WO2017114025A1 - 一种通信处理方法、处理器和通信设备 - Google Patents
一种通信处理方法、处理器和通信设备 Download PDFInfo
- Publication number
- WO2017114025A1 WO2017114025A1 PCT/CN2016/106815 CN2016106815W WO2017114025A1 WO 2017114025 A1 WO2017114025 A1 WO 2017114025A1 CN 2016106815 W CN2016106815 W CN 2016106815W WO 2017114025 A1 WO2017114025 A1 WO 2017114025A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frequency domain
- frequency
- domain signal
- fourier transform
- phase
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2628—Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/264—Pulse-shaped multi-carrier, i.e. not using rectangular window
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/265—Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
Definitions
- the present patent application relates to wireless communication technologies, and in particular, to a communication processing method, a processor, and a communication device.
- the selection of the device has a great correlation with the waveform signal.
- the peak-to-average power ratio (PAPR) of the waveform signal affects the selection of the device.
- the peak-to-average ratio of the input waveform signal is high, D/A conversion and power amplifier components are required to have a large dynamic range, which may cause signal distortion and affect system performance.
- the large dynamic range of D/A conversion and power amplifier components have high power consumption, low energy efficiency, and high price, which is unbearable for most devices. Therefore, the low peak average ratio has great practical application value.
- Single carrier frequency division multiplexing (SC-FDM) technology is a multi-carrier technology with single carrier characteristics, named for supporting orthogonal frequency division multiple access. Although the peak-to-average ratio of data after SC-FDM modulation is lower than that of relative OFDM, it is still compared in many application scenarios. high.
- the present patent application provides a communication processing method, a processor, and a communication device to obtain a lower peak-to-average power ratio.
- the present application provides a communication processing method, including: performing offset quadrature amplitude modulation on a data to obtain an offset quadrature amplitude modulated symbol in a time domain;
- the quadrature-amplified symbol is subjected to Fourier transform to obtain a Fourier-transformed frequency domain signal;
- the frequency-domain signal of the Fourier-transformed frequency domain is subjected to frequency domain shaping to obtain a frequency domain shaped a frequency domain signal, wherein the frequency domain shaped frequency domain signal removes a conjugate symmetric frequency point; mapping the frequency domain shaped frequency domain signal to a subcarrier to obtain a frequency domain after subcarrier mapping a signal; performing inverse Fourier transform on the frequency domain signal after the subcarrier mapping to obtain a time domain signal.
- the offset quadrature amplitude modulated symbols in the time domain comprise in-phase component symbols and orthogonal component symbols in a time domain interleaved together, the interlace
- the in-phase component symbols and quadrature component symbols on the time domain together are 2M in length;
- the Fourier transform is a 2M point Fourier transform, where M is a positive integer.
- the offset orthogonal amplitude modulated symbols in the time domain comprise in-phase component symbols and orthogonal component symbols in separate time domains, where the separated time
- the lengths of the in-phase component symbols and the orthogonal component symbols on the domain are respectively M, where M is a positive integer; and the symbols obtained by orthogonally amplitude-modulating the offsets in the time domain are subjected to the Fourier transform to obtain
- the Fourier-transformed frequency domain signal includes: performing the Fourier transform on the separated in-phase component symbols and orthogonal component symbols, respectively, to obtain separation The in-phase component frequency domain signal and the quadrature component frequency domain signal, the Fourier transform is an M-point Fourier transform; the processing method further includes: separating the in-phase component frequency before performing the frequency domain shaping The domain signal and the quadrature component frequency domain signals are combined.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes the M/2 frequency points and the frequency points in the front or the rear of the frequency points [0, 1, ..., M/2-1, M/2+1, M/2+2, ..., M].
- M/2-1 frequency points before and after [M+1,...,3M/2-1,3M/2+1,...,2M-1], and frequency point M/2 and frequency point 3M/ 2.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes (M+1)/2 frequency points before and after the frequency points [0, 1, ..., M], and the frequency points [M+1, ..., 3M/2-1, 3M/2 (M-1)/2 frequency points in front of or behind +1,...,2M-1].
