WO2021047291A1 - 序列生成方法、装置和存储介质 - Google Patents

序列生成方法、装置和存储介质 Download PDF

Info

Publication number
WO2021047291A1
WO2021047291A1 PCT/CN2020/103195 CN2020103195W WO2021047291A1 WO 2021047291 A1 WO2021047291 A1 WO 2021047291A1 CN 2020103195 W CN2020103195 W CN 2020103195W WO 2021047291 A1 WO2021047291 A1 WO 2021047291A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
phase
odd
numbered
reference signal
Prior art date
Application number
PCT/CN2020/103195
Other languages
English (en)
French (fr)
Inventor
华健
辛雨
徐俊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20862579.8A priority Critical patent/EP4030714A4/en
Priority to KR1020227011515A priority patent/KR20220054882A/ko
Priority to US17/641,944 priority patent/US20220360391A1/en
Publication of WO2021047291A1 publication Critical patent/WO2021047291A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2032Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner
    • H04L27/2053Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases
    • H04L27/206Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers
    • H04L27/2067Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states
    • H04L27/2078Modulator circuits; Transmitter circuits for discrete phase modulation, e.g. in which the phase of the carrier is modulated in a nominally instantaneous manner using more than one carrier, e.g. carriers with different phases using a pair of orthogonal carriers, e.g. quadrature carriers with more than two phase states in which the phase change per symbol period is constrained
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2615Reduction thereof using coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to a wireless communication network, for example, to a sequence generation method, device, and storage medium.
  • PA power amplifier
  • the embodiments of the present application provide a sequence generation method, device, and storage medium, which effectively reduce the PAPR of the reference signal sequence.
  • the embodiment of the present application provides a sequence generation method, including:
  • the multiple elements in the first sequence are in plural form, and the modulus values of the multiple elements are the same, and the phase difference between any two adjacent elements is less than ⁇ /2, the modulus value is the amplitude, Used to characterize signal strength.
  • An embodiment of the present application provides a sequence generation device, including:
  • a generating module configured to generate a first sequence according to a pre-generated random sequence
  • a determining module configured to use the first sequence as a reference signal sequence
  • the multiple elements in the first sequence are in plural form, and the modulus values of the multiple elements are the same, and the phase difference between any two adjacent elements is less than ⁇ /2, the modulus value is the amplitude, Used to characterize signal strength.
  • An embodiment of the present application provides a storage medium that stores a computer program, and the computer program is executed by a processor to implement the sequence generation method described in any embodiment.
  • FIG. 1 is a flowchart of a method for sending feedback information provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of generating a reference signal sequence provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of generating another reference signal sequence provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of generating a DMRS sequence provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of generating a PTRS sequence provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of generating an SRS sequence provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of generating a GI sequence provided by an embodiment of the present application.
  • Fig. 8 is a structural block diagram of a sequence generation device provided by an embodiment of the present application.
  • Fig. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • DFT-s-OFDM Orthogonal Frequency Division Multiplexing
  • CP-OFDM cyclic prefix-orthogonal frequency division multiplexing
  • the reference signal selects Zadoff-Chu sequence (ie ZC sequence) or 1/2 ⁇ binary phase shift keying (Binary Phase Shift Keying, BPSK) sequence, which can reduce PAPR.
  • the PAPR of the ZC sequence or 1/2 ⁇ BPSK sequence is still high, and other sequences can be used to obtain a lower PAPR to meet the 5th Generation mobile communication system (5G) or 6G lower PAPR requirements Application scenarios, such as when the overhead of the reference signal sequence is large.
  • 5G 5th Generation mobile communication system
  • 6G 6th Generation mobile communication system
  • the embodiment of the present application provides a sequence generation method to provide a reference signal sequence with lower PAPR.
  • Fig. 1 is a flowchart of a sequence generation method provided by an embodiment of the present application. This embodiment is applicable to the case of generating a lower PAPR reference signal sequence. This embodiment can be executed by a base station or by a UE.
  • the method provided in this embodiment includes S120-S140.
  • S120 Generate a first sequence according to a pre-generated random sequence.
  • the multiple elements in the first sequence are in plural form, and the modulus of the multiple elements is the same, and the phase difference between any two adjacent elements is less than ⁇ /2, and the modulus is the amplitude, which is used to characterize the signal strength.
  • a random sequence may be generated in advance, and then the first sequence is generated according to the random sequence, and the first sequence is used as the reference signal sequence.
  • the random sequence may be a pseudo-random sequence.
  • the modulus values of multiple elements in the first sequence are the same, which can reduce the PAPR of the signal after oversampling the reference signal sequence in DFT-s-OFDM.
  • the modulus of each element refers to the amplitude of the signal, a parameter used to characterize the signal strength.
  • the phase difference between any two adjacent elements in the first sequence is less than ⁇ /2.
  • the phase difference between any two adjacent elements in the first sequence is ⁇ /4 or Less than ⁇ /4.
  • the phase difference between any two adjacent elements in the first sequence is smaller, which can reduce the PAPR of the reference signal.
  • the phase difference between the first element and the last element in the first sequence is less than ⁇ /2. In an embodiment, the phase difference between the first element and the last element in the first sequence is ⁇ /4 or less than ⁇ /4. In an embodiment, the phase difference between the first element and the last element in the first sequence is ⁇ /4, so that the first sequence can be connected end to end, and the PAPR of the signal after oversampling is lower.
  • the first sequence includes: an odd bit sequence and an even bit sequence; the phase difference between any two adjacent elements in the odd bit sequence is ⁇ /2, and the phase difference between any two adjacent elements in the even bit sequence The phase difference between is ⁇ /2 or 0.
  • the first sequence is decomposed into an odd bit sequence and an even bit sequence, and the phase of each element in the odd bit sequence and the even bit sequence is limited, so as to facilitate the generation of the first sequence and make the generated
  • the first sequence has enough randomness, and the power in the frequency domain is relatively stable.
  • the odd bit sequence is a 1/2 ⁇ BPSK sequence.
  • the odd bit sequence is set to a 1/2 ⁇ BPSK sequence to facilitate the generation of the first sequence and to make the first sequence sufficiently random.
  • the phase average of two elements adjacent to the current element is taken as the phase of the current element
  • the first element set includes: All elements except one element.
  • the phase average of the second-to-last element and the first element in the first sequence is used as the phase of the last element in the even-numbered bit sequence.
  • the phase of all elements except the last element in the even-numbered bit sequence can be calculated from the phase average of the two elements adjacent to the element in the first sequence; the phase of the last element in the even-numbered bit sequence
  • the phase can be calculated from the mean value of the phase of the penultimate element and the first element in the first sequence.
  • the even-numbered bit sequence generated based on the odd-numbered bit sequence can satisfy the requirement that the adjacent phase difference of the first sequence is 1/4 ⁇ , so that the PAPR can be reduced.
