WO2022007507A1 - 数据传输方法、装置、设备和存储介质 - Google Patents

数据传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2022007507A1
WO2022007507A1 PCT/CN2021/094797 CN2021094797W WO2022007507A1 WO 2022007507 A1 WO2022007507 A1 WO 2022007507A1 CN 2021094797 W CN2021094797 W CN 2021094797W WO 2022007507 A1 WO2022007507 A1 WO 2022007507A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
domain data
frequency domain
filter function
modulus
Prior art date
Application number
PCT/CN2021/094797
Other languages
English (en)
French (fr)
Inventor
辛雨
暴桐
郁光辉
胡留军
许进
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3185184A priority Critical patent/CA3185184A1/en
Priority to US18/014,718 priority patent/US20230353438A1/en
Priority to KR1020237003712A priority patent/KR20230031936A/ko
Priority to EP21837262.1A priority patent/EP4181473A1/en
Publication of WO2022007507A1 publication Critical patent/WO2022007507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • H04L27/26412Filtering over the entire frequency band, e.g. filtered orthogonal frequency-division multiplexing [OFDM]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, for example, to a data transmission method, apparatus, device, and storage medium.
  • PAPR peak-to-average power ratio
  • the data transmission method, device, device and storage medium provided by the present application can reduce the peak-to-average ratio (PAPR) of the transmission signal.
  • PAPR peak-to-average ratio
  • an embodiment of the present application provides a data transmission method, including: performing M-point discrete Fourier transform DFT on first time-domain data respectively to obtain frequency-domain data; performing a filtering operation on the frequency-domain data to obtain Filtered frequency domain data; perform N-point inverse discrete Fourier transform IDFT on the filtered frequency domain data to obtain second time domain data; and transmit the second time domain data on physical resources.
  • an embodiment of the present application provides a data transmission device, including: a DFT module, a filtering module, an IDFT module, and a transmission module.
  • the DFT module is configured to perform M-point discrete Fourier transform DFT on the first time-domain data, respectively, to obtain frequency-domain data.
  • the filtering module is configured to perform a filtering operation on the frequency domain data to obtain filtered frequency domain data.
  • the IDFT module is configured to perform N-point inverse discrete Fourier transform IDFT on the filtered frequency domain data to obtain second time domain data.
  • a transmission module configured to transmit the second time domain data on the physical resource.
  • embodiments of the present application provide a device, including: one or more processors; a memory configured to store one or more programs; when the one or more programs are executed by the one or more processors The execution causes the one or more processors to implement the data transmission method according to any one of the embodiments of the present application.
  • an embodiment of the present application provides a storage medium, where the storage medium stores a computer program, and when the computer program is executed by a processor, implements the data transmission method according to any one of the embodiments of the present application.
  • FIG. 1 is a flowchart of a data transmission method provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a data symbol provided by an embodiment of the present application.
  • FIG. 3 is a structural block diagram of a transmitter of a data transmission method provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a data transmission apparatus provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • phase noise In high-frequency scenarios, the phase noise is large. Even if the receiving end performs phase compensation, a lot of phase noise will remain. Therefore, it is necessary to design an appropriate modulation scheme or waveform scheme to suppress the influence of phase noise. In high frequency scenarios, the Doppler frequency shift is relatively large. Even if the receiving end performs frequency offset compensation, some phase deviation will remain in the data symbols. Therefore, it is necessary to design an appropriate modulation scheme or waveform scheme to suppress the influence of the phase deviation.
  • the path loss and shadow attenuation are relatively large, so the signal-to-noise ratio in some areas at the edge of the cell will be very low.
  • the efficiency of the high-frequency power amplifier (Power Amplifier, PA) is relatively low.
  • PA peak-to-average ratio
  • PAPR peak-to-average ratio
  • the peak-to-average ratio of the signal transmitted by the UE needs to be lower than the PAPR.
  • SINR Signal to Interference plus Noise Ratio
  • a data transmission method is provided. As shown in FIG. 1 , the data transmission method provided by this embodiment mainly includes steps S11 , S12 , S13 and S14 .
  • the execution body of this embodiment is a transmitting node
  • the transmitting node may be a user equipment
  • the first time domain data may refer to data in the first time domain
  • the second time domain data may refer to data in the first time domain.
  • Two data in the time domain, frequency domain data refers to the data in the frequency domain.
  • the discrete Fourier transform can transform the signal from the time domain to the frequency domain, and then analyze the spectral structure and variation law of the signal.
  • the Inverse Discrete Fourier Transform transforms a signal from the frequency domain to the time domain.
  • the first time domain data is contained in L data symbol blocks, the length of the data symbol blocks is M, wherein the header of each data symbol block contains the same data sequence, The same data sequence is contained at the end of each block of data symbols.
  • the L data symbol blocks are consecutive L data symbol blocks, and the data symbols may be orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • the length of each data symbol block in the L data symbol blocks is M, that is, each data symbol block includes M pieces of time domain data.
  • M-point DFT is performed on the first time-domain data respectively, which can be understood as performing M-point DFT on L consecutive data symbol blocks.
  • M-point DFT is performed on the L consecutive data symbol blocks, respectively, filtering operations are performed in the frequency domain, and N-point IDFT is performed respectively, and the time-domain data after IDFT is transmitted on physical resources.
  • L, M and N are integers greater than 1. where N is greater than M.
  • a time slot includes R reference signal symbol blocks and L data symbol blocks, wherein the reference signal symbol block header contains the same data sequence as the data symbol block header; the reference The signal symbol block trailer contains the same data sequence as the data symbol block trailer.
  • R is a positive integer.
  • the header of each data symbol block contains the same data sequence
  • the tail of each data symbol block contains the same data sequence.
  • the data sequence of the header is not the same as the data sequence of the tail.
  • the header data sequences of all reference signal symbol blocks and data symbol blocks in the time slot are the same, and the tail data sequences are also the same. In this way, the out-of-band leakage is very low, and the tail of the previous OFDM symbol is the cyclic prefix of the following OFDM symbol, which saves the overhead of the cyclic prefix (CP); and the first and last reference signal sequences are the sequences known to the receiving end, Can be used for phase noise estimation, channel estimation, synchronization, etc.
  • the reference sequence in the reference signal symbol block includes one or more of the following: a binary phase shift keying (Binary Phase Shift Keying, BPSK) modulated sequence; a Zadoff-Chu sequence; Golay sequence.
  • BPSK Binary Phase Shift Keying
  • the filtering function used by the filtering operation includes a root raised cosine function or a raised cosine function.
  • the expression of the raised cosine function y(f) in the frequency domain is as follows:
  • A is a constant
  • is the roll-off factor
  • is any value between 0 and 1
  • is the absolute value operator
  • f 0 is half the half-value width of the raised cosine function.
  • 2f 0 can be recorded as the half-value bandwidth of the raised cosine function.
