WO2021053864A1 - 複合成形体及びその製造方法 - Google Patents

複合成形体及びその製造方法 Download PDF

Info

Publication number
WO2021053864A1
WO2021053864A1 PCT/JP2020/015017 JP2020015017W WO2021053864A1 WO 2021053864 A1 WO2021053864 A1 WO 2021053864A1 JP 2020015017 W JP2020015017 W JP 2020015017W WO 2021053864 A1 WO2021053864 A1 WO 2021053864A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
fiber
layer
reinforcing
woven fabric
Prior art date
Application number
PCT/JP2020/015017
Other languages
English (en)
French (fr)
Inventor
久樹 小川
Original Assignee
日本グラスファイバー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本グラスファイバー工業株式会社 filed Critical 日本グラスファイバー工業株式会社
Publication of WO2021053864A1 publication Critical patent/WO2021053864A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R13/00Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
    • B60R13/08Insulating elements, e.g. for sound insulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units

Definitions

  • the present invention relates to a composite molded body and a method for manufacturing the same, and relates to a composite molded body suitable for use by attaching to, for example, an automobile body undercover, an engine undercover, or a motor cover.
  • Automobile body undercovers and engine undercovers are provided mainly for the purpose of controlling the airflow under the body to improve aerodynamic characteristics, reducing the emission of engine noise, and reducing the intrusion of road noise.
  • HVs hybrid vehicles
  • PGVs plug-in hybrid vehicles
  • FCVs fuel cell vehicles
  • EVs electric vehicles
  • -Patent Document 1 discloses that a sound absorbing material formed by laminating a reinforcing layer such as an olefin resin and a non-woven fabric layer is attached to the road surface side surface of an undercover made of a fiber reinforced resin.
  • -Patent Document 2 discloses that a non-woven fabric layer in which fibers that are melted and fibers that are not melted in a heating step during molding is laminated by compression molding on the road surface side surface of a base material layer made of a fiber reinforced resin. ing.
  • a reinforcing layer such as an olefin resin maintains the shape of the composite molded product and protects the non-woven fabric layer.
  • a reinforcing layer such as an olefin resin maintains the shape of the composite molded product and protects the non-woven fabric layer.
  • its shape retention and protection are not sufficient, and there is a concern that the composite molded body may be deformed or the fibers of the non-woven fabric layer may be peeled off when hit by a stepping stone.
  • the non-woven fabric layer of Patent Document 2 retains the shape of the non-woven fabric layer by fixing the fibers that do not melt to the melted fibers. However, its shape retention is not sufficient, and there is a concern that the non-woven fabric layer will be deformed. In addition, since there is nothing to protect the fibers that do not melt, it is inevitable that the fibers of the non-woven fabric layer will peel off when hit by a stepping stone. There is also a problem that the non-woven fabric layer contains water and becomes heavy.
  • an object of the present invention is to provide a composite molded product which is excellent not only in sound absorption and lightness but also in shape retention, fiber peeling prevention and waterproofness.
  • Composite molded body A composite molded body including a sound absorbing layer and a reinforcing layer laminated on both surfaces or one surface of the sound absorbing layer.
  • the sound absorbing layer contains a non-woven fabric made of inorganic fibers and a thermoplastic resin in the layer attached to the inorganic fibers.
  • the reinforcing layer contains a non-woven fabric made of reinforcing fibers and a polyurea resin impregnated between the reinforcing fibers.
  • the thermoplastic resin in the layer is a composite molded body characterized in that the inorganic fibers are bonded to each other and the inorganic fibers and the reinforcing fibers are bonded to each other.
  • the inorganic fiber and the reinforcing fiber can be in a mode in which they are also bonded by an interlayer thermoplastic resin between the sound absorbing layer and the reinforcing layer.
  • a non-woven fabric made of reinforcing fibers is laminated on both surfaces or one surface of a non-woven fabric made of inorganic fibers and thermoplastic resin fibers, and isocyanate and amine are added to the non-woven fabric made of reinforcing fibers.
  • a lamination step for producing a laminate that is applied in any order or at the same time By heating the laminate, the thermoplastic resin fibers are made into a melted thermoplastic resin in the layer, and the reaction between isocyanate and amine is promoted to produce a polyurea resin.
  • a method for producing a composite molded product which is a thermoplastic resin in a layer solidified by cooling the laminate, and includes a cooling step of bonding the inorganic fibers and bonding the inorganic fibers and the reinforcing fibers. ..
  • thermoplastic resin film is sandwiched between the non-woven fabric made of the inorganic fiber and the thermoplastic resin fiber and the non-woven fabric made of the reinforcing fiber.
  • the thermoplastic resin film is melted into an interlayer thermoplastic resin.
  • the solidified interlayer thermoplastic resin can also be used to bond the inorganic fibers and the reinforcing fibers.
  • a sound absorbing layer containing a non-woven fabric made of inorganic fibers and a thermoplastic resin in the layer adhering to the inorganic fibers exhibits excellent sound absorbing properties.
  • the reinforcing layer containing the non-woven fabric made of the reinforcing fibers and the polyurea resin impregnated between the reinforcing fibers exhibits excellent waterproofness.
  • the sound absorbing layer and the reinforcing layer combine to exhibit excellent lightness, shape retention, and fiber peeling prevention property.
  • the reinforcing layer has high strength due to the impregnated polyurea resin, the shape of the composite molded body is strongly maintained, and the reinforcing fibers of the reinforcing layer itself do not peel off when hit by flying stones. Moreover, it strongly protects the inorganic fibers of the sound absorbing layer and prevents their peeling.