  • the phase of the current element when the current element is included in the second element set, if the phase of the previous odd-numbered element adjacent to the current element is 3/4 ⁇ , then the phase of the current element is adjusted to ⁇ ; second The element set includes: all the elements whose phase is 0 in the even bit sequence. In the embodiment, for an element with a phase of 0 in the even-numbered sequence, if the phase of the previous odd-numbered element adjacent to the element is 3/4 ⁇ , the phase of the element in the even-numbered sequence is adjusted to ⁇ to correct Error in phase interpolation.
  • the modulus value of each element in the first sequence is 1. In the embodiment, the modulus value of each element in the first sequence is set to 1, in order to facilitate power normalization.
  • the phase of each element in the first sequence includes: -3/4 ⁇ , -1/2 ⁇ , -1/4 ⁇ , 0, 1/4 ⁇ , 1/2 ⁇ , 3/4 ⁇ , or ⁇ .
  • the method for determining the phase of each element in the even-numbered sequence includes: rotating 1/4 ⁇ or -1/4 ⁇ according to the previous odd-numbered element adjacent to the current element to obtain the phase, and satisfy the phase of the current element.
  • the phase difference between adjacent odd-numbered elements is 1/4 ⁇ .
  • the phase of each element in the even bit sequence can be obtained by rotating the previous odd bit element by 1/4 ⁇ or -1/4 ⁇ , where the rotated element satisfies the following conditions, that is, the rotated element and the The phase difference between the next odd-numbered element adjacent to the element is 1/4 ⁇ .
  • generating the first sequence according to the pre-generated random sequence includes: the relationship between the first sequence d(n) and the random sequence b(m) is:
  • eq (a, b) is a function to determine the equality, if a and b are equal, the result is 1, and unequal is 0.
  • eq(b(i),b(i+1)) means that when b(i) and b(i+1) are equal, the result of the eq function is 1; in b(i) and When b(i+1) is not equal, the result of the eq function is 0.
  • generating the first sequence according to a pre-generated random sequence includes:
  • generating an odd-numbered sequence according to a pre-generated random sequence includes: the relationship between the odd-numbered sequence d1(m) and the random sequence b(m) is:
  • m 1, 2, 3,...M
  • mod is the remainder function
  • j represents the imaginary part of the complex number
  • generating an even bit sequence according to an odd bit sequence includes: the modulus value of each element in the even bit sequence is the same as the modulus value of each element in the odd bit sequence; the phase of the current element in the even bit sequence is odd The average value of the phase of the two elements adjacent to the current element in the bit sequence.
  • generating the first sequence according to the odd-numbered sequence and the even-numbered sequence includes: sequentially inserting an element in the even-numbered sequence between adjacent two elements in the odd-numbered sequence.
  • the odd bit sequence d1(m) can be generated by the relationship between the odd bit sequence d1(m) and the random sequence b(m), and then the modulus and odd bit positions of each element in the even bit sequence can be configured
  • the modulus value of each element in the sequence is the same, and the phase of the current element in the even-numbered sequence is set to the phase average of the two adjacent elements in the odd-numbered sequence, and finally the odd-numbered sequence is put into the odd number of the first sequence Bits, and put the even-numbered bit sequence into the even-numbered bit of the first sequence.
  • the element whose phase is 0 in the even bit sequence, and the absolute value of the phase of the element with the same number as the element whose phase is 0 in the even bit sequence in the odd bit sequence of adding one element is 1/4 ⁇ , and the even bit sequence is The phase of the element whose phase is 0 is changed to ⁇ .
  • the random sequence includes: a pseudo random sequence (ie, a pseudo noise (PN) sequence), a Gold sequence, or an m sequence.
  • PN pseudo noise
  • the random sequence may be a pseudo-random sequence, a Gold sequence, or an m sequence, so that the phase of the reference signal corresponding to the generated reference signal sequence has sufficient randomness, and the power in the frequency domain is relatively stable.
  • the odd-digit sequence d1(m) can be generated according to the relationship between the odd-digit sequence d1(m) and the random sequence b(m).
  • the corresponding d1(m) can be obtained according to the relational expression of d1(m) and b(m).
  • the relationship between d1(m) and b(m) can be:
  • the first sequence d(n) is a reference signal sequence of length N, so that it has a lower PAPR.
  • FIG. 2 is a schematic diagram of generating a reference signal sequence provided by an embodiment of the present application.
  • the random sequence is the Gold sequence, denoted as b(m)
  • the corresponding d1(m) is obtained according to the relationship between d1(m) and b(m), for example, d1(m) is 1/ 2 ⁇ BPSK sequence, increase d1(m) by 1 bit to get d1'(m'), and get the modulus and phase of the corresponding element in the even bit sequence by the modulus and phase of each element in the odd bit sequence, that is, get the even number
  • the even bit sequence is inserted into the odd bit sequence to obtain the first sequence d(n), that is, the reference signal sequence d(n).
  • the first sequence d(n) can be generated according to the relationship between the first sequence d(n) and the random sequence b(m).
  • the relationship between d(n) and b(m) can be:
  • the first sequence d(n) is a reference signal sequence of length N, which has a lower PAPR.
  • FIG. 3 is a schematic diagram of generating another reference signal sequence provided by an embodiment of the present application.
  • the random sequence is the Gold sequence, denoted as b(m)
  • b(m) is increased by 1 bit to obtain b'(m'), according to the difference between d(n) and b(m)
  • the relational expression obtains the first sequence d(n), that is, the reference signal sequence d(n).
  • the reference signal sequence includes: a demodulation reference signal (DeModulation Reference Signal, DMRS) sequence, a phase tracking reference signal (Phase-Tracking Reference Signals, PTRS) sequence, or a sounding reference signal (Sounding Reference Signal, SRS) sequence .
  • DMRS Demodulation Reference Signal
  • PTRS Phase-Tracking Reference Signals
  • SRS Sounding Reference Signal
  • the sequence generation method further includes: performing a discrete Fourier transform on the first sequence to obtain a DMRS frequency domain sequence.
  • the first sequence may be used as a DMRS sequence.
  • the relationship between d(n) and b(m) can be:
  • the first sequence d(n) is a reference signal sequence of length N. If the reference signal sequence is a DMRS sequence, the generated first sequence d(n) is subjected to Discrete Fourier Transform (DFT), namely The frequency domain sequence of the DMRS can be obtained, and the DMRS frequency domain sequence is put into the time-frequency resource where the DMRS of DFT-s-OFDM is located, and sent as a DMRS, which has a lower PAPR.
  • DFT Discrete Fourier Transform
  • FIG. 4 is a schematic diagram of generating a DMRS sequence provided by an embodiment of the present application.
  • the random sequence is used as the Gold sequence, denoted as b(m), and b(m) is increased by 1 bit to obtain b'(m').
  • the relational expression obtains the first sequence d(n), that is, the reference signal sequence d(n).
  • the frequency domain sequence of the DMRS is put into the time-frequency resource where the DMRS of DFT-S-OFDM is located, and sent as a DMRS.
  • the first sequence may be used as the PTRS sequence.
  • the generated sequences d1(n) and d2(n) are used as PTRS sequences, and the PTRS sequences are placed at both ends of the OFDM symbol before one DFT of DFT-s-OFDM, and sent as PTRS with lower PAPR.
  • FIG. 5 is a schematic diagram of generating a PTRS sequence provided by an embodiment of the present application.
  • the random sequence is used as the Gold sequence, denoted as b1(m) and b2(m), and b1(m) and b2(m) are increased by one bit to obtain b1'(m') and b1' (m'), according to the relationship between d(n) and b(m), the first sequence d1(n) and d2(n) are obtained, namely the reference signal PTRS1, denoted as d1(n), the reference signal PTRS2, Denoted as d2(n).
  • d1(n) and d2(n) can be put into the two ends (that is, the head end and the end) of an OFDM symbol before DFT of DFT-s-OFDM, respectively, and sent as PTRS, thus having Lower PAPR.
  • the sequence generation method further includes: performing discrete Fourier transform on the first sequence to obtain the SRS frequency domain sequence.
  • the first sequence may be used as the SRS sequence.
  • the relationship between d(n) and b(m) can be:
  • the first sequence d(n) is a reference signal sequence of length N. If the reference signal sequence is an SRS sequence, DFT transform is performed on the generated first sequence d(n) to obtain the frequency domain sequence of the SRS. The frequency domain sequence of the SRS is put into the time-frequency resource where the SRS of the DFT-s-OFDM is located, and sent as an SRS, which has a lower PAPR.
