WO2021051277A1 - 光学系统、摄像模组及汽车 - Google Patents

光学系统、摄像模组及汽车 Download PDF

Info

Publication number
WO2021051277A1
WO2021051277A1 PCT/CN2019/106226 CN2019106226W WO2021051277A1 WO 2021051277 A1 WO2021051277 A1 WO 2021051277A1 CN 2019106226 W CN2019106226 W CN 2019106226W WO 2021051277 A1 WO2021051277 A1 WO 2021051277A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
image side
object side
satisfied
Prior art date
Application number
PCT/CN2019/106226
Other languages
English (en)
French (fr)
Inventor
邹海荣
乐宇明
俞炳泽
兰宾利
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to US17/760,754 priority Critical patent/US20220342180A1/en
Priority to PCT/CN2019/106226 priority patent/WO2021051277A1/zh
Publication of WO2021051277A1 publication Critical patent/WO2021051277A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/62Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having six components only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/005Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having spherical lenses only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • the invention relates to the field of optical imaging, in particular to an optical system, a camera module and an automobile.
  • the current common cameras generally have the problem of small field of view. Therefore, when used as a vehicle-mounted camera device, the car still has a large blind area of vision, and the driver cannot obtain enough surroundings of the car body, especially when the car is driving at high speed. When changing lanes, it will not be possible to obtain information on the vehicles behind the side in time, which is prone to safety hazards.
  • an optical system a camera module, and automobile are provided.
  • An optical system from the object side to the image side, includes:
  • a first lens with negative refractive power wherein the object side surface of the first lens is a convex surface, and the image side surface is a concave surface;
  • a second lens with negative refractive power, the image side surface of the second lens is concave;
  • a third lens with positive refractive power, the object side and image side of the third lens are both convex;
  • a fourth lens with positive refractive power, the object side and the image side of the fourth lens are both convex;
  • the diaphragm is arranged on the object side of the fourth lens
  • optical system satisfies the following relationship:
  • FOV is the angle of view in the angular direction of the imaging surface of the optical system
  • CRA is the angle of incidence of the main ray
  • a camera module includes a photosensitive element and the optical system described in the above embodiments, and the photosensitive element is arranged on the image side of the optical system.
  • a car includes a car body and the camera module described in the above-mentioned embodiments, the camera module is disposed on the car body, and the camera module can obtain environmental information around the car.
  • FIG. 1 is a schematic diagram of the optical system provided by the first embodiment of the application.
  • Figure 2 shows the spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the first embodiment
  • FIG. 3 is a schematic diagram of the optical system provided by the second embodiment of the application.
  • Fig. 4 shows the spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the second embodiment
  • FIG. 5 is a schematic diagram of the optical system provided by the third embodiment of the application.
  • Fig. 6 shows the spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the third embodiment
  • FIG. 7 is a schematic diagram of an optical system provided by a fourth embodiment of this application.
  • Fig. 8 shows the spherical aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical system in the fourth embodiment
  • FIG. 9 is a schematic diagram of a camera module using an optical system in an embodiment of the application.
  • FIG. 10 is a schematic diagram of a car using a camera module in an embodiment of the application.
  • the optical system 100 in an embodiment of the present application includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4 and a lens unit 110 from the object side to the image side in order.
  • the lens unit 110 includes a fifth lens L5, and the optical system 100 at this time has a five-piece structure.
  • the lens unit 110 includes a fifth lens L5 and a sixth lens L6. In this case, the optical system 100 has a six-element structure.
  • the first lens L1 includes the object side S1 and the image side S2
  • the second lens L2 includes the object side S3 and the image side S4
  • the third lens L3 includes the object side S5 and the image side S6
  • the fourth lens L4 includes the object side S7 and
  • the image side surface S8 includes the object side surface S9 and an image side surface S10
  • the sixth lens L6 includes an object side surface S11 and an image side surface S12.
  • the optical system 100 also has an imaging surface S17, the imaging surface S17 is located on the image side of the sixth lens L6, and the imaging surface S17 can be understood as the photosensitive surface of the photosensitive element.
  • the five-element structure or the six-element structure does not mean that the optical system 100 contains only five or six lenses.
  • the first lens, the second lens, and the third lens At least one of the lens, the fourth lens, the fifth lens, or the sixth lens may be a cemented lens composed of two or more lenses, that is, the optical system 100 of the above-mentioned five-piece structure may actually include six and seven lenses.
  • One or more lenses, and the six-element structure of the optical system 100 may actually include seven, eight or more lenses.
  • a stop STO is provided in the optical system 100, and the stop STO is provided on the object side of the fourth lens L4.
  • the stop STO in some embodiments may be arranged between the second lens L2 and the third lens L3, or between the third lens L3 and the fourth lens L4.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 may all be spherical or aspherical.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are spherical surfaces
  • the object side surface S7 of the fourth lens L4 Both the and the image side surface S8 are aspherical.
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex
  • k is the conic constant
  • Ai is the aspheric surface formula The coefficient corresponding to the higher-order item of the i-th term.
  • the material of the first lens L1 is glass
  • the material of the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 is plastic, so that it is closest to the object side
  • the (outside) first lens L1 can better withstand the influence of the ambient temperature on the object side, and because the other lenses are made of plastic materials, the optical system 100 can also have a lower production cost.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all plastic. At this time, the plastic lens can reduce the weight of the optical system 100 and reduce the production cost. In some embodiments, the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all glass. In this case, the optical system 100 can withstand Higher temperature and excellent optical properties.
  • the sixth lens L6 may not be provided in the optical system 100 of some embodiments.
  • the optical system 100 will include a first lens L1, a second lens L2, a third lens L3, and a fourth lens.
  • the lens L4 and the fifth lens L5, that is, the optical system 100 has a five-piece structure.
  • a stop STO may be further provided, and the stop STO is provided on the object side of the fourth lens L4. Specifically, the stop STO may be disposed between the second lens L2 and the third lens L3.
  • the object side and the image side of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 Both may be spherical or aspherical.
  • the object side and image side surfaces of the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical surfaces
  • the object side surface S3 and the image side surface S4 of the second lens L2 are both spherical. It is aspherical.
  • the material of the first lens L1 may be glass, and the material of the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 may be Plastic, therefore, the first lens L1 closest to the object side (outside) can better withstand the environmental temperature of the object side, and because the other lenses are made of plastic material, the optical system 100 can also have a lower Cost of production.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are all plastic.
  • the plastic lens can reduce the optical system 100 weight and reduce production costs.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are all glass.
  • the optical system 100 can withstand higher temperatures and Has excellent optical properties.
  • the material of the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 is glass, and the material of the second lens L2 is plastic.
  • the image side of the lens unit 110 is provided with an infrared filter L7 made of glass.
  • the infrared filter L7 is disposed on the image side of the fifth lens L5; for the six-piece optical system 100, the infrared filter L7 is disposed on the sixth lens L6 The image side.
  • the infrared filter L7 includes an object side surface S13 and an image side surface S14. The infrared filter L7 is used to filter out the infrared light and prevent the infrared light from reaching the imaging surface S17, thereby preventing the infrared light from affecting the imaging of the normal image.
  • the infrared filter L7 can be assembled with each lens as a part of the optical system 100, or can also be installed between the optical system 100 and the photosensitive element when the optical system 100 and the photosensitive element are assembled into a module. In some embodiments, the infrared filter L7 may also be arranged on the object side of the first lens L1.
  • a protective glass L8 is provided on the image side of the last lens of the optical system 100, and the protective glass L8 is provided on the image side of the infrared filter L7 so as to be close to the photosensitive element during assembly, thereby protecting the photosensitive element.
  • the cover glass L8 includes an object side surface S15 and an image side surface S16.
  • the optical system 100 includes not only a lens with refractive power, but also elements such as a stop STO, a filter, a protective glass, a photosensitive element, and a mirror for changing the incident light path.
  • elements such as a stop STO, a filter, a protective glass, a photosensitive element, and a mirror for changing the incident light path.
  • the optical system 100 satisfies the relationship:
  • FOV/CRA the angle of view of the imaging surface of the optical system 100 in the angular direction
  • CRA the angle of incidence of the main ray.
  • FOV/CRA can be 10.5, 10.6, 10.7, 10.8, or 10.9.
  • the optical system 100 has a larger field of view to meet the requirements for large viewing angles of electronic products such as mobile phones, in-vehicle equipment, monitoring equipment, medical equipment, etc., while also reducing the incidence of light incident on the optical system 100.
  • the angle of surface S17 to improve imaging clarity.
  • the optical system 100 satisfies the relationship:
  • cuy s1 is the reciprocal of the radius of curvature (at the optical axis) of the object side surface S9 of the fifth lens L5
  • map s1 is the Y-direction half aperture of the object side surface S9 of the fifth lens L5
  • Cuy s2 is the reciprocal of the radius of curvature (at the optical axis) of the image side surface S10 of the fifth lens L5
