WO2021051634A1 - 电阻式触控屏和柔性显示装置 - Google Patents

电阻式触控屏和柔性显示装置 Download PDF

Info

Publication number
WO2021051634A1
WO2021051634A1 PCT/CN2019/119400 CN2019119400W WO2021051634A1 WO 2021051634 A1 WO2021051634 A1 WO 2021051634A1 CN 2019119400 W CN2019119400 W CN 2019119400W WO 2021051634 A1 WO2021051634 A1 WO 2021051634A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
resistive touch
conductive layer
flexible display
conductive layers
Prior art date
Application number
PCT/CN2019/119400
Other languages
English (en)
French (fr)
Inventor
黎怡
戴其兵
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/651,486 priority Critical patent/US20210405785A1/en
Publication of WO2021051634A1 publication Critical patent/WO2021051634A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/40OLEDs integrated with touch screens
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the invention relates to the field of panel touch display technology, in particular to a resistive touch screen and a flexible display device.
  • the capacitive touch screen determines the position of the touch point by detecting the capacitance of the sensor to the ground or the capacitance change between the sensor and the sensor when the finger touches the screen. It has the advantages of flexible maneuverability and multi-touch.
  • the screen surface is covered by a flexible cover film.
  • the cover film surface will be deformed, and the fingertips are caused by the different pressing force of the fingers.
  • the distance to the screen surface is not constant.
  • the capacitance of the sensor to the ground or the change in capacitance between the sensor and the sensor is not fixed within a range, which will result in a capacitive touch panel.
  • the accuracy of the touch control is reduced, which affects the performance of the dynamic folding screen.
  • the present invention replaces the capacitive touch screen commonly used in the market with a resistive touch screen and applies it to a flexible display device, and replaces the glass on the touch surface of the traditional resistive touch screen with a flexible
  • the cover film meets the flexibility requirements of the flexible display device.
  • the surface of the cover film is pressed by a finger or a stylus, the deformation of the cover film surface just provides the source of the deformation of the conductive layer in the resistive touch screen Therefore, the position of the touch point can be accurately detected.
  • the resistive touch screen is less affected by the external environment and has high stability.
  • a resistive touch screen including:
  • a first conductive layer the first conductive layer being disposed on the substrate
  • a plurality of isolation points, the isolation points are disposed on the first conductive layer
  • the film set includes a cover film and a second conductive layer disposed under the cover film, and each of the second conductive layers is disposed on the same plane;
  • the material of the second conductive layer is silver nanowire or carbon nanotube.
  • the material of the first conductive layer is silver nanowire or carbon nanotube.
  • the material of the plurality of isolation points is an insulating and transparent resin material.
  • one end of the first conductive layer is connected to an electrode for inputting voltage.
  • the other end of the first conductive layer is connected to an electrode for grounding.
  • one end of the second conductive layer is connected to an electrode for inputting voltage.
  • the other end of the second conductive layer is connected to an electrode for grounding.
  • the material of the cover film is polyimide.
  • the number of the second conductive layer is multiple.
  • the plurality of second conductive layers are arranged in parallel under the cover film with the same spacing distance from each other.
  • the plurality of second conductive layers are patterned into long strips.
  • one end of each of the plurality of second conductive layers is connected to a metal wire for inputting voltage.
  • the input voltages corresponding to each of the plurality of second conductive layers are different.
  • the other end of each of the plurality of second conductive layers is connected to an electrode for grounding.
  • one end of the first conductive layer is connected to an electrical level for inputting voltage.
  • the other end of the first conductive layer is connected to an electrical level for grounding.
  • the present invention also provides a flexible display device, including:
  • a polarizer is disposed on the organic light emitting diode device.
  • the resistive touch screen is disposed on the polarizer.
  • the organic light-emitting secondary device further includes a substrate and an anode, a hole transport layer, a light-emitting layer, an electron transport layer, and a cathode sequentially disposed on the substrate.
  • the polarizer and the organic light emitting diode device are bonded by optical glue.
  • an optical glue is used for bonding between the polarizer and the resistive touch screen.
  • the flexible display device provided by the present invention adopts a resistive touch screen. Compared with a flexible display device using a capacitive touch screen, the touch accuracy is more accurate. In addition, it is different from the traditional resistive touch screen.
  • the touch surface of the resistive touch screen is a flexible cover film, and the conductive layer of the resistive touch screen is made of indium tin oxide (indium tin oxide).
  • ITO indium tin oxide
  • the conductive layer of the resistive touch screen of the present invention can be made into a long strip structure, which realizes a flexible display device with multi-touch function, high touch accuracy and long life.
  • FIG. 1 is a schematic diagram of the structure of the resistive touch screen provided by the first embodiment of the present invention.
  • FIG 2 is a top view of the first conductive layer and the second conductive layer of the resistive touch screen provided by the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a flexible display device provided by a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an organic light emitting diode device of a flexible display device provided by a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another resistive touch screen provided by the third embodiment of the present invention.
