控制任一开关电路导通向所述检测导线的传输路径后,从所述检测导线接收到所述第一输出电路的输出信号,则确定所述任一开关电路为第一开关电路;根据配置规则,为第一输出电路配置与第一开关电路对应的硬件地址;向第一输出电路发送配置信息,配置信息用于指示第一输出电路的硬件地址。
根据第四方面,在第四方面的第一种可能的实现方式中,向第一输出电路发送配置信息之后,还包括:确定待调整的目标输出导线的一个或多个目标开关电路;根据配置规则,确定一个或多个目标开关电路分别对应的一个或多个硬件地址;向N个输出电路发送第三控制指令,第三控制指令包括控制信息和一个或多个硬件地址,该第三控制指令可以指示上述一个或多个硬件地址分别对应的一个或多个输出电路执行控制信息;和/或,向一个或多个目标开关电路发送第四控制指令,第四控制指令用于指示目标开关电路断开或导通输出信号与待调整的目标输出导线之间的传输路径。
根据第四方面,或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,开启第一输出电路,包括:向N个输出电路发送第二控制指令,第二控制指令包括第一输出电路的标识信息,第二控制指令用于开启第一输出电路。
根据第四方面,或第四方面的第一至第二种可能的实现方式中的任一种可能的实现方式,在第四方面的第三种可能的实现方式中,向N个输出电路发送第二控制指令之前,还包括:确定已存储的标识信息中不包括第一输出电路的标识信息;存储第一输出电路的标识信息。
根据第四方面,或第四方面的第一至第三种可能的实现方式中的任一种可能的实现方式,在第四方面的第四种可能的实现方式中,配置规则包括第一输出电路的硬件地址为第一开关电路的标识信息。
本申请的这些方面或其它方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种多路输出电子设备结构示意;
图2为一种输出电路前面板示意图;
图3为本申请实施例提供的一种硬件地址配置方法流程示意图;
图4为本申请实施例提供的一种检测电路结构示意图;
图5为本申请实施例提供的一种硬件地址配置方法流程示意图;
图6为一种多路输出电子设备结构示意;
图7为本申请实施例提供的一种硬件地址配置方法流程示意图;
图8为本申请实施例提供的一种输出电路、开关电路、检测导线之间的连接关系示意图;
图9为本申请实施例提供的一种硬件地址配置方法流程示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
多路输出是电子设备中的常见功能,电子设备可以从多个输出端口同时输出多个信号。例如可以同时给多辆电动汽车充电的多枪电动汽车充电桩、可以同时给多个终端充电的多插头充电器等设备都可以实现多路输出。需要指出的是,在本申请实施例中,信号可以为电信号,例如信号可以是电流、电压等等,信号可以是用于传递信息的通信信号,也可以是用于提供电能的充电信号,本申请实施例对此并不多作限制。
以下实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
需要指出的是,本申请中“耦合”指的是能量传递关系,具体来说,可以是电能。例如,“A与B”耦合指的是A与B之间可以互相传递电能,也可以理解为,A与B之间可以互相传递电荷。反应在电连接关系上,便可以是A与B之间直接电连接,或者也可以是A与B之间通过其它导体或电子器件间接电连接,从而使得A与B之间可以互相传递电能。
图1示例性示出了一种能够实现多路输出的电子设备结构示意图,如图1所示,电子设备主要包括控制电路101、N个输出电路(输出电路1、输出电路2、……、输出电路N)和M个输出导线(输出导线1、……、输出导线M),N和M皆为大于1的整数。
图1中,每个输出电路都可以输出信号,具体来说,输出电路可以包括内部电源,该内部电源可以用于为输出电路提供电能,输出电路可以对内部电源提供的电能作进一步处理,从而输出信号,输出电路也可以与位于电子设备之外的外部电源耦合,接收外部电源提供的电能,还可以对外部电源提供的电能作进一步处理,从而输出信号。需要指出的是,输出电路的具体实现形式与电子设备的类型、功能相关,本申请实施例对此并不多作限制。
示例性的,图1所示的电子设备可以为一种多枪式电动汽车充电桩。电动汽车充电桩还包括输入导线103,N个输出电路的输入端可以通过输入导线103并联。输入导线103也可以称为交流输入母线,输入导线103还与电动汽车充电桩外部的交流电源耦合,可以接收交流电源提供的交流电。可选地,电动汽车充电桩的每个输出电路中皆可以包括交流-直流转换器,使得每个输出电路皆可以将通过输入导线103接收到的交流电转换为直流电,从而可以输出直流电形式的输出信号,电动汽车充电桩输出的信号也可以称为充电电流(充电电压)。
输出导线也可以称为直流输出母线。如图1所示,输出导线1至M与输出电路1至N之间为一对多的对应关系,即M个输出导线中,每个输出导线与N个输出电路中的一个或多个输出电路的输出端耦合,且,N个输出电路中,每个输出电路的输出端只与M个输 出导线中的一个输出导线耦合。在N个输出电路中,每个输出电路可以分别向与其耦合的输出导线输出信号。
在M个输出导线中,每个输出导线皆可以接收与其耦合的一个或多个输出电路的输出信号,并将接收到的总输出信号输出电子设备。其中,总输出信号可以包括与该输出导线耦合的一个或多个输出电路各自的输出信号,在该一个或多个输出电路同时输出时,该总输出信号还可以是一个或多个输出电路各自的输出信号构成的混合信号。例如图1中,输出导线1传输的总输出信号实际为输出电路1、输出电路2和输出电路3中一个或多个输出电路输出的充电电流的混合电流。
例如,当只有输出电路1输出充电电流,且输出电路2和输出电路3不输出充电电流时,总输出信号中只包括输出电路1输出的充电电流,当输出电路1和输出电路2同时输出充电电流,且输出电路3不输出充电电流时,总输出信号中包括输出电路1的充电电流和输出电路2的充电电流构成的混合电流,当输出电路1、输出电路2和输出电路3同时输出充电电流时,总输出信号中包括输出电路1的充电电流、输出电路2的充电电流和输出电路3的充电电流构成的混合电流。
在一种可能的实现方式中,如图1所示,M个输出导线中每个输出导线还可以对应一个输出路径,输出导线可以向对应的输出路径传输总输出信号,输出路径可以对接收到的总输出信号作进一步处理。示例性的,图1中输出导线1对应有输出路径1,输出路径1中可以包括放大器、滤波器等功能器件,使得输出路径1可以对输出导线1传输的输出信号进行放大、滤波等处理后,再输出至电子设备外部。可以理解,对于不同类型和/或不同功能的电子设备,输出路径的具体实现存在多种可能,本申请实施例对此并不多作限定。
以电动汽车充电桩为例,如图1所示,每个输出路径中还可以包括一个充电枪,图1所示的电动汽车充电桩为M枪电动汽车充电桩,能够同时最多为M辆电动汽车充电。以充电枪1为例,操作人员在对电动汽车充电时,可以将充电枪1插入待充电的电动汽车的充电口,输出导线1传输的总输出信号(充电电流)经充电枪1输出至电动汽车,从而为电动汽车提供充电电流。
如图1所示,多路输出的电子设备中往往安装有多个输出电路,每个输出电路的控制端皆与控制电路101耦合,控制电路101可以分别控制各个输出电路的工作状态。一般来说,控制电路101可以是安装有可执行程序的处理器芯片,在电子设备工作过程中,控制电路101可以运行其内部的可执行程序,生成控制指令,并通过控制指令控制电子设备中各个输出电路的工作状态。示例性的,控制电路101可以控制输出电路A的工作状态,也可以理解为,控制电路101可以控制输出电路A的开启或关闭,以及,控制电路101还可以控制输出电路A的输出功率、输出电流的电流值、输出电压的电压值等等,本申请实施例对此并不多作限制。