- the method further includes: performing orthogonal frequency-modulated symbols on the time domain Phase shifting to obtain an offset quadrature amplitude modulated symbol on the time domain of the phase shift; performing a Fourier transform on the offset quadrature amplitude modulated symbol in the time domain, specifically including: The offset quadrature amplitude modulated symbols on the time domain of the phase shift are Fourier transformed.
- the method further includes: combining the in-phase component symbol and the quadrature component symbol on the separated time domain Move Phase, obtaining the in-phase component symbol and the orthogonal component symbol on the separated time domain of the phase-shifted phase; respectively performing the Fourier transform on the separated in-phase component symbol and the orthogonal component symbol, specifically including: The phase-shifted separated in-phase component symbols and orthogonal component symbols are subjected to the Fourier transform.
- the frequency domain shaped frequency domain signal when the M is an even number, is Specifically, it includes the first half or the latter half of the frequency points [0, 1, ..., M-1], and the first half or the latter half of the frequency points [M, M+1, ..., 2M-1] .
- the frequency domain shaped frequency domain signal is used when the M is an odd number Specifically, the frequency points [0, 1, ..., (M-3)/2, (M+1)/2, M/2+2, ..., M-1] are preceded or followed by (M-1)/ 2 frequency points, frequency points [M,...,(3M-3)/2,(3M+1)/2,...,2M-1] in front or behind (M-1)/2 frequency points, And the frequency point (M-1)/2 and the frequency point (3M-1)/2.
- phase shifting includes: phase shifting the symbols of the offset quadrature amplitude modulation on the time domain by half of the subcarriers.
- the method further includes: transmitting the time domain signal.
- the present patent application proposes a communication processing method, comprising: performing a Fourier transform on a received time domain signal to obtain a Fourier transformed frequency domain signal; and transforming the Fourier transform Frequency domain signal Subcarrier inverse mapping, obtaining a frequency domain signal inversely mapped by the subcarrier; equalizing the frequency domain signal inversely mapped by the subcarrier to obtain an equalized frequency domain signal; and frequencying the equalized frequency domain signal
- the domain is recovered, the frequency domain signal after the frequency domain recovery is obtained, and the frequency domain signal after the frequency domain recovery recovers the conjugate symmetric frequency point; the frequency domain signal after the frequency domain recovery is subjected to inverse Fourier transform, and the time domain is obtained.
- Offset quadrature amplitude modulated symbols on the domain; offset orthogonal amplitude modulated symbols in the time domain are subjected to offset quadrature amplitude demodulation to obtain data.
- the frequency domain recovered frequency domain signal includes: 2M frequency points; and the inverse Fourier transform includes: 2M point inverse Fourier transform, where M Is a positive integer.
- the equalized frequency domain signal when the M is an even number, includes (M+1) a frequency point; performing the frequency domain recovery on the equalized frequency domain signal, including a frequency point [1, 2, ..., M/2] and a frequency point [M/2+1, M/2+ 2, ..., M-1] conjugate symmetry.
- the equalized frequency domain signal when the M is an odd number, includes M frequency points; Performing the frequency domain recovery on the equalized frequency domain signal, including frequency points [1, 2, ..., (M+1)/2] and frequency points [(M-1)/2, (M -1)/2+1, (M-1)/2+2, ..., M-1] conjugate symmetry.
- the method further includes: phase shifting the Fourier-transformed frequency domain signal to obtain Phase-shifted Fourier-transformed frequency domain signal; performing inverse Fourier transform of the inverse Fourier transformed data, including transforming the phase-shifted Fourier transform The frequency domain signal is subjected to offset quadrature amplitude demodulation.
- the equalized frequency domain signal when the M is an even number, includes M frequency points; Performing the frequency domain recovery on the equalized frequency domain signal, including frequency points [1, 2, ..., M/2] and frequency points [M/2, M/2+1, ..., M- 1] Perform conjugate symmetry.
- the equalized frequency domain signal when the M is an odd number, includes (M+1) a frequency point; performing the frequency domain recovery on the equalized frequency domain signal, including a frequency point [1, 2, ..., (M-1)/2] and a frequency point [(M-1)/ 2+1, (M-1)/2+2, ..., M-1] perform conjugate symmetry.