  • map s2 is the Y-direction half aperture of the image side surface S10 of the fifth lens L5.
  • cuy s1 is the reciprocal of the curvature radius (at the optical axis) of the object side surface S11 of the sixth lens L6, and map s1 is the Y-direction half aperture of the object side surface S11 of the sixth lens L6, Cuy s2 is the reciprocal of the radius of curvature (at the optical axis) of the image side surface S12 of the sixth lens L6, and map s2 is the Y-direction semi-aperture of the image side surface S12 of the sixth lens L6.
  • the radius of curvature and Y-direction semi-aperture of the fifth lens L5 in the five-element structure can be controlled to reduce the processing difficulty of the fifth lens L5; the sixth lens in the six-element structure can also be controlled by The radius of curvature of L6 and the semi-aperture in the Y direction are used to reduce the processing difficulty of the sixth lens L6.
  • the cemented lens 111 when the optical system 100 has a five-piece structure, the cemented lens 111 is composed of the fourth lens L4 and the fifth lens L5; when the optical system 100 has six In the formula structure, the cemented lens 111 is composed of a fifth lens L5 and a sixth lens L6.
  • the optical system 100 satisfies the relationship: 0 ⁇ FH/f ⁇ 10.
  • FH is the focal length of the cemented lens 111
  • f is the effective focal length of the optical system 100.
  • FH/f can be 4.70, 4.75, 4.80, 5.00, 5.30, 5.70, 5.90, 6.10, 6.15, or 6.20.
  • the cemented lens 111 can provide the optical system 100 with positive refractive power, so that the optical system 100 has the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • the optical system 100 satisfies the relationship: ET S6>0.5, and the unit of ET S6 is mm.
  • ET S6 is the thickness of the fourth lens L4 at the maximum effective radius; in the embodiment of the six-piece structure, ET S6 is the thickness of the fifth lens L5 at the maximum effective radius. thickness. ET S6 can be 1.5, 1.6, 1.7, or 1.8.
  • the processing difficulty of the cemented lens 111 can be reduced by controlling the edge thickness (thickness of the lens at the maximum effective radius) of the fifth lens L5 in the five-piece structure or the sixth lens L6 in the six-piece structure .
  • the optical system 100 satisfies the relationship: BFL/TTL>0.2.
  • BFL is the optical back focus of the optical system 100
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the optical system 100 on the optical axis.
  • BFL/TTL can be 0.24, 0.25 or 0.26.
  • the optical back focus is the distance on the optical axis from the image side surface of the last lens in the optical system 100 to the imaging surface S17, and the last lens in the optical system 100 is the lens closest to the imaging surface S17 in the optical system 100.
  • the optical back focus of the optical system 100 is the distance from the image side surface S10 of the fifth lens L5 to the imaging surface S17 on the optical axis; in the six-element structure, the optical back focus of the optical system 100 is the first The distance from the image side surface S12 of the six lens L6 to the image surface S17 on the optical axis.
  • the optical system 100 satisfies the relationship: (SD S2)/(RDY S2) ⁇ 0.95.
  • SD S2 is the Y-direction half aperture of the image side surface S2 of the first lens L1
  • RDY S2 is the radius of curvature of the image side surface S2 of the first lens L1 at the optical axis.
  • (SD S2)/(RDY S2) can be 0.908, 0.912, 0.915, 0.917, or 0.918.
  • the curvature radius of the image side surface S2 of the first lens L1 and the semi-aperture in the Y direction can be controlled to effectively control the curvature of the first lens L1, reduce the processing difficulty of the first lens L1, and avoid the first lens L1.
  • the optical system 100 satisfies the relationship: -65 ⁇ Dist ⁇ 65.
  • Dist is the optical distortion of the optical system 100, and the unit is %.
  • Dist can be -64, -63, -62, -61, 61, 62, 63, or 64.
  • the amount of distortion of the optical system 100 can be controlled to reduce the phenomenon of excessive distortion commonly present in wide-angle lenses.
  • the optical system 100 satisfies the relationship: Nd1 ⁇ 1.8; Vd1>25.
  • Nd1 is the refractive index of the first lens L1 under d light
  • Vd1 is the Abbe number of the first lens L1 under d light.
  • Nd1 can be 1.600, 1.610, 1.630, 1.660, 1.700, 1.730, 1.740, 1.760, or 1.765.
  • Vd1 can be 50.00, 61.00, 53.00, 57.00, 60.00, 60.80, 61.00, or 62.00.
  • the optical system 100 satisfies the relationship: Nd2>1.9; Vd2 ⁇ 25.
  • Nd2 is the lens closest to the image side in the optical system 100 (in the five-element structure, the lens closest to the image side is the fifth lens L5; in the six-element structure, the lens closest to the image side
  • the lens is the refractive index of the d light of the sixth lens L6)
  • Vd2 is the Abbe number of the d light of the lens closest to the image side in the optical system 100
  • the wavelength of the d light is 587.56 nm.
  • Nd2 can be 1.928, 1.930, 1.935, 1.950, 1.970, 1.980, or 1.950.
  • Vd2 can be 19.40, 19.50, 19.70, 20.00, 20.30, 20.60, 20.70, 20.80, or 20.85.
  • Vd2 can be 19.40, 19.50, 19.70, 20.00, 20.30, 20.60, 20.70, 20.80, or 20.85.
  • the object side S1 of the first lens L1 is coated with a protective film layer.
  • the optical system 100 satisfies the relationship: H K >500; F A >50.
  • H K is the stiffness of the first lens L1, H K units of 10 7 Pa, F A first lens L1 abrasiveness, F A unit is%.
  • H K can be 600, 610, 620, 650, 680, or 690.
  • F A 113 or may be 70,75,80,90,100,105,110.
  • the first lens L1 has higher hardness and abrasion.
  • the first lens L1 can be effectively prevented from being scratched and caused Problems such as scratches and adhesion of water droplets affect the image quality and increase the service life of the optical system 100.
  • the optical system 100 includes a first lens L1 with a negative refractive power, a second lens L2 with a negative refractive power, and a third lens with a positive refractive power in order from the object side to the image side.
  • the fifth lens L5 and the sixth lens L6 are cemented to constitute a cemented lens 111.
  • the image side of the sixth lens L6 is further provided with an infrared filter L7 and a protective glass L8 in sequence.
  • the infrared filter L7 and the protective glass L8 may belong to a part of the optical system 100 or may not belong to the optical system 100.
  • the distance from the image side surface S12 of the sixth lens L6 to the image surface S17 is still 5.499 mm. Similar to the following embodiments, the distance from the image side surface S12 of the sixth lens L6 to the imaging surface S17 has nothing to do with whether the infrared filter L7 or the protective glass L8 is provided.
  • FIG. 2 is a spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 100 in the first embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength.
  • the reference wavelength in the following embodiments is 587.56 nm.
  • the unit of the ordinate IMGHT in the astigmatism diagrams and distortion diagrams in the following embodiments is mm.
  • the object side surface S1 of the first lens L1 is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface.
  • the object side surface S3 of the second lens L2 is a convex surface; the image side surface S4 of the second lens L2 is a concave surface.
  • the object side surface S5 of the third lens L3 is convex, and the image side surface S6 of the third lens L3 is convex.
  • the object side surface S7 of the fourth lens L4 is convex, and the image side surface S8 of the fourth lens L4 is convex.
  • the object side surface S9 of the fifth lens L5 is convex, and the image side surface S10 of the fifth lens L5 is convex.
  • the object side surface S11 of the sixth lens L6 is a concave surface, and the image side surface S12 of the sixth lens L6 is a convex surface.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all spherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all glass.
  • the optical system 100 satisfies the following relationship:
  • FOV/CRA 10.4.
  • FOV is the angle of view of the imaging surface of the optical system 100 in the angular direction
  • CRA is the angle of incidence of the main ray.
  • the optical system 100 has a larger field of view to meet the requirements for large viewing angles of electronic products such as mobile phones, in-vehicle equipment, monitoring equipment, and medical equipment. At the same time, it can also reduce the incidence of light into the optical system 100.
  • the angle of the photosensitive element on the image side to improve imaging clarity.
  • the optical system 100 satisfies the relationship:
  • 0.21.
  • cuy s1 is the reciprocal of the curvature radius (at the optical axis) of the object side surface S11 in the sixth lens L6
  • map s1 is the Y-direction semi-aperture of the object side surface S11 of the sixth lens L6
  • cuy s2 is the sixth lens L6
  • the reciprocal of the radius of curvature of the image side surface S12 (at the optical axis), and map s2 is the Y-direction half aperture of the image side surface S12 of the sixth lens L6.
  • the radius of curvature of the sixth lens L6 and the semi-aperture in the Y direction can be controlled to reduce the processing difficulty of the sixth lens L6.
  • the cemented lens 111 when the optical system 100 has a five-piece structure, the cemented lens 111 is composed of the fourth lens L4 and the fifth lens L5; when the optical system 100 has six In the formula structure, the cemented lens 111 is composed of a fifth lens L5 and a sixth lens L6.
  • FH is the focal length of the cemented lens 111
  • f is the effective focal length of the optical system 100.
  • the cemented lens 111 can provide the optical system 100 with positive refractive power, so that the optical system 100 has the characteristics of wide viewing angle, low sensitivity and miniaturization.
  • ET S6 is the thickness of the fifth lens L5 at the maximum effective radius
  • the unit of ET S6 is mm.
  • BFL is the optical back focus of the optical system 100
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S17 of the optical system 100 on the optical axis.
  • the optical system 100 has a larger optical back focus, thereby having a telecentric effect.
  • the sensitivity and length of the optical system 100 can be reduced, so that the volume of the optical system 100 can be smaller.
  • SD S2 is the Y-direction half aperture of the image side surface S2 of the first lens L1
  • RDY S2 is the radius of curvature of the image side surface S2 of the first lens L1 at the optical axis.
  • the curvature radius of the image side surface S2 of the first lens L1 and the semi-aperture in the Y direction can be controlled to effectively control the curvature of the first lens L1, reduce the processing difficulty of the first lens L1, and avoid the first lens L1.
  • Nd1 is the refractive index of the first lens L1 under d light
  • Vd1 is the Abbe number of the first lens L1 under d light.
  • Nd2 is the d-ray refractive index of the lens closest to the image side in the optical system 100 (the fifth lens L5 in the five-element structure and the sixth lens L6 in the six-element structure)
  • Vd2 is the optical The Abbe number of the d-ray of the lens closest to the image side in the system 100.
  • H K is the stiffness of the first lens L1, H K units of 10 7 Pa, F A first lens L1 abrasiveness, F A unit is%.
  • the first lens L1 has higher hardness and abrasion.
  • the first lens L1 can be effectively prevented from being scratched and caused Problems such as scratches and adhesion of water droplets affect the image quality and increase the service life of the optical system 100.
