WO2021056171A1 - 基于ltcc技术的gnss射频前端模块及其制备方法 - Google Patents

基于ltcc技术的gnss射频前端模块及其制备方法 Download PDF

Info

Publication number
WO2021056171A1
WO2021056171A1 PCT/CN2019/107463 CN2019107463W WO2021056171A1 WO 2021056171 A1 WO2021056171 A1 WO 2021056171A1 CN 2019107463 W CN2019107463 W CN 2019107463W WO 2021056171 A1 WO2021056171 A1 WO 2021056171A1
Authority
WO
WIPO (PCT)
Prior art keywords
ltcc
gnss
radio frequency
end module
frequency front
Prior art date
Application number
PCT/CN2019/107463
Other languages
English (en)
French (fr)
Inventor
李俊
姚凤薇
刘平
张苗
Original Assignee
上海旦迪通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海旦迪通信技术有限公司 filed Critical 上海旦迪通信技术有限公司
Priority to PCT/CN2019/107463 priority Critical patent/WO2021056171A1/zh
Publication of WO2021056171A1 publication Critical patent/WO2021056171A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the technical field of antennas, in particular to a GNSS (Global Navigation Satellite System) radio frequency front-end module based on LTCC technology.
  • GNSS Global Navigation Satellite System
  • the navigation systems, communication systems and multimedia systems of electronic equipment are all developing in the direction of miniaturization and intelligence.
  • the navigation system has changed from a single GPS era to a new era of GNSS in which multiple systems coexist and compatible, which has promoted the globalization of satellite navigation systems and enhanced multi-mode.
  • the GNSS system has become a major space and information infrastructure in various countries, and it has also become an important symbol of the status of a modern power and the country's comprehensive national strength. It is a major technical support system and strategic deterrence basic resource for economic security, national defense security, homeland security, and public security. It is also an important tool for building a harmonious society, serving the people, and improving the quality of life.
  • the traditional LNA circuit occupies a lot of space on the PCB board; secondly, the traditional LNA circuit is based on the PCB board, with many solder joints, and the possibility of virtual soldering is high; finally, the traditional LNA circuit has a higher cost.
  • the market development trend of electronic products is lighter, thinner, shorter and smaller. Therefore, the improvement of semiconductor process capabilities has greatly increased the number of active components in the same volume. In addition to the substantial increase in the number of supporting passive components, more space is also needed.
  • the GNSS antenna + LNA low-noise amplifier circuit of the user-side radio frequency front-end occupies an indispensable position.
  • the LNA circuit occupies a large space on the PCB board, has many solder joints, and the possibility of false soldering is high.
  • the LNA circuit part and the antenna part are two independent parts, which will increase the cost and increase the volume of the product. Those skilled in the art do not want to see.
  • the present invention discloses a GNSS radio frequency front-end module based on LTCC technology, which includes: LTCC ceramic substrate, LNA circuit and GNSS antenna;
  • the LNA circuit electronic components and the GNSS antenna are integrated on the LTCC ceramic substrate, the LNA circuit electronic components and the wiring on the LTCC ceramic substrate form a LAN circuit, and the GNSS antenna and the The LAN circuit is electrically connected;
  • the GNSS antenna includes an antenna body, and the antenna body includes multiple layers of LTCC green ceramic tapes stacked in sequence.
  • the multilayer LTCC green ceramic tape includes the top LTCC green ceramic tape, the bottom LTCC green ceramic tape, and the N located between the top LTCC green ceramic tape and the bottom LTCC green ceramic tape.
  • Marking points are printed on the upper surface of the top LTCC green ceramic tape, and the top LTCC green ceramic tape is not provided with punching holes;
  • Two pads are provided on the back of the bottom LTCC green ceramic tape, and the pads adjacent to the marking point are set as antenna feed points.
  • Each of the intermediate LTCC green ceramic tapes is provided with at least two rows of conductive through holes and a plurality of printed signal lines, and the printed signal lines are provided between two adjacent rows of conductive through holes, and each printed signal line Both ends of the signal line are connected with a conductive through hole.
  • the LNA circuit electronic components include LNA chips, filters, capacitors, inductors and resistors.
  • the back of the LTCC ceramic substrate is the SMT patch welding surface.
  • the length and width of the LTCC technology-based GNSS radio frequency front-end module do not exceed 0.034 ⁇ , and the height does not exceed 0.02 ⁇ .
  • the length of the antenna body does not exceed 0.032 ⁇ , and the width and height do not exceed 0.005 ⁇ .
  • the invention discloses a method for preparing a GNSS radio frequency front-end module based on LTCC technology, which includes the following steps:
  • Step S1 preparing an LTCC ceramic substrate with wiring inside, and the back of the LTCC ceramic substrate is the SMT patch soldering surface;
  • Step S2 using the LTCC technology to prepare a GNSS antenna, the GNSS antenna includes an antenna body, and the antenna body includes multiple layers of LTCC green ceramic tapes stacked in sequence;
  • Step S3 Provide electronic components constituting the LNA circuit, and use IPD (Integrated Passive Devices) technology to integrate the electronic components constituting the LNA circuit and the GNSS antenna on the LTCC ceramic substrate.
  • the electronic components constituting the LNA circuit and the wiring on the LTCC ceramic substrate constitute a LAN circuit, and the GNSS antenna is electrically connected to the LAN circuit.
  • the multilayer LTCC green porcelain tape includes a top LTCC green porcelain belt, a bottom LTCC green porcelain belt, and one of the LTCC green porcelain belt on the top layer and the LTCC green porcelain belt on the bottom layer.
  • Marking points are printed on the upper surface of the top LTCC green ceramic tape, and the top LTCC green ceramic tape is not provided with punching holes;
  • Two pads are arranged on the back of the bottom LTCC green ceramic tape, and the pads adjacent to the marking point are arranged as antenna feed points.
  • Each of the intermediate LTCC green ceramic tapes is provided with at least two rows of conductive through holes and a plurality of printed signal lines, and the printed signal lines are provided between two adjacent rows of conductive through holes, and each printed signal line Both ends of the signal line are connected with a conductive through hole.
  • the LNA circuit electronic components include LNA chips, filters, capacitors, inductors, and resistors.
  • the above-mentioned preparation method of a GNSS radio frequency front-end module based on LTCC technology is characterized in that the length and width of the GNSS radio frequency front-end module based on LTCC technology do not exceed 0.034 ⁇ , and the height does not exceed 0.02 ⁇ ; the antenna body The length does not exceed 0.032 ⁇ , and the width and height do not exceed 0.005 ⁇ (where ⁇ is the wavelength, and the ⁇ value of each antenna body is fixed).
  • the above-mentioned invention has the following advantages or beneficial effects:
  • the circuit is simplified, and the LTCC IPD compression technology is used to make the LNA IC (chip), SAW filter, chip capacitor, inductor, and embedded LC capacitor, inductor and other components and GNSS antenna integrated on the LTCC base to form a LTCC based technology
  • the GNSS radio frequency front-end module realizes the miniaturization of the circuit and simplifies the design, debugging and installation of the entire circuit board; at the same time, it also solves the problem that the LNA circuit and the GNSS antenna composed of the original discrete electronic components occupy a large space on the PCB board.