在一种可能的实现方式中,为了节省控制电路101的端口占用,输出电路1至N的控制端并联,并通过通信总线102与控制电路101耦合,在此情况下,只占用了控制电路101中与通信总线102耦合的端口来实现对输出电路1至N的控制,大大降低了占用控制电路101的端口的数量。其中,通信总线102可以是外设部件互连标准(peripheral component interconnect,PCI)总线扩展工业标准结构(extended industry standard architecture,EISA)总线、控制器局域网络(controller area network,CAN)等。通信总线102可以分为地址总线、数据总线、控制总线等。为便于表示,本申请实施例中仅用一条线表示,但并不表示仅有 一根总线或一种类型的总线。
在一种可能的实现方式中,电子设备处于工作过程时,控制电路101可以向通信总线102发送第一控制指令,分别控制各个输出电路的工作状态,从而可以调整各个输出导线所传输的总输出信号。具体来说,输出电路1至N中皆配置有具有唯一性的硬件地址,即输出电路1至N中任两个输出电路的硬件地址皆不相同。通常,输出电路的硬件地址与该输出电路所耦合的输出导线之间存在对应关系,以图1为例,输出电路1的硬件地址、输出电路2的硬件地址和输出电路3的硬件地址皆与输出导线1对应。在此情况下,每个输出电路的硬件地址便可以表示该输出电路与任一输出导线之间的耦合关系,控制电路101便可以从待调整的输出导线对应的一个或多个硬件地址中,确定出一个或多个硬件地址作为目标硬件地址,并通过该一个或多个目标硬件地址调整对应的一个或多个输出电路的输出情况,从而可以调整输出导线的总输出信号。
其中,待调整的输出导线可以是需要调整总数才信号的输出功率的传输导线,或者也可以是开启或停止总输出信号的输出导线。示例性的,假设控制电路101需要调整输出导线1所传输的总输出信号的功率,在此情况下,控制电路101可以确定输出导线1对应的硬件地址为硬件地址1、硬件地址2和硬件地址3,其中,硬件地址1为输出电路1的硬件地址,硬件地址2为输出电路2的硬件地址,硬件地址3为输出电路3的硬件地址。控制电路101可以从硬件地址1、硬件地址2和硬件地址3中确定一个或多个硬件地址作为目标硬件地址。
继而,控制电路101可以向通信总线102发送第一控制指令,该第一控制指令中可以包括一个或多个目标硬件地址,以及控制信息。通信总线102传输该第一控制指令,由于输出电路1至N的控制端并联,因此输出电路1至N皆可以接收到该第一控制指令。针对输出电路1至N中的每一个输出电路,输出电路判断第一控制指令中的一个或多个目标硬件地址内是否包括自身的硬件地址,若是,则输出电路执行该第一控制指令中的控制信息,若否,则输出电路可以忽略该第一控制指令,也就是说该输出电路并不会执行该第一控制指令中的控制信息。
示例性的,假设第一控制指令中包括目标硬件地址(硬件地址1),以及控制信息(“开启”),则对于输出电路2至N而言,由于第一控制指令的一个或多个目标硬件地址中不包括输出电路自身的硬件地址,因此输出电路2至N可以忽略该第一控制指令。对于输出电路1而言,第一控制指令的一个或多个目标硬件地址中包括自身的硬件地址,则输出电路1执行第一控制指令中的控制信息,即输出电路1开启向输出导线1输出信号。
一般来说,控制信息可以包括开启、关闭、增大输出功率、减小输出功率等等多种可能的类型,本申请实施例对此并不多作限定。控制电路101可以根据调整需求选择合适的控制信息。示例性的,若需要增大输出导线1所传输的总输出信号的功率,则控制电路101可以选择“开启”类型的控制信息,以增加为输出导线1提供输出信号的输出电路从而增大输出导线1所传输的总输出信号的功率,控制电路101也可以选择“增大输出功率”类型的控制信息,以增大与输出导线1耦合的一个或多个输出电路的输出功率,从而增大输出导线1所传输的总输出信号的功率。
由上述过程可见,控制电路101是通过硬件地址实现对各个输出电路的单独控制的。目前,输出电路的硬件地址多需通过人工手动配置。以电动汽车充电桩为例,图2示例性示出了一种输出电路前面板示意图。如图2所示,输出电路的前面板上设置有8个拨号开 关,该8个拨号开关可以表征8位的硬件地址,且8个拨号开关与硬件地址的8位数值之间一一对应。
操作人员在安装输出电路时,首先根据硬件地址配置规则和输出电路对应的输出导线,确定该输出电路的硬件地址,之后,分别开启或关闭前面板上的8个拨号开关,使8个拨号开关的开关状态可以表征为该输出电路配置的8位硬件地址。例如,图2中的8个开关按从左到右的顺序分别对应硬件地址的第一至第八位数值,且开关开启状态表示对应的硬件地址位数值为“1”,开关关闭状态表示对应的硬件地址位数值为“0”,图2中第一个开关、第四个开关和第六个开关为开启状态,其它开关为关闭状态,则可以表示硬件地址10010100。在输出电路上电后,输出电路便可以自行读取前面板上8个拨号开关的开启或关闭状态,从而得到并存储自身的硬件地址。
然而,人工手动配置硬件地址的操作过程较为繁琐,对维护人员要求较高,且容易出现操作失误,有鉴于此,本申请实施例提供一种硬件地址的配置方法及电子设备,控制电路101可以为各个输出电路配置硬件地址,从而省去人工手动配置硬件地址的过程。接下来,以电动汽车充电桩为例,对本申请实施例所提供的技术方案作进一步说明。可以理解,其它类型的多路输出电子设备也可以适用本技术方案,其具体实现可以参考接下来的实施例,本申请实施例对其不再多作赘述。
本申请实施例一提供一种电子设备。请参考图1所示的电动汽车充电桩,控制模块101可以在电动汽车充电桩上电后,执行一次或多次硬件地址分配操作。每执行一次硬件地址分配操作,可以为一个输出电路分配硬件地址。接下来,以输出电路i为例,对本申请实施例中的硬件地址分配操作进行进一步说明。其中,输出电路i为输出电路1至N中的任一输出电路,也可以理解为,i取值为[1,N]中的任一整数。
控制电路101可以在上电后按照如图3所示的方法为其中任一输出电路(输出电路i)配置硬件地址。如图3所示,主要包括以下步骤:
S301:控制电路101开启输出电路i。具体来说,控制电路101可以通过通信总线102向N个输出电路发送第二控制指令,该第二控制指令中包括输出电路i的生产序列号。
在电动汽车充电桩上电后,各个输出电路可以广播自身的标识信息,如各个输出电路分别广播自身的生产序列号,从而使控制电路101可以接收到各个输出电路的生产序列号。一般来说,输出电路的生产序列号可以是在输出电路生产过程中烧录在输出电路内部的,可以标识出输出电路的生产批次、生产厂商等多种信息。生产序列号具有唯一性,即一个输出电路对应一个生产序列号,电动汽车充电桩中的各个输出电路在上电后广播生产序列号,使得控制电路101可以根据接收到的生产序列号识别出电动汽车充电桩中所安装的各个输出电路,也可以理解为,控制电路101可以根据接收到的生产序列号识别出电动汽车充电桩中存在哪几个输出电路。接下来以输出电路的标识信息为生产序列号为例进行说明。
在一种可能的实现方式中,控制电路101可以依次为输出电路1至N配置硬件地址,也就是i从“1”开始取值,并依次取值至“N”,也可以理解为i取遍[1,N]中的整数。需要指出的是,本申请实施例中i的不同取值仅为了在表述上区别不同的输出电路,并不代表在实际应用中,不同输出电路之间存在不同取值的“i”。以下变量“j”、“h”等皆同,不再赘述。