  • the various parameters of the optical system 100 are given in Table 1.
  • the elements from the object surface to the imaging surface S17 are arranged in the order of the elements in Table 1 from top to bottom.
  • the surface numbers 1 and 2 respectively represent the object side S1 and the image side S2 of the first lens L1, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the curvature radius of the object side or image side at the paraxial position of the corresponding surface number.
  • the first value in the "thickness” parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the latter lens on the optical axis.
  • the "thickness” parameter in the surface number 6 is the distance from the image side surface S6 of the third lens L3 to the stop STO.
  • the value of the aperture STO in the "thickness” parameter column is the distance from the aperture STO to the apex of the object side of the latter lens (the apex refers to the intersection of the lens and the optical axis) on the optical axis.
  • the direction of the image side of the last lens is the positive direction of the optical axis.
  • the value is negative, it means that the diaphragm STO is set to the right of the apex of the object side of the lens.
  • the stop STO is on the left side of the vertex on the object side of the lens.
  • the "thickness" parameter value in the surface number 12 is the distance on the optical axis from the image side surface S12 of the sixth lens L6 to the object side surface S13 of the infrared filter L7.
  • the value corresponding to the surface number 13 of the infrared filter L7 in the "thickness” parameter is the distance from the image side S14 of the infrared filter L7 to the object side S15 of the protective glass L8 on the optical axis.
  • the refractive index, Abbe number, and focal length of each lens are values at the reference wavelength, which is 587.56 nm.
  • the optical system 100 includes a first lens L1 with a negative refractive power, a second lens L2 with a negative refractive power, and a third lens with a positive refractive power from the object side to the image side.
  • the fifth lens L5 and the sixth lens L6 are cemented to constitute a cemented lens 111.
  • the image side of the sixth lens L6 is further provided with an infrared filter L7 and a protective glass L8 in sequence.
  • the infrared filter L7 and the protective glass L8 may belong to a part of the optical system 100 or may not belong to the optical system 100.
  • 4 shows the spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the second embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface.
  • the object side surface S3 of the second lens L2 is a concave surface; the image side surface S4 of the second lens L2 is a concave surface.
  • the object side surface S5 of the third lens L3 is convex, and the image side surface S6 of the third lens L3 is convex.
  • the object side surface S7 of the fourth lens L4 is convex, and the image side surface S8 of the fourth lens L4 is convex.
  • the object side surface S9 of the fifth lens L5 is convex, and the image side surface S10 of the fifth lens L5 is convex.
  • the object side surface S11 of the sixth lens L6 is a concave surface, and the image side surface S12 of the sixth lens L6 is a convex surface.
  • the object side and image side of the first lens L1, the second lens L2, the third lens L3, the fifth lens L5, and the sixth lens L6 are all spherical, and the object side S7 and the image side S8 of the fourth lens L4 are aspherical. .
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, the fifth lens L5, and the sixth lens L6 are all glass.
  • Table 4 is the relevant parameter table of the aspheric surface of each lens in Table 3, k is the conic constant, and Ai is the coefficient corresponding to the i-th higher order term in the aspheric surface type formula.
  • the optical system 100 includes a first lens L1 with a negative refractive power, a second lens L2 with a negative refractive power, a stop STO, and a positive refractive power from the object side to the image side.
  • the fourth lens L4 and the fifth lens L5 are cemented to constitute a cemented lens 111.
  • the image side of the fifth lens L5 is further provided with an infrared filter L7 and a protective glass L8 in sequence.
  • the infrared filter L7 and the protective glass L8 may belong to a part of the optical system 100 or may not belong to the optical system 100.
  • 6 shows the spherical aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical system 100 in the third embodiment, where the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface.
  • the object side surface S3 of the second lens L2 is a concave surface; the image side surface S4 of the second lens L2 is a concave surface.
  • the object side surface S5 of the third lens L3 is convex, and the image side surface S6 of the third lens L3 is convex.
  • the object side surface S7 of the fourth lens L4 is convex, and the image side surface S8 of the fourth lens L4 is convex.
  • the object side surface S9 of the fifth lens L5 is a concave surface, and the image side surface S10 of the fifth lens L5 is a convex surface.
  • the object side surface and the image side surface of the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical surfaces, and the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are all glass.
  • Table 5 is a table of related parameters of the aspheric surface of each lens in Table 5
  • k is the conic constant
  • Ai is the coefficient corresponding to the i-th higher order term in the aspheric surface type formula.
  • the optical system 100 includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, a stop STO, and a positive refractive power from the object side to the image side.
  • the fourth lens L4 and the fifth lens L5 are cemented to constitute a cemented lens 111.
  • the image side of the fifth lens L5 is further provided with an infrared filter L7 and a protective glass L8 in sequence.
  • the infrared filter L7 and the protective glass L8 may belong to a part of the optical system 100 or may not belong to the optical system 100.
  • FIG. 8 shows a spherical aberration diagram (mm), an astigmatism diagram (mm), and a distortion diagram (%) of the optical system 100 in the fourth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is a convex surface, and the image side surface S2 of the first lens L1 is a concave surface.
  • the object side surface S3 of the second lens L2 is a concave surface; the image side surface S4 of the second lens L2 is a concave surface.
  • the object side surface S5 of the third lens L3 is convex, and the image side surface S6 of the third lens L3 is convex.
  • the object side surface S7 of the fourth lens L4 is convex, and the image side surface S8 of the fourth lens L4 is convex.
  • the object side surface S9 of the fifth lens L5 is a concave surface, and the image side surface S10 of the fifth lens L5 is a convex surface.
  • the object side surface and the image side surface of the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 are spherical surfaces, and the object side surface S3 and the image side surface S4 of the second lens L2 are aspherical surfaces.
  • the first lens L1, the third lens L3, the fourth lens L4, and the fifth lens L5 are all made of glass, and the second lens L2 is made of plastic.
  • Table 7 is a table of related parameters of the aspheric surface of each lens in Table 7, K is the conic constant, and Ai is the coefficient corresponding to the i-th higher order term in the aspheric surface type formula.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the camera module 200, and the photosensitive element 210 is disposed on the image side of the optical system 100.
  • the photosensitive element 210 may be a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • CCD Charge Coupled Device
  • CMOS Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor
  • the lens in the optical system 100 and the photosensitive element 210 are relatively fixed, and the camera module 200 is a fixed focus module at this time.
  • a drive motor can also be configured to enable the photosensitive element 210 to move relative to the lens in the optical system 100 to achieve the focusing function.
  • the camera module 200 can be used in smart phones, smart watches, automobiles, surveillance, medical and other fields, and specifically can be used as a mobile phone camera module, a vehicle camera module, or a surveillance camera module.
  • the camera module 200 When the camera module 200 is applied to a device, the device will have a large viewing angle and can improve imaging clarity.
  • the camera module 200 when the camera module 200 is used as a vehicle-mounted camera in a car 30, the camera module 200 can be used as a front-view camera, a rear-view camera, or a side-view camera of the car 30.
  • the car 30 includes a car body 310, and the camera module 200 can be installed on the front side of the car body 310 (such as at the air intake grille), left front headlight, right front headlight, left rearview mirror, right rearview mirror, Any position such as the boot cover, the roof, etc.
  • a display device can also be provided in the car 30, and the camera module 200 is in communication with the display device, so that the image obtained by the camera module 200 on the car body 310 can be displayed on the display device in real time, so that the driver can obtain A wider range of environmental information around the car body 310 makes it more convenient and safe for the driver to drive and park.
  • the image information obtained by the camera modules 200 can be synthesized and can be presented on the display device in the form of a top view.
  • the car 30 includes at least four camera modules 200.
  • the camera modules 200 are respectively installed on the front side (such as the air intake grille), the left side (such as the left rearview mirror), and the right side of the car body 310. Such as the right rearview mirror) and the rear side (such as the tail box cover) to build a car surround view system.
  • the car surround view system includes four (or more) camera modules 200 installed on the front, rear, left, and right of the car body 310. Multiple camera modules 200 can simultaneously capture the scene around the car 30, and then the camera module 200 can collect image information After the image processing unit performs the steps of distortion restoration, viewing angle conversion, image stitching, image enhancement, etc., a seamless 360-degree panoramic top view around the car 30 is finally formed and displayed on the display device.
  • the image processing unit performs the steps of distortion restoration, viewing angle conversion, image stitching, image enhancement, etc.
  • a seamless 360-degree panoramic top view around the car 30 is finally formed and displayed on the display device.
  • the blind spots of the driver's vision can be effectively reduced, so that the driver can obtain more information about the road conditions around the car body, thereby reducing the safety hazards of the car during operations such as lane changing, parking, and turning. .
  • a driving recorder is installed in the car 30, and the image information obtained by the camera module 200 can be stored in the driving recorder.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100),由物侧至像侧依次包括具有负屈折力的第一透镜(L1),第一透镜(L1)的物侧面(S1)为凸面,像侧面(S2)为凹面;具有负屈折力的第二透镜(L2),第二透镜(L2)的像侧面(S4)为凹面;具有正屈折力的第三透镜(L3),第三透镜(L3)的物侧面(S5)和像侧面(S6)均为凸面;具有正屈折力的第四透镜(L4),第四透镜(L4)的物侧面(S7)和像侧面(S8)均为凸面;具有屈折力的透镜单元(110);设置于第四透镜(L4)物侧的光阑(STO);光学系统(100)满足:FOV/CRA>10;FOV为光学系统(100)的成像面(S17)对角线方向的视场角,CRA为主光线的入射角。

