WO2021056680A1 - 一种电子级玻璃纤维组合物及其玻璃纤维和电子布 - Google Patents

一种电子级玻璃纤维组合物及其玻璃纤维和电子布 Download PDF

Info

Publication number
WO2021056680A1
WO2021056680A1 PCT/CN2019/114268 CN2019114268W WO2021056680A1 WO 2021056680 A1 WO2021056680 A1 WO 2021056680A1 CN 2019114268 W CN2019114268 W CN 2019114268W WO 2021056680 A1 WO2021056680 A1 WO 2021056680A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass fiber
weight percentage
electronic
fiber composition
content
Prior art date
Application number
PCT/CN2019/114268
Other languages
English (en)
French (fr)
Inventor
曹国荣
邢文忠
章林
姚忠华
周红娅
Original Assignee
巨石集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 巨石集团有限公司 filed Critical 巨石集团有限公司
Priority to KR1020207025900A priority Critical patent/KR102584333B1/ko
Priority to BR112020019940A priority patent/BR112020019940A2/pt
Priority to EP19915587.0A priority patent/EP3825286A4/en
Priority to US16/979,089 priority patent/US11919802B2/en
Priority to JP2020551427A priority patent/JP2022503330A/ja
Priority to MX2021008726A priority patent/MX2021008726A/es
Publication of WO2021056680A1 publication Critical patent/WO2021056680A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/06Mineral fibres, e.g. slag wool, mineral wool, rock wool
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/16Compositions for glass with special properties for dielectric glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0275Fibers and reinforcement materials
    • H05K2201/029Woven fibrous reinforcement or textile