  • the composite molded product of the present invention is excellent not only in sound absorption and lightness, but also in shape retention, fiber peeling prevention and waterproofness.
  • FIG. 1A and 1B show a composite molded body of Example 1
  • FIG. 1A is a perspective view
  • FIG. 1B is a sectional view
  • FIG. 1C is an enlarged sectional view of an Ic arrow portion.
  • 2A and 2B show a laminating step in the production of the composite molded product
  • FIG. 2A is an enlarged cross-sectional view of an arrow portion IIa
  • FIGS. 2B to 2D are front views.
  • 3A and 3B show heating steps to cooling steps in the production of a composite molded product
  • (a) to (e) are front views of the first manufacturing method
  • (f) to (h) are front views of the second manufacturing method
  • (J) is a front view of the third manufacturing method.
  • FIG. 1A is a perspective view
  • FIG. 1B is a sectional view
  • FIG. 1C is an enlarged sectional view of an Ic arrow portion.
  • 2A and 2B show a laminating
  • FIG. 4A is a cross-sectional view of the composite molded product of Example 2
  • FIG. 4B is a front view of the laminating step of the composite molded product.
  • 5A is a cross-sectional view of the composite molded product of Example 3
  • FIG. 5B is a cross-sectional view of the composite molded product of Example 4.
  • FIG. 6 is a side view of an automobile showing the use of the composite molded product of Examples 1 to 4.
  • the material of the inorganic fiber is not particularly limited, but glass, ceramic, rock wool, basalt, carbon and the like can be exemplified, and one type or a mixture of two or more types may be used, but at low cost. From the viewpoint of high sound absorption, it is preferable that only glass or glass is the main component (most component).
  • the material of the thermoplastic resin fiber is not particularly limited, and polypropylene (PP), polyester (polyethylene terephthalate (PET), etc.), polyethylene (PE), polyamide (PA), etc. can be exemplified, and may be one kind or two kinds. The above mixture may be used.
  • the sound absorbing layer may be an embodiment in which all the thermoplastic resin fibers are melted to become a thermoplastic resin in the layer, or one or a part of the thermoplastic resin fibers are melted to become a thermoplastic resin in the layer, and the other kind or the balance. It is also possible that the thermoplastic resin fiber of No. 1 is maintained in a fibrous state without melting.
  • the mixed weight ratio (before heating) of the inorganic fiber and the thermoplastic resin fiber is not particularly limited, but is preferably 10:90 to 90:10, more preferably 30:70 to 70:30.
  • Basis weight of the nonwoven fabric made of an inorganic fiber and the thermoplastic resin fibers is not particularly limited, but is preferably 300 ⁇ 3000g / m 2, more preferably 500 ⁇ 2000g / m 2.
  • the material of the reinforcing fiber is not particularly limited, but inorganic fibers, organic fibers and the like can be exemplified and may be one kind or a mixture of two or more kinds. ..
  • the inorganic fiber examples include glass, ceramic, rock wool, basalt, carbon, and metal fiber, but those containing only glass or glass as the main component (most components) are preferable in terms of low cost and high sound absorption.
  • the organic fiber examples include PP, polyester (PET, etc.), PA, polycarbonate (PC), acrylic, organic natural fiber, etc., but even if the thermoplastic resin fiber for the sound absorbing layer melts during heating, the reinforcing layer It is preferable that the organic fiber has a higher melting point than the thermoplastic resin fiber so that the organic fiber for use does not melt.
  • Basis weight of the nonwoven fabric made of reinforcing fibers is not particularly limited, but is preferably 100 ⁇ 500g / m 2, more preferably 200 ⁇ 400g / m 2.
  • the amount of isocyanate applied is not particularly limited, but when the weight of the nonwoven fabric made of reinforcing fibers is 100 to 500 g / m 2 , the amount of isocyanate applied is preferably 10 to 50 g / m 2.
  • the amount of amine applied is preferably such that the molar ratio of [NCO group of isocyanate] / [ 2 NH groups of amine] is about 1 (preferably 0.9 to 1.1).
  • the method of heating the laminate in the heating step is not particularly limited, but examples thereof include heating by applying a heated object (die, flat plate press, etc.), heating by hot air, heating in a constant temperature bath, and the like. it can.
  • the laminate can be compressed in the lamination direction during or after the heating step and before the thermoplastic resin solidifies.
  • compression method compression by a die or a flat plate press can be exemplified.
  • the laminated body can be shaped into a three-dimensional shape at the same time as the compression.
  • compression by a mold can be exemplified.
  • the applications of the composite molded body of the present invention are not particularly limited, but for automobiles, engine undercovers, motor undercovers (for electric vehicles), body undercovers, deck boards, luggage mats, seat backs, etc.
  • a soundproof cover for a machine that emits noise can be exemplified.
  • the composite molded product of the present invention can be used as a single composite molded product, or the composite molded product can be used by being attached to or attached to a base material made of resin, metal or the like.
  • Example 1 The composite molded body 1 of Example 1 shown in FIG. 1 includes a sound absorbing layer 2 and a reinforcing layer 6 laminated on both surfaces of the sound absorbing layer 2.
  • the sound absorbing layer 2 is composed of a non-woven fabric made of the inorganic fiber 3 and a thermoplastic resin 5 in the layer attached to the inorganic fiber 3.
  • the inorganic fiber 3 is a glass fiber.
  • the non-woven fabric made of the inorganic fiber 3 is derived from a mat-like non-woven fabric having a basis weight of 1000 g / m 2, as will be described later.