  • the GNSS radio frequency front-end module based on LTCC technology has the advantage of high reliability, thereby improving the reliability of the entire circuit board and improving the performance and consistency of the circuit.
  • the solder joints in the circuit are greatly reduced, and the possibility of virtual soldering is reduced, making the entire circuit work more reliable.
  • GNSS RF front-end modules based on LTCC technology also have the advantages of low power consumption, small size and economy. For circuits with the same function, GNSS RF front-end modules based on LTCC technology are better than circuits using discrete electronic components. Power consumption is much smaller.
  • the failure rate is low. Compared with discrete component circuits, the failure rate of GNSS radio frequency front-end modules based on LTCC technology is relatively low, thus reducing the failure rate of the entire circuit.
  • the circuit performance index formed by the GNSS radio frequency front-end module based on LTCC technology is higher, and the LNA circuit formed with discrete electronic components and independent GNSS Compared with the antenna, the GNSS RF front-end module based on LTCC technology has higher gain, smaller zero drift, and lower cost and price.
  • FIG. 1 is a schematic diagram of the front structure of a GNSS radio frequency front-end module based on LTCC technology in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the back structure of a GNSS radio frequency front-end module based on LTCC technology in an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the three-dimensional structure of a GNSS antenna in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the distribution of five-layer green ceramic strips of a GNSS antenna in an embodiment of the present invention
  • FIG. 5 is a schematic diagram of marking points on the top layer of the green ceramic tape of the GNSS antenna in the embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the conductive through hole structure of the green ceramic tape in the middle layer of the GNSS antenna in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the printed pattern structure of the green ceramic tape of the middle layer of the GNSS antenna in the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of the back pad structure of the bottom green ceramic tape of the GNSS antenna in the embodiment of the present invention
  • Fig. 9 is a flow chart of a preparation method of a GNSS radio frequency front-end module based on LTCC technology in an embodiment of the present invention.
  • LTCC technical characteristics 1), ceramic materials have excellent high-frequency and high-Q characteristics; 2), the use of copper, silver, and gold metal materials with high conductivity as conductor materials is conducive to improving the quality factor of the circuit system; 3), Adapt to the requirements of high current and high temperature resistance, and have better thermal conductivity than ordinary PCB circuit substrates; 4). Passive components can be buried in multilayer circuit substrates, which is beneficial to improve the assembly density of the circuit; 5). It is required to make a circuit substrate with a very high number of layers, in which the micro holes can reach 0.03mm, and the line width can reach 0.05mm, which can realize very complicated circuit connections. 6). It has better temperature characteristics, such as smaller thermal expansion coefficient, smaller dielectric constant, and smaller temperature coefficient. 7) The discontinuous production process allows the green substrate to be inspected, thereby increasing the overall yield rate and reducing product costs. 8). Because it is a full-page production, the consistency and stability of the product are very high.
  • LTCC technology application 1)
  • the number of layers can theoretically be unlimited, and the wiring can be better according to the actual situation, thereby increasing the assembly density. 2).
  • a cavity can be made on the green ceramic chip as required, and more ICs or active devices can be embedded to increase the assembly density.
  • the high-frequency and high-Q characteristics of ceramic materials so that the product has good high-frequency characteristics and high-speed transmission characteristics.
  • the production process adopts discontinuous production, which can control the quality of each process, thereby improving the overall yield of the product.
  • LTCC technology has the following advantages: 1) Ceramic materials have excellent high-frequency, high-speed transmission and wide passband characteristics. According to the different ingredients, the dielectric constant of the LTCC material can be changed in a wide range, and the use of high-conductivity metal materials as the conductor material will help improve the quality factor of the circuit system and increase the flexibility of circuit design; 2) , It can adapt to the requirements of high current and high temperature resistance, and has better thermal conductivity than ordinary PCB circuit substrates, which greatly optimizes the heat dissipation design of electronic equipment, has high reliability, and can be used in harsh environments and prolongs its service life; 3).
  • a circuit substrate with a very high number of layers can be made, and multiple passive components can be buried in it, eliminating the cost of packaging components.
  • passive and active Integration is conducive to increasing the assembly density of the circuit and further reducing the volume and weight; 4) It has good compatibility with other multilayer wiring technologies.
  • the combination of LTCC and thin film wiring technology can achieve higher assembly density and better performance Hybrid multi-layer substrates and hybrid multi-chip components.
  • IPD technology can integrate a variety of electronic functions, such as sensors, radio frequency transceivers, MEMS, and power amplifiers.
  • Power management unit and digital processor, etc. provide compact integrated passive device IPD products, which have the advantages of miniaturization and improved system performance. Therefore, whether it is to reduce the size and weight of the entire product, or to increase the function in the existing product volume, integrated passive component technology can play a great role.
  • IPD integrated passive component technology has high wiring density, small size, light weight; high integration, can embed passive components such as resistors, inductors, capacitors and active chips; good high-frequency characteristics, can be used Advantages in microwave and millimeter wave fields.
  • the thin-film IPD integrated passive component technology is applied to PCB processing to save packaging area, improve signal transmission performance, reduce costs, and improve reliability.
  • the gap can effectively reduce the volume and weight of the electronic whole machine and system, and has a broad market prospect.
  • the invention adopts LTCC technology + IPD technology to realize the miniaturization of the entire GNSS radio frequency front-end module based on the LTCC technology, and the high performance of the entire product is realized in performance.
  • the GNSS radio frequency front-end module based on LTCC technology includes an LTCC ceramic substrate 1, an LNA circuit electronic component, and a GNSS antenna 2 ; LNA circuit electronic components and GNSS antenna 2 are integrated on the LTCC ceramic substrate 1, the LNA circuit electronic components and the wiring on the LTCC ceramic substrate 1 together form a LAN circuit, and the GNSS antenna 2 is electrically connected to the LAN circuit; among them, GNSS
  • the antenna 2 includes an antenna body.
  • the antenna body includes multiple layers of LTCC green ceramic tapes stacked in sequence.