  • 2f 0 (1+ ⁇ ) is the length of the filter function, that is, the length of the independent variable corresponding to the non-zero function value.
  • the root raised cosine function is the square root of the raised cosine function.
  • the root raised cosine function is the square root of the raised cosine function, and sry(f) is:
  • the half-value width of the root raised cosine function is less than or equal to the length of the data symbol block before the filtering operation.
  • the roll-off coefficient of the root raised cosine function is greater than 0, and the half-value width is smaller than the length of the frequency domain data before the filtering operation, so that the length of the filtering function is equal to the length of the frequency domain data before the filtering operation.
  • the characteristic of the filter function can be realized that the intermediate modulus value is greater than the side modulus value, and the bandwidth of the transmission band can be not increased, thereby improving the spectral efficiency.
  • the filter function used in the filtering operation satisfies the following condition: in the independent variable length interval corresponding to the non-zero filter function value, the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value.
  • the modulus of the filter function value of the edge region refers to the modulus of the filter function value of the edge region in the independent variable length interval.
  • L consecutive data symbol blocks are inserted into the same sequence at the beginning and the end respectively.
  • the filtering operation is performed in the frequency domain.
  • the characteristic of the filtering function is that the middle modulus value is greater than the side modulus value. In this way, not only the PAPR of the waveform scheme can be reduced, but also the crosstalk of the data part in the OFDM symbol to the tail insertion sequence after oversampling can be suppressed, so that the tail of the previous OFDM symbol after oversampling can be guaranteed to be the cyclic prefix of the following OFDM symbol. .
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: as the independent variable goes from the intermediate value to the boundary value, the modulus of the filter function value corresponding to the independent variable decreases monotonically.
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: in a region where the length of the independent variable is half of the total length of the independent variable, the modulus of any filter function value is greater than or equal to the same The modulus of the filter function value in the neighborhood.
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: as the independent variable goes from the intermediate value to the boundary value, the modulus of the filter function value corresponding to the independent variable decreases monotonically, and The value of the filter function corresponding to the independent variable gradually approaches 0.
  • the length of the filter function used by the filtering operation is greater than or equal to the length of the frequency domain data before the filtering operation.
  • the length of the filter function is greater than or equal to the length of the frequency domain data before the filtering operation, which can be understood as the length of the filter function is greater than or equal to M*f sc , where f sc is the subcarrier spacing.
  • the method before performing the filtering operation on the frequency domain data, the method further includes: cyclically extending the frequency domain data; or duplicating and lengthening the frequency domain data.
  • the length of the filter function used in the filtering operation is less than or equal to the length of the frequency domain data after cyclic expansion; or, the length of the filter function used in the filtering operation is less than or equal to the length of the The length of the frequency domain data after duplication and extension.
  • the method before performing the filtering operation on the frequency domain data, the method further includes: copying a piece of tail data of the frequency domain data and placing it in the header of the frequency domain data; A piece of header data is placed at the end of the frequency domain data.
  • performing a filtering operation on the frequency domain data includes: performing a root raised cosine function filtering on the frequency domain data, and then performing a preset function filtering.
  • transmitting the second time domain data on the physical resource includes: after performing digital-to-analog conversion on the second time domain data, transmitting the second time domain data on a radio frequency link.
  • a basic symbol block structure for time domain data is provided.
  • each Orthogonal Frequency Division Multiplexing (OFDM) symbol in the figure is M
  • the length of M is: the length of the header sequence H + the length of the data Data + the tail sequence T length.
  • the header sequence H and the trailer sequence T in each data symbol block are the same, and the data parts in the OFDM symbol are different, namely Data1, Data2, Data3... .
  • a structural block diagram of a transmitter of a data modulation method is provided.
  • the pre-transmission data is inserted into the head and tail sequences, and then transformed from the time domain to the frequency domain through M-point DFT (ie, M-DFT), and then the frequency domain data is cyclically expanded and then filtered.
  • M-point DFT ie, M-DFT
  • the frequency domain data is mapped on the corresponding subcarriers, and then zero data subcarriers are added to achieve oversampling.
  • N-point IDFT ie, N-IDFT
  • DAC-RF represents the Digital-to-analog converter and the Radio Frequency part.
  • the filtering function of the filtering operation is a root raised cosine function (or raised cosine function).
  • the frequency domain data point multiplication root raised cosine filter function (the characteristic of the filter function is that the modulus of the intermediate function value is greater than the modulus of the adjacent function value) is equivalent to the time domain data and the time domain form of the root raised cosine function (non-Sinc function, Sinc function Since the time domain form of the root raised cosine function has a faster tail decay, the crosstalk of the data part in the data symbol block to the tail insertion sequence is suppressed. In this way, it can be ensured that the tail of the previous OFDM symbol after oversampling is the cyclic prefix of the subsequent OFDM symbol. Moreover, the root raised cosine function is used for filtering, which can make the peak-to-average ratio of the time-domain data after IDFT lower.
  • a graph of the root raised cosine function is provided, as shown in FIG. 4 , y(f) represents the root raised cosine function, y represents the dependent variable of the root raised cosine function, and f represents the self of the root raised cosine function.
  • variable, the unit of f is kHz.
  • the frequency domain length of the root raised cosine function is 2f 0 (1+a), where f 0 is half the half-value width of the frequency domain raised cosine function in the frequency domain, a is a roll-off factor, and the root raised cosine function
  • the modulus of the filter function value in the middle ([-f 0 (1-a), f 0 (1-a)]) of the cosine function transmission band is greater than that of the side (left side of the transmission band [-f 0 (1+a), -f 0 (1-a)], the right side of the transmission band [f 0 (1-a), f 0 (1+a)]) modulo the filter function value.
  • the root raised cosine function transmission band is a frequency domain independent variable length interval corresponding to a non-zero function value.
  • the modulus of the function value decreases monotonically; in the middle region whose length is half, any function
  • the modulus of the value is greater than or equal to the modulus of the function value in the adjacent area; on the boundary of the interval, the modulus of the filter function value becomes smaller and smaller until it is close to 0.
  • a data transmission apparatus is provided. As shown in FIG. 5 , the data transmission apparatus provided in this embodiment mainly includes a DFT module 51 , a filtering module 52 , an IDFT module 53 and a transmission module 54 .
  • the DFT module 51 is configured to perform M-point discrete Fourier transform DFT on the first time-domain data to obtain frequency-domain data;