Description

光学系统、摄像模组及汽车 技术领域
本发明涉及光学成像领域,特别是涉及一种光学系统、摄像模组及汽车。
背景技术
目前常见的摄像头普遍存在视场角小的问题,因此在作为车载摄像设备时,汽车依然存在较大的视野盲区,驾驶者无法获得足够的车身外围景象,特别是当汽车处于高速行驶状态下进行变道时,将无法及时获得侧后方的车辆信息,从而容易出现安全隐患。
发明内容
根据本申请的各种实施例,提供一种光学系统、摄像模组及汽车。
一种光学系统,由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
具有负屈折力的第二透镜,所述第二透镜的像侧面为凹面;
具有正屈折力的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
具有正屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
具有屈折力的透镜单元;
光阑,设置于所述第四透镜的物侧;
且所述光学系统满足以下关系:
FOV/CRA>10;
其中,FOV为所述光学系统的成像面对角线方向的视场角,CRA为主光线的入射角。
一种摄像模组,包括感光元件及上述实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种汽车,包括车体及上述实施例所述的摄像模组,所述摄像模组设置于所述车体,所述摄像模组能够获取所述汽车周围的环境信息。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学系统的示意图;
图2为第一实施例中光学系统的球差图(mm)、像散图(mm)和畸变图(%);
图3为本申请第二实施例提供的光学系统的示意图;
图4为第二实施例中光学系统的球差图(mm)、像散图(mm)和畸变图(%);
图5为本申请第三实施例提供的光学系统的示意图;
图6为第三实施例中光学系统的球差图(mm)、像散图(mm)和畸变图(%);
图7为本申请第四实施例提供的光学系统的示意图;
图8为第四实施例中光学系统的球差图(mm)、像散图(mm)和畸变图(%);
图9为本申请一实施例中应用光学系统的摄像模组的示意图;
图10为本申请一实施例中应用摄像模组的汽车的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
目前常见的摄像头普遍存在视场角小的问题,因此在作为车载摄像设备时,汽车依然存在较大的视野盲区,使驾驶者无法获得足够的车身外围景象,例如当汽车处于高速行驶状态下进行变道时,将无法及时获得侧后方的车辆信息,从而容易出现安全隐患。另外,同类的摄像头还存在着所拍图像整体清晰度不高的问题。为此,本申请通过提供一种光学系统、摄像模组及汽车以解决上述问题。
参考图1,本申请一实施例中的光学系统100由物侧至像侧依次包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及透镜单元110。在一些实施例中的透镜单元110包括第五透镜L5,此时的光学系统100具有五片式结构。在另一些实施例中的透镜单元110包括第五透镜L5及第六透镜L6,此时的光学系统100具六片式结构。
其中的第一透镜L1包括物侧面S1和像侧面S2,第二透镜L2包括物侧面S3和像侧面S4,第三透镜L3包括物侧面S5和像侧面S6,第四透镜L4包括物侧面S7和像侧面S8,第五透镜L5包括物侧面S9和像侧面S10,第六透镜L6包括物侧面S11和像侧面S12。另外,光学系统100还有一成像面S17,成像面S17位于第六透镜L6的像侧,成像面S17可以理解为感光元件的感光表面。但需要注意的是,五片式结构或六片式结构并不意味着光学系统100中只包含了五片透镜或六片透镜,在一些实施例中,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜或第六透镜中的至少一个可以是由两片或多片透镜构成的胶合透镜,即,上述五片式结构的光学系统100实际上可包含六片、七片或更多片的透镜,而六片式结构的光学系统100实际上可包含七片、八片或更多片的透镜。
在一些实施例中,光学系统100中设置光阑STO,光阑STO设置于第四透镜L4的物侧。具体的,一些实施例中的光阑STO可设置于第二透镜L2与第三透镜L3之间,或者设置于第三透镜L3与第四透镜L4之间。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的物侧面和像侧面可以均为球面或均为非球面。在另一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第五透镜L5及第六透镜L6的物侧面和像侧面均为球面,而第四透镜L4的物侧面S7和像侧面S8均为非球面。
透镜的物侧面或像侧面为非球面时,可参考非球面公式:
Figure PCTCN2019106226-appb-000001
其中,Z是非球面上相应点到与表面顶点相切的平面的距离,r是非球面上相应点到光轴的距离,c是非球面顶点的曲率,k是圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
在一些实施例中,第一透镜L1的材质为玻璃,第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质为塑料,从而,最靠近物侧(外界)的第一透镜L1能够较好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,从而还能使光学系统100拥有较低的生产成本。
除了上述各透镜的材质关系外,在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为塑料,此时,塑料材质的透镜能够减少光学系统100的重量并降低生成成本。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5及第六透镜L6的材质均为玻璃,此时,光学系统100能够耐受较高的温度且具有优良的光学性能。
需要注意的是,参考图5,在一些实施例的光学系统100中也可不设置第六透镜L6,此时光学系统100将包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5,即光学系统100具有五片式结构。
对于上述具有五片式结构的光学系统100而言,还可设置光阑STO,光阑STO设置于第四透镜L4的物侧。具体地,光阑STO可设置于第二透镜L2与第三透镜L3之间。
对于上述具有五片式结构的光学系统100而言,在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的物侧面和像侧面可以均为球面或均为非球面。在另一些实施例中,第一透镜L1、第三透镜L3、第四透镜L4及第五透镜L5的物侧面和像侧面均为球面,而第二透镜L2的物侧面S3和像侧面S4均为非球面。
另外,对于上述具有五片式结构的光学系统100而言,第一透镜L1的材质可以为玻璃,第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质可以为为塑料,从而,最靠近物侧(外界)的第一透镜L1能够较好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,从而还能使光学系统100拥有较低的生产成本。
进一步的,在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质均为塑料,此时,塑料材质的透镜能够减少光学系统100的重量并降低生成成本。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及第五透镜L5的材质均为玻璃,此时,光学系统100能够耐受较高的温度且具有优良的光学性能。在另一些实施例,第一透镜L1、第三透镜L3、第四透镜L4及第五透镜L5的材质为玻璃,第二透镜L2的材质为塑料。
在一些实施例中,透镜单元110的像侧设置有玻璃材质的红外滤光片L7。针对五片式结构的光学系统100而言,红外滤光片L7设置于第五透镜L5的像侧;针对六片式结构的光学系统100而言,红外滤光片L7设置于第六透镜L6的像侧。红外滤光片L7包括物侧面S13及像侧面S14。红外滤光片L7用于滤除红外光,防止红外光到达成像面S17,从而防止红外光对正常影像的成像造成影响。红外滤光片L7可与各透镜一同装配以作为光学系统100中的一部分,或者,也可以在光学系统100与感光元件装配成模组时,一并安装至光学系统100与感光元件之间。在一些实施例中,红外滤光片L7也可设置在第一透镜L1的物侧。
在一些实施例中,光学系统100的最后一个透镜的像侧设置有保护玻璃L8,保护玻璃L8设置于红外滤光片L7的像侧,以在组装时能够靠近感光元件,从而保护感光元件。保护玻璃L8包括物侧面S15及像侧面S16。
另外,光学系统100除了包括具有屈折力的透镜外,还可包括光阑STO、滤光片、保护玻璃、感光元件、用于改变入射光路的反射镜等元件。
需要注意的是,以下各涉及关系式的实施例分别包括了光学系统100为五片式结构和六片式结构的情况。
在一些实施例中,光学系统100满足关系:
FOV/CRA>10。其中,FOV为光学系统100的成像面对角线方向的视场角,CRA为主光线的入射角。FOV/CRA可以为10.5、10.6、10.7、10.8或10.9。满足上述关系时,光学系统100具备较大的视场角,以满足手机、车载设备、监控设备、医疗设备等电子产品对大视角的要求,同时还能够减小光线入射至光学系统100的成像面S17的角度,从而提高成像清晰度。