  • the back side of the above-mentioned LTCC ceramic substrate 1 is an SMT (Surface Mount Technology) patch welding surface 4.
  • the GNSS antenna 2 in the form of components and the electronic components in the LNA circuit are integrated into a single GNSS radio frequency front-end module based on LTCC technology using IPD technology.
  • the GNSS antenna and the LNA circuit are respectively described below. Give a specific description:
  • the GNSS antenna adopts a micro navigation and positioning chip antenna made by LTCC technology that supports multiple navigation systems such as Beidou+GPS+GLONASS+Galileo.
  • LTCC technology has now developed into an eye-catching integrated component technology, has become the mainstream technology of passive integration, and has become the development direction of the passive component field and the economic growth point of the new component industry.
  • the LTCC technology is to fully mix the low-temperature sintered ceramic glass powder, add a certain colloid and disperse it to produce a precise and dense green ceramic tape by casting technology.
  • a high-density circuit that does not interfere with each other in a three-dimensional space or a three-dimensional circuit substrate with built-in passive components can also be mounted on its surface through IC and active
  • the device is made into a passive or active integrated functional module, and the circuit can be further miniaturized and high-density, which is very suitable for high-frequency communication components.
  • the above-mentioned GNSS antenna 2 includes five layers of LTCC green ceramic tape, and the five layers of LTCC green ceramic tape are respectively the first layer of LTCC green ceramic tape and the second layer of LTCC green ceramic tape from top to bottom.
  • the third layer of LTCC green tape, the fourth layer of LTCC green tape, the fifth layer of LTCC green tape, the thickness of the five layers of LTCC green tape from top to bottom are A, B, C, D, E, among which ,
  • the first layer of LTCC green porcelain belt is the top layer of LTCC green porcelain belt;
  • the second layer of LTCC green porcelain belt, the third layer of LTCC green porcelain belt and the fourth layer of LTCC green porcelain belt are three layers of middle LTCC green porcelain belt;
  • the LTCC raw ceramic tape is the bottom LTCC raw ceramic tape; as shown in Figure 5, the upper surface of the first layer of LTCC raw ceramic tape is printed with marking points, and the first layer of LTCC raw ceramic tape is not provided with punching holes, the marking points are black Ink mark point, this mark point is only available at the feeding end, so that the feeding end can be distinguished from the non-feeding end, and it can also be used as a mark on the front of the product, as shown
  • the length of the entire microstrip line of the second layer of LTCC green tape, the third layer of LTCC green tape and the fourth layer of LTCC green tape reaches ⁇ /4 wavelength, and the frequency band reaches 1550-1610MHz, covering Multiple frequency points of the GNSS system.
  • the LNA circuit integrates a large number of LNA, SAW filters, chip capacitors, inductors, and embedded LC capacitors, inductors and other components.
  • the above-mentioned LNA circuit electronic components include an LNA chip 31, a filter 32, and an electronic component 33.
  • the electronic component 33 includes a capacitor, an inductor, a resistor, and the like.
  • the length and width of the above-mentioned GNSS radio frequency front-end module based on LTCC technology does not exceed 0.034 ⁇ , the height does not exceed 0.02 ⁇ , the length of the antenna body does not exceed 0.032 ⁇ , and the width and height are both Not more than 0.005 ⁇ .
  • the distance between the two pads is 4.0 ⁇ 0.2mm (for example, 3.8mm, 4mm, 4.1mm, 4.2mm, etc.), and both pads are flush with the end of the antenna body, that is, The length of the antenna body is 5 ⁇ 0.2mm.
  • the present invention also discloses a method for preparing a GNSS radio frequency front-end module based on LTCC technology. Specifically, the method includes the following steps:
  • Step S1 preparing an LTCC ceramic substrate with wiring inside, and the back of the LTCC ceramic substrate is the SMT patch soldering surface.
  • the above-mentioned LTCC ceramic substrate is an LTCC substrate.
  • Step S2 using LTCC technology to prepare a GNSS antenna, the GNSS antenna includes a rectangular parallelepiped antenna body, and the antenna body includes multiple layers of LTCC green ceramic tapes stacked in sequence;
  • the above-mentioned GNSS antenna includes five layers of LTCC green ceramic tape, and the five layers of LTCC green ceramic tape are respectively the first layer of LTCC green ceramic tape, the second layer of LTCC green ceramic tape, and the second layer from top to bottom.
  • the inclination directions of the printed signal lines of the second layer of LTCC green tape, the third layer of LTCC green tape and the fourth layer of green ceramic tape are the same; the fifth layer of LTCC green tape
  • Two pads are provided on the back of the ceramic ribbon, and the pads adjacent to the marking point are set as the antenna feed points.
  • Step S3 provide the electronic components constituting the LNA circuit, and use IPD technology to integrate the electronic components constituting the LNA circuit and the GNSS antenna on the LTCC ceramic substrate.
  • the electronic components and the wiring on the LTCC ceramic substrate constitute a LAN circuit, and
  • the GNSS antenna is electrically connected to the LAN circuit.
  • the above-mentioned LNA circuit electronic components include LNA chips, filters, capacitors, inductors and resistors.
  • the length and width of the above-mentioned GNSS radio frequency front-end module based on LTCC technology does not exceed 0.034 ⁇ , the height does not exceed 0.02 ⁇ , the length of the antenna body does not exceed 0.032 ⁇ , and the width and height are both Not more than 0.005 ⁇ .
  • this embodiment is a method embodiment corresponding to the above-mentioned embodiment of a GNSS radio frequency front-end module based on LTCC technology, and this embodiment can be implemented in cooperation with the above-mentioned embodiment of a GNSS radio frequency front-end module based on LTCC technology.
  • the related technical details mentioned in the above embodiment of the GNSS radio frequency front-end module based on the LTCC technology are still valid in this embodiment, and in order to reduce repetition, details are not repeated here.
  • the relevant technical details mentioned in this embodiment can also be applied to the above-mentioned embodiment of the GNSS radio frequency front-end module based on the LTCC technology.
  • the present invention discloses a GNSS radio frequency front-end module based on LTCC technology and a preparation method thereof.
  • the LNA circuit electronic components and the GNSS antenna prepared by LTCC technology are integrated on the LTCC ceramic substrate by using IPD technology.
  • the LNA circuit The electronic components and the wiring on the LTCC ceramic substrate form a LAN circuit and are electrically connected to the GNSS antenna, that is, the GNSS antenna and the LNA low-noise amplifier circuit are perfectly integrated by using IPD technology and LTCC materials to achieve product miniaturization and solve It solves the problems of traditional LNA circuits such as false soldering, missing soldering, and amplifying circuits occupying large space on the PCB board and high cost; at the same time, it also solves the problem of separate antenna installation and increased processes. Moreover, the GNSS radio frequency front-end module based on LTCC technology can be widely used in various navigation and positioning equipment. Using this product on the navigation project terminal can help customers save development cycle, reduce product use area, reduce product material cost and R&D cost.