Definitions

  • the invention relates to a glass fiber composition, in particular to an electronic grade glass fiber composition used in the electronics industry, its glass fiber and electronic cloth.
  • Glass fiber is an inorganic fiber material. Electronic-grade glass fiber is used as a functional substrate for the electronics industry. Its main application areas include communications, computers, IC packaging, consumer electronics, and automotive electronics.
  • the "electronic grade glass fiber-electronic cloth-copper clad laminate-printed circuit board (PCB)" industry chain is the core application of electronic grade glass fiber. In order to meet the dielectric properties of printed circuit boards, electronic grade glass fiber is also required to have good dielectric properties. Electrical performance.
  • D glass fibers with high boron content and traditional E glass fibers mainly include D glass fibers with high boron content and traditional E glass fibers.
  • D glass fiber is a low-dielectric glass fiber, and its dielectric performance is better than that of traditional E glass fiber. It can meet the requirements of high-density and high-speed processing of information.
  • the weight percentage range of its main composition is: 20-25% of B 2 O 3 , 72-76% SiO 2 , 0-5% Al 2 O 3 , 2-4% Na 2 O+K 2 O.
  • the dielectric constant of D glass fiber is below 4.5 at room temperature frequency of 1MHz, but its melting and drawing are too difficult, such as drawing temperature greater than 1400 °C, it is difficult to achieve large-scale tank kiln production, at the same time the product has drilling performance and water resistance The performance is poor, which is not conducive to subsequent processing and use, and also has the disadvantage of excessive raw material cost.
  • Traditional E glass fiber with high boron content can be used as a conventional electronic grade glass fiber, and is currently the main commercial electronic grade glass fiber.
  • the dielectric constant of traditional E glass fiber is 6.7-7.1 at room temperature frequency of 1MHz, which can meet the requirements of conventional printed circuit boards.
  • the proportion of metal oxides can reduce the viscosity of glass and the difficulty of melting, so as to reduce the difficulty of production and improve production efficiency. This makes it difficult for the electrical properties of boron-free E glass fiber and the drilling performance of the board to meet the requirements of printed circuit boards. Suitable for the production of electronic grade glass fiber.
  • the present invention aims to solve the problems described above.
  • the invention provides an electronic grade glass fiber composition, which can not only reduce the cost of raw materials and the volatilization of raw materials, reduce the erosion of refractory materials, but also improve the dielectric properties of glass, improve the mechanical properties and water resistance of glass fibers, and improve the glass
  • the fiber forming range is suitable for large-scale tank kiln production.
  • an electronic grade glass fiber composition contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the total content of points is greater than or equal to 99%.
  • the weight percentage ratio C3 (SiO 2 +Al 2 O 3 )/(B 2 O 3 +MgO) ranges from 9.0-15.0.
  • the weight percentage content of the R 2 O is in the range of 0.1-0.8%.
  • the weight percentage content of the MgO ranges from 0.45 to 1.9%.
  • the weight percentage content of the B 2 O 3 ranges from 4.55 to 6.1%.
  • the weight percentage content of F 2 is in the range of 0.3-1.0%.
  • the weight percentage content of Li 2 O is less than 0.1%.
  • the weight percentage content of the B 2 O 3 +MgO ranges from 5.0 to 7.6%.
  • the weight percentage content of the SiO 2 +Al 2 O 3 ranges from 68.5-74.0%.
  • the weight percentage content of the CaO+MgO+R 2 O ranges from 20.5-25.8%.
  • the weight percentage content of the CaO is in the range of 22.2-24.8%.
  • the electronic grade glass fiber composition contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the weight percentage ratio C1 SiO 2 /B 2 O 3 ranges from 8.1 to 12.7
  • the above The total content of the components is greater than or equal to 99%.
  • the electronic grade glass fiber composition contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the total content of points is greater than or equal to 99%.
  • the electronic grade glass fiber composition contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the electronic grade glass fiber composition further comprises one or more of SO 3 , SrO, CeO 2 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and ZnO with a total content of less than 1% by weight.
  • SO 3 SO 3
  • SrO CeO 2
  • La 2 O 3 La 2 O 3
  • Y 2 O 3 Y 2 O 3
  • ZrO 2 ZnO with a total content of less than 1% by weight.
  • ZnO 2 ZnO with a total content of less than 1% by weight.
  • an electronic grade glass fiber which is made of the above-mentioned glass fiber composition.
  • the dielectric constant of the electronic grade glass fiber is in the range of 6.3-7.0 at room temperature and frequency of 1 MHz.
  • an electronic cloth containing the above-mentioned electronic grade glass fiber.
  • the electronic cloth can be used as a substrate of a printed circuit board.
  • the electronic grade glass fiber composition of the present invention specifically relates to a cost-effective electronic grade glass fiber composition, which focuses on adjusting the content of SiO 2 , Al 2 O 3 , B 2 O 3 and F 2 and coordinating the content of alkali metal oxides.
  • Alkaline earth metal oxide content and its total content control the ratio of SiO 2 /B 2 O 3 and B 2 O 3 /(R 2 O+MgO); further, by controlling (SiO 2 +Al 2 O 3 )/( The ratio of B 2 O 3 +MgO) and CaO/(CaO+MgO) can improve the synergistic effect between silicon ion, boron ion, aluminum ion and alkali metal ion and alkaline earth metal ion.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a weight percentage as follows:
  • the total content of points is greater than or equal to 99%.
  • SiO 2 is the network generator oxide of glass and the main oxide that forms the glass framework.
  • the silicon-oxygen framework hardly has the ability to move under the action of an electric field.
  • the weight percentage content of SiO 2 is limited to range from 51.0 to 57.5%.
  • the weight percentage content of SiO 2 can be limited to 52.0-57.5%.
  • the weight percentage content range of SiO 2 can be limited to 52.0-57.0%.
  • the weight percentage content range of SiO 2 may be limited to 53.0-56.5%.
  • the weight percentage content of SiO 2 may be limited to a range of 54.2-57.5% and the weight percentage content of F 2 may be in a range of 0.3-1.0%.
  • B 2 O 3 is a network generator oxide of glass, which can improve a series of properties of glass and has a good fluxing effect.
  • boron can exist in the form of [BO 3 ] triangle or/and [BO 4 ] tetrahedron.
  • the weight percentage content of B 2 O 3 is limited to be greater than 4.5% and less than or equal to 6.4%.
  • the weight percentage content of B 2 O 3 can be limited to 4.55-6.4%.
  • the weight percentage content of B 2 O 3 can be limited to 4.55-6.1%.
  • the weight percentage content range of B 2 O 3 can be limited to 4.7-6.1%.
  • the weight percentage content of SiO 2 may be in the range of 52.0-55.9% and the weight percentage content of B 2 O 3 may be in the range of 5.1-6.4%.
  • Al 2 O 3 is the intermediate oxide of glass and an important oxide that forms the glass framework. When combined with SiO 2 , it can play a substantial role in the mechanical properties of the glass, and it also plays a role in affecting the crystallization and water resistance of the glass. Important role. In E glass with high boron content, because B 3+ has a stronger tendency to combine with oxygen ions, under the influence of a large amount of high field strength B 3+ , it interferes with the tetrahedral coordination of Al 3+ , causing it to capture free oxygen to form The ability of the aluminum oxide tetrahedron is weakened, so that the Al 3+ in the glass tends to be in the octahedron.
  • the weight percentage content of Al 2 O 3 is limited to a range of 11.0-17.0%.
  • the weight percentage content range of Al 2 O 3 can be limited to 11.5-16.5%. More preferably, the weight percentage content range of Al 2 O 3 can be limited to 12.0-16.0%.
  • the content of boron oxide can be appropriately reduced.
  • the range of the weight percentage ratio C1 can be limited to 8.3-12.7. More preferably, the range of the weight percentage ratio C1 can be limited to 8.3-12.5. Further preferably, the range of the weight percentage ratio C1 can be limited to 8.5-12.5.
  • Alkali metal oxides are the external body oxides of glass. Na 2 O, K 2 O and Li 2 O can all reduce the viscosity of glass, improve glass melting performance, and can effectively provide free oxygen, which can form with boron ions and aluminum ions. Better synergistic effect, generating a certain amount of negatively charged tetrahedrons to play a role in such as Na + ions, limiting its mobility and promoting better structure accumulation effect.
  • alkali metal oxides have a significant effect on the electrical properties of glass. With the increase of alkali metal oxides, the number of monovalent alkali metal ions in the glass increases, and the more easily polarized non-bridging oxygen ions also increase, and the conductivity of the glass will increase.
  • the dielectric constant will increase.
  • Na 2 O has a greater influence on the electrical properties of glass than K 2 O and Li 2 O, which, together with Na 2 O, can provide non-bridging oxygen ions with high polarizability.
  • the dual alkali effect is significant, and the conductivity of glass containing K 2 O and Na 2 O is lower than that of glass containing only Na 2 O.
  • the weight percentage content range of R 2 O can be limited to 0.05-0.95%. More preferably, the weight percentage content range of R 2 O can be limited to 0.1-0.8%. Further preferably, the weight percentage content range of R 2 O can be limited to 0.1-0.65%.
  • the weight percentage range of Na 2 O+K 2 O can be limited to 0.05-0.95%.
  • the weight percentage content range of Na 2 O+K 2 O can be limited to 0.1-0.8%.
  • the weight percentage content of Na 2 O can be limited to a range of 0.05-0.5%.
  • the weight percentage content range of Na 2 O can be limited to 0.05-0.35%.
  • the weight percentage content of K 2 O can be limited to a range of 0.05-0.4%.
  • the weight percentage content range of Li 2 O can be limited to less than 0.15%.
  • the weight percentage content range of Li 2 O can be limited to less than 0.1%.
  • the electronic grade glass fiber composition may not contain Li 2 O.
  • the range of the weight percentage ratio K 2 O/Na 2 O may be greater than or equal to 0.45.
  • the range of the weight percentage ratio K 2 O/Na 2 O can be limited to 0.60 or more.
  • CaO is the external body oxide of glass. It can not only adjust the viscosity of the glass, but also improve the chemical stability and mechanical strength of the glass. It can also shorten the glass frit and increase the molding speed of the glass fiber.
  • the ionic radii of Ca 2+ and Na + are similar. In the gap of the glass structure, the two are more likely to form cross-filling, and the Ca 2+ ion field is stronger than Na + , filling in the glass vacancy is likely to block the ion migration channel, so Ca 2+ can effectively suppress the mobility of Na + ions, which is beneficial to reduce the conductivity and dielectric constant of the glass.
  • the weight percentage content of CaO is limited to 19.5-24.8%.
  • the content range of the weight percentage of CaO can be limited to 20.0-24.4%. More preferably, the weight percentage content range of CaO can be limited to 20.0-23.9%.
  • MgO is the intermediate oxide of glass, which mainly plays the role of adjusting the viscosity of glass and controlling the crystallization of glass.
  • the Mg-O bond has a certain degree of covalentness, but the ionicity is the mainstream. In the network environment with insufficient “free oxygen”, it plays a role of "accumulation”, which is beneficial to reduce the conductivity and dielectric constant of the glass.
  • the ion radius of Mg 2+ is smaller than Na + and K + , and the ion field strength is significantly greater than Na + and K + , and it binds to the oxygen ions in the glass more firmly, and can more effectively suppress the migration ability of alkali metal ions Na + and K + .
  • the weight percentage content of MgO is limited to a range of 0.1-1.9%.
  • a small amount of MgO is mixed with CaO and Al 2 O 3.
  • Calcium ions can provide part of free oxygen while effectively filling the voids of the network, and form a synergistic effect with magnesium ions and aluminum ions in terms of accumulation, which is beneficial to obtain a more compact
  • the structure accumulation effect is beneficial to effectively form the mixed crystal state of wollastonite (CaSiO 3 ), diopside (CaMgSi 2 O 6 ), and anorthite (CaAl 2 Si 2 O 8 ) when the glass is crystallized to reduce glass precipitation.
  • the weight percentage content of MgO can be limited to 0.45-1.9%. More preferably, the weight percentage content of MgO can be limited to 0.45-1.6%. In addition, in another embodiment, the weight percentage content of MgO can be defined in the range of 0.1-0.9% and the weight percentage content of CaO in the range of 22.2-24.8%.
  • the range of the weight percentage ratio C2 can be limited to 1.8-6.1. More preferably, the range of the weight percentage ratio C2 can be limited to 2.0-6.0.