  • FIG. 6 is a bottom view of the diaphragm assembly of the resistive touch screen provided by the third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another flexible display device provided by the fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an organic light-emitting diode device of a flexible display device provided by a fourth embodiment of the present invention.
  • the present invention addresses the technical problem of insufficient touch accuracy of flexible display devices using capacitive touch screens.
  • the following embodiments improve the materials and structures of traditional resistive touch screens, and then apply them to flexible displays.
  • the device not only solves the above technical problems, but also realizes a flexible display device with multi-touch function, high touch accuracy and long life.
  • this embodiment provides a resistive touch screen, including:
  • the touch surface of the resistive touch screen is the flexible cover film 105
  • the material of the cover film 105 may be a transparent material such as polyimide
  • the plurality of isolation points 103 The material of may be an insulating and transparent resin material
  • the materials 104 of the first conductive layer 102 and the second conductive layer are both silver nanowires or carbon nanotubes.
  • Indium tin oxide indium tin oxide
  • ITO tin oxide
  • silver nanowires and carbon nanotubes have better bending performance and are more suitable for applications in devices that are frequently bent. Therefore, the resistive touch provided by this embodiment The screen has excellent bending performance.
  • the two ends of the first conductive layer 102 in the first direction are respectively connected to two electrodes 1021, one of which is applied with a reference voltage, and the other is The electrode 1021 is grounded, and the two ends of the second conductive layer 104 in the second direction are respectively connected to the other two electrodes 1041.
  • One of the electrodes 1041 is applied with a reference voltage, and the other electrode 1041 is grounded.
  • An electric field is formed between the first conductive layer 102 and the second conductive layer 104, and the first direction and the second direction are perpendicular to each other.
  • the second conductive layer 104 When a finger or a stylus presses the touch film 105 to deform the touch film 105, the second conductive layer 104 also deforms and contacts the first conductive layer 102. At this time, The resistance of the second conductive layer 104 and the first conductive layer 102 changes. When the control screen detects that the resistance changes, it can calculate that the touch point is between the first conductive layer 102 and the first conductive layer 102. The coordinates of the second conductive layer 104 in the first direction and the second direction respectively are used to accurately calculate the position of the touch point on the cover film 105.
  • this embodiment also provides a flexible display device, including: an organic light-emitting secondary device 201; a polarizer 203, the polarizer 203 is disposed on the organic light-emitting two On the level body device 201; and a resistive touch screen as provided in the first embodiment, the resistive touch screen is disposed on the polarizer 203.
  • the organic light-emitting secondary device 201 may also include a substrate 2011, an anode 2012, a hole transport layer 2013, a light emitting layer 2014, and an electron transport layer arranged in sequence.
  • the layer 2015 and the cathode 2016, the organic light-emitting diode device 201 and the polarizer 203 are bonded with optical glue 202, and the optical adhesive is also used between the polarizer 203 and the resistive touch screen.
  • Adhesive 202 specifically, the polarizer 203 and the substrate 101 of the resistive touch screen are adhered using the optical adhesive 202.
  • the structure of the resistive touch screen is the same as that of the first embodiment.
  • the provided resistive touch screen is the same, so I won’t describe it here.
  • the flexible display device provided in this embodiment uses the resistive touch screen with excellent bending performance provided in the first embodiment, so the flexible display device also has excellent performance.
  • the bending performance of the flexible display device has been improved.
  • the touch surface of the resistive touch screen is the flexible cover film 105, it meets the flexibility requirements of the flexible display device of this embodiment.
  • the deformation of the surface of the cover film 105 just provides the source of the deformation of the second conductive layer 104 in the resistive touch screen.
  • the first conductive layer 102 Two electrodes 1021 are respectively connected to the two ends in the first direction.
  • One of the electrodes 1021 is applied with a reference voltage, the other electrode 1021 is grounded, and the second conductive layer 104 has two electrodes in the second direction.
  • the terminals are respectively connected to the other two electrodes 1041, one of the electrodes 1041 is applied with a reference voltage, and the other electrode 1041 is grounded, so that an electric field is formed between the first conductive layer 102 and the second conductive layer 104 ,
  • the first direction and the second direction are perpendicular to each other.
  • the control screen When the control screen detects that the resistance changes, it can calculate that the touch point is between the first conductive layer 102 and the first conductive layer 102.
  • the coordinates of the second conductive layer 104 in the first direction and the second direction respectively are used to accurately calculate the position of the touch point on the cover film 105.
  • the flexible display device provided by this embodiment has high touch accuracy and long life.
  • the present invention also provides another resistive touch screen, including: a substrate 301; a first conductive layer 302, the first conductive layer 302 is disposed on the On the substrate 301; a plurality of isolation points 303, the isolation points 303 are arranged on the first conductive layer 302 and form an array; and a diaphragm group 304, the diaphragm group 304 also includes a cover film 3042 and a plurality of second conductive layers 3041 disposed under the cover film 3042, and the plurality of second conductive layers 3041 are all disposed on the same plane.
  • the material of the plurality of second conductive layers 3041 is silver nanowire or carbon nanotube.
  • the material of the first conductive layer 302 is silver nanowire or carbon nanotube.