在另一种可能的实现方式中,控制电路101和输出电路1至N中皆包括非掉电易失性 存储器,如带电可擦可编程只读存储器(electrically erasable programmable read only memory,EEPROM)。在此情况下,控制电路101可以在该非掉电易失性存储器中存储已配置过硬件地址的输出电路的生产序列号,输出电路1至N可以在该非掉电易失性存储器中存储被配置的硬件地址。在此情况下,控制电路101在接收到任一输出电路广播的生产序列号后,执行S301之前,可以根据所存储的生产序列号判断是否已为该生产序列号对应的输出电路配置了硬件地址。示例性的,若该输出电路为新安装的输出电路,控制电路101便未存储该输出电路的标识信息,也就是说,控制电路101已存储的标识信息中不包括该输出电路的标识信息,因此控制电路101需要为新安装的输出电路配置硬件地址。
示例性的,控制电路101在接收到输出电路i的生产序列号后,可以先判断是否已存储有输出电路i的生产序列号。若已经存储有输出电路i的生产序列号,则说明已为输出电路i配置了硬件地址,因此无需再执行图3所示的配置过程。若未存储有输出电路i的生产序列号,则说明输出电路i为新安装入电动汽车充电桩的输出电路,在此情况下,控制电路101可以继续执行S301,并存储输出电路i的硬件地址。在下一次上电后,控制电路101便可以根据已存储的生产序列号确定已为输出电路i配置了硬件地址,无需再次为输出电路i配置硬件地址。
如图1所示,输出电路1至N中皆可以包括接收器,使得输出电路1至N皆可以接收到该第二控制指令。输出电路i接收到第二控制指令后,确定第二控制指令中的生产序列号为自身的生成序列号,因此输出电路i根据第二控制指令开启输出信号。对于输出电路1至N中除输出电路i之外的每一个输出电路,在接收到第二控制指令后,可以确定第二控制指令中的生产序列号并非自身的生成序列号,因此可以忽略该第二控制指令,即不输出信号。
S302:控制电路101确定输出电路i对应的输出导线j。
其中,输出导线j为输出导线1至M中与输出电路i耦合的输出导线,由于i取值为[1,N]中的任一整数,因此j取值也可以为[1,M]中的任一整数。需要指出的是,输出电路i与输出导线j之间的耦合关系是操作人员预先设定好的。其中,“预先设定”可以理解为,对于控制电路101来说,输出电路i与输出导线j之间的耦合关系是客观存在的,只有操作人员进行拆卸或安装操作才可以改变输出电路i与输出导线j之间的耦合关系。对于控制电路101而言,在不考虑操作人员人为输入输出电路i与输出电路j之间的耦合关系的情况下,控制电路101在为输出电路i分配硬件地址之前,通常并不知晓输出电路i与输出电路j之间的耦合关系,也就是说,控制电路101并不知晓任一输出电路具体与哪一个输出导线耦合,因此控制电路101需要先确定输出电路i与哪一个输出导线耦合。
如图1所示,控制电路101包括M个检测端口,该M个检测端口分别与M个输出导线一一对应耦合,控制电路101可以在发送第二控制指令后,通过M个检测端口分别检测M个输出导线各自传输的总输出信号。由于第二控制指令只会开启输出电路i输出信号,因此只有与输出电路i耦合的输出导线j才会有总输出信号传输,且该总输出信号实际为输出电路i的输出信号。
在此情况下,控制电路101的M个检测端口中,与输出导线j耦合的检测端口j可以检测到高压输入,其它检测端口则可以检测到低压输入(或无输入),因此控制电路101可以确定输出电路i的输出端与输出导线j耦合。
在一种可能的实现方式中,第二控制指令可以控制输出电路i以较小的输出电压输出 信号,以保护控制电路101不受高压损坏。例如,可以通过第二控制指示输出电路i输出电压值为200V的输出信号。
在本申请实施例中,控制电路101与各个输出导线之间可以直接电连接,也可以间接电连接。在一种可能的实现方式中,如图1所示,电动汽车充电桩中还可以包括检测电路104,也就是说,控制电路101与各个输出导线之间通过检测电路104间接电连接。检测电路104包括M个一一对应的输入端和输出端,其中,M个输入端分别与M个输出导线一一对应耦合,M个输出端分别与控制电路的M个检测端口耦合。示例性的,检测端口的输入端j与输出导线j耦合,输出端j与控制电路101的检测端口j耦合。检测电路可以通过输入端j检测输出导线j传输的总输出信号,并对该总输出信号按照一定的分压比例进行分压处理,将分压处理后的总输出信号通过输出端j提供给控制电路的检测端口j。
具体来说,检测电路104可以包括M个互相独立的分压电路。如图4所示,输入端1与输出端1之间的分压电路包括分压电阻R1a和分压电阻R1b,输入端j与输出端j之间的分压电路包括分压电阻Rja和分压电阻Rjb,输入端M与输出端M之间的分压电路包括分压电阻RMa和分压电阻RMb,不同分压电路中分压电阻的连接方式相同,接下来以输入端j与输出端j之间的分压电路为例进行说明,其它分压电路不再赘述。
如图4所示,分压电阻Rja的一端通过输入端j与输出导线j耦合,分压电阻Rja的另一端与分压电阻Rjb的一端耦合,分压电阻Rjb的另一端接地,在Rja的另一端与Rjb的一端之间,存在一连接点通过输出端j与控制电路的检测端口j耦合。分压电阻Rja和分压电阻Rjb构成的分压电路可以按照一定的分压比例,对输入端j检测到的输出导线j的总输出信号进行分压处理,该分压处理可以如以下公式一所示:
Figure PCTCN2020095953-appb-000001
其中,r ja为分压电阻Rja的阻值,r jb为分压电阻Rjb的阻值,V j为输出导线j的总输出信号的电压值,V′ j为分压处理后输出导线j的总输出信号的电压值。
S303:控制电路101根据配置规则,为输出电路i分配与输出导线j对应的硬件地址。如前所述,为输出电路i分配的硬件地址需要与输出导线j满足对应关系,该对应关系便为配置规则。在一种可能的实现方式中,该配置规则可以表述为M个输出导线与M个硬件地址范围之间的对应关系,更进一步的,该M个硬件地址范围可以互不重叠。示例性的,该配置规则可以如下表一所示:
表一
输出导线 硬件地址范围
1 [1,10]
2 [11,20]
…… ……
M [(M-1)×10+1,M×10]
如表一所示,输出导线1至M分别对应有不同的硬件地址范围,需要指出的是,上述硬件地址为十进制表示形式,在具体实现过程中,控制电路101也可以在为输出电路i分配好硬件地址后,将为输出电路i分配的硬件地址转换为二进制表示形式,并将二进制形式的硬件地址发送给输出电路i,或者也可以在控制电路101中直接设置二进制形式的硬件地址范围,本申请实施例对此并不多作限制。
基于表一所示的对应关系,假设输出导线j为图1中输出导线1,输出电路i为图1中的输出电路2,控制电路101在确定输出电路2与输出导线1耦合之后,根据表一所示的配置规则确定输出导线1对应的硬件地址范围为[1,10]。控制电路101进而可以从硬件地址范围[1,10]中确定一未被分配的硬件地址,如硬件地址“2”作为输出电路2的硬件地址。在一种可能的实现方式中,控制电路101可以按照由小到大的顺序依次为与输出导线1耦合的输出电路分配地址,示例性的,在为输出电路2确定硬件地址时,可以从未被分配的硬件地址中确定取值最小的硬件地址分配给输出电路2。
S304:控制电路101向输出电路i发送配置信息,该配置信息用于指示为输出电路i分配的硬件地址。