  • the range of the weight percentage ratio C3 can be limited to 9.0-15.0. More preferably, the range of the weight percentage ratio C3 can be limited to 9.5-15.0. Further preferably, the range of the weight percentage ratio C3 can be limited to 9.5-14.5.
  • the present invention can limit the weight percentage content of SiO 2 +Al 2 O 3 in the range of 65.0-74.0%.
  • the weight percentage content range of SiO 2 +Al 2 O 3 can be limited to 67.0-74.0%. More preferably, the weight percentage content range of SiO 2 +Al 2 O 3 can be limited to 68.5-74.0%.
  • the range of the weight percentage ratio C4 can be limited to be greater than or equal to 0.920. More preferably, the range of the weight percentage ratio C4 can be limited to 0.920-0.996. Further preferably, the range of the weight percentage ratio C4 can be limited to 0.925-0.995.
  • the present invention can limit the content range of the weight percentage of CaO+MgO to be less than 25%.
  • the weight percentage content range of CaO+MgO can be limited to 24.5% or less. More preferably, the content range of the weight percentage of CaO+MgO can be limited to 20.0-24.5%. Further preferably, the content range of the weight percentage of CaO+MgO can be limited to 20.0-24.0%. Further, the content range of the weight percentage of CaO+MgO+R 2 O can be limited to be less than or equal to 25.8%.
  • the weight percentage content range of CaO+MgO+R 2 O can be limited to 20.5-25.8%. More preferably, the weight percentage content range of CaO+MgO+R 2 O can be limited to 20.5-25.3%. Further preferably, the content range of the weight percentage of CaO+MgO+R 2 O can be limited to 21.0-24.8%.
  • the present invention can limit the range of the ratio of weight percentage B 2 O 3 /MgO to be greater than or equal to 2.5.
  • the range of the weight percentage ratio B 2 O 3 /MgO can be limited to 2.5-21.5. More preferably, the range of the weight percentage ratio B 2 O 3 /MgO can be limited to 3.0-20.0.
  • the weight percentage content of TiO 2 is limited to a range of 0.01-1.0%.
  • the weight percentage content range of TiO 2 can be limited to 0.05-0.8%. More preferably, the weight percentage content range of TiO 2 can be limited to 0.05-0.5%.
  • Fe 2 O 3 is beneficial to the melting of glass and can also improve the crystallization performance of glass.
  • the weight percentage content of Fe 2 O 3 is limited to a range of 0.05-0.8%.
  • the weight percentage content range of Fe 2 O 3 can be limited to 0.05-0.6%.
  • Fe 2 O 3 contains both Fe 2+ and Fe 3+ ions, and both ions have a certain coloring effect. Because Fe 3+ absorbs in the ultraviolet region, and Fe 2+ absorbs in the infrared region, controlling the proper proportion of ferrous iron in the glass is beneficial to the heat absorption of the glass liquid when the temperature is raised, and it is beneficial to the glass liquid when the temperature is lowered.
  • the range of the ratio FeO/Fe 2 O 3 of weight percentage can be limited to be greater than or equal to 0.40.
  • the range of the weight percentage ratio FeO/Fe 2 O 3 can be limited to be greater than or equal to 0.50. More preferably, the range of the ratio by weight percentage FeO/Fe 2 O 3 can be limited to 0.50-0.85. Further preferably, the range of the weight percentage ratio FeO/Fe 2 O 3 can be limited to 0.55-0.80.
  • the weight percentage of F 2 is limited to a range of 0.01-1.0%.
  • the weight percentage content range of F 2 can be limited to 0.05-1.0%. More preferably, the weight percentage content range of F 2 can be limited to 0.05-0.8%.
  • the weight percentage content of F 2 can be limited to a range of 0.3-1.0%.
  • the present invention defines the weight percentage of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Li 2 O, TiO 2 , Fe 2 O 3 and F 2
  • the total content is greater than or equal to 99%.
  • the total weight percentage of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Li 2 O, TiO 2 , Fe 2 O 3 and F 2 can be defined
  • the content is greater than or equal to 99.5%.
  • the weight percentage of SiO 2 , Al 2 O 3 , B 2 O 3 , CaO, MgO, Na 2 O, K 2 O, Li 2 O, TiO 2 , Fe 2 O 3 and F 2 can be defined The total content is greater than 99.8%.
  • the electronic grade glass fiber composition of the present invention may also contain a small amount of other components. Further, the composition may also contain one or more of SO 3 , SrO, CeO 2 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and ZnO with a total content of less than 1% by weight.
  • the composition may also contain one or more of SO 3 , SrO, CeO 2 , La 2 O 3 , Y 2 O 3 , ZrO 2 , and ZnO with a total content of less than 0.5% by weight. Further, the composition may also contain SO 3 with a content of less than 0.5% by weight.
  • the electronic grade glass fiber composition of the present invention in order to control costs and improve environmental protection, may be substantially free of P 2 O 5 . In another embodiment, in order to control cost and glass density, the electronic grade glass fiber composition of the present invention may be substantially free of SrO.
  • essentially free of a certain oxide means that the component in the composition is only present in a trace amount, for example, brought in by impurities in the raw material, and its weight percentage content is 0-0.03%, in most cases 0- 0.01%.
  • the present invention can limit the dielectric constant of the electronic grade glass fiber at a room temperature frequency of 1 MHz to a range of 6.0-7.0.
  • the dielectric constant of the electronic grade glass fiber is in the range of 6.3-7.0 at room temperature and frequency of 1 MHz. More preferably, the dielectric constant of the electronic grade glass fiber is in the range of 6.3-6.8 at room temperature and frequency of 1 MHz.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the total content of points is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the total content of points is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the ratio C3 (SiO 2 +Al 2 O 3 )/(B 2 O 3 +MgO) ranges from 9.5-15.0, and the total content of the above components is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the total content of points is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the total content of points is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the range of the ratio C3 (SiO 2 +Al 2 O 3 )/(B 2 O 3 +MgO) is 9.0-15.0, and the total content of the above components is greater than or equal to 99%.
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the electronic grade glass fiber composition according to the present invention contains the following components, and the content of each component is expressed as a percentage by weight as follows:
  • the electronic grade glass fiber composition has the characteristics of high cost performance, not only can reduce the cost of raw materials and the volatilization of raw materials, but also improve the dielectric properties of the glass, improve the mechanical properties and water resistance of the glass fiber, and improve the molding range of the glass fiber, which is suitable for use Produced in large-scale tank kilns.
  • B1-B5 is an ordinary reinforced E glass fiber composition.
  • B1 is a traditional E glass fiber composition that can be used to produce electronic yarns
  • B2 is a traditional D glass fiber composition
  • B3- B5 is an ordinary reinforced E glass fiber composition.
  • the forming temperature corresponds to the temperature of the glass melt when the viscosity is 103 poise.
  • the liquidus temperature corresponds to the temperature at which crystal nuclei begin to form when the glass melt is cooled, that is, the upper limit temperature of glass crystallization.
  • the ⁇ T value the difference between the forming temperature and the liquidus temperature, represents the temperature range of wire drawing.
  • Dielectric constant the method of measuring the dielectric constant is: mix the raw materials uniformly and add them to a platinum crucible, and keep the temperature at 1550 ⁇ 30°C for 6 hours in a high-temperature electric furnace to obtain a high-temperature molten glass with good clarification and homogenization.
  • the liquid is poured into a preheated stainless steel mold to make a glass block.
  • the glass block is annealed in a muffle furnace.
  • the annealed glass block is cut, polished, and polished into a thickness of about 1.5mm and a length of about 30mm.
  • the dielectric constant of the rectangular glass sheet is measured after the glass sheet is coated with silver electrodes. The smaller the dielectric constant, the smaller the polarization ability of the glass medium, and the better the stability as an electrical insulating material.
  • the number of bubbles The approximate method for determining the number of bubbles is: use a special mold to press each embodiment compound into a sample of the same shape, place it on the sample platform of a high-temperature microscope, and then program to raise the temperature to the set space temperature At 1500°C, without heat preservation, the glass samples are cooled to room temperature with the furnace; then, the number of bubbles in each glass sample is observed from a microscopic angle through an optical microscope. Among them, the number of bubbles is subject to the microscope imaging range.
  • Water resistance characterized by weight loss rate.
  • the measurement method is: place the glass powder with a particle size of 40-80 mesh in water at 95°C for 24 hours, stir regularly, and measure the weight loss rate of the glass powder. The smaller the weight loss rate, the better the water resistance of the glass.
  • the raw material cost coefficient is based on the traditional E glass fiber composition B1, and the raw material cost coefficient is set to 1.0. Other compositions are calculated on this basis. The smaller the raw material cost factor, the lower the raw material cost of the composition.
  • each component can be obtained from appropriate raw materials, the various raw materials are mixed in proportion to make each component reach the final expected weight percentage, the mixed batch material is melted and clarified, and then the glass is molten The spout on the slip plate is pulled out to form glass fiber, and the glass fiber is drawn around to the rotating head of the wire drawing machine to form a raw silk cake or yarn group.
  • these glass fibers can be further processed by conventional methods to meet expected requirements.
  • the following further provides a comparison of the performance parameters of the electronic grade glass fiber composition of the present invention and the comparative example by way of a list.
  • the content of the glass fiber composition is expressed in weight percentage. It should be noted that the total content of the components in the examples is slightly less than 100%, which can be understood as the residual amount is a trace of impurities or a small amount of components that cannot be analyzed.
  • the electronic grade glass fiber composition of the present invention has the following advantages: (1) has a lower dielectric constant; (2) has a better Low molding temperature and liquidus temperature; (three) has a wider molding range.
  • the electronic grade glass fiber composition of the present invention has the following advantages: (1) It has lower raw material cost; (2) It has higher tensile strength and better water resistance; (3) It has a wider molding range; (4) It has an improved level of dielectric constant.
  • the electronic grade glass fiber composition of the present invention has the following advantages: (1) has a much lower raw material cost; (2) has a much higher tensile strength; (3) has Much higher water resistance; (four) has fewer bubbles.
  • the technical solution of the present invention is different from ordinary reinforced E glass fiber composition, traditional E glass fiber composition and traditional D glass fiber composition, in terms of product cost performance, raw material cost, dielectric constant, tensile strength, liquid Substantial progress has been made in phase line temperature, molding range, and water resistance. It is also easy to achieve large-scale tank kiln production, and unexpected technical effects have been achieved.
  • the electronic-grade glass fiber composition according to the present invention can be made into electronic-grade glass fiber with the above-mentioned excellent performance; the electronic-grade glass fiber can be made into an electronic cloth.
  • the electronic grade glass fiber composition according to the present invention is combined with one or more organic and/or inorganic materials to prepare a composite material with excellent performance, for example, a glass fiber reinforced substrate.
  • the electronic grade glass fiber composition provided by the present invention can not only reduce the cost of raw materials and the volatilization of raw materials, reduce the erosion of refractory materials, but also improve the dielectric properties of glass, improve the mechanical properties and water resistance of glass fibers, and improve glass fibers Forming range, and suitable for large-scale tank kiln production.
  • the glass fiber composition of the present invention has made substantial progress in terms of product cost performance, raw material cost, dielectric constant, tensile strength, liquidus temperature, molding range, water resistance, etc. . Therefore, the present invention has good industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Glass Compositions (AREA)