- the present patent application provides a communication device comprising: a memory for storing an instruction; and a processor coupled to the memory for executing the instruction stored by the memory to execute the instruction Performing the following steps: performing offset quadrature amplitude modulation on the data to obtain an offset quadrature amplitude modulated symbol in the time domain; performing Fourier transform on the offset quadrature amplitude modulated symbol in the time domain Obtaining a Fourier-transformed frequency domain signal; performing frequency domain shaping on the Fourier-transformed frequency domain signal to obtain a frequency domain shaped frequency domain signal, and the frequency domain shaped frequency The domain signal removes the conjugate symmetric frequency point; the frequency domain shaped frequency domain signal is mapped onto the subcarrier to obtain a subcarrier mapped frequency domain signal; and the subcarrier mapped frequency domain signal Perform an inverse Fourier transform to obtain a time domain signal.
- the offset orthogonal amplitude modulated symbols in the time domain comprise in-phase component symbols and orthogonal component symbols in a time domain interleaved together, the interlace
- the in-phase component symbols and the orthogonal component symbol lengths in the time domain together are 2M;
- the Fourier transform is a 2M point Fourier transform, M is a positive integer.
- the offset orthogonal amplitude modulated symbols in the time domain comprise in-phase component symbols and orthogonal component symbols in separate time domains, where the separated time The in-phase component symbol and the quadrature component symbol length on the domain are M;
- the Fourier transform is an M-point Fourier transform, where M is a positive integer;
- the offset quadrature amplitude modulation in the time domain Subsequent symbols perform the Fourier transform to obtain the Fourier-transformed frequency domain signal, including: performing the Fourier transform on the separated in-phase component symbols and orthogonal component symbols, respectively, to obtain separation The in-phase component frequency domain signal and the quadrature component frequency domain signal, the Fourier transform is an M-point Fourier transform;
- the processor is further configured to: separate the in-phase component frequency domain signal and the orthogonal component frequency domain The signals are combined.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes the M/2 frequency points and the frequency points in the front or the rear of the frequency points [0, 1, ..., M/2-1, M/2+1, M/2+2, ..., M].
- M/2-1 frequency points before and after [M+1,...,3M/2-1,3M/2+1,...,2M-1], and frequency point M/2 and frequency point 3M/ 2.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes (M+1)/2 frequency points before and after the frequency points [0, 1, ..., M], and the frequency points [M+1, ..., 3M/2-1, 3M/2 (M-1)/2 frequency points in front of or behind +1,...,2M-1].
- the fifth possible implementation in the third aspect is further configured to: phase shift the offset quadrature amplitude modulated symbols on the time domain to obtain an offset quadrature amplitude modulated symbol in the time domain after phase shifting And performing Fourier transform on the offset quadrature amplitude modulated symbol in the time domain, specifically, including: performing, by using the offset quadrature amplitude modulated symbol on the time domain of the phase shifting The middle leaf transform.
- the processor is further configured to: perform in-phase component symbols and orthogonal on the separated time domain Performing phase shifting on the component symbols to obtain in-phase component symbols and orthogonal component symbols on the separated time domain of the phase shift; performing the Fourier transform on the separated in-phase component symbols and orthogonal component symbols, respectively Specifically, the Fourier transform is performed by using the phase-shifted separated in-phase component symbols and orthogonal component symbols.
- the frequency domain shaped frequency domain signal is used when the M is an even number Specifically, it includes the first half or the latter half of the frequency points [0, 1, ..., M-1], and the first half or the latter half of the frequency points [M, M+1, ..., 2M-1] .
- the frequency domain shaped frequency domain signal is Specifically, the frequency points [0, 1, ..., (M-3)/2, (M+1)/2, M/2+2, ..., M-1] are preceded or followed by (M-1)/ 2 frequency points, frequency points [M,...,(3M-3)/2,(3M+1)/2,...,2M-1] in front or behind (M-1)/2 frequency points, And the frequency point (M-1)/2 and the frequency point (3M-1)/2.
- the shifting the offset quadrature amplitude modulated symbols in the time domain comprises: phase shifting the offset quadrature amplitude modulated symbols in the time domain by half of the subcarriers .
- the communications device further includes a transmitter, configured to send the time domain signal .