  • the filtering module 52 is configured to perform a filtering operation on the frequency domain data to obtain filtered frequency domain data
  • the IDFT module 53 is configured to perform N-point inverse discrete Fourier transform IDFT on the filtered frequency domain data to obtain second time domain data;
  • the transmission module 54 is configured to transmit the second time domain data on the physical resource.
  • the first time domain data is contained in L data symbol blocks, the length of the data symbol blocks is M, wherein the header of each data symbol block contains the same data sequence, The same data sequence is contained at the end of each block of data symbols.
  • a time slot includes R reference signal symbol blocks and L data symbol blocks, wherein the reference signal symbol block header contains the same data sequence as the data symbol block header; the reference The signal symbol block trailer contains the same data sequence as the data symbol block trailer.
  • the reference sequence in the reference signal symbol block includes at least one of: a binary phase shift keying BPSK modulated sequence; a Zadoff-Chu sequence; and a Golay sequence.
  • the filtering function used by the filtering operation comprises a root raised cosine function or a raised cosine function.
  • the expression of the raised cosine function y(f) in the frequency domain is as follows:
  • A is a constant
  • is the roll-off factor
  • is any value between 0 and 1
  • is the absolute value operator
  • f 0 is half the half-value width of the raised cosine function.
  • the root raised cosine function is the square root of the raised cosine function.
  • the half-value width of the root raised cosine function is less than or equal to the length of the data symbol block before the filtering operation.
  • the filter function used in the filtering operation satisfies the following condition: in the independent variable length interval corresponding to the non-zero filter function value, the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value.
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: as the independent variable goes from the intermediate value to the boundary value, the modulus of the filter function value corresponding to the independent variable decreases monotonically.
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: in a region where the length of the independent variable is half of the total length of the independent variable, the modulus of any filter function value is greater than or equal to the same The modulus of the filter function value in the neighborhood.
  • the modulus of the intermediate filter function value is greater than the modulus of the edge region filter function value, including: as the independent variable goes from the intermediate value to the boundary value, the modulus of the filter function value corresponding to the independent variable decreases monotonically, and The value of the filter function corresponding to the independent variable gradually approaches 0.
  • the length of the filter function used by the filtering operation is greater than or equal to the length of the frequency domain data before the filtering operation.
  • the method before performing the filtering operation on the frequency domain data, the method further includes:
  • the length of the filter function used in the filtering operation is less than or equal to the length of the frequency domain data after cyclic expansion; or, the length of the filter function used in the filtering operation is less than or equal to the length of the The length of the frequency domain data after duplication and extension.
  • the method before performing the filtering operation on the frequency domain data, the method further includes: copying a piece of tail data of the frequency domain data and placing it in the header of the frequency domain data; A piece of header data is placed at the end of the frequency domain data.
  • performing a filtering operation on the frequency domain data includes: performing a preset function filtering after performing root raised cosine function filtering on the frequency domain data.
  • transmitting the second time domain data on the physical resource includes: after performing digital-to-analog conversion on the second time domain data, transmitting the second time domain data on a radio frequency link.
  • the data transmission device provided in this embodiment can execute the data transmission method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • the data transmission method provided by any embodiment of this application can execute the data transmission method provided by any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 6 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 61 , a memory 62 , an input device 63 , an output device 64 and Communication device 65; the number of processors 61 in the device can be one or more, and one processor 61 is taken as an example in FIG. Other ways to connect, take the connection through the bus as an example in FIG. 6 .
  • the memory 62 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the data transmission method in the embodiments of the present application (for example, the DFT module in the data transmission device). 51, filtering module 52, IDFT module 53 and transmission module 54).
  • the processor 61 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 62, that is, implements any of the methods provided in the embodiments of the present application.
  • the memory 62 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the device, and the like. Additionally, memory 62 may include high speed random access memory, and may also include nonvolatile memory, such as at least one magnetic disk storage device, flash memory device, or other nonvolatile solid state storage device. In some examples, memory 62 may include memory located remotely from processor 61, which may be connected to the device through a network. Examples of such networks include the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 63 may be configured to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 64 may include a display device such as a display screen.
  • Communication device 65 may include a receiver and a transmitter.
  • the communication device 65 is configured to transmit and receive information according to the control of the processor 61 .
  • an embodiment of the present application further provides a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a data transmission method when executed by a computer processor, including:
  • M-point discrete Fourier transform DFT is respectively performed on the first time domain data to obtain frequency domain data
  • the second time domain data is transmitted on the physical resource.
  • a storage medium containing computer-executable instructions provided by the embodiments of the present application not only correspond to the above-mentioned method operations, but also can execute any of the data transmission methods provided in any of the embodiments of the present application. related operations.
  • the present application can be implemented by means of software and necessary general-purpose hardware, and of course can also be implemented by hardware, but in many cases the former is a better implementation manner .
  • the embodiments of the present application can be embodied in the form of software products that are essentially or contribute to related technologies, and the computer software products can be stored in a computer-readable storage medium, such as a computer floppy disk, Read-Only Memory (ROM), Random Access Memory (RAM), Flash Memory (FLASH), hard disk or CD, etc., including several instructions to make a computer device (which can be a personal computer, A server, or a network device, etc.) executes the methods described in the various embodiments of the present application.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • Various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Disc DVD or CD) CD-ROM) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as a general purpose computer, special purpose computer, microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), Programmable logic devices (Field Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FGPA Programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本申请提供一种数据传输方法、装置、设备和存储介质,包括:对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;将所述频域数据进行滤波操作,得到滤波后的频域数据;将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;将所述第二时域数据在物理资源上传输。