在一些实施例中,光学系统100满足关系:|((cuy s1)*(map s1)-(cuy s2)*(map s2))/2|>0.12。在五片式结构的实施例中,cuy s1为第五透镜L5中物侧面S9的曲率半径(于光轴处)的倒数,map s1为第五透镜L5的物侧面S9的Y方向半孔径,cuy s2为第五透镜L5中像侧面S10的曲率半径(于光轴处)的倒数,map s2为第五透镜L5的像侧面S10的Y方向半孔径。在六片式结构的实施例中,cuy s1为第六透镜L6中物侧面S11的曲率半径(于光轴处)的倒数,map s1为第六透镜L6的物侧面S11的Y方向半孔径,cuy s2为第六透镜L6中像侧面S12的曲率半径(于光轴处)的倒数,map s2为第六透镜L6的像侧面S12的Y方向半孔径。|((cuy s1)*(map s1)-(cuy s2)*(map s2))/2|可以为0.22、0.24、0.25、0.26、0.27或0.28。满足上述关系时,可通过控制五片式结构中的第五透镜L5的曲率半径和Y方向半孔径,以降低第五透镜L5的加工难度;也可通过控制六片式结构中的第六透镜L6的曲率半径和Y方向半孔径,以降低第六透镜L6的加工难度。
需要注意的是,在本申请涉及胶合透镜111的实施例中,当光学系统100具有五片式结构时,胶合透镜111由第四透镜L4和第五透镜L5构成;当光学系统100具有六片式结构时,胶合透镜111由第五透镜L5和第六透镜L6构成。
在一些实施例中,光学系统100满足关系:0<FH/f<10。其中,FH为胶合透镜111的焦距,f为光学系统100的有效焦距。FH/f可以为4.70、4.75、4.80、5.00、5.30、5.70、5.90、6.10、6.15或6.20。满足上述关系时,胶合透镜111能够为光学系统100提供正屈折力,使光学系统100具有广视角、低敏感度及小型化的特性。
在一些实施例中,光学系统100满足关系:ET S6>0.5,ET S6的单位为mm。其中,在五片式结构的实施例中,ET S6为第四透镜L4于最大有效半径处的厚度;在六片式结构的实施例中,ET S6为第五透镜L5于最大有效半径处的厚度。ET S6可以为1.5、1.6、1.7或1.8。满足上述关系时,可通过控制五片式结构中的第五透镜L5或六片式结构中的第六透镜L6的边缘厚度(透镜于最大有效半径处的厚度)来降低胶合透镜111的加工难度。
在一些实施例中,光学系统100满足关系:BFL/TTL>0.2。其中,BFL为光学系统100的光学后焦,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S17于光轴上的距离。BFL/TTL可以为0.24、0.25或0.26。满足上述关系时,光学系统100具备较大的光学后焦,进而拥有远心效果,同时,还能减小光学系统100的敏感度以及长度,以使光学系统100的体积更小。光学后焦为光学系统100中最后一个透镜的像侧面至成像面S17于光轴上的距离,其中的最后一个透镜为光学系统100中最靠近成像面S17的透镜。在五片式结构中,光学系统100的光学后焦为第五透镜L5的像侧面S10至成像面S17于光轴上的距离;在六片式结构中,光学系统100的光学后焦为第六透镜L6的像侧面S12至成像面S17于光轴上的距离。
在一些实施例中,光学系统100满足关系:(SD S2)/(RDY S2)<0.95。其中,SD S2为第一透镜L1的像侧面S2的Y方向半孔径,RDY S2为第一透镜L1的像侧面S2于光轴处的曲率半径。(SD S2)/(RDY S2)可以为0.908、0.912、0.915、0.917或0.918。满足上述关系时,可通过控制第一透镜L1的像侧面S2的曲率半径和Y方向半孔径,以有效控制第一透镜L1的弯曲程度,减小第一透镜L1的加工难度,同时避免由于第一透镜L1由于弯曲程度过大而导致的镀膜不均匀的问题,减小产生鬼影的风险。
在一些实施例中,光学系统100满足关系:-65≤Dist≤65。其中,Dist为光学系统100的光学畸变,单位为%。Dist可以为-64、-63、-62、-61、61、62、63或64。满足上述关系时,可控制光学系统100的畸变量,以减弱广角镜头中普遍存在的畸变过大的现象。
在一些实施例中,光学系统100满足关系:Nd1<1.8;Vd1>25。其中,Nd1为第一透镜L1于d光下的折射率,Vd1为第一透镜L1于d光下的阿贝数。Nd1可以为1.600、1.610、1.630、1.660、1.700、1.730、1.740、1.760或1.765。Vd1可以为50.00、61.00、 53.00、57.00、60.00、60.80、61.00或62.00。满足上述关系时,有利于校正光学系统100的轴外色差,从而提高光学系统100的分辨率。
在一些实施例中,光学系统100满足关系:Nd2>1.9;Vd2<25。其中,Nd2为光学系统100中最靠近像侧的透镜(在五片式结构的方案中,最靠近像侧的透镜为第五透镜L5;在六片式结构的方案中,最靠近像侧的透镜为第六透镜L6)的d光折射率,Vd2为光学系统100中最靠近像侧的透镜的d光阿贝数,d光的波长为587.56nm。Nd2可以为1.928、1.930、1.935、1.950、1.970、1.980、或1.950。Vd2可以为19.40、19.50、19.70、20.00、20.30、20.60、20.70、20.80或20.85。满足上述关系时,有利于校正光学系统100的轴外色差,从而提高光学系统100的分辨率。
在一些实施例中,第一透镜L1的物侧面S1镀有保护膜层。在一些实施例中,光学系统100满足关系:H K>500;F A>50。其中,H K为第一透镜L1的硬度,H K单位为10 7Pa,F A为第一透镜L1的磨耗度,F A单位为%。H K可以为600、610、620、650、680或690。F A可以为70、75、80、90、100、105、110或113。满足上述关系时,第一透镜L1拥有较高的硬度和磨耗度,同时,通过设置保护膜层以使第一透镜L1具备防水防刮功能,可有效防止第一透镜L1受到划伤,防止因刮痕、水滴粘附等问题影响成像质量,并且提高光学系统100的使用寿命。
第一实施例
如图1所示的第一实施例中,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6,从而光学系统100具有六片式结构。另外,第五透镜L5与第六透镜L6胶合以构成胶合透镜111。第六透镜L6的像侧还依次设置有红外滤光片L7以及保护玻璃L8,红外滤光片L7和保护玻璃L8即可属于光学系统100的一部分,或者也可不属于光学系统100。当未设置有红外滤光片L7以及保护玻璃L8时,第六透镜L6的像侧面S12至成像面S17的距离依然为5.499mm。以下各实施例类似,第六透镜L6的像侧面S12至成像面S17的距离与是否设置有红外滤光片L7或保护玻璃L8无关。图2为第一实施例中光学系统100的球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。以下各实施例中的参考波长为587.56nm,另外,以下各实施例中的像散图及畸变图中的纵坐标IMG HT的单位为mm。
第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2的物侧面S3为凸面;第二透镜L2的像侧面S4为凹面。
第三透镜L3的物侧面S5为凸面,第三透镜L3的像侧面S6为凸面。
第四透镜L4的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面。
第五透镜L5的物侧面S9为凸面,第五透镜L5的像侧面S10为凸面。
第六透镜L6的物侧面S11为凹面,第六透镜L6的像侧面S12为凸面。
第一透镜L1的、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的物侧面及像侧面均为球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材质均为玻璃。
光学系统100满足以下关系:
FOV/CRA=10.4。其中,FOV为光学系统100的成像面对角线方向的视场角,CRA为主光线的入射角。满足上述关系时,光学系统100具备较大的视场角,以满足手机、车载设备、监控设备、医疗设备等电子产品对大视角的要求,同时,还能够减小光线入射至位于光学系统100像侧的感光元件的角度,从而提高成像清晰度。
光学系统100满足关系:|((cuy s1)*(map s1)-(cuy s2)*(map s2))/2|=0.21。其中,cuy s1为第六透镜L6中物侧面S11的曲率半径(于光轴处)的倒数,map s1为第六透镜L6的物侧面S11的Y方向半孔径,cuy s2为第六透镜L6中像侧面S12的曲率半径(于光轴处)的倒数,map s2为第六透镜L6的像侧面S12的Y方向半孔径。满足上述关系时,可通过控制第六透镜L6的曲率半径和Y方向半孔径,以降低第六透镜L6的加工难度。需要注意的是,在本申请涉及胶合透镜111的实施例中,当光学系统100具有五片式结构时,胶合透镜111由第四透镜L4和第五透镜L5构成;当光学系统100具有六片式结构时,胶合透镜111由第五透镜L5和第六透镜L6构成。
光学系统100满足关系:FH/f=4.63。其中,FH为胶合透镜111的焦距,f为光学系统100的有效焦距。满足上述关系时,胶合透镜111能够为光学系统100提供正屈折力,使光学系统100具有广视角、低敏感度及小型化的特性。
光学系统100满足关系:ET S6=1.5,ET S6为第五透镜L5于最大有效半径处的厚度,ET S6的单位为mm。满足上述关系时,可通过控制第六透镜L6的边缘厚度(透镜于最大有效半径处的厚度)来降低胶合透镜111的加工难度。