  • the thermoplastic resin 5 in the layer is a PP resin that is solidified after the PP resin fibers as the thermoplastic resin fibers 4 are melted.
  • the reinforcing layer 6 is composed of a non-woven fabric made of reinforcing fibers 7 and a polyurea resin 10 impregnated between the reinforcing fibers 7.
  • a glass chopped strand mat (GCSM) is used as the non-woven fabric made of the reinforcing fibers 7.
  • thermoplastic resin 5 in the layer bonds between the inorganic fibers 3 and also bonds the inorganic fibers 3 and the reinforcing fibers 7.
  • This composite molded body 1 can be manufactured by, for example, the following first manufacturing method, second manufacturing method, or third manufacturing method.
  • the non-woven fabric 11 composed of the inorganic fiber 3 for the sound absorbing layer 2 and the thermoplastic resin fiber 4 contains 50 glass fibers and PP fibers by weight.
  • a mat-like non-woven fabric having a grain size of 1000 g / m 2 was used, which was mixed with cotton at a ratio of 50.
  • a small amount (for example, 3 to 10%) of PET fiber may be added to the non-woven fabric 11. Further, the non-woven fabric 11 may be needle punched. As shown in FIGS.
  • a non-woven fabric 12 made of reinforcing fibers 7 for the reinforcing layer 6 is superposed on both surfaces of the non-woven fabric 11, and isocyanate 8 is superposed on the non-woven fabric 12.
  • GCSM non-woven fabric 12
  • isocyanate 8 is superposed on the non-woven fabric 12.
  • FIG. 2D immediately before the next heating step, the non-woven fabric 12 was spray-coated with amine 9 to prepare a laminate 13 as described above.
  • the application of isocyanate 8 and the application of amine 9 are in no particular order or at the same time.
  • thermoplastic resin fiber 4 is heated by sandwiching the laminate 13 with, for example, a flat plate press 20 heated to 200 to 250 ° C., compressing it, and heating it.
  • the molten thermoplastic resin 5 was formed in the layer, and the reaction between the isocyanate 8 and the amine 9 was promoted to produce the polyurea resin 10.
  • the inorganic fibers 3 were bonded together, and the inorganic fibers 3 and the reinforcing fibers 7 were bonded.
  • the laminated body 13 was formed into a three-dimensional shape at the same time as being compressed by the mold 21.
  • the mold 21 was opened and the manufactured composite molded body 1 was taken out.
  • thermoplastic resin fiber 4 is melted by sandwiching the laminate 13 with a mold 22 heated to, for example, 200 to 250 ° C., compressing and heating the laminate 13.
  • a mold 22 heated to, for example, 200 to 250 ° C., compressing and heating the laminate 13.
  • the reaction between the isocyanate 8 and the amine 9 was promoted to produce the polyurea resin 10.
  • the laminated body 13 was shaped into a three-dimensional shape at the same time as compression by the same mold 22.
  • the laminate 13 is heated by the hot air shower 23 to form the thermoplastic resin fiber 4 into the melted thermoplastic resin 5 in the layer, and is combined with the isocyanate 8.
  • the reaction with amine 9 was promoted to produce the polyurea resin 10.
  • the laminate 13 is not compressed.
  • Cooling step As shown in FIG. 3 (j), the laminate 13 is naturally cooled to be solidified by the thermoplastic resin 5 in the layer to bond the inorganic fibers 3 and reinforce the inorganic fibers 3. Combined with the fiber 7.
  • Example 2 In the composite molded body 1 of Example 2 shown in FIG. 4A, the inorganic fibers of the sound absorbing layer 2 and the reinforcing fibers of the reinforcing layer 6 are bonded by the thermoplastic resin 5 in the layer as in Example 1. It differs from Example 1 in that it is also bonded by the film-like interlayer thermoplastic resin 15 provided between the sound absorbing layer 2 and the reinforcing layer 6, and the others are common to Example 1. is there. As shown in FIG. 4B, the production of Example 2 is carried out by sandwiching the thermoplastic resin film 14 between the non-woven fabric 11 and the non-woven fabric 12 in the laminating step.
  • thermoplastic resin film 14 is made into a molten interlayer thermoplastic resin 15, and in the cooling step, the inorganic fiber and the reinforcing fiber are also bonded by the solidified interlayer thermoplastic resin 15.
  • thermoplastic resin film 14 for example, a commercially available hot melt film can be used.
  • Example 3 The composite molded body 1 of Example 3 shown in FIG. 5 (a) is carried out only at the point where the skin 16 is joined to one (or both) reinforcing layers 6 with, for example, the same interlayer thermoplastic resin 15 as in Example 2. It is different from Example 1 and the others are common to Example 1.
  • the skin 16 is not particularly limited, and examples thereof include a polyester fiber non-woven fabric, a mixed non-woven fabric of polyester fiber and PP fiber, and the like.
  • the interlayer thermoplastic resin 15 can be provided by using the thermoplastic resin film 14 as in the second embodiment.
  • Example 4 In the composite molded body 1 of Example 4 shown in FIG. 5 (b), the sound absorbing layer 2 is not derived from the mat-like non-woven fabric as in Example 1, but is made of a mixed cotton of glass fiber and PP fiber and has a grain size of 1000 g / m 2. It differs from Example 1 only in that it is derived from the sheet-like non-woven fabric of No. 1, and is common to Example 1 in other respects.
  • the composite molded bodies 1 of Examples 1 to 4 configured as described above are used as, for example, an automobile engine undercover 31, a body undercover 32, a deck board 33, a seat back 34, and the like. can do.
  • the composite molded body 1 of the present invention is excellent not only in sound absorption and lightness, but also in shape retention, fiber peeling prevention and waterproofness. When used as an engine undercover or body undercover, fiber peeling can be prevented even if a stepping stone hits it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Laminated Bodies (AREA)
  • Body Structure For Vehicles (AREA)
  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)