- the present patent application provides a communication device comprising: a memory for storing an instruction; and a processor coupled to the memory for executing the instruction stored by the memory to execute the instruction Performing the following steps: performing Fourier transform on the received time domain signal to obtain a Fourier transformed frequency domain signal; performing inverse subcarrier mapping on the Fourier transformed frequency domain signal to obtain a subcarrier inverse a mapped frequency domain signal; equalizing the frequency domain signal inversely mapped by the subcarrier to obtain an equalized frequency domain signal; and performing frequency domain recovery on the equalized frequency domain signal to obtain a frequency domain restored In the frequency domain signal, the frequency domain recovered from the frequency domain recovers the conjugate symmetric frequency point; the frequency domain recovered frequency domain signal is subjected to inverse Fourier transform to obtain offset quadrature amplitude modulation in the time domain. Subsequent symbols; the symbols orthogonally amplitude-modulated in the time domain are subjected to offset quadrature amplitude demodulation to obtain data.
- the frequency domain recovered frequency domain signal includes: 2M frequency points; and the inverse Fourier transform includes: 2M point inverse Fourier transform, where M Is a positive integer.
- the equalized frequency domain signal when the M is an even number, includes (M+1) frequency points; and the equalized frequency domain is The signal performs the frequency domain recovery, including conjugate symmetry of the frequency points [1, 2, ..., M/2] and the frequency points [M/2+1, M/2+2, ..., M-1].
- the equalized frequency domain signal when the M is an odd number, the equalized frequency domain signal The number includes M frequency points; the frequency domain recovery is performed by the equalized frequency domain signal, including frequency points [1, 2, ..., (M+1)/2] and frequency points [(M -1)/2, (M-1)/2+1, (M-1)/2+2, ..., M-1] conjugate symmetry.
- the processor is further configured to: perform phase shifting on the Fourier transform frequency domain signal Obtaining the phase-shifted Fourier-transformed frequency domain signal; performing the inverse quadrature amplitude demodulation of the inverse Fourier transformed data, including including the phase-shifted Fourier The transformed frequency domain signal is subjected to offset quadrature amplitude demodulation.
- the equalized frequency domain signal when the M is an even number, includes M frequency points; Performing the frequency domain recovery on the equalized frequency domain signal, including frequency points [1, 2, ..., M/2] and frequency points [M/2, M/2+1, ..., M- 1] Perform conjugate symmetry.
- the equalized frequency domain signal when the M is an odd number, includes (M+1) a frequency point; performing the frequency domain recovery on the equalized frequency domain signal, including a frequency point [1, 2, ..., (M-1)/2] and a frequency point [(M-1)/ 2+1, (M-1)/2+2, ..., M-1] perform conjugate symmetry.
- the present patent application provides a processor, comprising: a modulating unit, configured to: perform offset quadrature amplitude modulation on a data to obtain an offset quadrature amplitude modulated symbol in a time domain; a transforming unit, configured to: perform Fourier transform on the offset orthogonally modulated symbol in the time domain to obtain a Fourier transformed frequency domain signal; and a frequency domain shaping unit, configured to The frequency domain signal after Fourier transform is frequency domain shaped to obtain frequency a domain-formed frequency domain signal, wherein the frequency domain shaped frequency domain signal removes a conjugate symmetric frequency point; and a mapping unit is configured to map the frequency domain shaped frequency domain signal to the subcarrier The frequency domain signal after the subcarrier mapping is obtained, and the inverse Fourier transform unit is configured to perform inverse Fourier transform on the frequency domain signal after the subcarrier mapping to obtain a time domain signal.
- a modulating unit configured to: perform offset quadrature amplitude modulation on a data to obtain an offset quadrature amplitude modulated
- the offset orthogonal amplitude modulated symbols in the time domain include in-phase component symbols and orthogonal component symbols in a time domain interleaved together, the interlace
- the in-phase component symbols and quadrature component symbols on the time domain together are 2M in length;
- the Fourier transform is a 2M point Fourier transform, where M is a positive integer.