Abstract

一种电子级玻璃纤维组合物及其玻璃纤维和电子布。其中,该电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:SiO 2为51.0-57.5%,Al 2O 3为11.0-17.0%,B 2O 3为大于4.5%且小于等于6.4%,CaO为19.5-24.8%,MgO为0.1-1.9%,R 2O=Na 2O+K 2O+Li 2O为0.05-1.2%,Fe 2O 3为0.05-0.8%,TiO 2为0.01-1.0%,F 2为0.01-1.0%,且重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,上述组分的合计含量大于等于99%。该电子级玻璃纤维组合物不仅能降低原料成本及原料挥发,还能改善玻璃的介电性能,提高玻璃纤维的机械性能和耐水性,并改善玻璃纤维成型范围,适合用于大规模池窑生产。

Description

一种电子级玻璃纤维组合物及其玻璃纤维和电子布
本申请要求在2019年9月25日提交中国专利局、申请号为201910912829.1、发明名称为“一种电子级玻璃纤维组合物及其玻璃纤维和电子布”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种玻璃纤维组合物,尤其涉及一种用于电子工业的电子级玻璃纤维组合物及其玻璃纤维和电子布。
背景技术
玻璃纤维属于无机纤维材料,电子级玻璃纤维作为用于电子工业的功能基材,主要应用领域包括通信领域、计算机、IC封装、消费电子、汽车电子等。“电子级玻璃纤维-电子布-覆铜板-印刷电路板(PCB)”产业链是电子级玻璃纤维的核心应用,为了满足印刷电路板的介电性能,要求电子级玻璃纤维也具有良好的介电性能。
目前,国内外印刷电路板中普遍应用的电子级玻璃纤维主要有高硼含量的D玻璃纤维和传统E玻璃纤维。其中,D玻璃纤维属于低介电玻璃纤维,介电性能优于传统E玻璃纤维,能满足高密度化和信息高速化处理的要求,其主要组成的重量百分比范围为:20-25%的B 2O 3,72-76%的SiO 2,0-5%的Al 2O 3,2-4%的Na 2O+K 2O。室温频率1MHz条件下D玻璃纤维的介电常数在4.5以下,但其熔制难度和拉丝难度过大,如拉丝温度大于1400℃,难以实现大规模池窑生产,同时产品的钻孔性能和耐水性能较差,不利于后续的加工和使用,且还存在原料成本过高的缺点。高硼含量的传统E玻璃纤维可用作常规的电子级玻璃纤维,是目前主要的商用电子级玻璃纤维。室温频率1MHz条件下传统E玻璃纤维的介电常数在6.7-7.1,能满足常规印刷电路板的要求,具有熔制性能好、可加工性好等优点,但实际应用中各大企业的B 2O 3含量普遍在7.2±0.4%的水平,原料成本依然较高,且大量含硼原料的存在导致配合料挥发性大,容易加速窑炉耐火材料的高温侵蚀。同时,传统E玻璃纤维还存在机械性能差、耐水性一般等方面的缺点。另外,普通增强型玻璃纤维的主要关注点是机械性能和耐腐蚀性能,如典型的无硼E玻璃纤维,它在不 使用含硼原料和含氟原料后,配方中会通过增加碱金属和碱土金属氧化物的比例来降低玻璃粘度和熔制难度,以降低生产难度、提高生产效率,这导致无硼E玻璃纤维的电性能、板材的钻孔性能等难于满足印刷电路板的要求,因此不适合生产电子级的玻璃纤维。
目前,大量玻璃纤维企业及科研机构聚焦低介电玻璃纤维的研究与开发,但对电子级E玻璃纤维的研究创新却极少。实际上,目前传统的电子级E玻璃纤维存在诸多问题,在提高玻璃性能、降低成本、降低挥发、改善成型范围等方面还有很大的改进空间。
发明内容
本发明旨在解决上面描述的问题。本发明提供一种电子级玻璃纤维组合物,不仅能降低原料成本及原料挥发,减少对耐火材料的侵蚀,还能改善玻璃的介电性能,提高玻璃纤维的机械性能和耐水性,并改善玻璃纤维成型范围,适合用于大规模池窑生产。
根据本发明的一个方面,提供一种电子级玻璃纤维组合物,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000001
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选地,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0。
优选地,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915。
优选地,所述R 2O的重量百分比含量范围为0.1-0.8%。
优选地,所述MgO的重量百分比含量范围为0.45-1.9%。
优选地,所述B 2O 3的重量百分比含量范围为4.55-6.1%。
优选地,所述F 2的重量百分比含量范围为0.3-1.0%。
优选地,所述Li 2O的重量百分比含量范围为小于0.1%。
优选地,所述B 2O 3+MgO的重量百分比含量范围为5.0-7.6%。
优选地,所述SiO 2+Al 2O 3的重量百分比含量范围为68.5-74.0%。
优选地,所述CaO+MgO+R 2O的重量百分比含量范围为20.5-25.8%。
优选地,所述CaO的重量百分比含量范围为22.2-24.8%。
优选地,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000002
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
优选地,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000003
Figure PCTCN2019114268-appb-000004
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选地,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000005
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
优选地,所述的电子级玻璃纤维组合物还包含重量百分比总含量小于1%的SO 3、SrO、CeO 2、La 2O 3、Y 2O 3、ZrO 2、ZnO中的一种或多种。
根据本发明的另一个方面,提供一种电子级玻璃纤维,所述电子级玻璃纤维由上述的玻璃纤维组合物制成。
优选地,所述电子级玻璃纤维在室温频率1MHz条件下的介电常数范围为6.3-7.0。
根据本发明的第三方面,提供一种电子布,所述电子布含有上述电子级玻璃纤维。
优选地,所述电子布可用作印刷电路板的基材。
本发明的电子级玻璃纤维组合物,具体涉及一种高性价比的电子级玻璃纤维组合物,重点调整SiO 2、Al 2O 3、B 2O 3和F 2含量,配合调整碱金属氧化物含量、碱土金属氧化物含量及其总含量,控制SiO 2/B 2O 3和B 2O 3/(R 2O+MgO)比例;进一步地,通过控制(SiO 2+Al 2O 3)/(B 2O 3+MgO)、CaO/(CaO+MgO)等比例,提高硅离子、硼离子、铝离子与碱金属离子、碱土金属离子之间的协同效应。通过上述组分及其比例控制,不仅能降低原料成本及原料挥发,还能改善玻璃的介电性能,提高玻璃纤维的机械性能和耐水性,并改善玻璃纤维成型范围,有利于提高生产效率,适合用于大规模池窑生产。
具体来说,根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000006
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
该电子级玻璃纤维组合物中各组分的作用及含量说明如下:
SiO 2是玻璃的网络生成体氧化物,是形成玻璃骨架的主要氧化物,硅氧骨架在电场作用下几乎不具有移动的能力。本发明的电子级玻璃纤维组合物中,限定SiO 2的重量百分比含量范围为51.0-57.5%。优选地,SiO 2的重量百分比含量范围可以限定为52.0-57.5%。更优选地,SiO 2的重量百分比含量范围可以限定为52.0-57.0%。进一步优选地,SiO 2的重量百分比含量范围可以限定为53.0-56.5%。此外,在另一个实施方案中,可以限定SiO 2的重量百分比含量范围为54.2-57.5%和F 2的重量百分比含量范围为0.3-1.0%。
B 2O 3是玻璃的网络生成体氧化物,它既能改善玻璃的一系列性能,又有良好的助熔作用。同时,在不同条件下硼能以[BO 3]三角体或/和[BO 4]四面体形式存在,在高温熔融 条件下,一般难于形成[BO 4]四面体,而以[BO 3]三角体存在,这是B 2O 3能降低高温粘度的主要原因;在低温时,一定条件下B 3+有夺取游离氧形成硼氧四面体的趋势,起到补网的作用,而且[BO 4]四面体的体积小于[SiO 4]四面体,使玻璃结构趋向紧密,有利于降低电导率和介电常数。但是,含硼原料的价格较高,而且硼是易挥发的物质,大量含硼原料的存在会导致配合料挥发性大,容易加速窑炉耐火材料的高温侵蚀。同时,高硼含量的电子级玻璃纤维的机械性能和耐酸性较差、耐水性一般。本发明的电子级玻璃纤维组合物中,限定B 2O 3的重量百分比含量范围为大于4.5%且小于等于6.4%。优选地,B 2O 3的重量百分比含量范围可以限定为4.55-6.4%。更优选地,B 2O 3的重量百分比含量范围可以限定为4.55-6.1%。进一步优选地,B 2O 3的重量百分比含量范围可以限定为4.7-6.1%。此外,在另一个实施方案中,可以限定SiO 2的重量百分比含量范围为52.0-55.9%和B 2O 3的重量百分比含量范围为5.1-6.4%。
Al 2O 3是玻璃的中间体氧化物,也是形成玻璃骨架的重要氧化物,与SiO 2结合时可对玻璃的机械性能起到实质性作用,并且在影响玻璃析晶、耐水性方面起着重要作用。高硼含量的E玻璃中,由于B 3+与氧离子结合的倾向更强,在大量高场强B 3+的影响下,干扰了Al 3+的四面体配位,使其夺取游离氧形成铝氧四面体的能力减弱,以致玻璃中的Al 3+更倾向于处于八面体中。当B 2O 3含量适当降低时,可增强Al 3+夺取游离氧形成铝氧四面体倾向,加强补网作用,减少玻璃中易极化的非桥氧离子数量,有利于降低介电常数。本发明的电子级玻璃纤维组合物中,限定Al 2O 3的重量百分比含量范围为11.0-17.0%。优选地,Al 2O 3的重量百分比含量范围可以限定为11.5-16.5%。更优选地,Al 2O 3的重量百分比含量范围可以限定为12.0-16.0%。