  • the touch surface of the resistive touch screen is the flexible cover film 3042
  • the material of the cover film 3042 may be a transparent material such as polyimide
  • the plurality of isolation points 303 The material of may be an insulating and transparent resin material
  • the materials of the first conductive layer 302 and the plurality of second conductive layers 3041 are both silver nanowires or carbon nanotubes.
  • indium tin oxide indium tin oxide
  • ITO indium tin oxide
  • silver nanowires and carbon nanotubes have better bending performance and are more suitable for applications in devices that are frequently bent. Therefore, the resistive touch screen provided by this embodiment Has excellent bending performance.
  • the plurality of second conductive layers 3041 are made of silver nanowires or carbon nanotubes with high bending performance, the plurality of second conductive layers 3041 can be patterned into The long strip structure shown in Figure 6.
  • Each of the plurality of second conductive layers 3041 is arranged in parallel under the cover film 3042 with the same spacing distance from each other, and each of the plurality of second conductive layers 3041 is arranged on the same plane, and each of the plurality of second conductive layers 3041 is arranged on the same plane.
  • One end of the plurality of second conductive layers 3041 is respectively connected to a metal wire 3043 for inputting voltage, and the input voltage corresponding to each of the plurality of second conductive layers 3041 is different, and each of the plurality of second conductive layers 3041 is different.
  • the other end of the second conductive layer 3041 is connected to an electrode 3044 for grounding.
  • the two ends of the first conductive layer 302 are respectively connected to the other two electrodes in a direction perpendicular to the direction in which the plurality of second conductive layers 3041 extend, and a reference voltage is applied to one of the electrodes, and the other electrode is grounded As shown in FIGS.
  • the present invention also provides another flexible display device, including: an organic light emitting diode device 401; a polarizer 403, the polarizer 403 is disposed on the organic light emitting diode On the level body device 401; and a resistive touch screen as provided in the third embodiment, the resistive touch screen is disposed on the polarizer 403.
  • the organic light-emitting secondary device 401 may also include a substrate 4011, an anode 4012, a hole transport layer 4013, a light emitting layer 4014, and an electron transport layer arranged in sequence.
  • Layer 4015 and cathode 4016, the organic light-emitting diode device 401 and the polarizer 403 are bonded with optical glue 402, and the optical glue is also used between the polarizer 403 and the resistive touch screen.
  • the polarizer 403 is bonded to the substrate 301 of the resistive touch screen using the optical glue 402.
  • the structure of the resistive touch screen is the same as that of the third embodiment.
  • the provided resistive touch screen is the same, so I won’t describe it here.
  • the flexible display device provided in this embodiment uses the resistive touch screen with excellent bending performance provided in the third embodiment, the flexible display device also has excellent bending performance. The life of the flexible display device has been improved.
  • the touch surface of the resistive touch screen is the flexible cover film 3042, it meets the flexibility requirements of the flexible display device of this embodiment. As shown in FIG. 6, when a finger or a stylus presses the When covering the surface of the film 3042, the deformation of the surface of the cover film 3042 just provides the source of the deformation of the plurality of second conductive layers 3041 in the resistive touch screen, so that the position of the touch point can be accurately detected.
  • the plurality of second conductive layers 3041 are made of silver nanowires or carbon nanotubes with high bending properties, the plurality of second conductive layers 3041 can be patterned as shown in the figure. 6 shows the long strip structure.
  • Each of the plurality of second conductive layers 3041 is arranged in parallel under the cover film 3042 with the same spacing distance from each other, and each of the plurality of second conductive layers 3041 is arranged on the same plane, and each of the plurality of second conductive layers 3041 is arranged on the same plane.
  • One end of the plurality of second conductive layers 3041 is respectively connected to a metal wire 3043 for inputting voltage, and the input voltage corresponding to each of the plurality of second conductive layers 3041 is different, and each of the plurality of second conductive layers 3041 is different.
  • the other end of the second conductive layer 3041 is connected to an electrode 3044 for grounding.
  • the two ends of the first conductive layer 302 are respectively connected to the other two electrodes in a direction perpendicular to the direction in which the plurality of second conductive layers 3041 extend, and a reference voltage is applied to one of the electrodes, and the other electrode is grounded . As shown in FIGS.