- the offset orthogonal amplitude modulated symbols in the time domain comprise in-phase component symbols and orthogonal component symbols in separate time domains, where the separated time
- the lengths of the in-phase component symbols and the orthogonal component symbols on the domain are respectively M, where M is a positive integer; and the symbols obtained by orthogonally amplitude-modulating the offsets in the time domain are subjected to the Fourier transform to obtain
- the Fourier-transformed frequency domain signal includes: performing the Fourier transform on the separated in-phase component symbols and orthogonal component symbols, respectively, to obtain a separated in-phase component frequency domain signal and a quadrature component frequency domain a signal, the Fourier transform is an M-point Fourier transform; the processor further includes a combiner for combining the separated in-phase component frequency domain signal and the quadrature component frequency domain signal.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes the M/2 frequency points and the frequency points in the front or the rear of the frequency points [0, 1, ..., M/2-1, M/2+1, M/2+2, ..., M].
- M/2-1 frequency points before and after [M+1,...,3M/2-1,3M/2+1,...,2M-1], and frequency point M/2 and frequency point 3M/ 2.
- the frequency after the frequency domain is shaped
- the domain signal specifically includes (M+1)/2 frequency points before and after the frequency points [0, 1, ..., M], and the frequency points [M+1, ..., 3M/2-1, 3M/2 (M-1)/2 frequency points in front of or behind +1,...,2M-1].
- the processor further includes: a phase shifting unit, configured to perform an offset on the time domain Transmitting the amplitude-modulated symbol to perform phase shifting to obtain a symbol of the offset quadrature amplitude modulation in the time domain of the phase shift; and performing the quadrature amplitude-modulated symbol on the time domain to perform the Fourier transform
- the leaf transform specifically includes: performing a Fourier transform on the offset-amplitude-modulated symbol on the time domain of the phase-shifted phase.
- the processor further includes: a phase shifting unit, configured to: perform the separated time domain The in-phase component symbol and the orthogonal component symbol are phase-shifted to obtain an in-phase component symbol and a quadrature component symbol on the separated time domain of the phase-shifted phase; and the separated in-phase component symbol and the orthogonal component symbol are respectively performed
- the Fourier transform specifically includes performing the Fourier transform on the phase-shifted separated in-phase component symbols and orthogonal component symbols.
- the frequency domain shaped frequency domain signal when the M is an even number, is Specifically, it includes the front half or the latter half of the frequency points [0, 1, ..., M-1], and the front of the frequency points [M, M+1, ..., 2M-1] Half or half of the frequency.
- the frequency domain shaped frequency domain signal when the M is an odd number, the frequency domain shaped frequency domain signal Specifically, the frequency points [0, 1, ..., (M-3)/2, (M+1)/2, M/2+2, ..., M-1] are preceded or followed by (M-1)/ 2 frequency points, frequency points [M,...,(3M-3)/2,(3M+1)/2,...,2M-1] in front or behind (M-1)/2 frequency points, And the frequency point (M-1)/2 and the frequency point (3M-1)/2.
- Phase shifting includes: phase shifting the symbols of the offset quadrature amplitude modulation on the time domain by half of the subcarriers.
- the present application provides a processor, including: a Fourier transform unit, configured to: perform a Fourier transform on a received time domain signal to obtain a Fourier transformed frequency domain signal; a mapping unit, configured to perform inverse sub-carrier mapping of the frequency-domain signal after the Fourier transform to obtain a frequency-domain signal after sub-carrier inverse mapping; and an equalization unit, configured to: inversely map the sub-carrier
- the frequency domain signal is equalized to obtain an equalized frequency domain signal
- the frequency domain recovery unit is configured to: perform frequency domain recovery on the equalized frequency domain signal to obtain a frequency domain recovered frequency domain signal, wherein the frequency domain The restored frequency domain signal recovers the conjugate symmetric frequency point
- the inverse Fourier transform unit is used to perform inverse Fourier transform on the frequency domain recovered frequency domain signal to obtain an offset orthogonal in the time domain.
- Amplitude-modulated symbol a demodulation unit, configured to: perform offset quadrature amplitude modulation on the offset-amplitude-amplified symbol in the
- the frequency domain signal after the frequency domain recovery includes: 2M The frequency inverse point; the inverse Fourier transform includes: 2M point inverse Fourier transform, where M is a positive integer.