光学系统100满足关系:BFL/TTL=0.26。其中,BFL为光学系统100的光学后焦,TTL为第一透镜L1的物侧面S1至光学系统100的成像面S17于光轴上的距离。满足上述关系时,光学系统100具备较大的光学后焦,进而拥有远心效果,同时,还能减小光学系统100的敏感度以及长度,以使光学系统100的体积更小。
光学系统100满足关系:(SD S2)/(RDY S2)=0.906。其中,SD S2为第一透镜L1的像侧面S2的Y方向半孔径,RDY S2为第一透镜L1的像侧面S2于光轴处的曲率半径。满足上述关系时,可通过控制第一透镜L1的像侧面S2的曲率半径和Y方向半孔径,以有效控制第一透镜L1的弯曲程度,减小第一透镜L1的加工难度,同时避免由于第一透镜L1由于弯曲程度过大而导致的镀膜不均匀的问题,并减小产生鬼影的风险。
光学系统100满足关系:Dist=-65。其中,Dist为光学系统100的光学畸变,单位为%。满足上述关系时,可控制光学系统100的畸变量,以减弱广角镜头中普遍存在的畸变过大的现象。
光学系统100满足关系:Nd1=1.773;Vd1=49.62。其中,Nd1为第一透镜L1于d光下的折射率,Vd1为第一透镜L1于d光下的阿贝数。满足上述关系时,有利于校正光学系统100的轴外色差,从而提高光学系统100的分辨率。
光学系统100满足关系:Nd2=2.003;Vd2=19.32。其中,Nd2为光学系统100中最靠近像侧的透镜(五片式结构的方案中为第五透镜L5,六片式结构的方案中为第六透镜L6)的d光折射率,Vd2为光学系统100中最靠近像侧的透镜的d光阿贝数。满足上述关系时,有利于校正光学系统100的轴外色差,从而提高光学系统100的分辨率。
第一透镜L1的物侧面S1镀有保护膜层且光学系统100满足关系:H K=700;F A=65。其中,H K为第一透镜L1的硬度,H K单位为10 7Pa,F A为第一透镜L1的磨耗度,F A单位为%。满足上述关系时,第一透镜L1拥有较高的硬度和磨耗度,同时,通过设置保护膜层以使第一透镜L1具备防水防刮功能,可有效防止第一透镜L1受到划伤,防止因刮痕、水滴粘附等问题影响成像质量,并且提高光学系统100的使用寿命。
在第一实施例中,光学系统100的焦距f=2.8923mm,光圈值FNO=2.1,对角线方向视场角的一半(1/2)FOV=73度(deg.)。
另外,光学系统100的各参数由表1给出。由物面至成像面S17的各元件依次按照表1从上至下的各元件的顺序排列。面序号1和2分别表示第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于近轴处的曲率半径。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透 镜的物侧面于光轴上的距离。面序号6中的“厚度”参数为第三透镜L3的像侧面S6至光阑STO的距离。光阑STO于“厚度”参数列中的数值为光阑STO至后一透镜的物侧面顶点(顶点指透镜与光轴的交点)于光轴上的距离,我们默认第一透镜L1物侧面到最后一枚镜片像侧面的方向为光轴的正方向,当该值为负时,表明光阑STO设置于透镜的物侧面顶点的右侧,当光阑STO的“厚度”参数为正值时,光阑STO在透镜物侧面顶点的左侧。面序号12中的“厚度”参数值为第六透镜L6的像侧面S12至红外滤光片L7的物侧面S13于光轴上的距离。红外滤光片L7于“厚度”参数中面序号13所对应的数值为红外滤光片L7的像侧面S14至保护玻璃L8的物侧面S15于光轴上的距离。
另外,以下各实施例中,各透镜的折射率、阿贝数和焦距为参考波长下的数值,参考波长为587.56nm。
表1
Figure PCTCN2019106226-appb-000002
第二实施例
如图3所示的第二实施例中,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、光阑STO、具有正屈折力的第四透镜L4、具有正屈折力的第五透镜L5以及具有负屈折力的第六透镜L6,从而光学系统100具有六片式结构。另外,第五透镜L5与第六透镜L6胶合以构成胶合透镜111。第六透镜L6的像侧还依次设置有红外滤光片L7以及保护玻璃L8,红外滤光片L7和保护玻璃L8即可属于光学系统100的一部分,或者也可不属于光学系统100。图4为第二实施例中光学系统100的球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2的物侧面S3为凹面;第二透镜L2的像侧面S4为凹面。
第三透镜L3的物侧面S5为凸面,第三透镜L3的像侧面S6为凸面。
第四透镜L4的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面。
第五透镜L5的物侧面S9为凸面,第五透镜L5的像侧面S10为凸面。
第六透镜L6的物侧面S11为凹面,第六透镜L6的像侧面S12为凸面。
第一透镜L1的、第二透镜L2、第三透镜L3、第五透镜L5和第六透镜L6的物侧面及像侧面均为球面,第四透镜L4的物侧面S7和像侧面S8为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6的材质均为玻璃。
在第二实施例中,光学系统100的有效焦距f=2.8761mm,光圈值FNO=2.1,对角线方向视场角的一半(1/2)FOV=71度(deg.)。
另外,光学系统100的各参数由表3和表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表4为表3中各透镜的非球面表面的相关参数表,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表3
Figure PCTCN2019106226-appb-000003
表4
Figure PCTCN2019106226-appb-000004
Figure PCTCN2019106226-appb-000005
根据上述所提供的各参数信息可推得以下数据:
Figure PCTCN2019106226-appb-000006
第三实施例
如图5所示的第三实施例中,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5,从而光学系统100具有五片式结构。另外,第四透镜L4与第五透镜L5胶合以构成胶合透镜111。第五透镜L5的像侧还依次设置有红外滤光片L7以及保护玻璃L8,红外滤光片L7和保护玻璃L8即可属于光学系统100的一部分,或者也可不属于光学系统100。图6为第三实施例中光学系统100的球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2的物侧面S3为凹面;第二透镜L2的像侧面S4为凹面。
第三透镜L3的物侧面S5为凸面,第三透镜L3的像侧面S6为凸面。
第四透镜L4的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面。
第五透镜L5的物侧面S9为凹面,第五透镜L5的像侧面S10为凸面。
第一透镜L1、第三透镜L3、第四透镜L4和第五透镜L5的物侧面及像侧面均为球面,第二透镜L2的物侧面S3和像侧面S4为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4和第五透镜L5的材质均为玻璃。
在第三实施例中,光学系统100的有效焦距f=3.0mm,光圈值FNO=2.0,对角线方向视场角的一半(1/2)FOV=72度(deg.)。
另外,光学系统100的各参数由表5和表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表6为表5中各透镜的非球面表面的相关参数表,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表5
Figure PCTCN2019106226-appb-000007
Figure PCTCN2019106226-appb-000008
表6
Figure PCTCN2019106226-appb-000009
根据上述所提供的各参数信息可推得以下数据:
Figure PCTCN2019106226-appb-000010
第四实施例
如图7所示的第四实施例中,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5,从而光学系统100具有五片式 结构。另外,第四透镜L4与第五透镜L5胶合以构成胶合透镜111。第五透镜L5的像侧还依次设置有红外滤光片L7以及保护玻璃L8,红外滤光片L7和保护玻璃L8即可属于光学系统100的一部分,或者也可不属于光学系统100。图8为第四实施例中光学系统100的球差图(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
第一透镜L1的物侧面S1为凸面,第一透镜L1的像侧面S2为凹面。
第二透镜L2的物侧面S3为凹面;第二透镜L2的像侧面S4为凹面。
第三透镜L3的物侧面S5为凸面,第三透镜L3的像侧面S6为凸面。
第四透镜L4的物侧面S7为凸面,第四透镜L4的像侧面S8为凸面。
第五透镜L5的物侧面S9为凹面,第五透镜L5的像侧面S10为凸面。
第一透镜L1、第三透镜L3、第四透镜L4和第五透镜L5的物侧面及像侧面均为球面,第二透镜L2的物侧面S3和像侧面S4为非球面。
第一透镜L1、第三透镜L3、第四透镜L4和第五透镜L5的材质均为玻璃,第二透镜L2的材质为塑料。
在第四实施例中,光学系统100的有效焦距f=2.99mm,光圈值FNO=2.0,对角线方向视场角的一半(1/2)FOV=71.9度(deg.)。