  • the above embodiments use a resistive touch screen to replace the capacitive touch screen and apply it in a flexible display device, and improve the material and structure of the resistive touch screen, which not only solves the traditional use of capacitive touch screens
  • the problem of insufficient touch accuracy of the flexible display device also realizes a flexible display device with high touch accuracy, multi-touch function and long life.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电阻式触控屏和一种柔性显示装置,所述电阻式触控屏取代电容式触控屏并应用在柔性显示装置中,并对所述电阻式触控屏的材料以及结构进行改进,不仅解决了传统使用电容式触控屏的柔性显示装置触控准确率不足的问题,还实现了同时具有高触控准确率、多点触控功能以及长寿命的柔性显示装置。

Description

电阻式触控屏和柔性显示装置 技术领域
本发明涉及面板触控显示领域技术,尤其涉及一种电阻式触控屏和一种柔性显示装置。
背景技术
目前大部分面板厂商在屏幕的触控面板都会选用电容式触控屏。电容式触控屏通过探测手指触摸屏幕时感应器对地的电容或者感应器与感应器之间电容的变化来确定触控点的位置,它有着灵活的操控性和多点触控等优点。
技术问题
然而,在动态折叠的柔性显示触控屏中,屏幕表面由柔性的覆盖膜所覆盖,当手指触摸屏幕表面时,所述覆盖膜表面会发生形变,且由于手指按压的力道不同,导致指尖到屏幕表面的距离不是恒定的,如此一来,手指触摸屏幕时感应器对地的电容或者感应器与感应器之间电容的变化量不是固定在一个范围内的,会导致电容式触控面板的触控准确率降低,影响动态折叠屏幕的性能。
技术解决方案
鉴于现有技术的不足,本发明将电阻式触控屏取代市场上常用的电容式触控屏并应用到柔性显示装置上,并将传统电阻式触控屏触控面的玻璃替换为柔性的覆盖膜,满足了柔性显示装置的柔性需求,当手指或触控笔按压所述覆盖膜表面时,所述覆盖膜表面的形变恰好提供了所述电阻式触控屏中的导电层的形变来源,从而能够准确探测触控点的位置,此外,电阻式触控屏受外在环境的影响较小,稳定性高。
为了解决上述问题,本发明提供一种电阻式触控屏,包括:
基底;
第一导电层,所述第一导电层设置于所述基底之上;
多个隔离点,所述隔离点设置于所述第一导电层之上;以及
膜片组,所述膜片组设置于所述多个隔离点之上;
其中,所述膜片组包括覆盖膜和设置在所述覆盖膜之下的第二导电层,每个所述第二导电层均设置在同一个平面;
其中,所述第二导电层的材料为奈米银线或奈米碳管。
根据本发明的一个实施例,所述第一导电层的材料为奈米银线或奈米碳管。
根据本发明的一个实施例,所述多个隔离点的材料为绝缘且透明的树酯材料。
根据本发明的一个实施例,在第一方向上,所述第一导电层的一端与用以输入电压的电极相连。
根据本发明的一个实施例,在所述第一方向上,所述第一导电层的另一端与用以接地的电极相连。
根据本发明的一个实施例,在与所述第一方向垂直的第二方向上,所述第二导电层的一端与用以输入电压的电极相连。
根据本发明的一个实施例,在所述第二方向上,所述第二导电层的另一端与用以接地的电极相连。
根据本发明的一个实施例,所述覆盖膜的材料为聚酰亚胺。
根据本发明的一个实施例,所述第二导电层的数量为多个。
根据本发明的一个实施例,所述多个第二导电层彼此以相同的间隔距离平行排列在所述覆盖膜之下。
根据本发明的一个实施例,所述多个第二导电层被图案化成长条状。
根据本发明的一个实施例,每个所述多个第二导电层的一末端与用以输入电压的金属线相连。
根据本发明的一个实施例,每个所述多个第二导电层所对应的输入电压不相同。
根据本发明的一个实施例,每个所述多个第二导电层的另一末端与用以接地的电极相连。
根据本发明的一个实施例,在与所述多个第二导电层延伸的方向垂直的方向上,所述第一导电层的一端与用以输入电压的电级相连。
根据本发明的一个实施例,在与所述多个第二导电层延伸的方向垂直的方向上,所述第一导电层的另一端与用以接地的电级相连。
为了解决上述问题,本发明还提供一种柔性显示装置,包括:
有机发光二级体器件;
偏光片,所述偏光片设置于所述有机发光二级体器件之上;以及
如上述的电阻式触控屏,所述电阻式触控屏设置于所述偏光片之上。
根据本发明的一个实施例,所述有机发光二级体器件还包括衬底和依次设置在所述衬底上的阳极、空穴传输层、发光层、电子传输层和阴极。
根据本发明的一个实施例,所述偏光片和所述有机发光二级体器件之间使用光学胶粘合。
根据本发明的一个实施例,所述偏光片和电阻式触控屏之间使用光学胶粘合。
有益效果
本发明所提供的柔性显示装置采用电阻式触控屏,相较于应用电容式触控屏的柔性显示装置,触控准确率更加精确,此外,有别于传统电阻式触控屏,在本发明中,所述电阻式触控屏的触控面是柔性的覆盖膜,所述电阻式触控屏的导电层的材料由氧化铟锡(indium tin oxide, ITO)改为弯折性能更好的奈米银线和奈米碳管,有效提升应用本发明的电阻式触控屏的柔性显示装置的寿命,更进一步地,由于弯折性能增加的关系,本发明的电阻式触控屏的导电层能被制作成长条结构,实现了同时具有多点触控功能,高触控准确率和长寿命的柔性显示装置。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例所提供的电阻式触控屏的结构示意图。