  • FIG. 6 is a schematic diagram of generating an SRS sequence provided in an embodiment of the present application.
  • the random sequence is used as the Gold sequence, denoted as b(m), and b(m) is increased by 1 bit to obtain b'(m').
  • the relational expression obtains the first sequence d(n), that is, the reference signal sequence d(n).
  • Perform DFT transformation on the generated d(n) to obtain the frequency domain sequence of the SRS, and then put the frequency domain sequence of the SRS into the time-frequency resource where the SRS of DFT-S-OFDM is located, and send it as the SRS.
  • the sequence generation method further includes: using the first sequence as a Guard Interval (GI) sequence.
  • the first sequence may also be a known sequence such as a GI sequence.
  • using the first sequence as the GI sequence includes: putting the first sequence into the front end of one OFDM symbol before the DFT of the DFT-s-OFDM as the GI sequence.
  • the first sequence is used as the GI sequence.
  • the relationship between d(n) and b(m) can be:
  • the generated sequence d1(n) is used as a GI sequence, and the GI sequence is put into the front end of an OFDM symbol before DFT of DFT-s-OFDM, and sent as a GI with a lower PAPR.
  • FIG. 7 is a schematic diagram of generating a GI sequence provided by an embodiment of the present application.
  • the random sequence is the Gold sequence, denoted as b1(m)
  • b1(m) is increased by 1 bit to obtain b1'(m'), according to the difference between d(n) and b(m)
  • d1(n) can be put into the front end (ie, the head end) of one OFDM symbol before DFT of DFT-s-OFDM, and sent as GI, thereby having lower PAPR.
  • Fig. 8 is a structural block diagram of a sequence generation device provided by an embodiment of the present application.
  • the sequence generating apparatus provided in this embodiment includes: a generating module 220 and a determining module 240.
  • the generating module 220 is configured to generate a first sequence according to a pre-generated random sequence; the determining module 240 is configured to use the first sequence as a reference signal sequence; wherein, multiple elements in the first sequence are in plural form, and multiple elements
  • the modulus of is the same, and the phase difference between any two adjacent elements is less than ⁇ /2, and the modulus is the amplitude, which is used to characterize the signal strength.
  • the sequence generation device provided in this embodiment is configured to implement the sequence generation method of the embodiment shown in FIG. 1.
  • the implementation principles and technical effects of the sequence generation device provided in this embodiment are similar, and will not be repeated here.
  • the phase difference between the first element and the last element in the first sequence is less than ⁇ /2.
  • the phase difference between any two adjacent elements in the first sequence is ⁇ /4 or less than ⁇ /4.
  • the phase difference between the first element and the last element in the first sequence is ⁇ /4 or less than ⁇ /4.
  • the first sequence includes: an odd bit sequence and an even bit sequence
  • phase difference between any two adjacent elements in the odd bit sequence is ⁇ /2
  • phase difference between any two adjacent elements in the even bit sequence is ⁇ /2 or 0.
  • the odd bit sequence is a 1/2 ⁇ binary phase shift keying BPSK sequence.
  • the phase average of two elements adjacent to the current element is taken as the phase of the current element
  • the first element set includes: All elements except one element.
  • the phase average of the second-to-last element and the first element in the first sequence is used as the phase of the last element in the even-numbered bit sequence.
  • the phase of the current element is adjusted to ⁇ ;
  • second The element set includes: all the elements whose phase is 0 in the even bit sequence.
  • the modulus value of each element in the first sequence is 1.
  • the phase of each element in the first sequence includes: -3/4 ⁇ , -1/2 ⁇ , -1/4 ⁇ , 0, 1/4 ⁇ , 1/2 ⁇ , 3/4 ⁇ , or ⁇ .
  • the method for determining the phase of each element in the even-numbered sequence includes: rotating 1/4 ⁇ or -1/4 ⁇ according to the previous odd-numbered element adjacent to the current element to obtain the phase, and satisfy the phase of the current element.
  • the phase difference between adjacent odd-numbered elements is 1/4 ⁇ .
  • generating the first sequence according to a pre-generated random sequence includes:
  • the generating module includes:
  • the first generating unit is set to generate an odd bit sequence based on a pre-generated random sequence; the second generating unit is set to generate an even bit sequence based on the odd bit sequence; the third generating unit is set to generate an odd bit sequence and an even bit sequence The first sequence.
  • the first generating unit includes: the relationship between the odd bit sequence d1(m) and the random sequence b(m) is:
  • m 1, 2, 3,...M
  • mod is the remainder function
  • j represents the imaginary part of the complex number
  • the second generating unit includes: the modulus value of each element in the even bit sequence is the same as the modulus value of each element in the odd bit sequence; the phase of the current element in the even bit sequence is the same as that of the odd bit sequence. The average value of the phase of the two adjacent elements of the current element.
  • the third generating unit includes: sequentially inserting an element in the even-numbered sequence between two adjacent elements in the odd-numbered sequence.
  • the random sequence includes: a pseudo-random PN sequence, a Gold sequence, or an m sequence.
  • the reference signal sequence includes: a demodulation reference signal DMRS sequence, a phase tracking reference signal PTRS sequence, or a sounding reference signal SRS sequence.
  • the sequence generating device further includes: using the first sequence as a guard interval GI sequence.
  • the sequence generation device when the reference signal sequence is a DMRS sequence, the sequence generation device further includes: a first transform module configured to perform a discrete Fourier transform on the first sequence to obtain a DMRS frequency domain sequence.
  • the sequence generation device when the reference signal sequence is an SRS sequence, the sequence generation device further includes: a second transform module configured to perform discrete Fourier transform on the first sequence to obtain the SRS frequency domain sequence.
  • using the first sequence as a GI sequence includes: putting the first sequence into a front end of an OFDM symbol before DFT of DFT-S-OFDM as the GI sequence.
  • Fig. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by the present application includes: a processor 310 and a memory 320.
  • the number of processors 310 in the device may be one or more.
  • one processor 310 is taken as an example.
  • the number of memories 320 in the device may be one or more, and one memory 320 is taken as an example in FIG. 9.
  • the processor 310 and the memory 320 of the device may be connected by a bus or in other ways. In FIG. 9, the connection by a bus is taken as an example.
  • the device is a base station.
  • the memory 320 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, the generation module and the module in the sequence generation device). Determine the module).
  • the memory 320 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 320 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 320 may include a memory remotely provided with respect to the processor 310, and these remote memories may be connected to the device through a network.
  • Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the above-provided device can be configured to execute the sequence generation method provided in any of the above-mentioned embodiments, and has corresponding functions and effects.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are used to execute a sequence generation method when executed by a computer processor.
  • the method is applied to the base station side, and the method includes:
  • the generated random sequence generates the first sequence;
  • the first sequence is used as the reference signal sequence, where multiple elements in the first sequence are in plural form, and the modulus of multiple elements is the same, and between any two adjacent elements
  • the phase difference of is less than ⁇ /2, and the modulus value is the amplitude, which is used to characterize the signal strength.
  • user equipment encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicular mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本文公开一种序列生成方法、装置和存储介质。该序列生成方法包括:根据预先生成的随机序列生成第一序列;将第一序列作为参考信号序列,其中,第一序列中多个元素均为复数形式,且多个元素的模值相同,以及相邻两个元素之间的相位差小于π/2,模值为幅值,用来表征信号强度。