在保证玻璃电学性能的基础上,为了提高产品性价比,可适当降低氧化硼含量,通过调整玻璃中网络形成体及桥氧的数量,控制结构中硼、硅离子争夺氧的竞争,降低玻璃的介电常数、提高玻璃的机械性能,同时兼顾玻璃的熔制澄清效果。本发明的电子级玻璃纤维组合物中,限定重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7。优选地,重量百分比的比值C1的范围可以限定为8.3-12.7。更优选地,重量百分比的比值C1的范围可以限定为8.3-12.5。进一步优选地,重量百分比的比值C1的范围可以限定为8.5-12.5。
碱金属氧化物是玻璃的网络外体氧化物,Na 2O、K 2O和Li 2O均能降低玻璃粘度,改善玻璃熔制性能,还能有效提供游离氧,与硼离子、铝离子形成较好的协同效应,生成一定量带负电的四面体对如Na +离子起到牵制作用,限制其移动能力,促进更好的结构堆积 效果。但是,碱金属氧化物对玻璃的电学性能影响显著,随着碱金属氧化物的增加,玻璃中一价碱金属离子增多,较易极化的非桥氧离子也增多,玻璃的电导率会增加,介电常数会增大。根据本发明的电子级玻璃纤维组合物,我们研究发现Na 2O对玻璃电性能的影响作用大于K 2O和Li 2O,这与Na 2O可以提供可极化度大的非桥氧离子有关;同时,双碱效应显著,含K 2O和Na 2O的玻璃电导率要低于仅含Na 2O的玻璃。本发明的电子级玻璃纤维组合物中,限定R 2O=Na 2O+K 2O+Li 2O的重量百分比含量范围为0.05-1.2%。优选地,R 2O的重量百分比含量范围可以限定为0.05-0.95%。更优选地,R 2O的重量百分比含量范围可以限定为0.1-0.8%。进一步优选地,R 2O的重量百分比含量范围可以限定为0.1-0.65%。
进一步地,可以限定Na 2O+K 2O的重量百分比含量范围为0.05-0.95%。优选地,Na 2O+K 2O的重量百分比含量范围可以限定为0.1-0.8%。进一步地,可以限定Na 2O的重量百分比含量范围为0.05-0.5%。优选地,Na 2O的重量百分比含量范围可以限定为0.05-0.35%。进一步地,可以限定K 2O的重量百分比含量范围为0.05-0.4%。进一步地,可以限定Li 2O的重量百分比含量范围为小于0.15%。优选地,Li 2O的重量百分比含量范围可以限定为小于0.1%。此外,在另一个实施方案中,所述电子级玻璃纤维组合物中可以不含Li 2O。进一步地,为改善玻璃的电学性能,可以限定重量百分比的比值K 2O/Na 2O的范围为大于等于0.45。优选地,重量百分比的比值K 2O/Na 2O的范围可以限定为大于等于0.60。
CaO是玻璃的网络外体氧化物,既可以调节玻璃粘度,也可以提高玻璃的化学稳定性、机械强度,还能使玻璃料性变短,提高玻璃纤维的成型速度。同时,Ca 2+与Na +的离子半径相似,在玻璃结构空隙中,两者更易形成交叉填充,而且Ca 2+离子场强大于Na +,填充于玻璃空位中易堵塞离子迁移通道,因此Ca 2+能有效压制Na +离子的迁移能力,有利于降低玻璃的电导率和介电常数。本发明的电子级玻璃纤维组合物中,限定CaO的重量百分比含量范围为19.5-24.8%,若其含量太低上述作用不显著;若其含量太高会使玻璃中非桥氧离子数量过多,反而导致介电常数增大,同时也会增加玻璃的析晶风险。优选地,CaO的重量百分比含量范围可以限定为20.0-24.4%。更优选地,CaO的重量百分比含量范围可以限定为20.0-23.9%。
MgO是玻璃的中间体氧化物,主要起到调节玻璃粘度、控制玻璃析晶的作用。Mg-O键具有一定的共价性,但离子性占主流,在“游离氧”不足的网络环境下,起“积聚”作用,有利于降低玻璃的电导率和介电常数。同时,Mg 2+的离子半径小于Na +和K +,离子场强 显著大于Na +和K +,与玻璃中氧离子结合比较牢固,可以更有效压制碱金属离子Na +和K +的迁移能力。本发明的电子级玻璃纤维组合物中,限定MgO的重量百分比含量范围为0.1-1.9%。本发明中将少量MgO与CaO、Al 2O 3混合使用,钙离子在有效填充网络空隙的同时可以提供部分游离氧,与镁离子和铝离子在堆积方面形成协同效应,有利于获得更紧密的结构堆积效果,有利于在玻璃结晶时有效形成硅灰石(CaSiO 3)、透辉石(CaMgSi 2O 6)、钙长石(CaAl 2Si 2O 8)的混合结晶状态,达到降低玻璃析晶危险的目的,还有助于改善玻璃的介电性能。优选地,MgO的重量百分比含量范围可以限定为0.45-1.9%。更优选地,MgO的重量百分比含量范围可以限定为0.45-1.6%。此外,在另一个实施方案中,可以限定MgO的重量百分比含量范围为0.1-0.9%和CaO的重量百分比含量范围为22.2-24.8%。
为了改善玻璃的电学性能,控制玻璃结构中非桥氧、碱金属离子、硼离子及镁离子的数量及竞争,兼顾原料成本和玻璃熔制澄清效果。本发明的电子级玻璃纤维组合物中,限定重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3。优选地,重量百分比的比值C2的范围可以限定为1.8-6.1。更优选地,重量百分比的比值C2的范围可以限定为2.0-6.0。
为了控制玻璃中非桥氧、碱金属离子及硼离子的数量及竞争,降低介电常数和电导率,兼顾玻璃的机械性能和原料成本。进一步地,本发明可以限定重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为8.0-16.0。优选地,重量百分比的比值C3的范围可以限定为9.0-15.0。更优选地,重量百分比的比值C3的范围可以限定为9.5-15.0。进一步优选地,重量百分比的比值C3的范围可以限定为9.5-14.5。
进一步地,本发明可以限定SiO 2+Al 2O 3的重量百分比含量范围为65.0-74.0%。优选地,SiO 2+Al 2O 3的重量百分比含量范围可以限定为67.0-74.0%。更优选地,SiO 2+Al 2O 3的重量百分比含量范围可以限定为68.5-74.0%。
为了改善玻璃的电学性能,并获得更优的成型范围和析晶性能。进一步地,本发明可以限定重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915。优选地,重量百分比的比值C4的范围可以限定为大于等于0.920。更优选地,重量百分比的比值C4的范围可以限定为0.920-0.996。进一步优选地,重量百分比的比值C4的范围可以限定为0.925-0.995。
进一步地,本发明可以限定CaO+MgO的重量百分比含量范围为小于25%。优选地,CaO+MgO的重量百分比含量范围可以限定为小于等于24.5%。更优选地,CaO+MgO的重量百分比含量范围可以限定为20.0-24.5%。进一步优选地,CaO+MgO的重量百分比含 量范围可以限定为20.0-24.0%。进一步地,可以限定CaO+MgO+R 2O的重量百分比含量范围可以限定为小于等于25.8%。优选地,CaO+MgO+R 2O的重量百分比含量范围可以限定为20.5-25.8%。更优选地,CaO+MgO+R 2O的重量百分比含量范围可以限定为20.5-25.3%。进一步优选地,CaO+MgO+R 2O的重量百分比含量范围可以限定为21.0-24.8%。
为了改善玻璃的电学性能和性价比。进一步地,本发明可以限定重量百分比的比值B 2O 3/MgO的范围为大于等于2.5。优选地,重量百分比的比值B 2O 3/MgO的范围可以限定为2.5-21.5。更优选地,重量百分比的比值B 2O 3/MgO的范围可以限定为3.0-20.0。
TiO 2不仅可以降低高温时的玻璃粘度,还具有一定的助熔作用。但是,过多的Ti 4+易引起局部内电场产生离子位移极化,从而导致玻璃介电常数升高。本发明的电子级玻璃纤维组合物中,限定TiO 2的重量百分比含量范围为0.01-1.0%。优选地,TiO 2的重量百分比含量范围可以限定为0.05-0.8%。更优选地,TiO 2的重量百分比含量范围可以限定为0.05-0.5%。
Fe 2O 3有利于玻璃的熔制,也能改善玻璃的析晶性能。本发明的电子级玻璃纤维组合物中,限定Fe 2O 3的重量百分比含量范围为0.05-0.8%。优选地,Fe 2O 3的重量百分比含量范围可以限定为0.05-0.6%。Fe 2O 3中同时包含Fe 2+和Fe 3+离子,且两种离子均具有一定的着色作用。由于Fe 3+会在紫外区产生吸收,而Fe 2+会在红外区产生吸收,所以控制玻璃中合适的亚铁比例,在升温时有利于玻璃液吸热,在降温时则有利于玻璃液散热;还能强化玻璃液对流,提高拉丝时玻璃纤维的冷却硬化速率,有利于减少断丝率,提高玻璃纤维强度。而且,Fe 2+离子产生离子位移极化的趋向要弱于Fe 3+离子。进一步地,可以限定重量百分比的比值FeO/Fe 2O 3的范围为大于等于0.40。优选地,重量百分比的比值FeO/Fe 2O 3的范围可以限定为大于等于0.50。更优选地,重量百分比的比值FeO/Fe 2O 3的范围可以限定为0.50-0.85。进一步优选地,重量百分比的比值FeO/Fe 2O 3的范围可以限定为0.55-0.80。
F 2有利于玻璃的熔制和澄清,还能与铁离子结合生产易挥发的FeF 3或无色的Na 3FeF 6,降低玻璃的着色性,适量添加有利于改善玻璃的介电常数。但氟是易挥发物质,且需将其在废气中除去。本发明的电子级玻璃纤维组合物中,限定F 2的重量百分比含量范围为0.01-1.0%。优选地,F 2的重量百分比含量范围可以限定为0.05-1.0%。更优选地,F 2的重量百分比含量范围可以限定为0.05-0.8%。此外,在另一实施方案中,可以限定F 2的重量百分比含量范围为0.3-1.0%。
同时,本发明限定,所述SiO 2、Al 2O 3、B 2O 3、CaO、MgO、Na 2O、K 2O、Li 2O、TiO 2、Fe 2O 3和F 2的重量百分比合计含量大于等于99%。优选地,可以限定所述SiO 2、Al 2O 3、B 2O 3、CaO、MgO、Na 2O、K 2O、Li 2O、TiO 2、Fe 2O 3和F 2的重量百分比合计含量大于等于99.5%。更优选地,可以限定所述SiO 2、Al 2O 3、B 2O 3、CaO、MgO、Na 2O、K 2O、Li 2O、TiO 2、Fe 2O 3和F 2的重量百分比合计含量大于99.8%。除了上述主体组分,本发明的电子级玻璃纤维组合物中还可以含有少量其他组分。进一步地,所述组合物中还可以包含重量百分比总含量小于1%的SO 3、SrO、CeO 2、La 2O 3、Y 2O 3、ZrO 2、ZnO中的一种或多种。进一步地,所述组合物中还可以包含重量百分比总含量小于0.5%的SO 3、SrO、CeO 2、La 2O 3、Y 2O 3、ZrO 2、ZnO中的一种或多种。进一步地,所述组合物中还可以包含重量百分比含量小于0.5%的SO 3。此外,在另一实施方案中,为了控制成本和提高环保性,本发明的电子级玻璃纤维组合物中可以基本不含P 2O 5。在另一实施方案中,为了控制成本和玻璃密度,本发明的电子级玻璃纤维组合物中可以基本不含SrO。