具体来说,该配置信息也可以通过配置指令的形式发送。例如,配置指令中包括输出电路i的生产序列号和配置信息,输出电路1至N皆可以接收到该配置指令。但只有输出电路i的生产序列号可以匹配配置指令中的生产序列号,因此只有输出电路i可以执行配置信息。也就是说,输出电路i可以根据配置信息获得控制电路101为其分配的硬件地址,并存储该硬件地址。在一种可能的实现方式中,该配置指令还可以指示输出电路i关闭,从而停止输出信号。具体来说,该配置指令中可以携带指示输出电路i关闭的控制信息(“关闭”),也可以由输出电路i默认在接收到配置信息后关闭,本申请实施例对此并不多作限制。
至此,便完成了为输出电路i配置硬件地址。
接下来,本申请实施例二还提供一种控制电路101依次为输出电路1至N配置硬件地址的可能的实现方式,如图5所示,主要包括以下步骤:
S501:控制电路101启动识别。一般在电动汽车充电桩上电后,控制单元101便可以自动启动识别。当然,也可以由操作人员手动触发启动识别,本申请实施例对此并不多作限制。在识别过程中,控制电路101可以识别各个输出电路发送的生产序列号。
S502:控制电路101开启第k个生产序列号对应的输出电路。具体来说,控制电路101可以按照预设的执行顺序多次执行硬件地址分配操作,从而依次为各个输出电路分配硬件地址。示例性的,控制电路101可以在获得N个输出电路的生成序列号后,按照执行顺序排列各个输出电路的生产序列号,并根据排序结果依次开启各个生产序列号对应的输出电路,从而分别为N个输出电路分配硬件地址。其中,执行顺序可以是按照生产序列号由小到大、由大到小,也可以是按照控制电路101接收到各个输出电路的生产序列号的先后顺序等等,本申请实施例对此并不多作限制。如图5中,控制电路101最先开启第1个生产序列号对应的输出电路,也即k=1。
S503:控制电路101分别检测输出导线1至M各自的总输出信号。
S504:控制电路101确定第k个生产序列号对应的输出电路所耦合的输出导线h。
S505:控制电路101关闭第k个生产序列号对应的输出电路,并为第k个生产序列号对应的输出电路分配与输出导线h对应的硬件地址。
S502至S505的具体实现方式可以参考上述实施例一所提供的硬件地址分配操作,对此不再赘述。
如图1所示,电动汽车充电桩中还包括放电电路105。放电电路105的输入端分别与输出导线1至N耦合,放电电路105的控制端与控制电路101耦合,放电电路105中包括 接地电路,可以向地释放输出导线1至M中的残留电荷。
有鉴于此,如图5,本方法还包括S506:控制电路101开启放电电路105,并检测输出导线h的总输出信号。
S507:控制电路101判断输出导线h的总输出信号的电压值是否低于预设阈值,若是,则继续执行S508,若否,则返回S506。可以理解,连续执行的S506之间可以间隔一定时延,本申请实施例对此并不多作限制。
S508:控制电路101关闭放电电路105,并判断当前k的取值是否大于N。若是,则执行S511,结束配置硬件地址的过程。若否,则继续执行S509。
S509:电路更新,k的取值加1,即继续为第k+1个生产序列号对应的输出电路配置硬件地址,在接下来的配置过程中,k的取值加1,即k=k+1。
S510:开启第k个生产序列号对应的输出电路,返回并继续执行S503。
需要指出的是,在S509之后,S510之前,控制电路101还可以判断已存储的生产序列号中是否包括该第k个生产序列号,若否,则继续执行S510,若是,则可以返回并继续执行S508。在此情况下,在接下来执行S508时,可以不执行关闭放电电路105的操作。
与之类似,在S502之前,也可以先判断已存储的生产序列号中是否包括该第1个生产序列号,若否,则继续执行S502,若是,则可以直接执行S509。
本申请实施例三提供另一种电子设备。图1所示的电动汽车充电桩中,输出电路与输出导线之间为固定耦合方式,即输出电路和输出导线之间的耦合方式是固定的,在电动汽车充电桩工作过程中,输出电路和输出导线之间的耦合关系并不会发生变化。
为了适应不同的应用需求,还存在另一种可能的耦合方式—柔性耦合。如图6所示,为本申请实施例三提供的另一种电子设备结构示意图,该电子设备也为多路输出的电子设备。示例性的,图6所示的电子设备也可以作为电动汽车充电桩。如图6所示,电子设备包括控制电路101、N个输出电路(输出电路1至N),N个开关电路(开关电路K1至KN),M个输出导线(输出导线1至M)。
其中,输出电路1至N的控制端通过通信总线102并联,并与控制电路101耦合。输出电路1至N的具体实现形式、控制电路101的具体实现形式、控制电路101对输出电路1至N的控制方式等方面皆与图1所示的电子设备类似,对此不再赘述。
图6中,N个开关电路的控制端分别与控制电路101耦合,N个开关电路的输入端与N个输出电路的输出端分别一一对应耦合,也可以表述为,输出电路i的输出端与开关电路Ki的输入端耦合,其中,i的取值为[1,N]中的任一整数,或者,i取遍[1,N]中的整数。N个开关电路中,每个开关电路的输出端皆可以与M个输出导线耦合,也就是说,开关电路Ki包括M个输出端,且M个输出端分别与M个输出导线一一对应耦合,开关电路Ki可以在控制电路101的控制下,导通输出电路i与M个输出导线中任一输出导线之间的传输路径。在本申请实施例中,开关电路可以是继电器、开关晶体管等开关器件或开关电路,对此并不多作限定。
在图6所示的电子设备中,每个输出电路也配置有具有唯一性的硬件地址,即输出电路1至N中任两个输出电路的硬件地址皆不相同。且,输出电路的硬件地址与该输出电路所耦合的开关电路之间存在对应关系。例如图6中,输出电路1的硬件地址与开关电路K1对应,输出电路2的硬件地址与开关电路K2对应。在此情况下,每个输出电路的硬件地 址便可以表示该输出电路与开关电路之间的耦合关系,控制电路101便可以采用以下方法调整目标输出导线的总输出信号,包括:
步骤一:控制电路101确定待调整的目标输出导线的一个或多个目标开关电路。例如,目标输出导线为输出导线1,即控制电路101需要调整输出导线1的总输出信号。在此情况下,控制电路101可以根据调整需求,控制一个或多个开关单元导通或断开对应的输出电路与输出导线1之间的传输路径。示例性的,假设需要增大输出导线1的总输出信号的功率,则可以控制部分开关单元导通对应的输出电路与输出导线1的传输路径,增加向输出导线1传输输出信号的输出电路的数量,从而增大输出导线1的总输出功率。
步骤二:控制电路101根据配置规则,确定一个或多个目标开关电路分别对应的一个或多个硬件地址。其中,配置规则便是为输出电路配置硬件地址的规则,可以指示硬件地址与开关电路之间的对应关系。基于配置规则,便可以确定一个或多个目标开关电路分别对应的一个或多个硬件地址。
步骤三:控制电路101通过通信总线向N个输出电路发送第三控制指令,和/或,向一个或多个目标开关电路发送第四控制指令。
其中,第三控制指令与实施例一中的第一控制指令类似,对此不再赘述。
第四控制指令用于指示目标开关电路断开或导通输出信号与待调整的目标输出导线之间的传输路径。示例性的,以开关电路Ki为例,第四控制指令中可以包括开关电路Ki的M个输出端中,与目标输出导线耦合的输出端的标识信息,开关电路Ki可以根据第四控制指令中的标识信息连通对应输出端,从而导通输出电路i与目标输出导线之间的传输路径。
可以理解,控制电路101在调整目标输出导线的总输出信号的时候,既有可能只调整一个或多个目标输出电路的工作状态(如增大或减小一个或多个目标输出电路的输出功率),也可以只控制目标开关电路(如断开目标开关电路与目标输出导线之间的传输路径),也可以既调整一个或多个目标输出电路的工作状态,又控制目标开关电路(如断开目标开关电路与目标输出导线之间的传输路径的同时关闭目标开关电路),在具体应用过程中可以根据调整需求灵活选择,本申请实施例对此不再一一列举。