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

本发明涉及天线技术领域,尤其涉及一种基于LTCC技术的GNSS射频前端模块及其制备方法,通过采用IPD技术将LNA电路电子元器件和采用LTCC技术制备的GNSS天线集成于LTCC陶瓷基板上,LNA电路上的电子元器件通过陶瓷基板上的布线与GNSS天线电连接,即采用IPD技术与LTCC材料将GNSS天线和LNA电路两个部分完美融合,实现产品小型化,解决了传统LNA电路虚焊、漏焊、放大电路在PCB板上占据空间大、成本高等问题;同时,也解决了天线单独安装作业,增加工序的问题。且该基于LTCC技术的GNSS射频前端模块,可广泛应用于各类导航定位设备,具有很强的实用性。

Description

基于LTCC技术的GNSS射频前端模块及其制备方法 技术领域
本发明涉及天线技术领域,尤其涉及一种基于LTCC技术的GNSS(Global Navigation Satellite System,全球卫星导航系统)射频前端模块。
背景技术
随着信息科技的日益进步,电子设备的导航系统、通信系统和多媒体系统等均朝着小型化、智能化的方向发展。就导航系统来说,其已经从单一的GPS时代转变为多系统并存兼容的GNSS新时代,促进了卫星导航体系全球化和增强多模化。目前,GNSS系统已经成为了各个国家重大的空间和信息化基础设施,同时也成为了体现现代化大国地位和国家综合国力的重要标志。它是经济安全、国防安全、国土安全和公共安全的重大技术支撑系统和战略威慑基础资源,也是建设和谐社会、服务人民大众、提升生活质量的重要工具。由于其广泛的产业关联度和与通信产业的融合度,能有效地渗透到国民经济诸多领域和人们的日常生活中,成为高技术产业高成长的助推器,成为继移动通信和互联网之后的全球第三个发展得最快的电子信息产业的经济新增长点。
就LNA低噪放电路来说现有的低噪放模块在手机等手持设备上的应用存在很大的弊端。首先,传统LNA电路占用PCB板很大的空间;其次,传统的LNA电路基于PCB板,焊点多,虚焊的可能性很高;最后,传统的LNA电路成本较高。另一方面,电子产品的市场发展趋势为轻薄短小,所以半导体制程能力的提升,使相同体积内的主动元件数大增,除了配套的无源元件数量大幅增加, 也需要有较多的空间来放置这些无源元件,因此必然增加整体封装器件的体积大小,这与市场的发展趋势大相径庭。从成本角度来看,总成本与无源元件数量成正比关系,因此在大量无源元件使用的前提下,如何去降低无源元件的成本及空间,甚至提高无源元件的性能,是当前最重要的课题之一。
用户端射频前端GNSS天线+LNA低噪放电路作为GNSS系统的重要组成部分之一,占据着不可或缺的地位。现有技术中LNA电路占用PCB板很大的空间,焊点多,虚焊可能性高,且LNA电路部分和天线部分为独立的两部分,会增加成本,增加产品的体积,这些都是本领域技术人员所不希望见到的。
发明内容
针对上述存在的问题,本发明公开了一种基于LTCC技术的GNSS射频前端模块,其中,包括:LTCC陶瓷基板、LNA电路和GNSS天线;
所述LNA电路电子元器件和所述GNSS天线均集成于所述LTCC陶瓷基板上,所述LNA电路电子元器件与所述LTCC陶瓷基板上的布线一起构成LAN电路,且所述GNSS天线与所述LAN电路电连接;
其中,所述GNSS天线包括天线本体,所述天线本体包括依次层叠设置的多层LTCC生瓷带。
上述的基于LTCC技术的GNSS射频前端模块,其中,所述多层LTCC生瓷带包括顶层LTCC生瓷带、底层LTCC生瓷带和位于顶层LTCC生瓷带、底层LTCC生瓷带之间的N层中间LTCC生瓷带,其中,N为正整数;
所述顶层LTCC生瓷带的上表面印刷有标记点,且所述顶层LTCC生瓷带未设置冲孔;
所述底层LTCC生瓷带的背面设置有2个焊盘,且设置临近所述标记点的 焊盘为天线馈点。
各所述中间LTCC生瓷带均设置有至少两排导电通孔和多根印刷信号线,相邻两排所述导电通孔之间均设置有所述印刷信号线,且每根所述印刷信号线的两端均连接有一个导电通孔。上述的基于LTCC技术的GNSS射频前端模块,其中,所述LNA电路电子元器件包括LNA芯片、滤波器、电容、电感和电阻。
上述的基于LTCC技术的GNSS射频前端模块,其中,所述LTCC陶瓷基板的背面为SMT贴片焊接面。
上述的基于LTCC技术的GNSS射频前端模块,其中,所述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ。
上述的基于LTCC技术的GNSS射频前端模块,其中,所述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ。
本发明公开了一种基于LTCC技术的GNSS射频前端模块的制备方法,其中,包括如下步骤:
步骤S1,制备一内部设置有布线的LTCC陶瓷基板,且所述LTCC陶瓷基板的背面为SMT贴片焊接面;
步骤S2,采用LTCC技术制备一GNSS天线,所述GNSS天线包括天线本体,且所述天线本体包括依次层叠设置的多层LTCC生瓷带;
步骤S3,提供构成LNA电路的电子元器件,并利用IPD(Integrated Passive Devices集成无源元件)技术将所述构成LNA电路的电子元器件和所述GNSS天线集成到所述LTCC陶瓷基板上,所述构成LNA电路的电子元器件与所述LTCC陶瓷基板上的布线一起构成LAN电路,且所述GNSS天线与所述LAN电路电连接。
上述的基于LTCC技术的GNSS射频前端模块的制备方法,其中,所述多 层LTCC生瓷带包括顶层LTCC生瓷带、底层LTCC生瓷带和位于顶层LTCC生瓷带、底层LTCC生瓷带之间的N层中间LTCC生瓷带,其中,N为正整数;
所述顶层LTCC生瓷带的上表面印刷有标记点,且所述顶层LTCC生瓷带未设置冲孔;
所述底层LTCC生瓷带的背面设置有2个焊盘,且设置临近所述标记点的焊盘为天线馈点。
各所述中间LTCC生瓷带均设置有至少两排导电通孔和多根印刷信号线,相邻两排所述导电通孔之间均设置有所述印刷信号线,且每根所述印刷信号线的两端均连接有一个导电通孔。上述的基于LTCC技术的GNSS射频前端模块的制备方法,其中,所述LNA电路电子元器件包括LNA芯片、滤波器、电容、电感和电阻。
上述的基于LTCC技术的GNSS射频前端模块的制备方法,其中,其特征在于,所述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ;所述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ(其中,λ为波长,且每个天线本体的λ值时固定的)。上述发明与现有技术相比,具有如下优点或者有益效果:
一、电路简单化,采用LTCC IPD压缩技术使得LNA IC(芯片)、SAW滤波器、片式电容、电感以及内埋LC电容、电感等元器件和GNSS天线集成于LTCC基座上形成基于LTCC技术的GNSS射频前端模块,实现了电路小型化,简化了整个电路板的设计、调试和安装;同时也解决了原始分立电子元器件构成的LNA电路和GNSS天线在PCB板上占据空间大的问题。
二、高可靠性,基于LTCC技术的GNSS射频前端模块具有可靠性高的优点,从而提高了整个电路板工作的可靠性,提高了电路的工作性能和一致性。另外, 采用LNA集成模块后,电路中的焊点大幅度减少,出现虚焊的可能性降低,使整个电路工作更为可靠。
三、能耗小,基于LTCC技术的GNSS射频前端模块还具有耗电小、体积小、经济等优点,同一功能的电路,采用基于LTCC技术的GNSS射频前端模块要比采用分立电子元器件的电路功耗小许多。
四、故障率低,相对分立元器件电路而言,基于LTCC技术的GNSS射频前端模块的故障发生率比较低,因此降低了整个电路的故障发生率。
五、性价比高,相对于LNA分立元器件电路和独立的GNSS天线而言,采用基于LTCC技术的GNSS射频前端模块构成的电路性能指标更高,与分立电子元器件构成的LNA电路和独立的GNSS天线相比,基于LTCC技术的GNSS射频前端模块增益更高,零点漂移更小,而且成本、价格更低。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更加明显。在全部附图中相同的标记指示相同的部分。并未可以按照比例绘制附图,重点在于示出本发明的主旨。
图1是本发明实施例中基于LTCC技术的GNSS射频前端模块的正面结构示意图;
图2是本发明实施例中基于LTCC技术的GNSS射频前端模块的背面结构示意图;
图3是本发明实施例中GNSS天线的三维结构示意图;
图4是本发明实施例中GNSS天线的五层生瓷带的分布示意图;
图5是本发明实施例中GNSS天线的顶层生瓷带的标记点示意图;
图6是本发明实施例中GNSS天线的中间层生瓷带的导电通孔结构示意图;
图7是本发明实施例中GNSS天线的中间层生瓷带的印刷图形结构示意图;
图8是本发明实施例中GNSS天线的底层生瓷带的背面焊盘结构示意图
图9是本发明实施例中基于LTCC技术的GNSS射频前端模块的制备方法流程图。
具体实施方式
LTCC技术特点:1)、陶瓷材料具有优良的高频高Q特性;2)、使用铜、银、金导电率高的金属材料作为导体材料,有利于提高电路系统的品质因子;3)、可适应大电流及耐高温特性要求,并具备比普通PCB电路基板优良的热传导性;4)、可将无源组件埋入多层电路基板中,有利于提高电路的组装密度;5)、可以根据要求制作层数极高的电路基板,其中微孔可以达到0.03mm,线宽可以做到0.05mm,可以实现很复杂的电路连接。6)、具有较好的温度特性,如较小的热膨胀系数、较小的介电常数、较小的温度系数。7)、非连续式的生产工艺允许对生坯基板进行检查,从而提高整体的良率而降低产品成本。8)、由于是整版制作,产品的一致性以及稳定性很高。
LTCC技术应用优势:1)、层数理论上可以无限多,可以根据实际更好的布线,从而提高组装密度。2)、可以根据需要在生瓷片上制作腔体,埋入更多的IC或有源器件,提高组装密度。3)、陶瓷材料的高频高Q特性,从而使产品具有很好的高频特性和高速传输特性。4)、生产过程采用的是非连续生产,可以对每一道工序进行质量控制,从而提高产品的整体良率。
LTCC技术与其他技术对比具有的优点:1)、陶瓷材料具有优良的高频、高 速传输以及宽通带的特性。根据配料的不同,LTCC材料的介电常数可以在很大范围内变动,配合使用高导电率的金属材料作为导体材料,有利于提高电路系统的品质因子,增加了电路设计的灵活性;2)、可以适应大电流及耐高温特性要求,并具备比普通PCB电路基板更优良的热传导性,极大地优化了电子设备的散热设计,可靠性高,可应用于恶劣环境,延长了其使用寿命;3)、可以制作层数很高的电路基板,并可将多个无源元件埋入其中,免除了封装组件的成本,在层数很高的三维电路基板上,实现无源和有源的集成,有利于提高电路的组装密度,进一步减小体积和重量;4)、与其他多层布线技术具有良好的兼容性,例如将LTCC与薄膜布线技术结合可实现更高组装密度和更好性能的混合多层基板和混合型多芯片组件。
IPD技术,可以集成多种电子功能,如传感器、射频收发器、微机电系统MEMS、功率放大器。电源管理单元和数字处理器等,提供紧凑的集成无源器件IPD产品,具有小型化和提高系统性能的优势。因此,无论是减小整个产品的尺寸与重量,还是在现有的产品体积内增加功能,集成无源元件技术都能发挥很大的作用。
IPD技术的优点:IPD集成无源元件技术具有布线密度高、体积小、重量轻;集成度高,可以埋置电阻、电感、电容等无源器件及有源芯片;高频特性好,可用于微波及毫米波领域等优点。将薄膜IPD集成无源元件技术应用于PCB加工,达到节约封装面积,提高信号的传输性能、降低成本、提高可靠性等目的,通过IPD技术的集成优势,弥合封装技术和PCB技术之间不断扩大的差距,可以有效减小电子整机与系统的体积和重量,具有广阔的市场前景。
本发明采用LTCC技术+IPD技术,实现了整个基于LTCC技术的GNSS射频前端模块的小型化,性能上实现了整个产品的高性能。
下面结合附图和具体的实施例对本发明作进一步的说明,但是不作为本发明的限定。
实施例一
如图1~10所示,本实施例涉及一种基于LTCC技术的GNSS射频前端模块,具体的,该基于LTCC技术的GNSS射频前端模块包括LTCC陶瓷基板1、LNA电路电子元器件和GNSS天线2;LNA电路电子元器件和GNSS天线2均集成于LTCC陶瓷基板1上,LNA电路电子元器件与LTCC陶瓷基板1上的布线一起构成LAN电路,且GNSS天线2与LAN电路电连接;其中,GNSS天线2包括天线本体,天线本体包括依次层叠设置的多层LTCC生瓷带,上述LTCC陶瓷基板1的背面为SMT(Surface Mount Technology,表面贴装技术)贴片焊接面4。
在本实施例中,GNSS天线2以元器件的形式与LNA电路中的电子元器件一起利用IPD技术整合成单个的基于LTCC技术的GNSS射频前端模块,具体的,下面分别对GNSS天线和LNA电路进行具体的描述:
1、GNSS天线部分