Description

数据传输方法、装置、设备和存储介质
本公开要求在2020年07月07日提交中国专利局、申请号为202010647195.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及通信技术领域,例如涉及一种数据传输方法、装置、设备和存储介质。
背景技术
在一些高频场景中,需要低峰均比(Peak to Average Power Ratio,PAPR)的发射信号,相关技术中传输数据的发射信号的峰均比PAPR比较高,不能满足一些高频场景的需求。
发明内容
本申请提供的数据传输方法、装置、设备和存储介质,以降低传输信号的峰均比PAPR。
第一方面,本申请实施例提供对一种数据传输方法,包括:第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;将所述频域数据进行滤波操作,得到滤波后的频域数据;将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;将所述第二时域数据在物理资源上传输。
第二方面,本申请实施例提供一种数据传输装置,包括:DFT模块、滤波模块、IDFT模块和传输模块。
DFT模块,被配置为对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据。
滤波模块,被配置为将所述频域数据进行滤波操作,得到滤波后的频域数据。
IDFT模块,被配置为将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据。
传输模块,被配置为将所述第二时域数据在物理资源上传输。
第三方面,本申请实施例提供一种设备,包括:一个或多个处理器;存储器,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例提供的任一项所述 的数据传输方法。
第四方面,本申请实施例提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如本申请实施例提供的任一项所述的数据传输方法。
附图说明
图1是本申请实施例提供的一种数据传输方法的流程图;
图2是本申请实施例提供的一种数据符号的结构示意图;
图3是本申请实施例提供的一种数据传输方法的发射端结构框图;
图4是本申请实施例提供的一种根升余弦函数曲线图;
图5是本申请实施例提供的一种数据传输装置的结构示意图;
图6是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
高频场景中相位噪声大,即使接收端做了相位补偿,也会残留很多的相位噪声,因此需要设计合适的调制方案或波形方案来抑制相位噪声的影响。高频场景中多普勒频移比较大,即使接收端做了频偏补偿,数据符号里也会残留一些的相位偏差,因此需要设计合适的调制方案或波形方案来抑制相位偏差的影响。
高频场景中,路损和阴影衰弱比较大,因此在小区边缘有些区域的信噪比会非常低。而且高频功率放大器(Power Amplifier,PA)的效率比较低,为了提高信噪比,同时也要节省用户设备(User Equipment,UE)电池的功耗,就需要UE发射信号的峰均比PAPR比较低。
在大规模物联网(massive Machine Type of Communication,mMTC)场景中,有些终端设备希望大幅节省电池功耗,比如希望电池寿命达到十年以上。因此,为了提高该终端的PA效率,就需要UE发射信号的峰均比PAPR比较低。特别是当大量终端设备非正交接入时,信号与干扰加噪声比(Signal to  Interference plus Noise Ratio,SINR)会很低。
现在5G NR标准里,虽然DFT-s-OFDM(Discrete Fourier Transform-Spread OFDM)信号的峰均比比较低,但仍然很难满足超5代移动通信技术(Beyond Five Generation,B5G)或第6代移动通信技术(Six Generation,6G)更低PAPR需求的应用场景。降低带外泄漏也是B5G和6G的一个需求。低带外泄漏不仅可以减少频带之间的干扰,而且可以减少带外功率浪费,等价于进一步提高了PA的效率。
在一个实施例中,提供一种数据传输方法,如图1所示,本实施例提供的数据传输方法主要包括步骤S11、S12、S13和S14。
S11、对第一时域数据分别进行M点离散傅里叶变换(Discrete Fourier Transform,DFT),得到频域数据。
S12、将所述频域数据进行滤波操作,得到滤波后的频域数据。
S13、将所述滤波后的频域数据进行N点离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT),得到第二时域数据。
S14、将所述第二时域数据在物理资源上传输。
在本实施例中,本实施例的执行主体为发射节点,发射节点可为用户设备,第一时域数据可以是指在第一时域中的数据,第二时域数据可以是指在第二时域中的数据,频域数据是指在频域中的数据。
离散傅里叶变换可以把信号从时间域变换到频率域,进而分析信号的频谱结构和变化规律。离散傅里叶逆变换可以把信号从频率域变换到时间域。
在一个示例性的实施例中,第一时域数据被包含在L个数据符号块中,所述数据符号块的长度是M,其中,在每个数据符号块的首部包含相同的数据序列,在每个数据符号块的尾部包含相同的数据序列。
在本实施例中,L个数据符号块是连续的L个数据符号块,所述数据符号可以是正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。其中,L个数据符号块中的每个数据符号块的长度是M,即每个数据符号块中包括M个时域数据。
在一实施例中,对第一时域数据分别进行M点DFT,可以理解为对L个连续的数据符号块进行M点DFT。
对L个连续的数据符号块分别进行M点DFT、在频域分别进行滤波操作、分别进行N点IDFT,IDFT之后的时域数据在物理资源上传输。其中,L、M和N为大于1的整数。其中,N大于M。
在一个示例性的实施例中,一个时隙内包括R个参考信号符号块和L个数据符号块,其中,所述参考信号符号块首部包含与数据符号块首部相同的数据序列;所述参考信号符号块尾部包含与数据符号块尾部相同的数据序列。其中,R为正整数。
其中,在每个数据符号块的首部包含有相同的数据序列,在每个数据符号块的尾部包含有相同的数据序列。首部的数据序列与尾部的数据序列不相同。
时隙内所有的参考信号符号块和数据符号块的首部数据序列都是相同的,尾部数据序列也都是相同的。这样带外泄漏很低,而且前一OFDM符号尾部是后一OFDM符号的循环前缀,这样就节省了循环前缀(Cyclic Prefix,CP)的开销;并且首尾参考信号序列为接收端已知的序列,可以用来进行相位噪声估计、信道估计、同步等。
在一个示例性的实施例中,所述参考信号符号块中的参考序列包括如下一种或多种:二进制相移键控(Binary Phase Shift Keying,BPSK)调制后的序列;Zadoff-Chu序列;Golay序列。