由上述过程可见,采用柔性耦合的耦合方式,可以使控制电路101更为灵活地调整各个输出导线的总输出信号。但控制电路101对各个输出电路的控制依旧依赖于硬件地址。有鉴于此,本申请实施例还提供一种硬件地址配置方法,控制电路101可以为各个输出电路配置硬件地址,从而省去人工手动配置硬件地址的过程。接下来,以电动汽车充电桩为例,对本申请实施例所提供的技术方案作进一步说明。可以理解,其它类型的采用柔性连接方式的多路输出电子设备也可以适用本技术方案,其具体实现可以参考接下来的实施例,本申请实施例对其不再多作赘述。
控制电路101可以在上电后按照如图7所示的方法为其中任一输出电路配置硬件地址。如图7所示,主要包括以下步骤:
S701:控制电路101开启输出电路i。具体实现方式可以参考S301,对此不再赘述。
S702:控制电路101确定输出电路i对应的开关电路Ki。
需要指出的是,输出电路i与开关电路Ki之间的耦合关系是预先设定的,也就是客观存在的,只有操作人员进行拆卸或安装操作才可以改变输出电路i与开关电路Ki之间的耦合关系。对于控制电路101而言,在不考虑操作人员人为输入输出电路i与开关电路Ki 之间的耦合关系的情况下,控制电路101在为输出电路i分配硬件地址之前,通常并不知晓输出电路i与开关电路Ki之间的耦合关系,因此控制电路101需要先确定输出电路i与哪一个开关电路耦合。
如图6所示,控制电路101还与M个输出导线中的检测导线(输出导线1)耦合,控制电路101可以检测检测导线上的总输出信号。需要指出的是,输出导线1作为检测导线仅为一具体示例,在具体实现过程中,M个输出导线中的任一输出导线都可以作为检测导线。
在S702的具体实施过程中,控制电路101可以依次控制N个开关电路导通向检测导线的传输路径,在接收到检测导线传输的总输出信号后,确定在接收到总输出信号之前,最后开启的开关电路为输出电路i对应的开关电路Ki。此时,检测导线传输的总输出信号实际上为输出电路i的输出信号。
控制电路101依次控制N个开关电路导通向检测导线(输出导线1)的传输路径。对于除开关电路Ki之外的每一个开关电路,控制电路101在控制开关电路导通向检测导线的传输路径后,由于除输出电路i之外的其它输出电路都为关闭状态,因此检测导线上不会有输出信号传输,控制电路101会在检测导线上检测到低压输入(或无输入)。如图8所示,控制电路101在控制开关电路Ki导通检测导线(输出导线1)的传输路径后,输出电路i的输出信号可以经开关电路Ki输出至检测导线,此时,控制电路101便可以在检测导线上检测到高压输入,控制电路101进而便可以确定最后开启的开关电路为输出电路i对应的开关电路Ki。
与实施例一类似,为了保护控制电路101不受高压损坏,控制电路101可以控制输出电路i以较小的输出电压输出信号,例如,可以控制输出电路i输出电压值为200V的输出信号。
在本申请实施例中,控制电路101与检测导线之间可以直接电连接,也可以间接电连接。如图6和图8所示,还可以在控制电路101和检测导线之间设置检测电路104,也就是说,控制电路101和检测导线通过检测电路104间接电连接。检测电路104的输入端与检测导线耦合,检测电路104的输出端与控制电路101耦合。检测电路104可以对检测导线的总输出信号进行分压处理,并将分压处理后的总输出信号提供给控制电路101。具体来说,检测电路104可以包括一个分压电路,例如,可以是如图4中Rja与Rjb所构成的分压电路,对此不再赘述。
S703:根据配置规则,为输出电路i配置与开关电路Ki对应的硬件地址。如前所述,为输出电路i分配的硬件地址需要与开关电路Ki满足对应关系,该对应关系便为配置规则。在一种可能的实现方式中,该配置规则可以表述为输出电路i的硬件地址为第一开关电路Ki的标识信息。示例性的,开关电路Ki的标识信息可以是开关电路Ki的序号,例如开关电路K1至KN在电子设备中的序号分别为1至N,则开关电路K1至KN分别对应的硬件地址为1至N,即输出电路1至N的硬件地址分别为1至N。开关电路Ki的序号为i,对应的输出电路i的硬件地址为i。
可以理解开关电路K1至KN在电子设备中的序号也可以为其它类型,如K1至KN的序号分别为N至1,输出电路1至N的硬件地址分别为N至1。此外,也可以用二进制的形式表示开关电路的序号和输出电路的硬件地址,本申请实施例对此并不多作限定。
S704:向输出电路i发送配置信息,该配置信息用于指示为输出电路i分配的硬件地 址。具体实现可以参考S304,对此不再赘述。
至此,便完成了为输出电路i配置硬件地址。
针对如图6所示的电子设备,本申请实施例四还提供一种配置硬件地址的方法,可以依次为图6中输出电路1至N配置硬件地址。示例性的,可以如图9所示,主要包括以下步骤:
S901:控制电路101启动识别。S901的具体实现可以参考实施例二所述的步骤S501,其它不再赘述。
S902:控制电路101开启第k个生产序列号对应的输出电路。S902的具体实现可以参考上述S502,其它不再赘述。
S903:控制电路101依次开启开关电路。示例性的,图9中按照开关电路的序号由1至N的顺序依次开启开关电路,即开关电路的序号m=1。
可以理解,也可以按照由序号2至N+1,由N至1,等等多种可能的顺序依次开启各个开关电路。
S904:控制电路101检测检测导线的总输出信号。
S905:控制电路101判断总输出信号的电压值是否大于电压门限。若是,则继续执行S907,若否,则继续执行S906。
S906:控制电路101开启下一个开关电路,也可以理解为开启序号为m+1的电路,在接下来的步骤中,m取值加1,即m=m+1。并继续执行S904。可以理解,连续两次执行S904之间可以间隔一定的时延,本申请实施例对此并不多作限制。
S907:控制电路101在检测到检测导线的总输出信号的电压值大于电压门限后,便可以关闭第k个生产序列号对应的输出电路。确定第k个生产序列号对应的输出电路所耦合的开关电路,从而可以为第k个生产序列号分配硬件地址,该步骤的具体实现可以参考上述实施例三,对此不再赘述。
如图6和图8所示,检测导线和控制电路101之间还可以设置有放电电路105,放电电路的具体实现可以参考上述实施例二,对此不再赘述。
有鉴于此,如图9,本方法还包括S908:控制电路101开启放电电路105,并检测检测导线的总输出信号。
S909:控制电路101判断检测导线的总输出信号的电压值是否低于预设阈值,若是,则继续执行S910,若否,则返回S908。
S910至S912的具体实现可以参考上述S508至S510,对此不再赘述。在执行完S912后,返回并继续执行S903。
通过上述实施例一至实施例四可见,本申请实施例所提供的电子设备及硬件地址配置方法,其中,电子设备内部的控制电路可以自行为各个输出电路配置硬件地址,省去了人工手动配置硬件地址的过程,不仅可以减少维护成本,而且还可以减少人工干预,从而降低错误发生,提高电子设备的可靠性。而且,采用本申请实施例所提供的技术方案,无需在输出电路的前面板上设置拨号开关,有利于降低输出电路的成本,因此有利于降低电子设备的成本。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和 范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (24)