Description

序列生成方法、装置和存储介质
本申请要求在2019年09月10日提交中国专利局、申请号为201910854925.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种序列生成方法、装置和存储介质。
背景技术
在高频场景中,由于路损和阴影衰落比较大,因此,在小区边缘部分区域的信噪比会非常低。而且,在高频场景中,功率放大器(Power Amplifier,PA)的效率比较低,为了提高信噪比,以及节省用户终端(User Equipment,UE)电池的功耗,尽可能使得UE发射信号的峰值平均功率比(Peak to Average Power Ratio,PAPR)比较低。因此,如何配置低PAPR的参考信号序列,是亟待解决的问题。
发明内容
本申请实施例提供一种序列生成方法、装置和存储介质,有效降低了参考信号序列的PAPR。
本申请实施例提供一种序列生成方法,包括:
根据预先生成的随机序列生成第一序列;
将所述第一序列作为参考信号序列;
其中,所述第一序列中多个元素均为复数形式,且多个元素的模值相同,以及任意相邻两个元素之间的相位差小于π/2,所述模值为幅值,用来表征信号强度。
本申请实施例提供一种序列生成装置,包括:
生成模块,设置为根据预先生成的随机序列生成第一序列;
确定模块,设置为将所述第一序列作为参考信号序列;
其中,所述第一序列中多个元素均为复数形式,且多个元素的模值相同,以及任意相邻两个元素之间的相位差小于π/2,所述模值为幅值,用来表征信号强度。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所 述计算机程序被处理器执行时实现任一实施例所述的序列生成方法。
附图说明
图1是本申请实施例提供的一种反馈信息的发送方法的流程图;
图2是本申请实施例提供的一种参考信号序列的生成示意图;
图3是本申请实施例提供的另一种参考信号序列的生成示意图;
图4是本申请实施例提供的一种DMRS序列的生成示意图;
图5是本申请实施例提供的一种PTRS序列的生成示意图;
图6是本申请实施例提供的一种SRS序列的生成示意图;
图7是本申请实施例提供的一种GI序列的生成示意图;
图8是本申请实施例提供的一种序列生成装置的结构框图;
图9是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在新空口(New Radio,NR)中,为了发送更低PAPR的信号,可选用离散傅里叶变换扩展正交频分复用(Discrete Fourier Transform spread Orthogonal Frequency Division Multiplexing,DFT-s-OFDM)波形,由于DFT-s-OFDM波形的数据是在时域上映射的,使得PAPR会低于循环前缀-正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplexing,CP-OFDM)。而参考信号选择Zadoff-Chu序列(即ZC序列)或1/2π二进制相移键控(Binary Phase Shift Keying,BPSK)序列,可以降低PAPR。但ZC序列或1/2πBPSK序列的PAPR仍然较高,可以选用其他序列获得更低的PAPR,以满足第五代移动通信系统(the 5th Generation mobile communication system,5G)或6G中更低PAPR需求的应用场景,例如当参考信号序列的开销较大时。
本申请实施例提供一种序列生成方法,以提供一种具有更低的PAPR的参考信号序列。
图1是本申请实施例提供的一种序列生成方法的流程图。本实施例可适用于生成更低PAPR的参考信号序列的情况,本实施例可通过基站来执行,也可以通过UE来执行。
如图1所示,本实施例提供的方法包括S120-S140。
S120、根据预先生成的随机序列生成第一序列。
S140、将第一序列作为参考信号序列。
第一序列中多个元素均为复数形式,且多个元素的模值相同,以及任意相邻两个元素之间的相位差小于π/2,模值为幅值,用来表征信号强度。
在实施例中,可预先生成一个随机序列,然后根据随机序列生成第一序列,将第一序列作为参考信号序列。其中,随机序列可以为伪随机序列。在一实施例中,第一序列中多个元素的模值相同,可以降低DFT-s-OFDM中对参考信号序列进行过采样后的信号的PAPR。其中,每个元素的模值指的是信号的幅值,用来表征信号强度的一个参数。
在一实施例中,第一序列中任意相邻两个元素之间的相位差小于π/2,示例性地,第一序列中任意相邻两个元素之间的相位差为π/4或小于π/4。在实施例中,相对于π/2BPSK序列,第一序列内任意相邻两个元素之间的相位差更小,可以降低参考信号的PAPR。
在一实施例中,第一序列中首个元素和最后一个元素之间的相位差小于π/2。在一实施例中,第一序列中首个元素和最后一个元素之间的相位差为π/4或小于π/4。在实施例中,第一序列中第一个元素和最后一个元素之间的相位差为π/4,可以使第一序列的首尾相连,过采样后信号的PAPR更低。
在一实施例中,第一序列包括:奇数位序列和偶数位序列;奇数位序列中任意相邻两个元素之间的相位差为π/2,偶数位序列中任意相邻两个元素之间的相位差为π/2或0。在实施例中,将第一序列分解为奇数位序列和偶数位序列,并且对奇数位序列和偶数位序列中每个元素的相位进行限定,是为了方便第一序列的生成,并且使生成的第一序列有足够的随机性,在频域上的功率较为平稳。
在一实施例中,奇数位序列为1/2πBPSK序列。在实施例中,将奇数位序列设置为1/2πBPSK序列,是为了便于第一序列的生成,并且使第一序列具有足够的随机性。
在一实施例中,在当前元素包含于第一元素集合的情况下,将与当前元素相邻的两个元素的相位均值作为当前元素的相位,第一元素集合包括:偶数位序列中除最后一个元素之外的所有元素。在一实施例中,将第一序列中倒数第二个元素和首个元素的相位均值作为偶数位序列中最后一个元素的相位。在实施例中,偶数位序列中除最后一个元素之外所有元素的相位,可以由第一序列中与该元素相邻的两个元素的相位均值来计算得到;偶数位序列中最后一个元素的相位,可以由第一序列中倒数第二个元素以及第一个元素的相位均值计算 得到。基于奇数位序列生成的偶数位序列可以满足使第一序列的相邻相位差为1/4π,从而可以降低PAPR。
在一实施例中,在当前元素包含于第二元素集合的情况下,若与当前元素相邻的前一个奇数位元素的相位为3/4π,则将当前元素的相位调整为π;第二元素集合包括:偶数位序列中相位为0的所有元素。在实施例中,对于偶数位序列中相位为0的元素,若与该元素相邻的前一个奇数位元素的相位为3/4π,则将偶数位序列中元素的相位调整为π,从而修正了相位插值的错误。
在一实施例中,第一序列中每个元素的模值为1。在实施例中,将第一序列中每个元素的模值设置为1,是为了便于功率归一化。
在一实施例中,第一序列中每个元素的相位包括:-3/4π,-1/2π,-1/4π,0,1/4π,1/2π,3/4π或π。
在一实施例中,偶数位序列中每个元素的相位的确定方式,包括:根据与当前元素相邻的前一个奇数位元素旋转1/4π或-1/4π得到,且满足与当前元素相邻的后一个奇数位元素之间的相位差为1/4π。在实施例中,偶数位序列中每个元素的相位可以由前一个奇数位元素旋转1/4π或-1/4π得到,其中,旋转后的元素满足下述条件,即旋转后的元素与该元素相邻的后一个奇数位元素之间的相位差为1/4π。
在一实施例中,根据预先生成的随机序列生成第一序列,包括:第一序列d(n)与随机序列b(m)之间的关系式为:
Figure PCTCN2020103195-appb-000001
其中,
Figure PCTCN2020103195-appb-000002
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。其中,eq(b(i),b(i+1))指的是,在b(i)和b(i+1)相等的情况下,eq函数的结果为1;在b(i)和b(i+1)不相等的情况下,eq函数的结果为0。
在实施例中,在采用第一序列d(n)与随机序列b(m)之间的关系式得到第一序列d(n)的情况下,N=2M,并补充b(M+1)=b(1),从而使得第一序列首尾相连,从而第一序列对应参考信号过采样后PAPR更低。
在一实施例中,根据预先生成的随机序列生成第一序列,包括:
根据预先生成的随机序列生成奇数位序列;根据奇数位序列生成偶数位序列;根据奇数位序列和偶数位序列生成第一序列。
在一实施例中,根据预先生成的随机序列生成奇数位序列,包括:奇数位序列d1(m)与随机序列b(m)之间的关系式为:
Figure PCTCN2020103195-appb-000003
其中,m=1,2,3,...M,mod为求余函数,j表示复数的虚部。