在一个示例性的实施例中,所述滤波操作使用的滤波函数包括根升余弦函数或升余弦函数。
在一个示例性的实施例中,所述升余弦函数y(f)在频域上的表达式如下:
Figure PCTCN2021094797-appb-000001
其中,A为常数,α为滚降因子,α为0到1之间的任意数值,|.|为绝对值运算符,f 0为升余弦函数的半值宽度的一半。
本实施例中,2f 0可记为升余弦函数的半值宽带。2f 0(1+α)为滤波函数的长度,即非零函数值所对应的自变量长度。
在一个示例性的实施例中,所述根升余弦函数是升余弦函数的平方根。
根升余弦函数即为升余弦函数的平方根,sry(f)为:
Figure PCTCN2021094797-appb-000002
在一个示例性的实施例中,在所述根升余弦函数的滚降系数大于0的情况下,所述根升余弦函数的半值宽度小于或等于滤波操作之前的数据符号块的长度。
根升余弦函数的滚降系数大于0,半值宽度小于滤波操作之前的频域数据的长度,以实现滤波函数的长度等于所述滤波操作之前的频域数据的长度。这样 既可以实现滤波函数的特性为中间模值大于旁边模值,又可以不增加传输带的带宽,提高频谱效率。
在一个示例性的实施例中,所述滤波操作使用的滤波函数满足如下条件:在非零滤波函数值对应的自变量长度区间内,中间滤波函数值的模大于边缘区域滤波函数值的模。
边缘区域滤波函数值的模是指,自变量长度区间中的边缘区域的滤波函数值的模。
边缘区域指自变量长度区间内远离中间区域一侧的区域;中间区域指自变量长度区间内处在中间的区域;中间滤波函数值是指中间区域对应的函数值。
L个连续的数据符号块,首尾分别插入相同的序列,每个数据符号块分别M点DFT之后,在频域进行滤波操作,滤波函数的特性为中间模值大于旁边模值。这样,不但可以降低波形方案的PAPR,而且可以抑制OFDM符号内数据部分在过采样之后对尾部插入序列的串扰,这样就可以保证过采样后的前一OFDM符号尾部是后一OFDM符号的循环前缀。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:随着自变量从中间值到边界值,自变量对应的滤波函数值的模单调递减。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:在自变量长度为自变量总长度一半的区域内,任意滤波函数值的模大于或等于相邻区域内滤波函数值的模。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:随着自变量从中间值到边界值,自变量对应的滤波函数值的模单调递减,且自变量对应的滤波函数值逐渐接近0。
在一个示例性的实施例中,所述滤波操作使用的滤波函数的长度大于或等于所述滤波操作之前的频域数据的长度。
滤波函数的长度大于或等于所述滤波操作之前的频域数据的长度,可以理解为滤波函数的长度大于等于M*f sc,f sc为子载波间隔。
在一个示例性的实施例中,将所述频域数据进行滤波操作之前,还包括:将所述频域数据进行循环扩展;或,将所述频域数据进行复制加长。
在一个示例性的实施例中,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行循环扩展之后的长度;或,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行复制加长之后的长度。
在一个示例性的实施例中,将所述频域数据进行滤波操作之前,还包括:复制所述频域数据的一段尾部数据放置在所述频域数据的首部;复制所述频域数据的一段首部数据放置在所述频域数据的尾部。
在一个示例性的实施例中,将所述频域数据进行滤波操作,包括:将所述频域数据进行根升余弦函数滤波之后,再进行预设函数滤波。
进一步的,进行滤波操作的滤波函数包含根升余弦函数,可以为滤波函数filter(f)=sry(f)·o(f),其中,o(f)为其他滤波函数即上述的预设函数,sry(f)为根升余弦函数。即所述滤波操作也包括进行根升余弦函数滤波之后,再进行其他函数的滤波。
在一个示例性的实施例中,将所述第二时域数据在物理资源上传输,包括:将所述第二时域数据进行数模转换之后,在射频链路上传输。
在一个实施例中,提供一种时域数据的基本符号块结构。
如图2所示,图中每个正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号的长度为M,M的长度为:首部序列H的长度+数据Data的长度+尾部序列T的长度。每个数据符号块(即OFDM符号)内的首部序列H和尾部序列T都相同,OFDM符号内的数据部分不同,分别为Data1、Data2、Data3.....。
在一个实施例中,提供一种数据调制方法的发射端结构框图。
如图3所示,在发射端,预传输数据插入首尾序列,然后经过M点DFT(即,M-DFT)从时域变换到频域,然后频域数据循环扩展后进行滤波操作,然后将频域数据映射在对应子载波上,然后再添加零数据子载波,以实现过采样。然后经过N点IDFT(即,N-IDFT)从频域变换到时域,生成的时域数据最后通过射频链路发送出去。
图3中,DAC-RF表示数模转换器(Digital-to-analog converter)和射频(Radio Frequency)部分。
其中,滤波操作的滤波函数为根升余弦函数(或升余弦函数)。
频域数据点乘根升余弦滤波函数(滤波函数的特性为中间函数值的模大于旁边函数值的模)等价于时域数据与根升余弦函数的时域形式(非Sinc函数,Sinc函数有着很长的拖尾)进行卷积操作,由于根升余弦函数的时域形式拖尾衰减比较快,因此抑制了数据符号块中数据部分对尾部插入序列的串扰。这样就可以保证过采样后的前一OFDM符号尾部是后一OFDM符号的循环前缀。而 且采用根升余弦函数进行滤波,可以使得IDFT之后的时域数据峰均比更低。
在一个实施例中,提供一种根升余弦函数曲线图,如图4所示,y(f)表示根升余弦函数,y表示根升余弦函数的因变量,f表示根升余弦函数的自变量,f的单位是kHz。
所述根升余弦函数的频域长度为2f 0(1+a),其中,f 0为频域升余弦函数在频域上的半值宽度的一半,a为滚降因子,所述根升余弦函数传输带的中间([-f 0(1-a),f 0(1-a)])滤波函数值的模大于旁边(传输带的左边[-f 0(1+a),-f 0(1-a)],传输带的右边[f 0(1-a),f 0(1+a)])滤波函数值的模。所述根升余弦函数传输带为非零函数值所对应的频域自变量长度区间。并且可以看出,非零函数值所对应的频域自变量长度区间内,随着自变量从中间点开始到边界上,函数值的模单调递减;长度为一半的中间区域内,任一函数值的模都大于等于旁边区域内函数值的模;在区间边界上,滤波函数值的模越来越小,直至接近0。
在一个实施例中,提供一种数据传输装置,如图5所示,本实施例提供的数据传输装置主要包括DFT模块51、滤波模块52、IDFT模块53和传输模块54。
DFT模块51,被配置为对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;