  1. 一种电子设备,其特征在于,包括:控制电路、N个输出电路、M个输出导线,M和N皆为大于1的整数;
    其中,所述N个输出电路与所述M个输出导线的连接关系预先设定;
    所述N个输出电路的控制端并联,且与所述控制电路耦合;
    所述控制电路包括M个检测端口,所述M个检测端口分别与所述M个输出导线耦合;
    所述控制电路,用于执行一次或者多次硬件地址分配操作;其中,所述硬件地址分配操作包括:
    开启第一输出电路,使得所述第一输出电路发送输出信号;其中,所述第一输出电路为所述N个输出电路中的一个,当执行多次所述硬件地址分配操作时,每次开启的所述第一输出电路都不相同;
    当通过第一检测端口检测到所述输出信号经过第一输出导线后产生的第一输出信号时,根据配置规则确定所述第一输出电路的第一硬件地址,所述第一硬件地址与所述第一输出导线对应;其中,所述第一检测端口为所述M个检测端口中的一个,所述第一输出导线为与所述第一检测端口耦合的输出导线;
    向所述第一输出电路发送所述第一硬件地址;
    所述第一输出电路,还用于存储所述第一硬件地址。
  2. 根据权利要求1所述的电子设备,其特征在于,所述电子设备还包括检测电路,所述检测电路包括M个一一对应的输入端和输出端;所述检测电路的M个输入端分别与所述M个输出导线耦合,所述检测电路的M个输出端分别与所述控制电路的M个检测端口耦合;
    所述检测电路,用于:
    通过与所述第一输出导线耦合的第一输入端接收所述第一输出电路的输出信号,对所述输出信号进行分压处理,通过所述第一输入端对应的第一输出端向所述控制电路发送所述第一输出信号,其中,所述第一输入端为所述M个输入端中的一个,所述第一输出端为所述M个输出端中的一个,所述第一输出信号为分压处理后的所述输出信号。
  3. 根据权利要求1或2所述的电子设备,其特征在于,
    所述控制电路还用于:
    根据所述配置规则,确定待调整的目标输出导线对应的一个或多个目标硬件地址,所述目标输出导线为所述M个输出导线中的一个;
    向所述N个输出电路发送第一控制指令,所述第一控制指令包括控制信息和所述一个或多个目标硬件地址;
    所述第一输出电路,还用于:
    接收所述第一控制指令;
    若所述一个或多个目标硬件地址中包括所述第一硬件地址,则执行所述控制信息。
  4. 根据权利要求1至3中任一项所述的电子设备,其特征在于,
    所述第一输出电路还用于:
    向所述控制电路发送所述第一输出电路的标识信息;
    所述控制电路具体用于:
    向所述N个输出电路发送第二控制指令,所述第二控制指令包括所述第一输出电路的标识信息,所述第二控制指令用于开启所述第一输出电路。
  5. 根据权利要求4所述的电子设备,其特征在于,所述控制电路还用于:
    向所述N个输出电路发送所述第二控制指令之前,确定已存储的标识信息中不包括所述第一输出电路的标识信息;
    存储所述第一输出电路的标识信息。
  6. 根据权利要求1至5中任一项所述的电子设备,其特征在于,所述配置规则包括所述M个输出导线与M个硬件地址范围之间的对应关系;
    所述控制电路具体用于:
    获取所述第一输出导线对应的硬件地址范围;
    从所述硬件地址范围内的、未被分配的硬件地址中,确定所述第一硬件地址。
  7. 根据权利要求1至6中任一项所述的电子设备,其特征在于,所述电子设备为充电桩;所述电子设备还包括输入导线,所述N个输出电路的输入端与所述输入导线耦合;
    所述输入导线,用于与交流电源耦合,接收所述交流电源提供的交流电,并将所述交流电提供给所述N个输出电路;
    所述第一输出电路,具体用于:
    将从所述输入导线接收到的交流电转换为直流电,并向对应的第一输出导线输出直流电形式的输出信号。
  8. 一种电子设备,其特征在于,包括:控制电路、N个输出电路、N个开关电路,M个输出导线,N和M皆为大于1的整数;
    其中,所述N个输出电路与所述N个开关电路的连接关系预先设定,所述N个开关电路中每个开关电路的输出端分别与所述M个输出导线耦合;
    所述N个输出电路的控制端并联,且与所述控制电路耦合;
    所述控制电路分别与所述N个开关电路的控制端、所述M个输出导线中的检测导线耦合;
    所述控制电路,用于执行一次或者多次硬件地址分配操作;其中,所述硬件地址分配操作包括:
    开启第一输出电路,使得所述第一输出电路发送输出信号;其中,所述第一输出电路为所述N个输出电路中的一个,当执行多次所述硬件地址分配操作时,每次开启的所述第一输出电路都不相同;
    依次控制所述N个开关电路导通向所述检测导线的传输路径;
    若在控制第一开关电路导通向所述检测导线的传输路径后,检测到所述输出信号经过所述检测导线后产生的第一输出信号,则根据配置规则,为所述第一输出模块配置第一硬件地址,所述第一硬件地址与所述第一开关电路对应;
    向所述第一输出电路发送所述第一硬件地址;
    所述第一输出电路,还用于存储所述第一硬件地址。
  9. 根据权利要求8所述的电子设备,其特征在于,所述电子设备还包括检测电路,所述检测电路的输入端与所述检测导线耦合,所述检测电路的输出端与所述控制电路耦合;
    所述检测电路,用于:
    接收所述第一输出电路的输出信号,对所述输出信号进行分压处理,向所述控制电路发送所述第一输出信号,其中,所述第一输出信号为分压处理后的所述输出信号。
  10. 根据权利要求8或9所述的电子设备,其特征在于,
    所述控制电路还用于:
    确定待调整的目标输出导线的一个或多个目标开关电路,所述目标输出导线为所述M个输出导线中的一个;
    根据所述配置规则,确定所述一个或多个目标开关电路分别对应的一个或多个硬件地址;
    向所述N个输出电路发送第三控制指令,所述第三控制指令包括控制信息和所述一个或多个硬件地址,和/或,向所述一个或多个目标开关电路发送第四控制指令,所述第四控制指令用于指示所述目标开关电路断开或导通所述输出信号与所述待调整的目标输出导线之间的传输路径;
    所述第一输出电路,还用于:
    接收所述第三控制指令;
    若所述一个或多个硬件地址中包括所述第一硬件地址,则执行所述控制信息。
  11. 根据权利要求8至10中任一项所述的电子设备,其特征在于,所述第一输出电路还用于:
    向所述控制电路发送所述第一输出电路的标识信息;
    所述控制电路具体用于:
    向所述N个输出电路发送第二控制指令,所述第二控制指令包括所述第一输出电路的标识信息,所述第二控制指令用于开启所述第一输出电路。
  12. 根据权利要求11所述的电子设备,其特征在于,所述控制电路还用于:
    向所述N个输出电路发送所述第二控制指令之前,确定已存储的标识信息中不包括所述第一输出电路的标识信息;
    存储所述第一输出电路的标识信息。
  13. 根据权利要求8至12中任一项所述的电子设备,其特征在于,所述配置规则包括所述第一输出电路的硬件地址为所述第一开关电路的标识信息。
  14. 根据权利要求8至13中任一项所述的电子设备,其特征在于,所述电子设备为充电桩;所述电子设备还包括输入导线,所述N个输出电路的输入端与所述输入导线耦合;
    所述输入导线,用于与交流电源耦合,接收所述交流电源提供的交流电,并将所述交流电提供给所述N个输出电路;
    所述第一输出电路,具体用于:
    将从所述输入导线接收到的交流电转换为直流电,并向对应的第一开关电路输出直流电形式的输出信号。