其中,“基本不含”某一氧化物是指组合物中该组分仅以痕量存在,例如由原料中的杂质带入,其重量百分比含量为0-0.03%,多数情况下为0-0.01%。
进一步地,本发明可以限定所述电子级玻璃纤维在室温频率1MHz条件下的介电常数范围为6.0-7.0。优选地,所述电子级玻璃纤维在室温频率1MHz条件下的介电常数范围为6.3-7.0。更优选地,所述电子级玻璃纤维在室温频率1MHz条件下的介电常数范围为6.3-6.8。
本发明的电子级玻璃纤维组合物中,选择各组分含量的上述范围的有益效果将通过实施例给出具体实验数据进行说明。
下面是根据本发明的电子级玻璃纤维组合物中所包括的各组分的优选取值范围示例。
优选示例一
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000007
Figure PCTCN2019114268-appb-000008
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选示例二
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000009
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选示例三
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000010
Figure PCTCN2019114268-appb-000011
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.5-15.0,且上述组分的合计含量大于等于99%。
优选示例四
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000012
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选示例五
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000013
Figure PCTCN2019114268-appb-000014
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.5-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
优选示例六
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000015
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
优选示例七
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000016
Figure PCTCN2019114268-appb-000017
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.8-6.1,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,且上述组分的合计含量大于等于99%。
优选示例八
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000018
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.8-6.1,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
优选示例九
根据本发明的电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
Figure PCTCN2019114268-appb-000019
Figure PCTCN2019114268-appb-000020
其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.8-6.1,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.5-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.920,且上述组分的合计含量大于等于99%。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明中,电子级玻璃纤维组合物的各组分含量以重量百分比表示为:SiO 2为51.0-57.5%,Al 2O 3为11.0-17.0%,B 2O 3为大于4.5%且小于等于6.4%,CaO为19.5-24.8%,MgO为0.1-1.9%,R 2O=Na 2O+K 2O+Li 2O为0.05-1.2%,Fe 2O 3为0.05-0.8%,TiO 2为0.01-1.0%,F 2为0.01-1.0%,且重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,上述组分的合计含量大于等于99%。该电子级玻璃纤维组合物具有高性价比的特点,不仅能降低原料成本及原料挥发,还能改善玻璃的介电性能,提高玻璃纤维的机械性能和耐水性,并改善玻璃纤维成型范围,适合用于大规模池窑生产。
选取本发明的电子级玻璃纤维组合物中SiO 2、Al 2O 3、B 2O 3、CaO、MgO、Na 2O、K 2O、Li 2O、TiO 2、Fe 2O 3和F 2等的具体含量值作为实施例,另外有五项对比实施例,其编号为B1-B5,B1是可用于生产电子纱的传统E玻璃纤维组合物,B2是传统D玻璃纤维组合物,B3-B5是普通增强型E玻璃纤维组合物。在对比时,选用八个性能参数:
(1)成型温度,对应于玻璃熔体在粘度为10 3泊时的温度。
(2)液相线温度,对应于玻璃熔体冷却时晶核开始形成的温度,即玻璃析晶的上限温度。
(3)△T值,成型温度与液相线温度之差,表示拉丝成型的温度范围。
(4)拉伸强度,表征玻璃纤维在拉伸条件下的最大承受能力,按ASTM D2343标准测试浸胶纱的拉伸强度。
(5)介电常数,测定介电常数的方法为:将各原料混合均匀后加入铂金坩埚中,在高温电炉1550±30℃下保温6小时,得到澄清均化良好的高温玻璃液,将玻璃液倒入预热的不锈钢模具中制成玻璃块,将玻璃块置于马弗炉中进行退火,将退火后的玻璃块经切割、打磨、抛光后制成厚度约1.5mm、长宽约30mm的矩形玻璃片,在所述玻璃片涂上银电极后进行介电常数测量。介电常数越小,表明玻璃介质的极化能力越小,作为电绝缘材料的稳定性越好。
(6)气泡数量,其中测定气泡数量的大致方法为:利用专用的模具将每个实施例配合料压制成一样形状的样品,放置于高温显微镜的样品平台,然后按程序升温至设定空间温度1500℃,不保温,玻璃样品随炉冷却至常温;然后,通过光学显微镜从微观角度观测各个玻璃样品的气泡数量。其中,气泡数量按显微镜成像范围为准。
(7)耐水性,以重量损失率表征,测定方法为:将粒径为40-80目的玻璃粉在95℃的水中放置24小时,定时进行搅拌,测定玻璃粉的重量损失率。重量损失率越小,表明玻璃的耐水性越好。
(8)原料成本系数,以传统E玻璃纤维组成物B1为基准,设定原料成本系数为1.0,其他组合物按此基准进行测算。原料成本系数越小,表明组合物的原料成本越低。
上述八个参数及其测定方法是本领域技术人员所熟知的,因此采用上述参数能够有力地说明本发明的电子级玻璃纤维组合物的技术特点和优势。
实验的具体过程为:各组分可从适当的原料中获取,按比例将各种原料进行混合,使各组分达到最终的预期重量百分比,混合后的配合料进行熔化并澄清,然后玻璃液通过漏板上的漏嘴被拉出从而形成玻璃纤维,玻璃纤维被牵引绕到拉丝机旋转机头上形成原丝饼或纱团。当然,这些玻璃纤维可用常规方法进行深加工以符合预期要求。
下面进一步通过列表的方式,给出本发明电子级玻璃纤维组合物的实施例与对比实施 例的性能参数的对比。其中,玻璃纤维组合物的含量以重量百分比表示。需要说明的是,实施例组分总含量略微小于100%,可以理解为残余量是微量杂质或不能分析出的少量组分。
表1A
Figure PCTCN2019114268-appb-000021
表1B
Figure PCTCN2019114268-appb-000022
表1C
Figure PCTCN2019114268-appb-000023
表1D
Figure PCTCN2019114268-appb-000024
表1E
Figure PCTCN2019114268-appb-000025
由上述表中的具体数值可知,与普通增强型E玻璃纤维组合物相比,本发明的电子级玻璃纤维组合物拥有以下优势:(一)具有更低的介电常数;(二)具有更低的成型温度和液相线温度;(三)具有更宽的成型范围。
与传统E玻璃纤维组合物相比,本发明的电子级玻璃纤维组合物拥有以下优势:(一)具有更低的原料成本;(二)具有更高的拉伸强度、更优的耐水性;(三)具有更宽的成型范围;(四)具有改善的介电常数水平。
与传统D玻璃纤维组合物相比,本发明的电子级玻璃纤维组合物拥有以下优势:(一)具有低得多的原料成本;(二)具有高得多的拉伸强度;(三)具有高得多的耐水性;(四) 具有更少的气泡数量。
由此可知,本发明的技术方案区别于普通增强型E玻璃纤维组合物、传统E玻璃纤维组合物和传统D玻璃纤维组合物,在产品性价比、原料成本、介电常数、拉伸强度、液相线温度、成型范围、耐水性等方面取得了实质性进展,还易于实现大规模池窑生产,取得了意想不到的技术效果。
由根据本发明的电子级玻璃纤维组合物可制成具有上述优良性能的电子级玻璃纤维;由上述电子级玻璃纤维可制成电子布。
根据本发明的电子级玻璃纤维组合物与一种或多种有机和/或无机材料结合可制备得到性能优良的复合材料,例如,玻璃纤维增强基材。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明提供的电子级玻璃纤维组合物,不仅能降低原料成本及原料挥发,减少对耐火材料的侵蚀,还能改善玻璃的介电性能,提高玻璃纤维的机械性能和耐水性,并改善玻璃纤维成型范围,且适合用于大规模池窑生产。与常规的玻璃纤维组合物相比,本发明的玻璃纤维组合物在产品性价比、原料成本、介电常数、拉伸强度、液相线温度、成型范围、耐水性等方面取得了实质性的进展。因此,本发明具有良好的工业实用性。