Abstract

【課題】吸音性と軽量性に優れるだけでなく、さらに形状保持性、繊維剥離防止性及び防水性にも優れる複合成形体1を提供する。 【解決手段】吸音層2と、該吸音層2の両表面又は片表面に積層された補強層6とを含み構成された複合成形体1である。吸音層2は、無機繊維3からなる不織布と該無機繊維3に付着した層中熱可塑性樹脂5とを含む。補強層6は、補強用繊維7からなる不織布と該補強用繊維7間に含浸したポリウレア樹脂10とを含む。層中熱可塑性樹脂5は、無機繊維3間を結合しているとともに、無機繊維3と補強用繊維7とを結合している。

Description

複合成形体及びその製造方法
 本発明は、複合成形体及びその製造方法に関し、例えば自動車ボディアンダーカバーやエンジンアンダーカバーやモーターカバーに取着して使用するのに適した複合成形体に係るものである。
 自動車ボディアンダーカバーやエンジンアンダーカバーは、ボディ下方の気流を制御して空力特性を向上させたり、エンジン音の放出を低減したり、ロードノイズの侵入を低減したりすることを主目的として設けられているが、飛び石の飛散から機器を保護する副次効果も認められる。
 近年、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)、燃料電池自動車(FCV)、電気自動車(EV)等のように、電気モーターのみによる走行を一時的に又は終始行う自動車が増えてきている。電気モーターのみによる走行中は、エンジンによる走行中と比べて静かであるが、その分ロードノイズが気になるとか、高周波ないし低周波のモーター音も気になるという意見がある。
 そこで、自動車ボディアンダーカバーやエンジンアンダーカバー等による防音効果がますます注目されており、これらのアンダーカバーに取着する複合成形体として次の例がある。
・特許文献1には、 繊維補強樹脂製のアンダーカバーの路面側表面に、オレフィン系樹脂等の補強層と不織布層とを積層してなる吸音材を貼着することが開示されている。
・特許文献2には、繊維補強樹脂製の基材層の路面側表面に、成形時の加熱工程で溶融する繊維と溶融しない繊維とを混合した不織布層を圧縮成形により積層することが開示されている。
特許第5114306号公報 特開2012-245925号公報
 特許文献1の吸音材は、オレフィン系樹脂等の補強層が、複合成形体の形状を保持するとともに、不織布層を保護する。しかし、その形状保持性と保護性は十分とはいえず、複合成形体が変形したり、飛び石が当たったときに不織布層の繊維が剥離したりする心配があった。
 特許文献2の不織布層は、溶融する繊維が溶融しない繊維を固着して、不織布層の形状を保持する。しかし、その形状保持性は十分とはいえず、不織布層が変形する心配があった。また、溶融しない繊維を保護するものがないので、飛び石が当たったときに不織布層の繊維が剥離することは避けられなかった。また、不織布層が水を含んで重くなるという問題もあった。
 また、近年、排ガス基準が厳しくなり、強度は維持しつつ軽量化と吸音性の同時向上が求められてきた。そこで、本発明の目的は、吸音性と軽量性に優れるだけでなく、さらに形状保持性、繊維剥離防止性及び防水性にも優れる複合成形体を提供することにある。
<1>複合成形体
 吸音層と、該吸音層の両表面又は片表面に積層された補強層とを含み構成された複合成形体であって、
 吸音層は、無機繊維からなる不織布と該無機繊維に付着した層中熱可塑性樹脂とを含み、
 補強層は、補強用繊維からなる不織布と該補強用繊維間に含浸したポリウレア樹脂とを含み、
 層中熱可塑性樹脂は、無機繊維間を結合しているとともに、無機繊維と補強用繊維とを結合していることを特徴とする複合成形体。
 ここで、無機繊維と補強用繊維とは、吸音層と補強層との間の層間熱可塑性樹脂によっても結合している態様とすることができる。
<2>複合成形体の製造方法
 無機繊維と熱可塑性樹脂繊維とからなる不織布の両表面又は片表面に、補強用繊維からなる不織布を重ねるとともに、補強用繊維からなる不織布にイソシアネートとアミンとを順不同又は同時に塗布してなる積層体を作製する積層ステップと、
 積層体を加熱することにより、熱可塑性樹脂繊維を溶融した層中熱可塑性樹脂にするとともに、イソシアネートとアミンとの反応を促進してポリウレア樹脂を生成させる加熱ステップと、
 積層体を冷却することにより固化した層中熱可塑性樹脂で、無機繊維間を結合するとともに、無機繊維と補強用繊維とを結合する冷却ステップと
を含むことを特徴とする複合成形体の製造方法。
 ここで、積層ステップでは、無機繊維と熱可塑性樹脂繊維とからなる不織布と、補強用繊維からなる不織布との間に、熱可塑性樹脂フィルムを挟み、
 加熱ステップでは、熱可塑性樹脂フィルムを溶融した層間熱可塑性樹脂にし、
 冷却ステップでは、固化した層間熱可塑性樹脂によっても、無機繊維と補強用繊維とを結合する態様とすることができる。
[作用]
 無機繊維からなる不織布と該無機繊維に付着した層中熱可塑性樹脂とを含む吸音層が、優れた吸音性を発揮する。
 補強用繊維からなる不織布と該補強用繊維間に含浸したポリウレア樹脂とを含む補強層が、優れた防水性を発揮する。
 また、吸音層と補強層とが相俟って、優れた軽量性、形状保持性、繊維剥離防止性を発揮する。特に、補強層は、含浸したポリウレア樹脂により高い強度を有しているため、複合成形体の形状を強力に保持するとともに、飛び石が当たったときに、補強層自身の補強用繊維が剥離せず、かつ、吸音層の無機繊維を強力に保護してその剥離を防止する。
 本発明の複合成形体は、吸音性と軽量性に優れるだけでなく、さらに形状保持性、繊維剥離防止性及び防水性にも優れる。