图2为本发明第一实施例所提供的电阻式触控屏的第一导电层和第二导电层的俯视图。
图3为本发明第二实施例所提供的柔性显示装置的结构示意图。
图4为本发明第二实施例所提供的柔性显示装置的有机发光二级体器件的结构示意图。
图5为本发明第三实施例所提供的另一种电阻式触控屏的结构示意图。
图6为本发明第三实施例所提供的电阻式触控屏的膜片组的仰视图。
图7为本发明第四实施例所提供的另一种柔性显示装置的结构示意图。
图8为本发明第四实施例所提供的柔性显示装置的有机发光二级体器件的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有应用电容式触控屏的柔性显示装置触控准确率不足的技术问题进行改善,以下实施例对传统电阻式触控屏的材料和结构加以改善,再将其应用到柔性显示装置,不仅解决了上述技术问题,同时还实现了具有多点触控功能,高触控准确率和长寿命的柔性显示装置。
第一实施例
如图1所示,为了解决上述问题,本实施例提供一种电阻式触控屏,包括:
一基底101;一第一导电层102,所述第一导电层102设置于所述基底101之上;多个隔离点103,所述隔离点103设置于所述第一导电层102之上并形成阵列;一第二导电层104,所述第二导电层104设置于所述隔离点103之上;以及一覆盖膜105,所述覆盖膜105设置于所述第二导电层104之上。
在本实施例中,所述电阻式触控屏的触控表面为柔性的所述覆盖膜105,所述覆盖膜105的材料可以为聚酰亚胺等透明材料,所述多个隔离点103的材料可以为绝缘且透明的树酯材料,所述第一导电层102和所述第二导电层的材料104均为奈米银线或奈米碳管。与传统用来制作电阻式触控屏的导电层的材料氧化铟锡(indium tin oxide, ITO)相比,奈米银线和奈米碳管有更佳的弯折性能,更适合被应用在频繁弯折的器件中,也因此,本实施例所提供的电阻式触控屏具有绝佳的弯折性能。
具体来说,如图1和图2所示,所述第一导电层102在第一方向上的两端分别连接两个电极1021,其中一个所述电极1021上被施加参考电压,另一个所述电极1021则接地,所述第二导电层104在第二方向上的两端分别连接另外两个电极1041,其中一个所述电极1041上被施加参考电压,另一个所述电极1041则接地,使得所述第一导电层102和所述第二导电层104之间形成电场,所述第一方向和所述第二方向互相垂直。当手指或触控笔按压所述触控膜105,使所述触控膜105发生形变时,所述第二导电层104同样产生形变并接触到所述第一导电层102,此时,所述第二导电层104和所述第一导电层102的电阻发生改变,当所述控制屏侦测到所述电阻发生改变时,便能推算出触控点在所述第一导电层102和所述第二导电层104分别在所述第一方向和所述第二方向上的坐标,进而准确推算出所述触控点在所述覆盖膜105上的位置。
第二实施例
如图3所示,为了解决上述问题,本实施例还提供一种柔性显示装置,包括:一有机发光二级体器件201;一偏光片203,所述偏光片203设置于所述有机发光二级体器件201之上;以及一如第一实施例所提供的电阻式触控屏,所述电阻式触控屏设置于所述偏光片203之上。
如图3和图4所示,在本实施例中,所述有机发光二级体器件201还可以包括依序设置的衬底2011、阳极2012、空穴传输层2013、发光层2014、电子传输层2015以及阴极2016,所述有机发光二级体器件201和所述偏光片203之间使用光学胶202粘合,所述偏光片203与所述电阻式触控屏之间也使用所述光学胶202粘合,具体地,所述偏光片203与所述电阻式触控屏的所述基底101使用所述光学胶202粘合,所述电阻式触控屏的结构与第一实施例所提供的电阻式触控屏相同,在此不多做描述。
如图3所示,本实施例所提供的柔性显示装置,由于使用了第一实施例所提供的具有绝佳弯折性能的电阻式触控屏,因此,所述柔性显示装置同样有着绝佳的弯折性能,所述柔性显示装置的寿命得到了提升。此外,由于所述电阻式触控屏的触控表面为柔性的所述覆盖膜105,满足了本实施例柔性显示装置的柔性需求,当手指或触控笔按压所述覆盖膜105时,所述覆盖膜105表面的形变恰好提供了所述电阻式触控屏中的所述第二导电层104的形变来源,具体来说,如图2和图3所示,所述第一导电层102在第一方向上的两端分别连接两个电极1021,其中一个所述电极1021上被施加参考电压,另一个所述电极1021则接地,所述第二导电层104在第二方向上的两端分别连接另外两个电极1041,其中一个所述电极1041上被施加参考电压,另一个所述电极1041则接地,使得所述第一导电层102和所述第二导电层104之间形成电场,所述第一方向和所述第二方向互相垂直。当手指或触控笔按压所述触控膜105,使所述触控膜105发生形变时,所述第二导电层104同样产生形变并接触到所述第一导电层102,此时,所述第二导电层104和所述第一导电层102的电阻发生改变,当所述控制屏侦测到所述电阻发生改变时,便能推算出触控点在所述第一导电层102和所述第二导电层104分别在所述第一方向和所述第二方向上的坐标,进而准确推算出所述触控点在所述覆盖膜105上的位置。本实施例所提供的柔性显示装置的触控准确率高且寿命长。
第三实施例
如图5和图6所示,为了解决上述问题,本发明还提供另一种电阻式触控屏,包括:一基底301;一第一导电层302,所述第一导电层302设置于所述基底301之上;多个隔离点303,所述隔离点303设置于所述第一导电层302之上并形成阵列;以及一膜片组304,所述膜片组304还包括一覆盖膜3042和多个设置于所述覆盖膜3042之下的第二导电层3041,所述多个第二导电层3041均被设置于同一平面。
其中,所述多个第二导电层3041的材料为奈米银线或奈米碳管。
在本实施例中,所述第一导电层302的材料为奈米银线或奈米碳管。