Claims (20)

  1. 一种电子级玻璃纤维组合物,其特征在于,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2019114268-appb-100001
    其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
  2. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0。
  3. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915。
  4. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述R 2O的重量百分比含量范围为0.1-0.8%。
  5. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述MgO的重量百分比含量范围为0.45-1.9%。
  6. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述B 2O 3的重量百分比含量范围为4.55-6.1%。
  7. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述F 2的重量百分比含量范围为0.3-1.0%。
  8. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述Li 2O的重量百 分比含量范围为小于0.1%。
  9. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述B 2O 3+MgO的重量百分比含量范围为5.0-7.6%。
  10. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述SiO 2+Al 2O 3的重量百分比含量范围为68.5-74.0%。
  11. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述CaO+MgO+R 2O的重量百分比含量范围为20.5-25.8%。
  12. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述CaO的重量百分比含量范围为22.2-24.8%。
  13. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2019114268-appb-100002
    其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.1-12.7,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
  14. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2019114268-appb-100003
    Figure PCTCN2019114268-appb-100004
    其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,且上述组分的合计含量大于等于99%。
  15. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,所述电子级玻璃纤维组合物含有下述组分,各组分的含量以重量百分比表示如下:
    Figure PCTCN2019114268-appb-100005
    其中,重量百分比的比值C1=SiO 2/B 2O 3的范围为8.3-12.5,重量百分比的比值C2=B 2O 3/(R 2O+MgO)的范围为1.7-6.3,重量百分比的比值C3=(SiO 2+Al 2O 3)/(B 2O 3+MgO)的范围为9.0-15.0,重量百分比的比值C4=CaO/(CaO+MgO)的范围为大于等于0.915,且上述组分的合计含量大于等于99%。
  16. 根据权利要求1所述的电子级玻璃纤维组合物,其特征在于,还包含重量百分比总含量小于1%的SO 3、SrO、CeO 2、La 2O 3、Y 2O 3、ZrO 2、ZnO中的一种或多种。
  17. 一种电子级玻璃纤维,其特征在于,所述电子级玻璃纤维由如权利要求1-16中任一项所述的电子级玻璃纤维组合物制成。
  18. 根据权利要求17所述的电子级玻璃纤维,其特征在于,室温下频率为1MHz的 介电常数范围为6.3-7.0。
  19. 一种电子布,其特征在于,所述电子布含有如权利要求17所述的电子级玻璃纤维。
  20. 根据权利要求19所述的电子布,其特征在于,可用作印刷电路板的基材。
PCT/CN2019/114268 2019-09-25 2019-10-30 一种电子级玻璃纤维组合物及其玻璃纤维和电子布 WO2021056680A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207025900A KR102584333B1 (ko) 2019-09-25 2019-10-30 전자급 유리섬유 조성물 및 그 유리섬유와 전자천
BR112020019940A BR112020019940A2 (pt) 2019-09-25 2019-10-30 Composição de fibra de vidro de grau eletrônico, fibra de vidro de grau eletrônico, e, tecido eletrônico
EP19915587.0A EP3825286A4 (en) 2019-09-25 2019-10-30 COMPOSITION OF ELECTRONIC QUALITY FIBERGLASS, AND ELECTRONIC FIBERGLASS AND FABRIC
US16/979,089 US11919802B2 (en) 2019-09-25 2019-10-30 Electronic-grade glass fiber composition, and glass fiber and electronic fabric thereof
JP2020551427A JP2022503330A (ja) 2019-09-25 2019-10-30 電子グレードガラス繊維組成物、そのガラス繊維及び電子グレードガラス繊維布
MX2021008726A MX2021008726A (es) 2019-09-25 2019-10-30 Composicion de fibra de vidrio de grado electronico y fibra de vidrio y tela electronica de la misma.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910912829.1 2019-09-25
CN201910912829.1A CN110668702B (zh) 2019-09-25 2019-09-25 一种电子级玻璃纤维组合物及其玻璃纤维和电子布