滤波模块52,被配置为将所述频域数据进行滤波操作,得到滤波后的频域数据;
IDFT模块53,被配置为将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;
传输模块54,被配置为将所述第二时域数据在物理资源上传输。
在一个示例性的实施例中,第一时域数据被包含在L个数据符号块中,所述数据符号块的长度是M,其中,在每个数据符号块的首部包含相同的数据序列,在每个数据符号块的尾部包含相同的数据序列。
在一个示例性的实施例中,一个时隙内包括R个参考信号符号块和L个数据符号块,其中,所述参考信号符号块首部包含与数据符号块首部相同的数据序列;所述参考信号符号块尾部包含与数据符号块尾部相同的数据序列。
在一个示例性的实施例中,所述参考信号符号块中的参考序列包括至少一种:二进制相移键控BPSK调制后的序列;Zadoff-Chu序列;Golay序列。
在一个示例性的实施例中,所述滤波操作使用的滤波函数包括根升余弦函 数或升余弦函数。
在一个示例性的实施例中,所述升余弦函数y(f)在频域上的表达式如下:
Figure PCTCN2021094797-appb-000003
其中,A为常数,α为滚降因子,α为0到1之间的任意数值,|.|为绝对值运算符,f 0为升余弦函数的半值宽度的一半。
在一个示例性的实施例中,所述根升余弦函数是升余弦函数的平方根。
在一个示例性的实施例中,在所述根升余弦函数的滚降系数大于0的情况下,所述根升余弦函数的半值宽度小于或等于滤波操作之前的数据符号块的长度。
在一个示例性的实施例中,所述滤波操作使用的滤波函数满足如下条件:非零滤波函数值对应的自变量长度区间内,中间滤波函数值的模大于边缘区域滤波函数值的模。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:随着自变量从中间值到边界值,自变量对应的滤波函数值的模单调递减。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:在自变量长度为自变量总长度一半的区域内,任意滤波函数值的模大于或等于相邻区域内滤波函数值的模。
在一个示例性的实施例中,中间滤波函数值的模大于边缘区域滤波函数值的模,包括:随着自变量从中间值到边界值,自变量对应的滤波函数值的模单调递减,且自变量对应的滤波函数值逐渐接近0。
在一个示例性的实施例中,所述滤波操作使用的滤波函数的长度大于或等于所述滤波操作之前的频域数据的长度。
在一个示例性的实施例中,将所述频域数据进行滤波操作之前,还包括:
将所述频域数据进行循环扩展;或,
将所述频域数据进行复制加长。
在一个示例性的实施例中,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行循环扩展之后的长度;或,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行复制加长之后的长度。
在一个示例性的实施例中,将所述频域数据进行滤波操作之前,还包括:复制所述频域数据的一段尾部数据放置在所述频域数据的首部;复制所述频域数据的一段首部数据放置在所述频域数据的尾部。
在一个示例性的实施例中,将所述频域数据进行滤波操作,包括:将所述频域数据进行根升余弦函数滤波之后,进行预设函数滤波。
在一个示例性的实施例中,将所述第二时域数据在物理资源上传输,包括:将所述第二时域数据进行数模转换之后,在射频链路上传输。
本实施例中提供的数据传输装置可执行本申请任意实施例所提供的数据传输方法,具备执行该方法相应的功能模块和有益效果。未在本实施例中描述的技术细节,可参见本申请任意实施例所提供的数据传输方法。
本申请实施例还提供一种设备,图6是本申请实施例提供的一种设备的结构示意图,如图6所示,该设备包括处理器61、存储器62、输入装置63、输出装置64和通信装置65;设备中处理器61的数量可以是一个或多个,图6中以一个处理器61为例;设备中的处理器61、存储器62、输入装置63和输出装置64可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器62作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中的数据传输方法对应的程序指令/模块(例如,数据传输装置中的DFT模块51、滤波模块52、IDFT模块53和传输模块54)。处理器61通过运行存储在存储器62中的软件程序、指令以及模块,从而执行设备的多种功能应用以及数据处理,即实现本申请实施例提供的任一方法。
存储器62可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器62可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器62可包括相对于处理器61远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括互联网、企业内部网、局域网、移动通信网及其组合。
输入装置63可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置64可包括显示屏等显示设备。
通信装置65可以包括接收器和发送器。通信装置65设置为根据处理器61 的控制进行信息收发通信。
在一个示例性的实施方式中,本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种数据传输方法,包括;
对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;
将所述频域数据进行滤波操作,得到滤波后的频域数据;
将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;
将所述第二时域数据在物理资源上传输。
当然,本申请实施例所提供的一种包含计算机可执行指令的存储介质,计算机可执行指令不仅对应于如上所述的方法操作,还可以执行本申请任意实施例所提供的数据传输方法中的相关操作。
通过以上关于实施方式的描述,所属领域的技术人员可以清楚地了解到,本申请可借助软件及必需的通用硬件来实现,当然也可以通过硬件实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的实施例本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如计算机的软盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、闪存(FLASH)、硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请多个实施例所述的方法。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。
通过示范性和非限制性的示例,上文提供了对本申请的示范实施例的描述文字。