在一实施例中,根据奇数位序列生成偶数位序列,包括:偶数位序列中每个元素的模值与奇数位序列中每个元素的模值相同;偶数位序列中当前元素的相位为奇数位序列中与当前元素相邻的两个元素的相位均值。
在一实施例中,根据奇数位序列和偶数位序列生成第一序列,包括:依次在奇数位序列中相邻两个元素之间插入偶数位序列中顺序排列的一个元素。
在实施例中,可通过奇数位序列d1(m)与随机序列b(m)之间的关系式生成奇数位序列d1(m),然后配置偶数位序列中每个元素的模值与奇数位序列中每个元素的模值相同,并将偶数位序列中当前元素的相位设置为奇数位序列中与当前元素相邻两个元素的相位均值,最后将奇数位序列放入第一序列的奇数位,以及将偶数位序列放入第一序列的偶数位。其中,在偶数位序列中相位为0的元素,且增加1个元素的奇数位序列中与偶数位序列中相位为0的元素序号相同的元素相位的绝对值为1/4π,将偶数位序列中相位为0的元素的相位改为π。
在一实施例中,随机序列包括:伪随机序列(即伪噪声(Pseudo Noise,PN)序列)、Gold序列或m序列。在实施例中,随机序列可以为伪随机序列、Gold序列或m序列,从而生成的参考信号序列所对应参考信号的相位具有足够的随机性,在频域上的功率较平稳。
在一实施例中,可根据奇数位序列d1(m)与随机序列b(m)之间的关系式生成奇数位序列d1(m)。在实施例中,已知序列b(m),m=1,2,3,...M,并且b(m)为一长度为M的伪随机序列(比如,PN序列、Gold序列或m序列),则可以根据d1(m)与b(m)的关系式得到对应的d1(m)。其中,d1(m)与b(m)的关系式可以为:
Figure PCTCN2020103195-appb-000004
在得到奇数位序列d1(m)之后,将奇数位序列d1(m)中增加1个元素,得到序列d1’(m’),其中,m’=1,2,3,...M+1,使得d1’(m)=d1(m),其中,m=1,2,3,...M,d1’(M+1)=d1(1),在序列d1’(m’)内的相邻两个元素中插入偶数位序列d2(m),其中, 满足偶数位序列d2(m)的模值和d1’(m’)的模值相同,且d2(m)的相位为d1’(m)与d1’(m+1)的相位均值,若d2(m)的相位为0且d1’(m)的相位绝对值为1/4π,则将d2(m)的相位改为π。然后将序列d1(m)放入第一序列d(n)的奇数位,将序列d2(m)放入第一序列d(n)的偶数位,其中,n=1,2,3,...N,N=2M。第一序列d(n)为长度为N的参考信号序列,从而具有更低的PAPR。
示例性地,图2是本申请实施例提供的一种参考信号序列的生成示意图。如图2所示,采用随机序列为Gold序列,记为b(m),根据d1(m)与b(m)的关系式得到对应的d1(m),比如,d1(m)为1/2πBPSK序列,将d1(m)增加1位,得到d1’(m’),通过奇数位序列中每个元素的模值和相位,得到偶数位序列中对应元素的模值和相位,即得到偶数位序列d2(m),将偶数位序列分别插入奇数位序列,得到第一序列d(n),即参考信号序列d(n)。
在一实施例中,可根据第一序列d(n)与随机序列b(m)之间的关系式生成第一序列d(n)。在实施例中,已知序列b(m),m=1,2,3,...M,并且,b(m)为一长度为M的伪随机序列(比如,PN序列,Gold序列,m序列),在序列b(m)中增加1个元素,得到序列b’(m’),其中,m’=1,2,3,...M+1,使得b’(m)=b(m),其中,m=1,2,3,...M,b’(M+1)=b(1),则可以根据d(n)与b(m)之间的关系式得到对应的d(n)。其中,d(n)与b(m)之间的关系式可以为:
Figure PCTCN2020103195-appb-000005
其中,
Figure PCTCN2020103195-appb-000006
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。在实施例中,第一序列d(n)则为长度为N的参考信号序列,具有更低的PAPR。
示例性地,图3是本申请实施例提供的另一种参考信号序列的生成示意图。如图3所示,采用随机序列为Gold序列,记为b(m),将b(m)增加1位,得到b’(m’),根据d(n)与b(m)之间的关系式得到第一序列d(n),即参考信号序列d(n)。
在一实施例中,参考信号序列包括:解调参考信号(DeModulation Reference Signal,DMRS)序列、相位追踪参考信号(Phase-Tracking Reference Signals,PTRS)序列或探测参考信号(Sounding Reference Signal,SRS)序列。
在一实施例中,在参考信号序列为DMRS序列的情况下,序列生成方法,还包括:对第一序列进行离散傅里叶变换,得到DMRS频域序列。
在一实施例中,可将第一序列作为DMRS序列。在实施例中,已知序列b(m),m=1,2,3,...M,并且,b(m)为一长度为M的伪随机序列(比如,PN序列,Gold序列,m序列),在序列b(m)中增加1个元素,得到序列b’(m’),其中,m’=1,2,3,...M+1,使得b’(m)=b(m),其中,m=1,2,3,...M,b’(M+1)=b(1),则可以根据d(n)与b(m)之间的关系式得到对应的d(n)。其中,d(n)与b(m)之间的关系式可以为:
Figure PCTCN2020103195-appb-000007
其中,
Figure PCTCN2020103195-appb-000008
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。
第一序列d(n)为长度为N的参考信号序列,若参考信号序列为DMRS序列,则对生成的第一序列d(n)进行离散傅里叶变换(Discrete Fourier Transform,DFT),即可得到DMRS的频域序列,将DMRS频域序列放入DFT-s-OFDM的DMRS所在时频资源内,作为DMRS发送,具有更低的PAPR。
示例性地,图4是本申请实施例提供的一种DMRS序列的生成示意图。如图4所示,采用随机序列为Gold序列,记为b(m),将b(m)增加1位,得到b’(m’),根据d(n)与b(m)之间的关系式得到第一序列d(n),即参考信号序列d(n)。对生成的d(n)进行DFT变换,得到DMRS的频域序列,然后将DMRS的频域序列放入DFT-S-OFDM的DMRS所在时频资源内,作为DMRS发送。在实施例中,以一个时隙(slot)为例,将DMRS的频域序列放入DFT-S-OFDM的DMRS所在时频资源内,作为DMRS发送。
在一实施例中,可将第一序列作为PTRS序列。在实施例中,已知序列b1(m),b2(m),m=1,2,3,...M,并且,b1(m)和b2(m)为一长度为M的伪随机序列(比如,PN序列,Gold序列,m序列),在序列b1(m)和序列b2(m)中增加1个元素,得到序列b1’(m’)和b1’(m’),其中,m’=1,2,3,...M+1,使得b1’(m)=b1(m),其中,m=1,2,3,...M,b1’(M+1)=b1(1);b2’(m)=b2(m),其中,m=1,2,3,...M,b2’(M+1)=b2(1),则可以根据d(n)与b(m)之间的关系式得到对应的d1(n)和d2(n)。其中,d(n)与b(m)之间的关系式可以为:
Figure PCTCN2020103195-appb-000009
Figure PCTCN2020103195-appb-000010
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。
将生成的序列d1(n)和d2(n),作为PTRS序列,将PTRS序列放入到DFT-s-OFDM的一个DFT之前的OFDM符号的两端,作为PTRS发送,具有更低的PAPR。
示例性地,图5是本申请实施例提供的一种PTRS序列的生成示意图。如图5所示,采用随机序列为Gold序列,记为b1(m)和b2(m),分别将b1(m)和b2(m)增加1位,得到b1’(m’)和b1’(m’),根据d(n)与b(m)之间的关系式得到第一序列d1(n)和d2(n),即参考信号PTRS1,记为d1(n),参考信号PTRS2,记为d2(n)。在一实施例中,可将d1(n)和d2(n)分别放入到DFT-s-OFDM的一个DFT前的OFDM符号的两端(即首端和末端),作为PTRS发送,从而具有更低的PAPR。
在一实施例中,在参考信号序列为SRS序列的情况下,序列生成方法,还包括:对第一序列进行离散傅里叶变换,得到SRS频域序列。
在一实施例中,可将第一序列作为SRS序列。在实施例中,已知序列b(m),m=1,2,3,...M,并且,b(m)为一长度为M的伪随机序列(比如,PN序列,Gold序列,m序列),在序列b(m)中增加1个元素,得到序列b’(m’),其中,m’=1,2,3,...M+1,使得b’(m)=b(m),其中,m=1,2,3,...M,b’(M+1)=b(1),则可以根据d(n)与b(m)之间的关系式得到对应的d(n)。其中,d(n)与b(m)之间的关系式可以为:
Figure PCTCN2020103195-appb-000011
其中,
Figure PCTCN2020103195-appb-000012
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。
第一序列d(n)则为长度为N的参考信号序列,若参考信号序列为SRS序列, 则对生成的第一序列d(n)进行DFT变换,即可得到SRS的频域序列,将SRS的频域序列放入DFT-s-OFDM的SRS所在时频资源内,作为SRS发送,具有更低的PAPR。
示例性地,图6是本申请实施例提供的一种SRS序列的生成示意图。如图6所示,采用随机序列为Gold序列,记为b(m),将b(m)增加1位,得到b’(m’),根据d(n)与b(m)之间的关系式得到第一序列d(n),即参考信号序列d(n)。对生成的d(n)进行DFT变换,得到SRS的频域序列,然后将SRS的频域序列放入DFT-S-OFDM的SRS所在时频资源内,作为SRS发送。
在一实施例中,序列生成方法,还包括:将第一序列作为保护间隔(Guard Interval,GI)序列。在实施例中,第一序列也可以作为GI序列等一个已知序列。在一实施例中,第一序列作为GI序列,包括:将第一序列放入DFT-s-OFDM的一个DFT之前的OFDM符号的前端,作为GI序列。
在一实施例中,将第一序列作为GI序列。在实施例中,已知序列b1(m),m=1,2,3,...M,并且,b1(m)为一长度为M的伪随机序列(比如,PN序列,Gold序列,m序列),在序列b1(m)中增加1个元素,得到序列b1’(m’),其中,m’=1,2,3,...M+1,使得b1’(m)=b1(m),其中,m=1,2,3,...M,b1’(M+1)=b1(1),则可以根据d(n)与b(m)之间的关系式得到对应的d1(n)。其中,d(n)与b(m)之间的关系式可以为:
Figure PCTCN2020103195-appb-000013
其中,
Figure PCTCN2020103195-appb-000014
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。
将生成的序列d1(n),作为GI序列,将GI序列放入到DFT-s-OFDM的一个DFT之前的OFDM符号的前端,作为GI发送,具有更低的PAPR。
示例性地,图7是本申请实施例提供的一种GI序列的生成示意图。如图7所示,采用随机序列为Gold序列,记为b1(m),分别将b1(m)增加1位,得到b1’(m’),根据d(n)与b(m)之间的关系式得到第一序列d1(n),即GI序列。在一实施例中,可将d1(n)分别放入到DFT-s-OFDM的一个DFT前的OFDM符号的前端(即首端),作为GI发送,从而具有更低的PAPR。
图8是本申请实施例提供的一种序列生成装置的结构框图。如图8所示, 本实施例提供的序列生成装置包括:生成模块220和确定模块240。
生成模块220,设置为根据预先生成的随机序列生成第一序列;确定模块240,设置为将第一序列作为参考信号序列;其中,第一序列中多个元素均为复数形式,且多个元素的模值相同,以及任意相邻两个元素之间的相位差小于π/2,模值为幅值,用来表征信号强度。
本实施例提供的序列生成装置设置为实现图1所示实施例的序列生成方法,本实施例提供的序列生成装置实现原理和技术效果类似,此处不再赘述。
在一实施例中,第一序列中首个元素和最后一个元素之间的相位差小于π/2。
在一实施例中,第一序列中任意相邻两个元素之间的相位差为π/4或小于π/4。
在一实施例中,第一序列中首个元素和最后一个元素之间的相位差为π/4或小于π/4。
在一实施例中,第一序列包括:奇数位序列和偶数位序列;
奇数位序列中任意相邻两个元素之间的相位差为π/2,偶数位序列中任意相邻两个元素之间的相位差为π/2或0。
在一实施例中,奇数位序列为1/2π二进制相移键控BPSK序列。
在一实施例中,在当前元素包含于第一元素集合的情况下,将与当前元素相邻的两个元素的相位均值作为当前元素的相位,第一元素集合包括:偶数位序列中除最后一个元素之外的所有元素。
在一实施例中,将第一序列中倒数第二个元素和首个元素的相位均值作为偶数位序列中最后一个元素的相位。
在一实施例中,在当前元素包含于第二元素集合的情况下,若与当前元素相邻的前一个奇数位元素的相位为3/4π,则将当前元素的相位调整为π;第二元素集合包括:偶数位序列中相位为0的所有元素。
在一实施例中,第一序列中每个元素的模值为1。
在一实施例中,第一序列中每个元素的相位包括:-3/4π,-1/2π,-1/4π,0,1/4π,1/2π,3/4π或π。
在一实施例中,偶数位序列中每个元素的相位的确定方式,包括:根据与当前元素相邻的前一个奇数位元素旋转1/4π或-1/4π得到,且满足与当前元素相邻的后一个奇数位元素之间的相位差为1/4π。
在一实施例中,根据预先生成的随机序列生成第一序列,包括:
第一序列d(n)与随机序列b(m)之间的关系式为:
Figure PCTCN2020103195-appb-000015
其中,
Figure PCTCN2020103195-appb-000016
m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,若a和b相等,则结果为1,不相等为0。
在一实施例中,生成模块,包括:
第一生成单元,设置为根据预先生成的随机序列生成奇数位序列;第二生成单元,设置为根据奇数位序列生成偶数位序列;第三生成单元,设置为根据奇数位序列和偶数位序列生成第一序列。
在一实施例中,第一生成单元,包括:奇数位序列d1(m)与随机序列b(m)之间的关系式为:
Figure PCTCN2020103195-appb-000017
其中,m=1,2,3,...M,mod为求余函数,j表示复数的虚部。
在一实施例中,第二生成单元,包括:偶数位序列中每个元素的模值与奇数位序列中每个元素的模值相同;偶数位序列中当前元素的相位为奇数位序列中与当前元素相邻的两个元素的相位均值。
在一实施例中,第三生成单元,包括:依次在奇数位序列中相邻两个元素之间插入偶数位序列中顺序排列的一个元素。
在一实施例中,随机序列包括:伪随机PN序列、Gold序列或m序列。
在一实施例中,参考信号序列包括:解调参考信号DMRS序列、相位追踪参考信号PTRS序列或探测参考信号SRS序列。
在一实施例中,序列生成装置,还包括:将第一序列作为保护间隔GI序列。
在一实施例中,在参考信号序列为DMRS序列的情况下,序列生成装置,还包括:第一变换模块,设置为对第一序列进行离散傅里叶变换,得到DMRS频域序列。
在一实施例中,在参考信号序列为SRS序列的情况下,序列生成装置,还 包括:第二变换模块,设置为对第一序列进行离散傅里叶变换,得到SRS频域序列。
在一实施例中,第一序列作为GI序列,包括:将第一序列放入DFT-S-OFDM的一个DFT之前的OFDM符号的前端,作为GI序列。
图9是本申请实施例提供的一种设备的结构示意图。如图9所示,本申请提供的设备,包括:处理器310以及存储器320。该设备中处理器310的数量可以是一个或者多个,图9中以一个处理器310为例。该设备中存储器320的数量可以是一个或者多个,图9中以一个存储器320为例。该设备的处理器310以及存储器320可以通过总线或者其他方式连接,图9中以通过总线连接为例。在该实施例中,该设备为基站。
存储器320作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,序列生成装置中的生成模块和确定模块)。存储器320可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器320可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器320可包括相对于处理器310远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
上述提供的设备可设置为执行上述任意实施例提供的序列生成方法,具备相应的功能和效果。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行一种序列生成方法,该方法应用于基站侧,该方法包括:根据预先生成的随机序列生成第一序列;将第一序列作为参考信号序列,其中,第一序列中多个元素均为复数形式,且多个元素的模值相同,以及任意相邻两个元素之间的相位差小于π/2,模值为幅值,用来表征信号强度。
术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申 请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (25)