本实施例中GNSS天线采用是LTCC技术制作的支持北斗+GPS+GLONASS+Galileo等多导航系统的微型导航定位芯片天线。LTCC技术目前已经发展成为了令人瞩目的整合组件技术,已经成为无源集成的主流技术,成为无源元件领域的发展方向和新的元件产业的经济增长点。LTCC技术是将低温烧结陶瓷玻璃粉末充分混合,并加入一定的胶体分散后通过流延技术制成厚度精确而致密的生瓷带。在生瓷带上利用机械或者激光技术打孔、微孔注浆、精密导体电路印刷等工艺技术按照所需要求制成电路,并将多个被动组件(如电容、电阻、滤波器、耦合器等等)埋入多层LTCC陶瓷基板中,然后叠压在 一起。内外电极可以使用银浆、铜浆、金浆。后经过生片切割、排胶、烧结、电镀等工艺技术制成在三维空间下互不干扰的高密度电路或内置无源元件的三维电路基板,也可在其表面通过贴装IC和有源器件,制成无源或者有源集成的功能模块,并且可以进一步将电路小型化与高密度化,非常适合用于高频通讯用组件。
在本发明的一个优选的实施例中,上述GNSS天线2包括五层LTCC生瓷带,五层LTCC生瓷带自上而下分别为第一层LTCC生瓷带、第二层LTCC生瓷带、第三层LTCC生瓷带、第四层LTCC生瓷带、第五层LTCC生瓷带,五层LTCC生瓷带自上而下的厚度分别为A、B、C、D、E,其中,第一层LTCC生瓷带为顶层LTCC生瓷带;第二层LTCC生瓷带、第三层LTCC生瓷带和第四层LTCC生瓷带为3层中间LTCC生瓷带;第五层LTCC生瓷带为底层LTCC生瓷带;如图5所示,第一层LTCC生瓷带的上表面印刷有标记点,且第一层LTCC生瓷带未设置冲孔,该标记点为黑色油墨mark点,该标记点只有馈电的那一端有,以便既可以将馈电一端与非馈电一端区分开来,又可以作为产品正面的标记,如图6和图7所示,第二层LTCC生瓷带、第三层LTCC生瓷带和第四层LTCC生瓷带均设置有两排导电通孔(如图6所示)和设置于两排导电通孔之间的多根印刷信号线,且每根印刷信号线的两端各连接一个通孔(如图7所示),第二层LTCC生瓷带、第三层LTCC生瓷带和第四层LTCC生瓷带的印刷信号线的倾斜方向相同,第二层LTCC生瓷带、第三层LTCC生瓷带和第四层LTCC生瓷带的整个微带线的长度达到λ/4波长,频段达到1550-1610MHz,覆盖GNSS系统的多个频点。如图8所示,第五层LTCC生瓷带的背面设置有2个焊盘,且设置临近标记点的焊盘为天线馈点,也就是说与正面标记点相应的一端的焊盘为天线馈点,另一个焊盘接地。
2、LNA电路部分
LNA电路集成了大量LNA、SAW滤波器、片式电容、电感以及内埋LC电容、电感等元器件。
在本发明的一个优选的实施例中,上述LNA电路电子元器件包括LNA芯片31、滤波器32和电子元件33,该电子元件33包括电容、电感和电阻等。
在本发明的一个优选的实施例中,上述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ,上述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ。具体的,本实施例中2个焊盘之间的距离为4.0±0.2mm(例如3.8mm、4mm、4.1mm或者4.2mm等),2个焊盘均与天线本体的端部齐平,即该天线本体的长度为5±0.2mm。
实施例二:
如图9所示,本发明还公开了一种基于LTCC技术的GNSS射频前端模块的制备方法,具体的,该方法包括如下步骤:
步骤S1,制备一内部设置有布线的LTCC陶瓷基板,且LTCC陶瓷基板的背面为SMT贴片焊接面。
在本发明的一个优选的实施例中,上述LTCC陶瓷基板为LTCC基板。
步骤S2,采用LTCC技术制备一GNSS天线,GNSS天线包括长方体天线本体,且天线本体包括依次层叠设置的多层LTCC生瓷带;
在本发明的一个优选的实施例中,上述GNSS天线包括五层LTCC生瓷带,五层LTCC生瓷带自上而下分别为第一层LTCC生瓷带、第二层LTCC生瓷带、第三层LTCC生瓷带、第四层LTCC生瓷带和第五层LTCC生瓷带;第一层LTCC生瓷带的上表面印刷有标记点,且第一层LTCC生瓷带未设置冲孔;第二层LTCC生瓷带、第三层LTCC生瓷带和第四层生瓷带均设置有两排导电通孔和设置于 两排导电通孔之间的多根印刷信号线,且每根印刷信号线的两端各连接一个通孔,第二层LTCC生瓷带、第三层LTCC生瓷带和第四层生瓷带的印刷信号线的倾斜方向相同;第五层LTCC生瓷带的背面设置有2个焊盘,且设置临近标记点的焊盘为天线馈点。
步骤S3,提供构成LNA电路的电子元器件,并利用IPD技术将构成LNA电路的电子元器件和GNSS天线集成到LTCC陶瓷基板上,电子元器件与LTCC陶瓷基板上的布线一起构成LAN电路,且GNSS天线与LAN电路电连接。
在本发明的一个优选的实施例中,上述LNA电路电子元器件包括LNA芯片、滤波器、电容、电感和电阻等。
在本发明的一个优选的实施例中,上述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ,上述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ。
不难发现,本实施例为与上述中基于LTCC技术的GNSS射频前端模块的实施例相对应的方法实施例,本实施例可与上述基于LTCC技术的GNSS射频前端模块的实施例互相配合实施。上述中基于LTCC技术的GNSS射频前端模块的实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述中基于LTCC技术的GNSS射频前端模块的实施例中。
综上,本发明公开了一种基于LTCC技术的GNSS射频前端模块及其制备方法,通过采用IPD技术将LNA电路电子元器件和采用LTCC技术制备的GNSS天线均集成于LTCC陶瓷基板上,LNA电路电子元器件与LTCC陶瓷基板上的布线一起构成LAN电路,且与GNSS天线电连接,即采用IPD技术与LTCC材料将GNSS天线和LNA低噪放电路两个部分完美融合,实现产品小型化,解决 了传统LNA电路虚焊、漏焊、放大电路在PCB板上占据空间大、成本高等问题;同时,也解决了天线单独安装作业,增加工序的问题。且该基于LTCC技术的GNSS射频前端模块,可广泛应用于各类导航定位设备,在导航项目终端上采用该产品,可帮助客户节省开发周期,缩小产品使用面积、降低产品材料成本和研发成本。
本领域技术人员应该理解,本领域技术人员在结合现有技术以及上述实施例可以实现变化例,在此不做赘述。这样的变化例并不影响本发明的实质内容,在此不予赘述。
以上对本发明的较佳实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (10)