Claims (21)

  1. 一种数据传输方法,应用于发射节点,包括:
    对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;
    将所述频域数据进行滤波操作,得到滤波后的频域数据;
    将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;
    将所述第二时域数据在物理资源上传输。
  2. 根据权利要求1所述的方法,其中,所述第一时域数据被包含在L个数据符号块中,所述数据符号块的长度是M,其中,每个所述数据符号块的首部包含相同的数据序列,每个所述数据符号块的尾部包含相同的数据序列。
  3. 根据权利要求2所述的方法,其中,一个时隙内包括R个参考信号符号块和所述L个数据符号块,其中,所述参考信号符号块首部包含与所述数据符号块首部相同的数据序列;所述参考信号符号块尾部包含与所述数据符号块尾部相同的数据序列。
  4. 根据权利要求3所述的方法,其中,所述参考信号符号块中的参考序列包括如下至少一种:
    二进制相移键控BPSK调制后的序列;Zadoff-Chu序列;Golay序列。
  5. 根据权利要求1所述的方法,其中,所述滤波操作使用的滤波函数为根升余弦函数或升余弦函数。
  6. 根据权利要求5所述的方法,其中,所述升余弦函数y(f)在频域上的表达式如下:
    Figure PCTCN2021094797-appb-100001
    其中,A为常数,α为滚降因子,α为0到1之间的任意数值,|.|为绝对值运算符,f 0为升余弦函数的半值宽度的一半。
  7. 根据权利要求5所述的方法,其中,所述根升余弦函数是所述升余弦函数的平方根。
  8. 根据权利要求5或7所述的方法,其中,在所述根升余弦函数的滚降系数大于0的情况下,所述根升余弦函数的半值宽度小于或等于所述滤波操作之前的数据符号块的长度。
  9. 根据权利要求1所述的方法,其中,所述滤波操作使用的滤波函数满足如 下条件:
    在非零滤波函数值对应的自变量长度区间内,中间滤波函数值的模大于所述自变量长度区间的边缘区域的滤波函数值的模。
  10. 根据权利要求9所述的方法,其中,所述中间滤波函数值的模大于所述自变量长度区间的边缘区域的滤波函数值的模,包括:
    随着自变量从中间值到边界值,所述自变量对应的滤波函数值的模单调递减。
  11. 根据权利要求9所述的方法,其中,所述中间滤波函数值的模大于所述自变量长度区间的边缘区域的滤波函数值的模,包括:
    在自变量长度为所述自变量长度区间一半的区域内,任意滤波函数值的模大于或等于相邻区域内滤波函数值的模。
  12. 根据权利要求9所述的方法,其中,所述中间滤波函数值的模大于所述自变量长度区间的边缘区域的滤波函数值的模,包括:
    随着自变量从中间值到边界值,所述自变量对应的滤波函数值的模单调递减,且所述自变量对应的滤波函数值逐渐接近0。
  13. 根据权利要求1所述的方法,其中,所述滤波操作使用的滤波函数的长度大于或等于所述滤波操作之前的频域数据的长度。
  14. 根据权利要求1所述的方法,将所述频域数据进行滤波操作之前,还包括:
    将所述频域数据进行循环扩展;或,
    将所述频域数据进行复制加长。
  15. 根据权利要求14所述的方法,其中,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行循环扩展之后的长度;或,所述滤波操作使用的滤波函数的长度小于或等于所述频域数据进行复制加长之后的长度。
  16. 根据权利要求1所述的方法,将所述频域数据进行滤波操作之前,还包括:
    复制所述频域数据的一段尾部数据放置在所述频域数据的首部;
    复制所述频域数据的一段首部数据放置在所述频域数据的尾部。
  17. 根据权利要求1所述的方法,其中,所述将所述频域数据进行滤波操作,包括:
    将所述频域数据进行根升余弦函数滤波之后,再进行预设函数滤波。
  18. 根据权利要求1所述的方法,其中,所述将所述第二时域数据在物理资 源上传输,包括;
    将所述第二时域数据进行数模转换之后,在射频链路上传输。
  19. 一种数据传输装置,应用于发射节点,包括:
    DFT模块,被配置为对第一时域数据分别进行M点离散傅里叶变换DFT,得到频域数据;
    滤波模块,被配置为将所述频域数据进行滤波操作,得到滤波后的频域数据;
    IDFT模块,被配置为将所述滤波后的频域数据进行N点离散傅里叶逆变换IDFT,得到第二时域数据;
    传输模块,被配置为将所述第二时域数据在物理资源上传输。
  20. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-18任一项所述的数据传输方法。
  21. 一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-18任一项所述的数据传输方法。
PCT/CN2021/094797 2020-07-07 2021-05-20 数据传输方法、装置、设备和存储介质 WO2022007507A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3185184A CA3185184A1 (en) 2020-07-07 2021-05-20 Data transmission method and apparatus, device, and storage medium
US18/014,718 US20230353438A1 (en) 2020-07-07 2021-05-20 Data transmission method and apparatus, device, and storage medium
KR1020237003712A KR20230031936A (ko) 2020-07-07 2021-05-20 데이터 전송 방법과 장치, 디바이스 및 저장 매체
EP21837262.1A EP4181473A1 (en) 2020-07-07 2021-05-20 Data transmission method and apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010647195.4 2020-07-07
CN202010647195.4A CN111901279A (zh) 2020-07-07 2020-07-07 数据传输方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2022007507A1 true WO2022007507A1 (zh) 2022-01-13