  1. 一种序列生成方法,包括:
    根据预先生成的随机序列生成第一序列;
    将所述第一序列作为参考信号序列;
    其中,所述第一序列中多个元素均为复数形式,且所述多个元素的模值相同,以及相邻两个元素之间的相位差小于π/2,所述模值为幅值,用来表征信号强度。
  2. 根据权利要求1所述的方法,其中,所述第一序列中首个元素和最后一个元素之间的相位差小于π/2。
  3. 根据权利要求1所述的方法,其中,所述第一序列中相邻两个元素之间的相位差为π/4或小于π/4。
  4. 根据权利要求2所述的方法,其中,所述第一序列中首个元素和最后一个元素之间的相位差为π/4或小于π/4。
  5. 根据权利要求1所述的方法,其中,所述第一序列包括:奇数位序列和偶数位序列;
    所述奇数位序列中相邻两个元素之间的相位差为π/2,所述偶数位序列中相邻两个元素之间的相位差为π/2或0。
  6. 根据权利要求5所述的方法,其中,所述奇数位序列为1/2π二进制相移键控BPSK序列。
  7. 根据权利要求5所述的方法,还包括:
    在当前元素包含于第一元素集合的情况下,将所述第一序列中与所述当前元素相邻的两个元素的相位均值作为所述当前元素的相位,所述第一元素集合包括:所述偶数位序列中除最后一个元素之外的所有元素。
  8. 根据权利要求5所述的方法,还包括:
    将所述第一序列中倒数第二个元素和首个元素的相位均值作为所述偶数位序列中最后一个元素的相位。
  9. 根据权利要求5所述的方法,还包括:
    在当前元素包含于第二元素集合,与所述当前元素相邻的前一个奇数位元素的相位为3/4π的情况下,将所述当前元素的相位调整为π;所述第二元素集合包括:所述偶数位序列中相位为0的所有元素。
  10. 根据权利要求1所述的方法,其中,所述第一序列中每个元素的模值为1。
  11. 根据权利要求1所述的方法,其中,所述第一序列中每个元素的相位包括:-3/4π,-1/2π,-1/4π,0,1/4π,1/2π,3/4π或π。
  12. 根据权利要求5所述的方法,其中,所述偶数位序列中每个元素的相位的确定方式,包括:
    根据与当前元素相邻的前一个奇数位元素旋转1/4π或-1/4π得到所述当前元素的相位,且所述当前元素的相位满足与所述当前元素相邻的后一个奇数位元素之间的相位差为1/4π。
  13. 根据权利要求1所述的方法,其中,所述根据预先生成的随机序列生成第一序列,包括:
    所述第一序列d(n)与所述随机序列b(m)之间的关系式为:
    Figure PCTCN2020103195-appb-100001
    其中,
    Figure PCTCN2020103195-appb-100002
    m=1,2,3,...M,n=1,2,3,...N,N=2M,exp为以自然常数e为底的指数函数,mod为求余函数,j表示复数的虚部,eq(a,b)为确定相等性函数,在a和b相等的情况下,eq(a,b)的结果为1;在a和b不相等的情况下,eq(a,b)的结果为0。
  14. 根据权利要求1或5所述的方法,其中,所述根据预先生成的随机序列生成第一序列,包括:
    根据所述预先生成的随机序列生成奇数位序列;
    根据所述奇数位序列生成偶数位序列;
    根据所述奇数位序列和所述偶数位序列生成所述第一序列。
  15. 根据权利要求14所述的方法,其中,所述根据预先生成的随机序列生成奇数位序列,包括:
    所述奇数位序列d1(m)与所述随机序列b(m)之间的关系式为:
    Figure PCTCN2020103195-appb-100003
    其中,m=1,2,3,...M,mod为求余函数,j表示复数的虚部。
  16. 根据权利要求15所述的方法,其中,所述根据所述奇数位序列生成偶数位序列,包括:
    所述偶数位序列中每个元素的模值与所述奇数位序列中每个元素的模值相同;
    所述偶数位序列中当前元素的相位为所述奇数位序列中与所述当前元素相邻的两个元素的相位均值。
  17. 根据权利要求16所述的方法,其中,所述根据所述奇数位序列和所述偶数位序列生成所述第一序列,包括:
    依次在所述奇数位序列中相邻两个元素之间插入所述偶数位序列中顺序排列的一个元素。
  18. 根据权利要求1所述的方法,其中,所述随机序列包括:伪噪声PN序列、Gold序列或m序列。
  19. 根据权利要求1所述的方法,其中,所述参考信号序列包括:解调参考信号DMRS序列、相位追踪参考信号PTRS序列或探测参考信号SRS序列。
  20. 根据权利要求1所述的方法,还包括:
    将所述第一序列作为保护间隔GI序列。
  21. 根据权利要求19所述的方法,其中,在所述参考信号序列为DMRS序列的情况下,所述方法,还包括:
    对所述第一序列进行离散傅里叶变换,得到DMRS频域序列。
  22. 根据权利要求19所述的方法,其中,在所述参考信号序列为SRS序列的情况下,所述方法,还包括:
    对所述第一序列进行离散傅里叶变换,得到SRS频域序列。
  23. 根据权利要求20所述的方法,其中,所述将所述第一序列作为GI序列,包括:
    将所述第一序列放入离散傅里叶变换扩展正交频分复用DFT-S-OFDM的一个DFT之前的OFDM符号的前端,作为所述GI序列。
  24. 一种序列生成装置,包括:
    生成模块,设置为根据预先生成的随机序列生成第一序列;
    确定模块,设置为将所述第一序列作为参考信号序列;
    其中,所述第一序列中多个元素均为复数形式,且所述多个元素的模值相同,以及相邻两个元素之间的相位差小于π/2,所述模值为幅值,用来表征信号强度。
  25. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-23中任一项所述的序列生成方法。
PCT/CN2020/103195 2019-09-10 2020-07-21 序列生成方法、装置和存储介质 WO2021047291A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20862579.8A EP4030714A4 (en) 2019-09-10 2020-07-21 METHOD AND DEVICE FOR SEQUENCE GENERATION AND STORAGE MEDIUM
KR1020227011515A KR20220054882A (ko) 2019-09-10 2020-07-21 시퀀스 생성 방법, 장치 및 저장 매체
US17/641,944 US20220360391A1 (en) 2019-09-10 2020-07-21 Sequence generation method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910854925.5A CN111092838B (zh) 2019-09-10 2019-09-10 一种序列生成方法、装置和存储介质
CN201910854925.5 2019-09-10