另外,光学系统100的各参数由表7和表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。表8为表7中各透镜的非球面表面的相关参数表,K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表7
Figure PCTCN2019106226-appb-000011
表8
Figure PCTCN2019106226-appb-000012
Figure PCTCN2019106226-appb-000013
根据上述所提供的各参数信息可推得以下数据:
Figure PCTCN2019106226-appb-000014
参考图9,在一些实施例中,光学系统100可与感光元件210一同装配成摄像模组200,感光元件210设置在光学系统100的像侧。感光元件210可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。通过采用光学系统100,摄像模组200将具备大视角特性,且能够提高成像清晰度。
在一些实施例中,光学系统100中的透镜与感光元件210相对固定,此时摄像模组200为定焦模组。在另一些实施例中,也可通过配置驱动马达以使感光元件210能够相对光学系统100中的透镜相对移动,以实现对焦功能。
摄像模组200可应用于智能手机、智能手表、汽车、监控、医疗等领域,具体可作为手机摄像模组、车载摄像模组或监控摄像模组。当摄像模组200应用于设备中时,设备将拥有大视角特性,并能够提高成像清晰度。
参考图10,在一些实施例中,当摄像模组200作为车载摄像头应用于汽车30时,摄像模组200可作为汽车30的前视摄像头、后视摄像头或侧视摄像头。具体地,汽车30包括车体310,摄像模组200可安装于车体310的前侧(如进气格栅处)、左前大灯、右前大灯、左后视镜、右后视镜、车尾箱盖板、车顶等任意位置。其次,也可在汽车30内设置显示设备,摄像模组200与显示设备通信连接,从而,车体310上的摄像模组200所获得的影像能够在显示设备上实时显示,让驾驶者能够获得车体310四周更大范围的环境信息,使驾驶者在行车和泊车时更为方便及安全。当设置有多个摄像模组200以获取不同方位的景象时,摄像模组200所获得的影像信息能够被合成,并能够以俯视图的形式呈现在显示设备上。
具体地,汽车30包括至少四个摄像模组200,摄像模组200分别安装在车体310的前侧(如进气格栅处)、左侧(如左后视镜处)、右侧(如右后视镜处)及后侧(如车尾箱盖板处),以构建汽车环视系统。汽车环视系统包括安装在车体310前后左右的四个(或更多个)摄像模组200,多个摄像模组200可同时采集汽车30四周的景象,随后经摄像模组200采集到图像信息经过图像处理单元进行畸变还原、视角转化、图像拼接、图像增强等步骤,最终形成一幅汽车30四周的无缝隙的360度全景俯视图,并于显示设备上显 示。当然,除了显示全景图,也可以显示任何一方位的单侧视图。另外,显示设备上也可配置配制与显示图像对应的标尺线以方便驾驶者准确地确定障碍物的方位和距离。
通过采用上述摄像模组200,可有效减少驾驶者的视野盲区,使驾驶者能够获得更多的车体外围的路况信息,从而能够降低汽车在变道、泊车、转弯等操作时的安全隐患。
在一些实施例中,汽车30中安装有行车记录仪,摄像模组200所获得的影像信息能够存储至行车记录仪中。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的物侧面为凸面,像侧面为凹面;
    具有负屈折力的第二透镜,所述第二透镜的像侧面为凹面;
    具有正屈折力的第三透镜,所述第三透镜的物侧面和像侧面均为凸面;
    具有正屈折力的第四透镜,所述第四透镜的物侧面和像侧面均为凸面;
    具有屈折力的透镜单元;
    光阑,设置于所述第四透镜的物侧;
    且所述光学系统满足以下关系:
    FOV/CRA>10;
    其中,FOV为所述光学系统的成像面对角线方向的视场角,CRA为主光线的入射角。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    BFL/TTL>0.2;
    其中,BFL为所述光学系统的光学后焦,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    (SD S2)/(RDY S2)<0.95;
    其中,SD S2为所述第一透镜的像侧面的Y方向半孔径,RDY S2为所述第一透镜的像侧面的曲率半径。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    -65≤Dist≤65;
    其中,Dist为所述光学系统的光学畸变,单位为%。
  5. 根据权利要求1所述的光学系统,其特征在于,满足以下关系:
    Nd1<1.8;Vd1>25;
    其中,Nd1为所述第一透镜于d光下的折射率,Vd1为所述第一透镜于d光下的阿贝数。
  6. 根据权利要求1所述的光学系统,其特征在于,所述第一透镜的物侧面镀有保护膜层。
  7. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下关系:
    H K>500;F A>50;
    其中,H K为所述第一透镜的硬度,H K单位为10 7Pa,F A为所述第一透镜的磨耗度,F A单位为%。
  8. 根据权利要求1所述的光学系统,其特征在于,所述光学系统满足以下关系:
    Nd2>1.9;Vd2<25;
    其中,Nd2为所述光学系统中最靠近像侧的透镜的d光折射率,Vd2为所述光学系统中最靠近像侧的透镜的d光阿贝数。
  9. 根据权利要求1所述的光学系统,其特征在于,包括光阑,所述光阑设置于所述第二透镜与所述第三透镜之间,或所述光阑设置于所述第三透镜与所述第四透镜之间。
  10. 根据权利要求1所述的光学系统,其特征在于,所述透镜单元包括第五透镜,所述第五透镜的像侧面为凸面,所述第四透镜与所述第五透镜组成胶合透镜。
  11. 根据权利要求10所述的光学系统,其特征在于,满足以下关系:
    |((cuy s1)*(map s1)-(cuy s2)*(map s2))/2|>0.12;
    其中,cuy s1为所述第五透镜中物侧面的曲率半径的倒数,map s1为所述第五透镜的物侧面的Y方向半孔径,cuy s2为所述第五透镜中像侧面的曲率半径的倒数,map s2为所述第五透镜的像侧面的Y方向半孔径。
  12. 根据权利要求10所述的光学系统,其特征在于,满足以下关系:
    0<FH/f<10;
    其中,FH为所述胶合透镜的焦距,f为所述光学系统的有效焦距。
  13. 根据权利要求10所述的光学系统,其特征在于,满足以下关系:
    ET S6>0.5;
    其中,ET S6为所述第四透镜于最大有效半径处的厚度,ET S6的单位为mm。
  14. 根据权利要求1所述的光学系统,其特征在于,所述透镜单元包括具有屈折力的第五透镜和具有负屈折力的第六透镜,所述第六透镜设置于所述第五透镜的像侧,所述第五透镜的像侧面为凸面,所述第六透镜的物侧面为凹面,所述第六透镜的像侧面为凸面,所述第五透镜与所述第六透镜组成胶合透镜。
  15. 根据权利要求14所述的光学系统,其特征在于,满足以下关系:
    |((cuy s1)*(map s1)-(cuy s2)*(map s2))/2|>0.12;
    其中,cuy s1为所述第六透镜中物侧面的曲率半径的倒数,map s1为所述第六透镜的物侧面的Y方向半孔径,cuy s2为所述第六透镜中像侧面的曲率半径的倒数,map s2为所述第六透镜的像侧面的Y方向半孔径。
  16. 根据权利要求14所述的光学系统,其特征在于,满足以下关系:
    0<FH/f<10;
    其中,FH为所述胶合透镜的焦距,f为所述光学系统的有效焦距。
  17. 根据权利要求14所述的光学系统,其特征在于,满足以下关系:
    ET S6>0.5;
    其中,ET S6为所述第五透镜于最大有效半径处的厚度,ET S6的单位为mm。
  18. 根据权利要求14所述的光学系统,其特征在于,包括用于滤除红外光的红外滤光片,所述红外滤光片设置于所述透镜单元的像侧。
  19. 一种摄像模组,其特征在于,包括感光元件及权利要求1至18任意一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  20. 一种汽车,其特征在于,包括车体及权利要求19所述的摄像模组,所述摄像模组设置于所述车体,所述摄像模组能够获取所述汽车周围的环境信息。
PCT/CN2019/106226 2019-09-17 2019-09-17 光学系统、摄像模组及汽车 WO2021051277A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/760,754 US20220342180A1 (en) 2019-09-17 2019-09-17 Optical system, camera module, and automobile
PCT/CN2019/106226 WO2021051277A1 (zh) 2019-09-17 2019-09-17 光学系统、摄像模组及汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106226 WO2021051277A1 (zh) 2019-09-17 2019-09-17 光学系统、摄像模组及汽车