Family

ID=73191675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094797 WO2022007507A1 (zh) 2020-07-07 2021-05-20 数据传输方法、装置、设备和存储介质

Country Status (6)

Country Link
US (1) US20230353438A1 (zh)
EP (1) EP4181473A1 (zh)
KR (1) KR20230031936A (zh)
CN (1) CN111901279A (zh)
CA (1) CA3185184A1 (zh)
WO (1) WO2022007507A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901279A (zh) * 2020-07-07 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质
CN115378771A (zh) * 2021-05-21 2022-11-22 中兴通讯股份有限公司 数据传输方法、装置、电子设备和存储介质
WO2023168655A1 (zh) * 2022-03-10 2023-09-14 株式会社Ntt都科摩 电子设备
CN117082622A (zh) * 2022-05-05 2023-11-17 中兴通讯股份有限公司 数据传输方法、装置、存储介质及电子装置
CN117692291A (zh) * 2022-09-05 2024-03-12 中兴通讯股份有限公司 数据传输方法、设备及存储介质
CN117979424A (zh) * 2022-10-24 2024-05-03 中兴通讯股份有限公司 数据传输方法、数据处理方法、通信设备、介质及产品

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1809047A (zh) * 2006-01-27 2006-07-26 东南大学 兼容的单载波正交频分多址信号发送方法
US20080075191A1 (en) * 2006-09-27 2008-03-27 Telefonaktiebolaget L M Ericsson (Publ) Reduction of Peak-To-Average-Power Ratio in a Telecommunications System
CN107026809A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种数据处理方法和装置
US20180062808A1 (en) * 2015-04-09 2018-03-01 Lg Electronics Inc. Device for transmitting data in wireless communication system
US20190052486A1 (en) * 2016-04-15 2019-02-14 Indian Institute Of Technology Hyderabad Method and transmitter for generating a waveform with optimized papr
CN110971554A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 数据传输方法及装置
CN111901279A (zh) * 2020-07-07 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1809047A (zh) * 2006-01-27 2006-07-26 东南大学 兼容的单载波正交频分多址信号发送方法
US20080075191A1 (en) * 2006-09-27 2008-03-27 Telefonaktiebolaget L M Ericsson (Publ) Reduction of Peak-To-Average-Power Ratio in a Telecommunications System
US20180062808A1 (en) * 2015-04-09 2018-03-01 Lg Electronics Inc. Device for transmitting data in wireless communication system
CN107026809A (zh) * 2016-01-29 2017-08-08 中兴通讯股份有限公司 一种数据处理方法和装置
US20190052486A1 (en) * 2016-04-15 2019-02-14 Indian Institute Of Technology Hyderabad Method and transmitter for generating a waveform with optimized papr
CN110971554A (zh) * 2018-09-29 2020-04-07 华为技术有限公司 数据传输方法及装置
CN111901279A (zh) * 2020-07-07 2020-11-06 中兴通讯股份有限公司 数据传输方法、装置、设备和存储介质

Also Published As

Publication number Publication date
KR20230031936A (ko) 2023-03-07
CN111901279A (zh) 2020-11-06
EP4181473A1 (en) 2023-05-17
CA3185184A1 (en) 2022-01-13
US20230353438A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
WO2022007507A1 (zh) 数据传输方法、装置、设备和存储介质
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
CN111510412A (zh) 一种数据调制方法、装置和设备
US20220116175A1 (en) Reference signal sequences in time domain data
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
WO2022007699A1 (zh) 数据调制方法、通信设备及存储介质
WO2017129001A1 (zh) 一种数据处理方法和装置
WO2022110973A1 (zh) 信号配置方法、装置、设备和存储介质
WO2017114025A1 (zh) 一种通信处理方法、处理器和通信设备
WO2022242707A1 (zh) 数据传输方法、装置、电子设备和存储介质
WO2023284752A1 (zh) 数据传输、数据调制方法、装置、电子设备和存储介质
WO2022062904A1 (zh) 参考信号传输方法、装置、通信节点及存储介质
CN107968759B (zh) 一种多载波系统的数据调制方法及装置
WO2023045990A1 (zh) 信号调制方法、设备和存储介质
WO2024041016A1 (zh) 信号传输方法、设备和存储介质
WO2022242705A1 (zh) 数据传输方法、装置、电子设备和存储介质
WO2023051592A1 (zh) 数据传输方法、数据调制方法、电子设备和存储介质
US20240223427A1 (en) Data transmission method and apparatus, data modulation method and apparatus, electronic device, and storage medium
US20240223424A1 (en) Data transmission method and apparatus, and electronic device and storage medium
CN115396266A (zh) 数据传输方法、装置、电子设备和存储介质
CN118118302A (zh) 数据传输方法、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21837262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3185184

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20237003712

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021837262

Country of ref document: EP

Effective date: 20230207