- the equalized frequency domain signal when the M is an even number, includes (M+1) a frequency point; performing the frequency domain recovery on the equalized frequency domain signal, including a frequency point [1, 2, ..., M/2] and a frequency point [M/2+1, M/2+ 2, ..., M-1] conjugate symmetry.
- the equalized frequency domain signal when the M is an odd number, includes M frequency points; Performing the frequency domain recovery on the equalized frequency domain signal, including frequency points [1, 2, ..., (M+1)/2] and frequency points [(M-1)/2, (M -1)/2+1, (M-1)/2+2, ..., M-1] conjugate symmetry.
- the processor further includes: phase shifting the Fourier-transformed frequency domain signal, Obtaining the phase-shifted Fourier-transformed frequency domain signal; performing inverse Fourier transform of the inverse Fourier transform data, including transforming the phase-shifted Fourier transform The latter frequency domain signal is subjected to offset quadrature amplitude demodulation.
- the equalized frequency domain signal when the M is an even number, includes M frequency points; Performing the frequency domain recovery on the equalized frequency domain signal, including frequency points [1, 2, ..., M/2] and frequency points [M/2, M/2+1, ..., M- 1] Perform conjugate symmetry.
- the patent application proposes a computer program product comprising program code for performing the above communication processing method when executed by a computing device.
- OQAM modulation can shift the orthogonal component and the in-phase component of the data by a certain time distance, which has the effect of further reducing the PAPR. Moreover, OQAM modulation does not change the single carrier nature of the data. After the OQAM modulated data is subjected to Fourier transform, part of the spectrum of the data is redundant. Through the frequency domain shaping, the effective frequency point is selected to ensure that the effective frequency bandwidth is not distorted. As long as a part of the data is processed, the processing is simplified.
- FIG. 1A is a schematic diagram of a wireless communication system in accordance with various embodiments herein.
- FIG. 1B is a schematic flowchart of a single carrier frequency division multiplexing method
- FIG. 2 is a schematic diagram of a communication processing method in accordance with an embodiment of the present patent application.
- FIG. 3 shows a schematic diagram of inputting QAM symbols and outputting OQAM symbols.
- FIG. 4 shows a frequency domain effect diagram of a frequency domain signal after Fourier transform in one case.
- FIG. 5-8 shows a schematic diagram of original data and frequency domain shaped data of four different frequency domain shaping units in one case.
- Fig. 9 is a diagram showing the frequency domain effect of the frequency domain signal after the Fourier transform in another case.
- Figure 10-13 shows a schematic diagram of the original data and frequency domain shaped data of four different frequency domain shaping units in one case.
- FIG. 14 shows a schematic diagram of subcarrier mapping of two users in one case.
- 15 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- FIG. 16 and FIG. 17 respectively show the effect of the equalized data and the frequency domain data recovery operation in two cases.
- FIG. 18 is a schematic diagram of a communication processing method according to another embodiment of the present patent application.
- Fig. 19 is a diagram showing the frequency domain effect of the Fourier-transformed frequency domain signal in another case.
- 20-23 are diagrams showing the original data and frequency domain shaped data of four different frequency domain shaping units in another case.
- Fig. 24 is a diagram showing the frequency domain effect of the Fourier-transformed frequency domain signal in another case.
- 25-28 show the original data and frequency domain shaped data of four different frequency domain shaping units in another case.
- FIG. 29 shows a schematic diagram of subcarrier mapping of two users in one case.
- FIG. 30 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- FIG. 31 and FIG. 32 respectively show the effect of the equalized data and the frequency domain data recovery operation in two cases.
- 41-46 respectively show schematic diagrams of a signal processor in accordance with another embodiment of the present patent application.
- 47 and 48 respectively show schematic views of a communication device in accordance with another embodiment of the present patent application.
- Figure 49 is a schematic illustration of peak-to-average ratio comparison between the present patent application and the prior art.
- the terminals referred to in this patent application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, or other processing devices connected to a wireless modem unit, and various forms of user equipment ( User Equipment (UE), Mobile Station (MS), Terminal Equipment, etc.
- UE User Equipment
- MS Mobile Station
- Terminal Equipment etc.