  15. 一种硬件地址配置方法,其特征在于,包括:
    开启第一输出电路,使得所述第一输出电路发送输出信号,所述第一输出电路为N个输出电路中的一个,所述N个输出电路与M个输出导线的连接关系预先设定,M和N皆为大于1的整数;
    当接收到所述输出信号经过第一输出导线后产生的第一输出信号时,根据配置规则为 所述第一输出电路配置第一硬件地址,所述第一硬件地址与所述第一输出导线对应;其中,所述第一输出导线为所述M个输出导线中的一个;
    向所述第一输出电路发送所述第一硬件地址。
  16. 根据权利要求15所述的方法,其特征在于,向所述第一输出电路发送所述第一硬件地址之后,还包括:
    根据所述配置规则,确定待调整的目标输出导线对应的一个或多个目标硬件地址,所述目标输出导线为所述M个输出导线中的一个;
    向所述N个输出电路发送第一控制指令,所述第一控制指令包括控制信息和所述一个或多个目标硬件地址,所述第一控制指令用于指示所述一个或多个目标硬件地址分别对应的一个或多个输出电路执行所述控制信息。
  17. 根据权利要求15或16所述的方法,其特征在于,开启第一输出电路,包括:
    向所述N个输出电路发送第二控制指令,所述第二控制指令包括所述第一输出电路的标识信息,所述第二控制指令用于开启所述第一输出电路。
  18. 根据权利要求17所述的方法,其特征在于,开启第一输出电路之前,还包括:
    确定已存储的标识信息中不包括所述第一输出电路的标识信息;
    存储所述第一输出电路的标识信息。
  19. 根据权利要求15至18中任一项所述的方法,其特征在于,所述配置规则包括所述M个输出导线与M个硬件地址范围之间的对应关系,所述M个硬件地址范围互不重叠;
    根据配置规则为所述第一输出电路配置与所述第一输出导线对应的硬件地址,包括:
    获取所述第一输出导线对应的硬件地址范围;
    从所述硬件地址范围内的未被分配的硬件地址中确定所述第一硬件地址。
  20. 一种硬件地址配置方法,其特征在于,包括:
    开启第一输出电路,使得所述第一输出电路发送输出信号,所述第一输出电路为N个输出电路中的一个,所述N个输出电路与N个开关电路的连接关系预先设定,所述N个开关电路中每个开关电路的输出端分别与所述M个输出导线耦合,M和N皆为大于1的整数;
    依次控制所述N个开关电路导通向所述M个输出导线中的检测导线的传输路径;
    若在控制第一开关电路导通向所述检测导线的传输路径后,检测到所述输出信号经过所述检测导线后产生的第一输出信号,则根据配置规则,为所述第一输出电路配置第一硬件地址,所述第一硬件地址与所述第一开关电路对应;
    向所述第一输出电路发送所述第一硬件地址。
  21. 根据权利要求20所述的方法,其特征在于,向所述第一输出电路发送所述第一硬件地址之后,还包括:
    确定待调整的目标输出导线的一个或多个目标开关电路,所述目标输出导线为所述M个输出导线中的一个;
    根据所述配置规则,确定所述一个或多个目标开关电路分别对应的一个或多个硬件地址;
    向所述N个输出电路发送第三控制指令,所述第三控制指令包括控制信息和所述一个或多个硬件地址,所述第三控制指令用于指示所述一个或多个硬件地址分别对应的一个或多个输出电路执行所述控制信息;和/或,
    向所述一个或多个目标开关电路发送第四控制指令,所述第四控制指令用于指示所述目标开关电路断开或导通所述输出信号与所述待调整的目标输出导线之间的传输路径。
  22. 根据权利要求20或21所述的方法,其特征在于,开启第一输出电路,包括:
    向所述N个输出电路发送第二控制指令,所述第二控制指令包括所述第一输出电路的标识信息,所述第二控制指令用于开启所述第一输出电路。
  23. 根据权利要求22所述的方法,其特征在于,向所述N个输出电路发送第二控制指令之前,还包括:
    确定已存储的标识信息中不包括所述第一输出电路的标识信息;
    存储所述第一输出电路的标识信息。
  24. 根据权利要求20至23中任一项所述的方法,其特征在于,所述配置规则包括所述第一输出电路的硬件地址为所述第一开关电路的标识信息。
PCT/CN2020/095953 2019-09-23 2020-06-12 一种电子设备及硬件地址配置方法 WO2021057105A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20867314.5A EP3965399B1 (en) 2019-09-23 2020-06-12 Electronic device and hardware address configuration method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910900517.9 2019-09-23
CN201910900517.9A CN110758151B (zh) 2019-09-23 2019-09-23 一种电子设备及硬件地址配置方法

Publications (1)

Publication Number Publication Date
WO2021057105A1 true WO2021057105A1 (zh) 2021-04-01

Family

ID=69330248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095953 WO2021057105A1 (zh) 2019-09-23 2020-06-12 一种电子设备及硬件地址配置方法

Country Status (3)

Country Link
EP (1) EP3965399B1 (zh)
CN (1) CN110758151B (zh)
WO (1) WO2021057105A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110758151B (zh) * 2019-09-23 2021-04-20 华为技术有限公司 一种电子设备及硬件地址配置方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021221A1 (en) * 2007-07-18 2009-01-22 Jean-Pierre Krauer Voltage dividing vehicle heater system and method
CN106850844A (zh) * 2017-03-09 2017-06-13 北京佰才邦技术有限公司 一种充电桩的管理方法及充电桩管理客户端、管理服务器
CN107128195A (zh) * 2017-05-16 2017-09-05 河北国文电气股份有限公司 输出功率按需自动分配的多枪充电机充电方法及充电机
CN108989478A (zh) * 2018-07-11 2018-12-11 厦门拓宝科技有限公司 一种有线连接多模块测控系统通讯地址自动识别方法
CN110758151A (zh) * 2019-09-23 2020-02-07 华为技术有限公司 一种电子设备及硬件地址配置方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830306A (ja) * 1994-07-12 1996-02-02 Rika Kogyo Kk 制御装置