Publications (1)

Publication Number Publication Date
WO2021051277A1 true WO2021051277A1 (zh) 2021-03-25

Family

ID=74883426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106226 WO2021051277A1 (zh) 2019-09-17 2019-09-17 光学系统、摄像模组及汽车

Country Status (2)

Country Link
US (1) US20220342180A1 (zh)
WO (1) WO2021051277A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010375A1 (en) * 2011-07-05 2013-01-10 Asia Optical Co. Inc. Miniaturized lens assembly
CN204462508U (zh) * 2015-03-09 2015-07-08 襄阳锦翔光电科技股份有限公司 一种超广角成像镜头
CN108333730A (zh) * 2018-04-12 2018-07-27 厦门爱劳德光电有限公司 一种高清超广角日夜共焦镜头
CN109212722A (zh) * 2018-11-27 2019-01-15 浙江舜宇光学有限公司 光学透镜组
CN109459838A (zh) * 2018-12-28 2019-03-12 福建福光天瞳光学有限公司 广角高分辨率车载光学系统及成像方法
CN209167643U (zh) * 2018-11-28 2019-07-26 福建福光股份有限公司 一种低主光线入射角超广角光学系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010375A1 (en) * 2011-07-05 2013-01-10 Asia Optical Co. Inc. Miniaturized lens assembly
CN204462508U (zh) * 2015-03-09 2015-07-08 襄阳锦翔光电科技股份有限公司 一种超广角成像镜头
CN108333730A (zh) * 2018-04-12 2018-07-27 厦门爱劳德光电有限公司 一种高清超广角日夜共焦镜头
CN109212722A (zh) * 2018-11-27 2019-01-15 浙江舜宇光学有限公司 光学透镜组
CN209167643U (zh) * 2018-11-28 2019-07-26 福建福光股份有限公司 一种低主光线入射角超广角光学系统
CN109459838A (zh) * 2018-12-28 2019-03-12 福建福光天瞳光学有限公司 广角高分辨率车载光学系统及成像方法

Also Published As

Publication number Publication date
US20220342180A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5065159B2 (ja) 撮像レンズおよび撮像装置
US9274313B2 (en) Wide-angle imaging lens and imaging apparatus
JP5462466B2 (ja) 撮像レンズおよび撮像装置
JP4815319B2 (ja) 撮像レンズ及びこれを備えたカメラ装置
JP5042767B2 (ja) 撮像レンズおよび撮像装置
US20090009888A1 (en) Imaging lens and imaging device
JP6066424B2 (ja) 撮像レンズおよび撮像装置
WO2022032573A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN112835184A (zh) 光学系统、摄像模组、电子设备及汽车
CN111258030A (zh) 光学系统、摄像模组、电子装置及汽车
WO2021217618A1 (zh) 光学系统、摄像模组、电子设备及汽车
CN111258028A (zh) 光学系统、摄像模组、电子装置及汽车
CN211698386U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021022500A1 (zh) 光学系统、摄像模组及汽车
WO2021223137A1 (zh) 光学成像镜头、取像模组、电子装置及驾驶装置
CN111239967A (zh) 光学系统、摄像模组、电子装置及汽车
CN112526731A (zh) 光学系统、摄像模组及汽车
CN112285883B (zh) 一种超广角光学系统及其成像方法
CN211698381U (zh) 光学系统、摄像模组、电子装置及汽车
WO2021051277A1 (zh) 光学系统、摄像模组及汽车
WO2021184208A1 (zh) 摄像镜头、取像装置、电子装置及驾驶装置
WO2021184212A1 (zh) 光学镜头、成像模组、电子装置及驾驶装置
CN211478748U (zh) 光学系统、摄像模组及汽车
WO2021184213A1 (zh) 光学系统、摄像模组、电子装置及汽车
CN101149464A (zh) 摄像透镜及具备此的摄像机装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946074

Country of ref document: EP

Kind code of ref document: A1