Publications (1)

Publication Number Publication Date
WO2021056680A1 true WO2021056680A1 (zh) 2021-04-01

Family

ID=69079463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/114268 WO2021056680A1 (zh) 2019-09-25 2019-10-30 一种电子级玻璃纤维组合物及其玻璃纤维和电子布

Country Status (9)

Country Link
US (1) US11919802B2 (zh)
EP (1) EP3825286A4 (zh)
JP (1) JP2022503330A (zh)
KR (1) KR102584333B1 (zh)
CN (2) CN115818966A (zh)
BR (1) BR112020019940A2 (zh)
MX (1) MX2021008726A (zh)
TW (1) TWI715340B (zh)
WO (1) WO2021056680A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754295A (zh) * 2021-07-31 2021-12-07 广东金发科技有限公司 一种低介电改性玻璃纤维及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111646702A (zh) * 2020-06-08 2020-09-11 重庆国际复合材料股份有限公司 一种高透明度玻璃纤维组合物及其玻璃纤维和复合材料
CN111704361B (zh) * 2020-06-08 2022-12-20 重庆国际复合材料股份有限公司 高折射率高性能玻璃纤维组合物及其玻璃纤维和复合材料
JP2023138225A (ja) * 2022-03-16 2023-10-02 日本電気硝子株式会社 ガラス繊維
CN116855005B (zh) * 2023-02-22 2024-03-19 济南中科广源环保科技有限公司 一种农业用塑料膜及其制备工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573736B2 (zh) * 1976-09-03 1982-01-22
JPS573737B2 (zh) * 1976-12-30 1982-01-22
JPS60264345A (ja) * 1984-06-12 1985-12-27 Nippon Sheet Glass Co Ltd 繊維用ガラス組成物
EP0186077A2 (en) * 1984-12-19 1986-07-02 Ppg Industries, Inc. Low boron glass fibers with low index of refraction
JPS62162649A (ja) * 1986-01-08 1987-07-18 Nippon Sheet Glass Co Ltd 繊維用ガラス組成物
CN1392870A (zh) * 2000-09-06 2003-01-22 Ppg工业俄亥俄公司 形成玻璃纤维的组合物
CN1688515A (zh) * 2002-08-27 2005-10-26 Ppg工业俄亥俄公司 不含氟化物的低温玻璃纤维组合物和用它生产的产品

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573736A (en) 1980-06-09 1982-01-09 Asahi Fiber Glass Co Ltd Glass composition for filament
JPS573737A (en) 1980-06-11 1982-01-09 Asahi Fiber Glass Co Ltd Glass composition for filament
JPH03264345A (ja) 1990-03-15 1991-11-25 Dainippon Printing Co Ltd 通気性を有する包装材料の製造方法
JPH07157975A (ja) 1993-12-01 1995-06-20 Asahi Fiber Glass Co Ltd ゴム補強用ガラス繊維
US7449419B2 (en) * 2003-09-09 2008-11-11 Ppg Industries Ohio, Inc. Glass compositions, glass fibers, and methods of inhibiting boron volatization from glass compositions
FR2879591B1 (fr) * 2004-12-16 2007-02-09 Saint Gobain Vetrotex Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
JP5442181B2 (ja) 2005-07-05 2014-03-12 日本電気硝子株式会社 ガラス繊維組成物、ガラス繊維及びガラス繊維含有複合材料
US9187361B2 (en) 2005-11-04 2015-11-17 Ocv Intellectual Capital, Llc Method of manufacturing S-glass fibers in a direct melt operation and products formed there from
US7829490B2 (en) 2006-12-14 2010-11-09 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass for electronic applications
CN101503279B (zh) * 2009-03-02 2012-04-11 巨石集团有限公司 一种新型玻璃纤维组合物
RU2013116989A (ru) 2010-09-14 2014-10-20 ПиПиДжи ИНДАСТРИЗ ОГАЙО, ИНК. Стекловолокно низкой плотности и высокий прочности для областей применения в связи с баллистической защитой
JP6564956B2 (ja) 2016-11-10 2019-08-21 日本板硝子株式会社 ガラスフィラーおよびその製造方法
JP6790812B2 (ja) * 2016-12-26 2020-11-25 日東紡績株式会社 ガラス繊維強化樹脂成形品
CN109797485A (zh) * 2019-02-26 2019-05-24 安徽丹凤电子材料股份有限公司 一种耐高温耐腐蚀玻璃纤维电子布

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS573736B2 (zh) * 1976-09-03 1982-01-22
JPS573737B2 (zh) * 1976-12-30 1982-01-22
JPS60264345A (ja) * 1984-06-12 1985-12-27 Nippon Sheet Glass Co Ltd 繊維用ガラス組成物
EP0186077A2 (en) * 1984-12-19 1986-07-02 Ppg Industries, Inc. Low boron glass fibers with low index of refraction
JPS62162649A (ja) * 1986-01-08 1987-07-18 Nippon Sheet Glass Co Ltd 繊維用ガラス組成物
CN1392870A (zh) * 2000-09-06 2003-01-22 Ppg工业俄亥俄公司 形成玻璃纤维的组合物
CN1688515A (zh) * 2002-08-27 2005-10-26 Ppg工业俄亥俄公司 不含氟化物的低温玻璃纤维组合物和用它生产的产品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754295A (zh) * 2021-07-31 2021-12-07 广东金发科技有限公司 一种低介电改性玻璃纤维及其制备方法和应用

Also Published As

Publication number Publication date
US11919802B2 (en) 2024-03-05
JP2022503330A (ja) 2022-01-12
KR102584333B1 (ko) 2023-09-27
CN110668702A (zh) 2020-01-10
US20230150866A1 (en) 2023-05-18
BR112020019940A2 (pt) 2022-04-12
CN110668702B (zh) 2022-10-11
TW202112694A (zh) 2021-04-01
EP3825286A1 (en) 2021-05-26
MX2021008726A (es) 2021-08-24
TWI715340B (zh) 2021-01-01
CN115818966A (zh) 2023-03-21
KR20210038413A (ko) 2021-04-07
EP3825286A4 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
TWI715340B (zh) 電子級玻璃纖維組合物及其玻璃纖維和電子布
TWI715339B (zh) 電子級玻璃纖維組合物及其玻璃纖維和電子布
JP7036168B2 (ja) 無アルカリガラス基板
WO2020156374A1 (zh) 一种低介电玻璃纤维组分及其制造方法
CN112047626B (zh) 低气泡数、低介电常数的玻璃组成物及由其制得的玻璃纤维
CN103351102B (zh) 一种玻璃纤维组合物及由其制成的具有低介电常数的玻璃纤维
US20190077699A1 (en) High performance glass fiber composition, and glass fiber and composite material thereof
WO2019041581A1 (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
CN109678350B (zh) 一种玻璃纤维组合物及其玻璃纤维和复合材料
TWI725930B (zh) 低介電玻璃組成物、低介電玻璃及低介電玻璃纖維
CN109133616B (zh) 一种适用于浮法生产的ltps-tft基板玻璃
RU2774345C1 (ru) Композиция стекловолокна электронной чистоты, а также стекловолокно и изготовленная из него электронная ткань
RU2773878C1 (ru) Композиция стекловолокна электронной чистоты, а также стекловолокно и изготовленная из него электронная ткань
CN117326800A (zh) 一种玻璃用组合物、无碱玻璃及其制备方法和应用
CN117700113A (zh) 一种高频高速基板用玻璃纤维组合物及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019915587

Country of ref document: EP

Effective date: 20200828

ENP Entry into the national phase

Ref document number: 2020551427

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020019940

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112020019940

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200929