- the above mentioned devices are collectively referred to as a terminal or a UE.
- a base station (BS) referred to in this patent application is a device deployed in a radio access network to provide a wireless communication function for a UE.
- the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
- the name of a device having a base station function may be different.
- an evolved Node B evolved Node B: eNB or eNodeB
- eNB evolved Node B
- NodeB Node B
- the above-mentioned devices for providing wireless communication functions to the UE are collectively referred to as a base station or a BS.
- a component can be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
- an application running on a computing device and a computing device can be a component.
- One or more parts The components may reside in a process and/or execution thread, and the components may be located on one computer and/or distributed between two or more computers. Moreover, these components can execute from various computer readable media having various data structures stored thereon.
- a component may, for example, be based on signals having one or more data packets (eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems) Communicate through local and/or remote processes.
- data packets eg, data from two components interacting with another component between the local system, the distributed system, and/or the network, such as the Internet interacting with other systems
- An access terminal device may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a user terminal device, a terminal device, a wireless communication device, a user agent, a user device, or a UE.
- the access terminal device may be a cellular phone, a cordless phone, a SIP (Session Initiation Protocol) phone, a WLL (Wireless Local Loop) station, a PDA (Personal Digital Assistant), and a wireless device.
- various embodiments are described in connection with a base station.
- the base station can be used for communication with a mobile device, and the base station can be a BTS (Base Transceiver Station) in GSM (Global System of Mobile communication) or CDMA (Code Division Multiple Access), or
- the NB (NodeB, base station) in the WCDMA (Wideband Code Division Multiple Access) may be an eNB or an eNodeB (Evolved Node B) in LTE (Long Term Evolution).
- the term "article of manufacture” as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or media.
- the computer readable medium may include, but is not limited to, a magnetic second memory 4803 (eg, a hard disk, a floppy disk, or a magnetic tape, etc.), an optical disk (eg, a CD (Compact Disk), a DVD (Digital Versatile Disk, digital). Universal disk), etc., smart card and flash memory device (for example, EPROM (Erasable Programmable Read-Only Memory), card, stick or key driver, etc.).
- a magnetic second memory 4803 eg, a hard disk, a floppy disk, or a magnetic tape, etc.
- an optical disk eg, a CD (Compact Disk), a DVD (Digital Versatile Disk, digital). Universal disk
- smart card and flash memory device for example, EPROM (Erasable Programmable Read-Only Memory), card, stick or key driver, etc.
- various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
- the term "machine-readable medium” may include, but is not limited to, a wireless channel and various other mediums capable of storing, containing, and/or carrying instructions and/or data.
- the wireless communication system 100 includes a base station 102 that can include multiple antenna groups.
- Each antenna group may include one or more antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 108 and 110, and an additional group may include antennas 112 and 114.
- Two antennas are shown for each antenna group in Figure 1A, although more or fewer antennas may be used for each group.
- the base station 102 can additionally include a transmitter chain and a receiver chain, as will be understood by those of ordinary skill in the art, which can include various components related to signal transmission and reception, such as a processor, a modulation unit, a multiplexer, and a demodulation. Unit, demultiplexer or antenna.
- Base station 102 can communicate with one or more access terminal devices, such as access terminal device 116 and access terminal device 122. However, it will be appreciated that base station 102 can communicate with any number of access terminal devices similar to access terminal device 116 or 122. Access terminal devices 116 and 122 may be, for example, cellular telephones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs And/or any other suitable device for communicating over the wireless communication system 100. As shown, access terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to access terminal device 116 over forward link 118 and from access terminal device 116 through reverse link 120. Receive information.
- access terminal device 116 is in communication with antennas 112 and 114, wherein antennas 112 and 114 transmit information to access terminal device 116 over forward link 118 and from access terminal device 116 through reverse link 120. Receive information.
- access terminal device 122 is in communication with antennas 104 and 106, wherein antennas 104 and 106 transmit information to access terminal device 122 over forward link 124 and receive information from access terminal device 122 over reverse link 126.
- FDD Frequency Division Duplex
- the forward link 118 can utilize a different frequency band than that used by the reverse link 120, and the forward link 124 can utilize the reverse link 126. Different frequency bands used.