図1は実施例1の複合成形体を示し、(a)は斜視図、(b)は断面図、(c)はIc矢示部の拡大断面図である。 図2は同複合成形体の製造における積層ステップを示し、(a)はIIa矢示部の拡大断面図、(b)~(d)は正面図である。 図3は複合成形体の製造における加熱ステップ~冷却ステップを示し、(a)~(e)は第1製法の正面図、(f)~(h)は第2製法の正面図、(i)(j)は第3製法の正面図である。 図4の(a)は実施例2の複合成形体の断面図、(b)は同複合成形体の積層ステップの正面図である。 図5の(a)は実施例3の複合成形体の断面図、(b)は実施例4の複合成形体の断面図である。 図6は実施例1~4の複合成形体の用途を示す自動車の側面図である。
[1]吸音層について
 無機繊維の材質としては、特に限定されないが、ガラス、セラミック、ロックウール、バサルト、カーボン等を例示でき、一種でもよいし、二種以上の混合でもよいが、低コストで高吸音性という点でガラスのみ又はガラスを主体(最多成分)とするものが好ましい。
 熱可塑性樹脂繊維の材質としては、特に限定されないが、ポリプロピレン(PP)、ポリエステル(ポリエチレンテレフタレート(PET)等)、ポリエチレン(PE)、ポリアミド(PA)等を例示でき、一種でもよいし、二種以上の混合でもよい。
 吸音層は、熱可塑性樹脂繊維がすべて溶融して層中熱可塑性樹脂となった態様でもよいし、一種又は一部の熱可塑性樹脂繊維が溶融して層中熱可塑性樹脂となり、他種又は残部の熱可塑性樹脂繊維が溶融せずに繊維状を維持している態様でもよい。
 無機繊維と熱可塑性樹脂繊維との混合重量比率(加熱前)は、特に限定されないが、10:90~90:10が好ましく、30:70~70:30がより好ましい。
 無機繊維と熱可塑性樹脂繊維とからなる不織布の目付は、特に限定されないが、300~3000g/m2 が好ましく、500~2000g/m2 がより好ましい。
[2]補強層について
 補強用繊維の材質としては、特に限定されないが、無機繊維、有機繊維等を例示でき、一種でもよいし、二種以上の混合でもよい。。
 無機繊維としては、ガラス、セラミック、ロックウール、バサルト、カーボン、金属繊維等を例示できるが、低コストで高吸音性という点でガラスのみ又はガラスを主体(最多成分)とするものが好ましい。
 有機繊維としては、PP、ポリエステル(PET等)、PA、ポリカーボネート(PC)、アクリル、有機天然繊維等を例示できるが、加熱時に上記吸音層用の熱可塑性樹脂繊維が溶融しても、補強層用の有機繊維は溶融しないよう、有機繊維は熱可塑性樹脂繊維よりも融点の高いものが好ましい。
 補強用繊維からなる不織布(含浸前)の目付は、特に限定されないが、100~500g/m2 が好ましく、200~400g/m2 がより好ましい。
 イソシアネートの塗布量は、特に限定されないが、補強用繊維からなる不織布の目付が100~500g/m2であるとき、イソシアネートの塗布量は10~50g/m2が好ましい。
 アミンの塗布量は、[イソシアネートのNCO基]/[アミンのNH2 基]のモル比が約1(好ましくは0.9~1.1)となる塗布量とすることが好ましい。
[4]加熱等
 加熱ステップにおける積層体の加熱の方法は、特に限定されないが、熱した物体(金型、平板プレス等)を当てることによる加熱、熱風による加熱、恒温槽内における加熱等を例示できる。
 また、加熱ステップにおいて又は加熱ステップの後であって熱可塑性樹脂が固化する前において、積層体を積層方向に圧縮することができる。圧縮の方法としては、金型や平板プレスによる圧縮を例示できる。
 さらに、前記積層体を前記圧縮と同時に三次元形状に賦形することができる。賦形の方法としては、金型による圧縮を例示できる。
[5]用途
 本発明の複合成形体の用途は、特に限定されないが、自動車用としては、エンジンアンダーカバー、(電気自動車の)モーターアンダーカバー、ボディアンダーカバー、デッキボード、ラゲッジマット、シートバック等を例示でき、その他の機械用としては、騒音を発する機械の防音カバー等を例示できる。
 また、本発明の複合成形体は、複合成形体単体で用いることができ、また、複合成形体を樹脂、金属等からなる基材に添わせたり貼り付けたりして用いることもできる。
 以下、本発明を具体化した実施例について、図面を参照して説明する。なお、実施例で記す材料、構造、数値は例示であって、発明の趣旨から逸脱しない範囲で適宜変更できる。
[実施例1]
 図1に示す実施例1の複合成形体1は、吸音層2と、該吸音層2の両表面に積層された補強層6とを含み構成されている。
 吸音層2は、無機繊維3からなる不織布と該無機繊維3に付着した層中熱可塑性樹脂5とから構成されている。無機繊維3はガラス繊維である。無機繊維3からなる不織布は、後述するように目付1000g/m2 のマット状の不織布由来である。層中熱可塑性樹脂5は、後述するように、熱可塑性樹脂繊維4としてのPP樹脂繊維が溶融してから固化したPP樹脂である。
 補強層6は、補強用繊維7からなる不織布と該補強用繊維7間に含浸したポリウレア樹脂10とから構成されている。補強用繊維7からなる不織布としては、ガラスチョップドストランドマット(GCSM)が用いられている。
 層中熱可塑性樹脂5は、無機繊維3間を結合しているとともに、無機繊維3と補強用繊維7とを結合している。
 この複合成形体1は、例えば次のような第1製法、第2製法又は第3製法で、製造することができる。
1.第1製法
(1)積層ステップ
 図2(a)に示すように、吸音層2用の無機繊維3と熱可塑性樹脂繊維4とからなる不織布11として、ガラス繊維とPP繊維とが重量比で50:50で混綿されてなる、目付1000g/m2 のマット状の不織布を用いた。なお、この不織布11に、例えばPET繊維を少量(例えば3~10%)入れてもよい。また、この不織布11は、ニードルパンチ加工してもよい。