SG116410A1 (en) * 1999-11-11 2005-11-28 Inventio Ag Method of configuring elevator controls.
CN102521172B (zh) * 2011-11-22 2015-07-08 华为技术有限公司 硬件地址分配方法、背板及系统
AU2014229102A1 (en) * 2013-03-15 2015-10-01 Hayward Industries, Inc. System and method for dynamic device discovery and address assignment
CN106844266B (zh) * 2017-02-06 2020-01-14 京信通信系统(中国)有限公司 一种硬件地址编址电路及其制作、使用方法
CN108248417B (zh) * 2017-12-13 2020-05-19 北京时代民芯科技有限公司 一种双处理器的充电桩控制装置
US10417161B2 (en) * 2018-01-26 2019-09-17 Qualcomm Incorporated Efficient technique for communicating between devices over a multi-drop bus
CN108565928B (zh) * 2018-05-24 2024-04-12 深圳奥特迅电力设备股份有限公司 一种充电系统及充电系统控制方法
CN110209621A (zh) * 2019-06-10 2019-09-06 中航(深圳)航电科技发展有限公司 一种数据传输控制电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021221A1 (en) * 2007-07-18 2009-01-22 Jean-Pierre Krauer Voltage dividing vehicle heater system and method
CN106850844A (zh) * 2017-03-09 2017-06-13 北京佰才邦技术有限公司 一种充电桩的管理方法及充电桩管理客户端、管理服务器
CN107128195A (zh) * 2017-05-16 2017-09-05 河北国文电气股份有限公司 输出功率按需自动分配的多枪充电机充电方法及充电机
CN108989478A (zh) * 2018-07-11 2018-12-11 厦门拓宝科技有限公司 一种有线连接多模块测控系统通讯地址自动识别方法
CN110758151A (zh) * 2019-09-23 2020-02-07 华为技术有限公司 一种电子设备及硬件地址配置方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965399A4 *
ZHANG JUN ,HAN HUACHUN ,YUAN ZENGQUAN: "Smart Charging Control Electrical Vehicles Based on Two-level Charge Management System", ELECTRIC POWER ENGINEERING TECHNOLOGY, vol. 36, no. 5, 28 September 2017 (2017-09-28), pages 86 - 92, XP055796603, ISSN: 2096-3203, DOI: 10.19464/j.cnki.cn32-1541/tm.2017.05.015 *

Also Published As

Publication number Publication date
EP3965399B1 (en) 2023-01-11
EP3965399A4 (en) 2022-06-15
CN110758151A (zh) 2020-02-07
CN110758151B (zh) 2021-04-20
EP3965399A1 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US7936092B2 (en) Method and device for providing a supply voltage by means of generator units connected in parallel
CN103475068B (zh) 一种充电器、充电终端、充电系统及充电控制方法
CN109768599B (zh) 一种基于多usb-c接口的充电方法及主设备
WO2021057105A1 (zh) 一种电子设备及硬件地址配置方法
US11951870B2 (en) Battery monitoring apparatus
AU2018212601B2 (en) Control electronics for multiple electric filters
JP6574952B2 (ja) 配線診断装置、電池システム、および電力システム
CN103620572A (zh) 广播串行总线终接
WO2018151398A1 (ko) 셀 모듈 컨트롤러에 대한 고유번호 할당 시스템 및 방법
US20180269543A1 (en) Communication terminating resistance automatic setting method of energy storage system
CN108710593A (zh) 一种基于Type-C连接器的供电方法及装置
CN108989478B (zh) 一种有线连接多模块测控系统通讯地址自动识别方法
US11876189B2 (en) Battery system, battery module and battery control circuit thereof
JPH1153294A (ja) アドレス指定装置およびアドレス指定方法
US20230065241A1 (en) Power storage system
US10972307B2 (en) Communication system
KR20230035988A (ko) 복수 인렛을 갖는 충전 통합 제어기 및 이를 이용한 충전 통합 제어 방법
EP3770521B1 (en) Air conditioning system and communication method
CN111010326A (zh) 多模块通信系统、供电端口的处理电路、方法与电子设备
KR102581998B1 (ko) 전기자동차 순차적 멀티 충전 감지 시스템
CN220732990U (zh) 播放切换电路及播放切换智控机
CN214670183U (zh) 一种零火线通讯装置和电器设备
JP7164059B2 (ja) 電池監視装置
WO2023233993A1 (ja) 端末装置および通信システム
WO2021129545A1 (zh) 带滤波检测装置、供电设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020867314

Country of ref document: EP

Effective date: 20211129

NENP Non-entry into the national phase

Ref country code: DE