Publications (1)

Publication Number Publication Date
WO2021047291A1 true WO2021047291A1 (zh) 2021-03-18

Family

ID=70393053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103195 WO2021047291A1 (zh) 2019-09-10 2020-07-21 序列生成方法、装置和存储介质

Country Status (5)

Country Link
US (1) US20220360391A1 (zh)
EP (1) EP4030714A4 (zh)
KR (1) KR20220054882A (zh)
CN (1) CN111092838B (zh)
WO (1) WO2021047291A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111092838B (zh) * 2019-09-10 2024-05-24 中兴通讯股份有限公司 一种序列生成方法、装置和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071125A1 (en) * 2005-09-29 2007-03-29 Motorola, Inc. Method and apparatus for ifdma transmission
CN106878213A (zh) * 2015-12-10 2017-06-20 普天信息技术有限公司 一种lte上行频偏估计的方法
CN108809586A (zh) * 2017-05-05 2018-11-13 维沃移动通信有限公司 信息的发送方法、接收方法、网络侧设备及终端设备
CN111092838A (zh) * 2019-09-10 2020-05-01 中兴通讯股份有限公司 一种序列生成方法、装置和存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264946B2 (en) * 2008-12-31 2012-09-11 Qualcomm Incorporated Methods and systems for PAPR reduction in SC-FDMA systems
JP5631485B2 (ja) * 2012-09-07 2014-11-26 三菱電機株式会社 送信機および送信方法
US10498563B2 (en) * 2015-11-06 2019-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Processing a constant amplitude sequence for transmission
US11259248B2 (en) * 2017-09-18 2022-02-22 Qualcomm Incorporated Handling power transitions in new radio
CN110768922B (zh) * 2018-07-26 2022-06-24 中兴通讯股份有限公司 一种数据调制方法、装置及计算机存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070071125A1 (en) * 2005-09-29 2007-03-29 Motorola, Inc. Method and apparatus for ifdma transmission
CN106878213A (zh) * 2015-12-10 2017-06-20 普天信息技术有限公司 一种lte上行频偏估计的方法
CN108809586A (zh) * 2017-05-05 2018-11-13 维沃移动通信有限公司 信息的发送方法、接收方法、网络侧设备及终端设备
CN111092838A (zh) * 2019-09-10 2020-05-01 中兴通讯股份有限公司 一种序列生成方法、装置和存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IITH, RELIANCE JIO, TEJAS NETWORKS, CEWIT, IITM: "Low PAPR Reference Signals", 3GPP DRAFT; R1-1903897, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xian, China; 20190408 - 20190412, 7 April 2019 (2019-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051699333 *
SAMSUNG: "Low PAPR modulation and waveform", 3GPP DRAFT; R1-1609078, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Lisbon, Portugal; 20161010 - 20161014, 9 October 2016 (2016-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051149129 *
See also references of EP4030714A4

Also Published As

Publication number Publication date
KR20220054882A (ko) 2022-05-03
US20220360391A1 (en) 2022-11-10
EP4030714A1 (en) 2022-07-20
CN111092838A (zh) 2020-05-01
EP4030714A4 (en) 2023-10-25
CN111092838B (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US10256933B2 (en) Method and device for transmitting preamble sequence
WO2016045429A1 (zh) 一种多用户码分多址接入通信方法与相应发射机、接收机
US11757688B2 (en) Sequence-based signal processing method and apparatus
WO2016062120A1 (zh) 码分多址接入的多用户通信方法及装置
WO2022007507A1 (zh) 数据传输方法、装置、设备和存储介质
BR122019026390B1 (pt) método e terminal de comunicação móvel para transmitir um sinal de referência em um sistema de comunicação sem fio
WO2016150241A1 (zh) 一种数据传输方法及装置
WO2017036325A1 (zh) 信号同步的方法和信号同步的装置
WO2016155390A1 (zh) 一种数据传输方法及装置
BR112020009824A2 (pt) método de processamento de sinal baseado em sequência e aparelho de processamento de sinal
WO2016045384A1 (zh) 一种扩频处理方法及装置
WO2021047291A1 (zh) 序列生成方法、装置和存储介质
WO2018171507A1 (zh) 一种收发物理随机接入信道前导码序列的方法及装置
JP7250944B2 (ja) 基準信号生成方法及び通信機器
EP3879777B1 (en) Sequence-based signal processing method and apparatus
JP7498766B2 (ja) 参考信号のためのシーケンスを発生させること
CN115208725A (zh) 一种联合ofdm同步与信息调制的方法、装置及介质
WO2021000711A1 (zh) 符号处理的方法与装置
CN111371718B (zh) 一种无线通信系统的非循环前导信号生成方法
WO2020020330A1 (zh) 一种数据调制方法、装置及计算机存储介质
CN110299980B (zh) 一种传输参考信号的方法、装置和系统
WO2023016433A1 (zh) 参考信号配置方法、设备和存储介质
CN115842704B (zh) 上行信号子帧同步方法、设备、装置及存储介质
WO2019095203A1 (zh) 一种系统消息传输的方法及网络设备
WO2020063930A9 (zh) 一种参考信号的发送、接收方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227011515

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020862579

Country of ref document: EP

Effective date: 20220411