 図2(b)(c)に示すように、この不織布11の両表面に、補強層6用の補強用繊維7からなる不織布12(上記のとおりGCSM)を重ねるとともに、該不織布12にイソシアネート8をローラー塗布した。重ねと塗布は順不同である。
 図2(d)に示すように、次の加熱ステップの直前に、不織布12にアミン9をスプレー塗布し、以上により積層体13を作製した。イソシアネート8の塗布とアミン9の塗布は順不同又は同時である。
(2)加熱ステップ
 図3(a)(b)に示すように、積層体13を、例えば200~250℃に加熱した平板プレス20により挟み圧縮して加熱することにより、熱可塑性樹脂繊維4を溶融した層中熱可塑性樹脂5にするとともに、イソシアネート8とアミン9との反応を促進してポリウレア樹脂10を生成させた。
(3)冷却ステップ
 図3(c)(d)に示すように、積層体13を、例えば60℃以下に冷却した金型21により挟み圧縮して冷却することにより、固化した層中熱可塑性樹脂5で、無機繊維3間を結合するとともに、無機繊維3と補強用繊維7とを結合した。なお、この冷却の初期においては、ポリウレア樹脂10は上記反応の途中であって半硬化状態のため、積層体13は金型21により圧縮と同時に三次元形状に賦形された。
 図3(e)に示すように、金型21を開いて、製造された複合成形体1を取り出した。
2.第2製法
(1)積層ステップ
 積層ステップは第1製法と共通である。
(2)加熱ステップ
 図3(f)に示すように、積層体13を、例えば200~250℃に加熱した金型22により挟み圧縮して加熱することにより、熱可塑性樹脂繊維4を溶融した層中熱可塑性樹脂5にするとともに、イソシアネート8とアミン9との反応を促進してポリウレア樹脂10を生成させた。積層体13は、同金型22により圧縮と同時に三次元形状に賦形された。
(3)冷却ステップ
 図3(g)に示すように、積層体13を、例えば60℃以下に温度低下させた同金型22に保持して冷却することにより、固化した層中熱可塑性樹脂5で、無機繊維3間を結合するとともに、無機繊維3と補強用繊維7とを結合した。
 図3(h)に示すように、金型を開いて、製造された複合成形体1を取り出した。
3.第3製法
(1)積層ステップ
 積層ステップは第1製法と共通である。
(2)加熱ステップ
 図3(i)に示すように、積層体13を、熱風シャワー23により加熱することにより、熱可塑性樹脂繊維4を溶融した層中熱可塑性樹脂5にするとともに、イソシアネート8とアミン9との反応を促進してポリウレア樹脂10を生成させた。積層体13は圧縮しない。
(3)冷却ステップ
 図3(j)に示すように、積層体13を、自然冷却することにより、固化した層中熱可塑性樹脂5で、無機繊維3間を結合するとともに、無機繊維3と補強用繊維7とを結合した。
[実施例2]
 図4(a)に示す実施例2の複合成形体1は、吸音層2の無機繊維と補強層6の補強用繊維とが(実施例1のように層中熱可塑性樹脂5により結合しているのに加え)吸音層2と補強層6との間に設けられた膜状の層間熱可塑性樹脂15によっても結合している点において実施例1と相違し、その他は実施例1と共通である。
 実施例2の製造は、図4(b)に示すように、積層ステップにおいて、不織布11と不織布12との間に熱可塑性樹脂フィルム14を挟んで行う。そして、加熱ステップでは、熱可塑性樹脂フィルム14を溶融した層間熱可塑性樹脂15にし、冷却ステップでは、固化した層間熱可塑性樹脂15によっても、無機繊維と補強用繊維とを結合する。熱可塑性樹脂フィルム14としては、例えば市販のホットメルトフィルムを使用することができる。
[実施例3]
 図5(a)に示す実施例3の複合成形体1は、一方(又は両方の)補強層6に、表皮16を例えば実施例2と同様の層間熱可塑性樹脂15により接合した点においてのみ実施例1と相違し、その他は実施例1と共通である。表皮16としては、特に限定されないが、ポリエステル繊維不織布、ポリエステル繊維とPP繊維の混合不織布等を例示できる。層間熱可塑性樹脂15は、実施例2と同様に熱可塑性樹脂フィルム14を使用して設けることができる。
[実施例4]
 図5(b)に示す実施例4の複合成形体1は、吸音層2が、実施例1のようなマット状の不織布由来ではなく、ガラス繊維とPP繊維との混綿で目付1000g/m2 のシート状の不織布由来である点においてのみ実施例1と相違し、その他は実施例1と共通である。
 以上のように構成された実施例1~4の複合成形体1は、例えば、図6に示すように、自動車のエンジンアンダーカバー31、ボディアンダーカバー32、デッキボード33、シートバック34等として使用することができる。
 本発明の複合成形体1は、吸音性と軽量性に優れるだけでなく、さらに形状保持性、繊維剥離防止性及び防水性にも優れる。エンジンアンダーカバー、ボディアンダーカバーとして使用した場合、飛び石が当たっても繊維の剥離を防止できる。
  1  複合成形体
  2  吸音層
  3  無機繊維
  4  熱可塑性樹脂繊維
  5  層中熱可塑性樹脂
  6  補強層
  7  補強用繊維
  8  イソシアネート
  9  アミン
 10  ポリウレア樹脂
 11  不織布
 12  不織布
 13  積層体
 14  熱可塑性樹脂フィルム
 15  層間熱可塑性樹脂
 16  表皮
 20  平板プレス
 21  金型
 21  同金型
 22  金型
 22  同金型
 23  熱風シャワー
 31  エンジンアンダーカバー
 32  ボディアンダーカバー
 33  デッキボード
 34  シートバック