  1. 一种基于LTCC技术的GNSS射频前端模块,其特征在于,包括:LTCC陶瓷基板、LNA电路电子元器件和GNSS天线;
    所述LNA电路电子元器件和所述GNSS天线均集成于所述LTCC陶瓷基板上,所述LNA电路电子元器件与所述LTCC陶瓷基板上的布线一起构成LAN电路,且所述GNSS天线与所述LAN电路电连接;
    其中,所述GNSS天线包括天线本体,所述天线本体包括依次层叠设置的多层LTCC生瓷带。
  2. 如权利要求1所述的基于LTCC技术的GNSS射频前端模块,其特征在于,所述多层LTCC生瓷带包括顶层LTCC生瓷带、底层LTCC生瓷带和位于顶层LTCC生瓷带、底层LTCC生瓷带之间的N层中间LTCC生瓷带,其中,N为正整数;
    所述顶层LTCC生瓷带的上表面印刷有标记点,且所述顶层LTCC生瓷带未设置冲孔;
    所述底层LTCC生瓷带的背面设置有2个焊盘,且设置临近所述标记点的焊盘为天线馈点。
    各所述中间LTCC生瓷带均设置有至少两排导电通孔和多根印刷信号线,相邻两排所述导电通孔之间均设置有所述印刷信号线,且每根所述印刷信号线的两端均连接有一个导电通孔。
  3. 如权利要求1所述的基于LTCC技术的GNSS射频前端模块,其特征在于,所述LNA电路电子元器件包括LNA芯片、滤波器、电容、电感和电阻。
  4. 如权利要求1所述的基于LTCC技术的GNSS射频前端模块,其特征在 于,所述LTCC陶瓷基板的背面为SMT贴片焊接面。
  5. 如权利要求1所述的基于LTCC技术的GNSS射频前端模块,其特征在于,所述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ。
  6. 如权利要求1所述的基于LTCC技术的GNSS射频前端模块,其特征在于,所述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ。
  7. 一种基于LTCC技术的GNSS射频前端模块的制备方法,其特征在于,包括如下步骤:
    步骤S1,制备一内部设置有布线的LTCC陶瓷基板,且所述LTCC陶瓷基板的背面为SMT贴片焊接面;
    步骤S2,采用LTCC技术制备一GNSS天线,所述GNSS天线包括天线本体,且所述天线本体包括依次层叠设置的多层LTCC生.瓷带;
    步骤S3,提供构成LNA电路的电子元器件,并利用IPD技术将所述构成LNA电路的电子元器件和所述GNSS天线集成到所述LTCC陶瓷基板上,所述构成LNA电路的电子元器件与所述LTCC陶瓷基板上的布线一起构成LAN电路,且所述GNSS天线与所述LAN电路电连接。
  8. 如权利要求7所述的基于LTCC技术的GNSS射频前端模块的制备方法,其特征在于,所述多层LTCC生瓷带包括顶层LTCC生瓷带、底层LTCC生瓷带和位于顶层LTCC生瓷带、底层LTCC生瓷带之间的N层中间LTCC生瓷带, 其中,N为正整数;
    所述顶层LTCC生瓷带的上表面印刷有标记点,且所述顶层LTCC生瓷带未设置冲孔;
    所述底层LTCC生瓷带的背面设置有2个焊盘,且设置临近所述标记点的焊盘为天线馈点。
    各所述中间LTCC生瓷带均设置有至少两排导电通孔和多根印刷信号线,相邻两排所述导电通孔之间均设置有所述印刷信号线,且每根所述印刷信号线的两端均连接有一个导电通孔。
  9. 如权利要求7所述的基于LTCC技术的GNSS射频前端模块的制备方法,其特征在于,所述LNA电路电子元器件包括LNA芯片、滤波器、电容、电感和电阻。
  10. 如权利要求7所述的基于LTCC技术的GNSS射频前端模块的制备方法,其特征在于,所述基于LTCC技术的GNSS射频前端模块的长度和宽度均不超过0.034λ,高度不超过0.02λ;所述天线本体的长度不超过0.032λ,宽度和高度均不超过0.005λ。
PCT/CN2019/107463 2019-09-24 2019-09-24 基于ltcc技术的gnss射频前端模块及其制备方法 WO2021056171A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107463 WO2021056171A1 (zh) 2019-09-24 2019-09-24 基于ltcc技术的gnss射频前端模块及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107463 WO2021056171A1 (zh) 2019-09-24 2019-09-24 基于ltcc技术的gnss射频前端模块及其制备方法