在本实施例中,所述电阻式触控屏的触控表面为柔性的所述覆盖膜3042,所述覆盖膜3042的材料可以为聚酰亚胺等透明材料,所述多个隔离点303的材料可以为绝缘且透明的树酯材料,所述第一导电层302和所述多个第二导电层3041的材料均为奈米银线或奈米碳管。与传统用来制作电阻式触控屏的导电层的材料氧化铟锡(indium tin oxide, ITO)相比,奈米银线和奈米碳管有更佳的弯折性能,更适合被应用在频繁弯折的器件中,也因此,本实施例所提供的电阻式触控屏具有绝佳的弯折性能。
在本实施例中,由于所述多个第二导电层3041是由高弯折性能的奈米银线或奈米碳管所制作,因此,所述多个第二导电层3041可以被图案化成如图6所示的长条状结构。每个所述多个第二导电层3041彼此以相同的间隔距离平行排列在所述覆盖膜3042之下,且每个所述多个第二导电层3041均被设置在同一平面,每个所述多个第二导电层3041的一末端分别与一条用以输入电压的金属线3043相连,且每个所述多个第二导电层3041所对应的输入电压不相同,每个所述多个第二导电层3041的另一末端则与一用以接地的电极3044相连。所述第一导电层302的两端在与所述多个第二导电层3041延伸的方向垂直的方向上分别连接另外两个电极,并在其中一个电极上施加参考电压,另一个电极则接地,如图5和图6所示,当手指或笔按压所述覆盖膜3042进而使所述多个第二导电层3041接触到所述第一导电层302时,所述多个第二导电层3041和所述第一导电层302的电阻发生改变,当所述控制屏侦测到所述电阻发生改变时,便能推算出触控点在所述第一导电层302和所述多个第二导电层3041的坐标,进而准确推算出所述触控点在所述覆盖膜3042上的位置。与第一实施例不同的是,由于每条所述多个第二导电层3041均被施加了不同的参考电压,使得触控屏能够分区判断触控点的位置,提高了多点触控的准确率。
第四实施例
如图7所示,为了解决上述问题,本发明还提供另一种柔性显示装置,包括:一有机发光二级体器件401;一偏光片403,所述偏光片403设置于所述有机发光二级体器件401之上;以及一如第三实施例所提供的电阻式触控屏,所述电阻式触控屏设置于所述偏光片403之上。
如图7和图8所示,在本实施例中,所述有机发光二级体器件401还可以包括依序设置的衬底4011、阳极4012、空穴传输层4013、发光层4014、电子传输层4015以及阴极4016,所述有机发光二级体器件401和所述偏光片403之间使用光学胶402粘合,所述偏光片403与所述电阻式触控屏之间也使用所述光学胶402粘合,具体地,所述偏光片403与所述电阻式触控屏的所述基底301使用所述光学胶402粘合,所述电阻式触控屏的结构与第三实施例所提供的电阻式触控屏相同,在此不多做描述。
本实施例所提供的柔性显示装置,由于使用了第三实施例所提供的具有绝佳弯折性能的电阻式触控屏,因此,所述柔性显示装置同样有着绝佳的弯折性能,所述柔性显示装置的寿命得到了提升。此外,由于所述电阻式触控屏的触控表面为柔性的所述覆盖膜3042,满足了本实施例柔性显示装置的柔性需求,如图6所示,当手指或触控笔按压所述覆盖膜3042的表面时,所述覆盖膜3042表面的形变恰好提供了所述电阻式触控屏中的所述多个第二导电层3041的形变来源,从而能够准确探测触控点的位置。
更进一步地,由于所述多个第二导电层3041是由高弯折性能的奈米银线或奈米碳管所制作,因此,所述多个第二导电层3041可以被图案化成如图6所示的长条状结构。每个所述多个第二导电层3041彼此以相同的间隔距离平行排列在所述覆盖膜3042之下,且每个所述多个第二导电层3041均被设置在同一平面,每个所述多个第二导电层3041的一末端分别与一条用以输入电压的金属线3043相连,且每个所述多个第二导电层3041所对应的输入电压不相同,每个所述多个第二导电层3041的另一末端则与一用以接地的电极3044相连。所述第一导电层302的两端在与所述多个第二导电层3041延伸的方向垂直的方向上分别连接另外两个电极,并在其中一个电极上施加参考电压,另一个电极则接地。如图6和图7所示,当手指或笔按压所述覆盖膜3042进而使所述多个第二导电层3041接触到所述第一导电层302时,所述第二导电层3041和所述第一导电层302的电阻发生改变,当所述控制屏侦测到所述电阻发生改变时,便能推算出触控点在所述第一导电层302和所述第二导电层3041的坐标,进而准确推算出所述触控点在所述覆盖膜3042上的位置。与第二实施例不同的是,由于每条所述多个第二导电层3041均被施加了不同的参考电压,使得触控屏能够分区判断触控点的位置,提高了多点触控的准确率,实现了同时具有高触控准确率、多点触控功能以及长寿命的柔性显示装置。
以上实施例使用电阻式触控屏取代电容式触控屏并应用在柔性显示装置中,并对所述电阻式触控屏的材料以及结构进行改进,不仅解决了传统使用电容式触控屏的柔性显示装置触控准确率不足的问题,还实现了同时具有高触控准确率、多点触控功能以及长寿命的柔性显示装置。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种电阻式触控屏,包括:
    基底;
    第一导电层,所述第一导电层设置于所述基底之上;
    多个隔离点,所述隔离点设置于所述第一导电层之上;以及
    膜片组,所述膜片组设置于所述多个隔离点之上;
    其中,所述膜片组包括覆盖膜和设置在所述覆盖膜之下的第二导电层,每个所述第二导电层均设置在同一个平面;
    其中,所述第二导电层的材料为奈米银线或奈米碳管。
  2. 根据权利要求1所述的电阻式触控屏,其中所述第一导电层的材料为奈米银线或奈米碳管。
  3. 根据权利要求1所述的电阻式触控屏,其中所述多个隔离点的材料为绝缘且透明的树酯材料。
  4. 根据权利要求1所述的电阻式触控屏,其中在第一方向上,所述第一导电层的一端与用以输入电压的电极相连。
  5. 根据权利要求4所述的电阻式触控屏,其中在所述第一方向上,所述第一导电层的另一端与用以接地的电极相连。
  6. 根据权利要求5所述的电阻式触控屏,其中在与所述第一方向垂直的第二方向上,所述第二导电层的一端与用以输入电压的电极相连。