Claims (6)

  1.  吸音層(2)と、該吸音層(2)の両表面又は片表面に積層された補強層(6)とを含み構成された複合成形体(1)であって、
     吸音層(2)は、無機繊維(3)からなる不織布と該無機繊維(3)に付着した層中熱可塑性樹脂(5)とを含み、
     補強層(6)は、補強用繊維(7)からなる不織布と該補強用繊維(7)間に含浸したポリウレア樹脂(10)とを含み、
     層中熱可塑性樹脂(5)は、無機繊維(3)間を結合しているとともに、無機繊維(3)と補強用繊維(7)とを結合していることを特徴とする複合成形体。
  2.  無機繊維(3)と補強用繊維(7)とは、吸音層(2)と補強層(6)との間の層間熱可塑性樹脂(15)によっても結合している請求項1記載の複合成形体。
  3.  無機繊維(3)と熱可塑性樹脂繊維(4)とからなる不織布(11)の両表面又は片表面に、補強用繊維(7)からなる不織布(12)を重ねるとともに、補強用繊維(7)からなる不織布(12)にイソシアネート(8)とアミン(9)とを順不同又は同時に塗布してなる積層体(13)を作製する積層ステップと、
     積層体(13)を加熱することにより、熱可塑性樹脂繊維(4)を溶融した層中熱可塑性樹脂(5)にするとともに、イソシアネート(8)とアミン(9)との反応を促進してポリウレア樹脂(10)を生成させる加熱ステップと、
     積層体(13)を冷却することにより固化した層中熱可塑性樹脂(5)によって、無機繊維(3)間を結合するとともに、無機繊維(3)と補強用繊維(7)とを結合する冷却ステップとを含むことを特徴とする複合成形体の製造方法。
  4.  積層ステップでは、無機繊維(3)と熱可塑性樹脂繊維(4)とからなる不織布(11)と、補強用繊維(7)からなる不織布(12)との間に、熱可塑性樹脂フィルム(14)を挟み、
     加熱ステップでは、熱可塑性樹脂フィルム(14)を溶融した層間熱可塑性樹脂(15)にし、
     冷却ステップでは、固化した層間熱可塑性樹脂(15)によっても、無機繊維(3)と補強用繊維(7)とを結合する請求項3記載の複合成形体の製造方法。
  5.  加熱ステップにおいて又は加熱ステップの後であって層中熱可塑性樹脂(5)が固化する前において、積層体(13)を積層方向に圧縮する請求項3又は4記載の複合成形体の製造方法。
  6.  積層体(13)を圧縮と同時に三次元形状に賦形する請求項5記載の複合成形体の製造方法。
PCT/JP2020/015017 2019-09-17 2020-04-01 複合成形体及びその製造方法 WO2021053864A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-168354 2019-09-17
JP2019168354A JP7228242B2 (ja) 2019-09-17 2019-09-17 複合成形体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021053864A1 true WO2021053864A1 (ja) 2021-03-25