Publications (1)

Publication Number Publication Date
WO2021056171A1 true WO2021056171A1 (zh) 2021-04-01

Family

ID=75165372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107463 WO2021056171A1 (zh) 2019-09-24 2019-09-24 基于ltcc技术的gnss射频前端模块及其制备方法

Country Status (1)

Country Link
WO (1) WO2021056171A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531139A (zh) * 2003-03-14 2004-09-22 Lg 有源智能天线系统及其制造方法
CN104280742A (zh) * 2014-06-25 2015-01-14 上海航微信息科技有限公司 一种基于gnss的无线天线
CN206163699U (zh) * 2016-10-21 2017-05-10 上海旦迪通信技术有限公司 一种ltcc北斗/gps双频芯片天线
US20190120972A1 (en) * 2017-10-24 2019-04-25 Honeywell International Inc. Architecture for single radio frequency feed for gnss receiver and iridium modem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1531139A (zh) * 2003-03-14 2004-09-22 Lg 有源智能天线系统及其制造方法
CN104280742A (zh) * 2014-06-25 2015-01-14 上海航微信息科技有限公司 一种基于gnss的无线天线
CN206163699U (zh) * 2016-10-21 2017-05-10 上海旦迪通信技术有限公司 一种ltcc北斗/gps双频芯片天线
US20190120972A1 (en) * 2017-10-24 2019-04-25 Honeywell International Inc. Architecture for single radio frequency feed for gnss receiver and iridium modem

Similar Documents

Publication Publication Date Title
US20140218883A1 (en) Electronic module allowing fine tuning after assembly
US20090236701A1 (en) Chip arrangement and a method of determining an inductivity compensation structure for compensating a bond wire inductivity in a chip arrangement
US20080191956A1 (en) High-frequency module
CN105895626A (zh) 半导体装置封装及其制作方法
US7064630B2 (en) High-frequency module and its manufacturing method
CN209860896U (zh) 一种基于ltcc技术的新型射频前端模组
Samanta Ceramics for the future: Advanced millimeter-wave multilayer multichip module integration and packaging
WO2001095679A1 (en) Module for radio communication
CN106653700B (zh) 一种具有新型叠层结构的ltcc基板
CN102201607A (zh) 基于ltcc技术的微带-带状线转换
Samanta et al. Surfing the millimeter-wave: Multilayer photoimageable technology for high performance SoP components in systems at millimeter-wave and beyond
US6992540B2 (en) Two-port isolator and communication device
WO2021056171A1 (zh) 基于ltcc技术的gnss射频前端模块及其制备方法
US9155198B2 (en) Electronic module allowing fine tuning after assembly
US11690173B2 (en) Circuit board structure
CN212182549U (zh) 一种基于ltcc天线的低成本的导航射频前端模块
CN105024556A (zh) 基于低温共烧陶瓷混合集成的dc-dc变换器及其制造方法
CN105530026B (zh) 一种小型化毫米波收发组件
CN201336359Y (zh) 基于ltcc技术的蓝牙天线以及蓝牙模块
JP2002141673A (ja) 電子回路モジュール
JPH11225035A (ja) Lcフィルタ
CN110544632B (zh) 在具有双面腔体的ltcc基板的封装盖板上制作bga焊盘的方法
JP2001196829A (ja) 送受信モジュールのアンテナ装置
WO2001011771A1 (fr) Filtre lc et son procede de fabrication
CN108470729A (zh) 混合印刷电路板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946973

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 10.02.2023)