  7. 根据权利要求6所述的电阻式触控屏,其中在所述第二方向上,所述第二导电层的另一端与用以接地的电极相连。
  8. 根据权利要求1所述的电阻式触控屏,其中所述覆盖膜的材料为聚酰亚胺。
  9. 根据权利要求1所述的电阻式触控屏,其中所述第二导电层的数量为多个。
  10. 根据权利要求9所述的电阻式触控屏,其中所述多个第二导电层彼此以相同的间隔距离平行排列在所述覆盖膜之下。
  11. 根据权利要求10所述的电阻式触控屏,其中所述多个第二导电层被图案化成长条状。
  12. 根据权利要求9所述的电阻式触控屏,其中每个所述多个第二导电层的一末端与用以输入电压的金属线相连。
  13. 根据权利要求12所述的电阻式触控屏,其中每个所述多个第二导电层所对应的输入电压不相同。
  14. 根据权利要求13所述的电阻式触控屏,其中每个所述多个第二导电层的另一末端与用以接地的电极相连。
  15. 根据权利要求10所述的电阻式触控屏,其中在与所述多个第二导电层延伸的方向垂直的方向上,所述第一导电层的一端与用以输入电压的电级相连。
  16. 根据权利要求15所述的电阻式触控屏,其中在与所述多个第二导电层延伸的方向垂直的方向上,所述第一导电层的另一端与用以接地的电级相连。
  17. 一种柔性显示装置,包括:
    有机发光二级体器件;
    偏光片,所述偏光片设置于所述有机发光二级体器件之上;以及如权利要求1所述的电阻式触控屏,所述电阻式触控屏设置于所述偏光片之上。
  18. 根据权利要求17所述的柔性显示装置,其中所述有机发光二级体器件还包括衬底和依次设置在所述衬底上的阳极、空穴传输层、发光层、电子传输层和阴极。
  19. 根据权利要求17所述的柔性显示装置,其中所述偏光片和所述有机发光二级体器件之间使用光学胶粘合。
  20. 根据权利要求17所述的柔性显示装置,其中所述偏光片和所述电阻式触控屏之间使用光学胶粘合。
PCT/CN2019/119400 2019-09-17 2019-11-19 电阻式触控屏和柔性显示装置 WO2021051634A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/651,486 US20210405785A1 (en) 2019-09-17 2019-11-19 Resistive touch screen and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910875067.2A CN110597423A (zh) 2019-09-17 2019-09-17 电阻式触控屏和柔性显示装置
CN201910875067.2 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021051634A1 true WO2021051634A1 (zh) 2021-03-25

Family

ID=68860299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119400 WO2021051634A1 (zh) 2019-09-17 2019-11-19 电阻式触控屏和柔性显示装置

Country Status (3)

Country Link
US (1) US20210405785A1 (zh)
CN (1) CN110597423A (zh)
WO (1) WO2021051634A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210109615A1 (en) * 2019-10-14 2021-04-15 RET Equipment Inc. Resistive pressure sensor device system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079708A1 (en) * 2007-09-21 2009-03-26 Innolux Display Corp. Three-wire resistive touch panel and display device using same
CN101458603A (zh) * 2007-12-12 2009-06-17 北京富纳特创新科技有限公司 触摸屏及显示装置
CN101852935A (zh) * 2010-06-02 2010-10-06 北京富纳特创新科技有限公司 触摸式液晶显示屏
CN103236280A (zh) * 2013-04-25 2013-08-07 重庆绿色智能技术研究院 一种柔性导电薄膜
CN109445642A (zh) * 2018-12-19 2019-03-08 武汉华星光电半导体显示技术有限公司 一种电阻式触摸屏、oled显示器及其制作方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7327352B2 (en) * 2002-06-14 2008-02-05 3M Innovative Properties Company Linearized conductive surface
CN101458605B (zh) * 2007-12-12 2011-03-30 鸿富锦精密工业(深圳)有限公司 触摸屏及显示装置
CN101458602B (zh) * 2007-12-12 2011-12-21 清华大学 触摸屏及显示装置
CN101561739B (zh) * 2008-04-14 2012-05-30 比亚迪股份有限公司 一种电阻式触摸屏及其制作方法
CN100573432C (zh) * 2008-05-27 2009-12-23 张文 多点电阻触摸屏