Family

ID=74877324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015017 WO2021053864A1 (ja) 2019-09-17 2020-04-01 複合成形体及びその製造方法

Country Status (2)

Country Link
JP (1) JP7228242B2 (ja)
WO (1) WO2021053864A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128398A1 (fr) * 2021-10-21 2023-04-28 Hexcel Reinforcements Matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et procédés associés

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509004A (ja) * 2013-12-19 2017-03-30 ヒョンダイ モーター カンパニー 耐熱性及び成形性が改善された吸遮音材及びその製造方法
JP2017071204A (ja) * 2015-10-10 2017-04-13 日本グラスファイバー工業株式会社 印刷成形品及びその製造方法
WO2017088532A1 (zh) * 2015-11-23 2017-06-01 福建赛特新材股份有限公司 一种真空绝热板使用的芯材及真空绝热板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017509004A (ja) * 2013-12-19 2017-03-30 ヒョンダイ モーター カンパニー 耐熱性及び成形性が改善された吸遮音材及びその製造方法
JP2017071204A (ja) * 2015-10-10 2017-04-13 日本グラスファイバー工業株式会社 印刷成形品及びその製造方法
WO2017088532A1 (zh) * 2015-11-23 2017-06-01 福建赛特新材股份有限公司 一种真空绝热板使用的芯材及真空绝热板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128398A1 (fr) * 2021-10-21 2023-04-28 Hexcel Reinforcements Matériau de renfort comprenant une couche poreuse en un polymère thermoplastique réactif et procédés associés

Also Published As

Publication number Publication date
JP2021045856A (ja) 2021-03-25
JP7228242B2 (ja) 2023-02-24

Similar Documents

Publication Publication Date Title
JP2851244B2 (ja) 多層積層体および多層積層体パネルを製造する方法
US6702914B2 (en) Method for fabricating non-fiberglass sound absorbing moldable thermoplastic structure
WO2012164977A1 (ja) 自動車用ボディーアンダーカバー
JP2004501803A (ja) 多層多密度複合インシュレータの製造方法
JP2004502107A (ja) 防音兼用断熱材
US20040235376A1 (en) Vehicle interior trim component containing carbon fibers and method of manufacturing the same
KR100862308B1 (ko) 다층구조의 자동차용 천정재
JP2011502065A (ja) 成形された車両用防音パネルおよびその製造方法
US20040121691A1 (en) Multifunctional insulation article
KR101866287B1 (ko) 차량용 언더플로워 및 그의 제조방법
US20040234744A1 (en) Vehicle interior trim component of basalt fibers and thermoplastic binder and method of manufacturing the same
KR101756303B1 (ko) 차량용 언더커버 및 그의 제조방법
US11479305B2 (en) Modular structural composites for automotive applications
JP2009096401A (ja) 自動車用ボディーアンダーカバー
WO2021053864A1 (ja) 複合成形体及びその製造方法
JP6859069B2 (ja) 車両用アンダーカバーの製造方法
CN113382848A (zh) 复合层叠树脂及纤维玻璃结构
KR101901257B1 (ko) 차량의 엔진용 커버 및 그 제조방법
CN112585037B (zh) 交通工具用内外饰件及其制造方法和制造其的冲压模具
US20040235377A1 (en) Vehicle interior trim component of basalt fibers and polypropylene binder and method of manufacturing the same
KR20190037024A (ko) 타공필름과 합성수지 파우더를 갖는 다층구조의 차량용 내장재 및 그 제조방법
JP6788341B2 (ja) 車両外装用纎維部品及びその製造方法
JP2002046545A (ja) 車両用成形天井材及びその製造方法
JP4167505B2 (ja) 多密度構成のフェルト吸音材
KR20190027521A (ko) 차량용 플로워 카페트 언더패드 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20866033

Country of ref document: EP

Kind code of ref document: A1