CN101339481A (zh) * 2008-08-14 2009-01-07 成都吉锐触摸技术股份有限公司 电阻阵列触摸屏
TWI522876B (zh) * 2014-01-22 2016-02-21 Sitronix Technology Corp Drive circuit and its touch device and touch module and manufacturing method
CN105094398A (zh) * 2014-05-06 2015-11-25 杰圣科技股份有限公司 触控显示结构及其制造方法
CN104793834B (zh) * 2015-05-04 2018-10-12 广州恒利达电路有限公司 一种电阻式触摸屏及其制备方法
CN204808275U (zh) * 2015-06-10 2015-11-25 宸鸿科技(厦门)有限公司 压力感测装置
CN105970167A (zh) * 2016-05-23 2016-09-28 深圳市众诚达应用材料科技有限公司 一种用于触摸屏的ato薄膜及其制备方法
CN107527675A (zh) * 2017-07-21 2017-12-29 华南师范大学 一种柔性的导电膜及其制备方法
CN208834061U (zh) * 2018-08-08 2019-05-07 吴飞 具有显示功能的胆甾液晶手写板装置
CN108761947A (zh) * 2018-08-08 2018-11-06 吴飞 具有显示功能的胆甾液晶手写板装置及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090079708A1 (en) * 2007-09-21 2009-03-26 Innolux Display Corp. Three-wire resistive touch panel and display device using same
CN101458603A (zh) * 2007-12-12 2009-06-17 北京富纳特创新科技有限公司 触摸屏及显示装置
CN101852935A (zh) * 2010-06-02 2010-10-06 北京富纳特创新科技有限公司 触摸式液晶显示屏
CN103236280A (zh) * 2013-04-25 2013-08-07 重庆绿色智能技术研究院 一种柔性导电薄膜
CN109445642A (zh) * 2018-12-19 2019-03-08 武汉华星光电半导体显示技术有限公司 一种电阻式触摸屏、oled显示器及其制作方法

Also Published As

Publication number Publication date
US20210405785A1 (en) 2021-12-30
CN110597423A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
US20230376144A1 (en) Display device including touch sensor and driving method thereof
US8605045B2 (en) Touch panel and display device using the same
US9122088B2 (en) Capacitance type touch screen
US10091872B2 (en) Touch window and display including the same
US8115751B2 (en) Capacitive touch sensing assembly
US20120146919A1 (en) Touch screen panel
KR101119251B1 (ko) 터치패널
US20110181548A1 (en) Touch panel and display device using the same
JP4546025B2 (ja) タッチパネル表示素子の信号ライン及びその形成方法
US10013084B2 (en) Bendable touch window and touch device with the same
JP2014149861A (ja) タッチパネル及びその製造方法
TWI505169B (zh) 觸控面板及具有觸控面板之電子裝置
KR101765950B1 (ko) 터치 패널
US9507457B2 (en) Method of determining touch coordinate and touch panel assembly for performing the same
CN109614017B (zh) 触控面板及显示装置
US20100039407A1 (en) Sensory structure of capacitive touch panel with predetermined sensing areas
WO2021051634A1 (zh) 电阻式触控屏和柔性显示装置
CN107797345A (zh) 嵌入式触控面板及其制备方法
US20210200353A1 (en) Display screen and electronic device thereof
KR20160005596A (ko) 터치 윈도우
KR101095125B1 (ko) 저항막방식 터치스크린
KR20180113081A (ko) 터치 패널
TWI451317B (zh) 觸摸屏
KR102008736B1 (ko) 터치 패널 및 이의 구동방법
TWI517018B (zh) 顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19945858

Country of ref document: EP

Kind code of ref document: A1