- TDD Time Division Duplex
- the forward link 118 and the reverse link 120 can use a common frequency band
- the forward link 124 and the reverse link 126 can use a common frequency band.
- Each set of antennas and/or regions designed for communication is referred to as a sector of base station 102.
- the antenna group can be designed to communicate with access terminal devices in sectors of the coverage area of base station 102.
- the transmit antenna of base station 102 may utilize beamforming to improve the signal to noise ratio of forward links 118 and 124.
- the neighboring cell is compared to the manner in which the base station transmits signals to all of its access terminal devices through a single antenna. Mobile devices in the middle are subject to less interference.
- base station 102, access terminal device 116 or access terminal device 122 may be a wireless communication transmitting device and/or a wireless communication receiving device.
- the wireless communication transmitting device can encode the data for transmission.
- the wireless communication transmitting device can acquire, for example, generate, receive from other communication devices, Or in the second memory 4803, etc., a certain number of data bits to be transmitted to the wireless communication receiving device through the channel.
- Such data bits may be included in a transport block or a plurality of transport blocks of data, and the transport blocks may be segmented to produce a plurality of code blocks.
- FIG. 1B is a schematic flowchart of a single carrier frequency division multiple access (SC-FDMA) method.
- the method includes the following steps: performing Quadrature Amplitude Modulation (QAM) on the data to obtain a QAM symbol of the M point after the QAM.
- QAM Quadrature Amplitude Modulation
- DFT Discrete Fourier Transform
- the frequency domain signal is subcarrier mapped and mapped onto N subcarriers.
- the frequency domain signal after subcarrier mapping is subjected to Inverse Discrete Fourier Transform (IDFT) to obtain a time domain signal. This time domain signal can then be sent out.
- DFT Discrete Fourier Transform
- OQAM typically has a lower PAPR than QAM
- the original M point symbol is changed to the 2M point OQAM symbol.
- DFT the number of frequency points also becomes twice that of QAM. If it is directly combined with the SC-FDM result, it will occupy 2M frequency points, that is, the occupied bandwidth will become twice as large, resulting in serious waste of resources. If the bandwidth is directly compressed (for example, 2M frequency points become M frequency points), the original data is restored at the receiving end with high complexity and poor performance.
- the inventors of the present application have found through research that after the OQAM modulated data is subjected to Fourier transform, part of the spectrum of the data is redundant. Through the frequency domain shaping, the effective frequency point is selected to ensure that the effective frequency bandwidth is not distorted. As long as a part of the data is processed, the processing is simplified. Make possible impossible combinations.
- FIG. 2 is a flow chart showing a communication processing method according to an embodiment of the present patent application. As shown in FIG. 2, the method includes the following steps:
- OQAM offset quadrature amplitude modulation
- the input data may be channel coded bits, at which point OQAM modulation maps the bits into in-phase (I-way) symbols and quadrature-component (Q-way) symbols.
- the input data can also be QAM-modulated symbols, in which case OQAM modulation only needs to shift the I and Q paths of the data.
- a pilot signal can also be included in the input data.
- the OQAM-modulated symbols include in-phase components (I-way) and quadrature-component (Q-way) symbols that are interleaved together. As shown in FIG. 3, there is a delay of less than one symbol interval between the I channel and the Q channel symbol, and a typical delay is a half symbol interval.
- the above-mentioned interlaced in-phase component and quadrature component symbol length may be 2M, and M is an integer.
- M is an integer.
- OQAM symbol corresponding to the above QAM symbol can be represented as a vector y, and y i is the i-th element, which is recorded as
- the offset quadrature amplitude modulated symbol in the time domain is subjected to 2M point Fourier transform to obtain a frequency domain signal.
- the Fourier transform may specifically be a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT). After the Fourier transform, a frequency domain signal is obtained. Record that the frequency domain signal is a frequency domain vector z', where z' n is the nth frequency point:
- n 0, 1, ..., M - 1.
- z' M/2 and z 3 ' M/2 are not conjugated and are not identical.
- the frequency points 1, 2, 3 and the frequency points 5, 6, and 7 are conjugate symmetric, that is, the real part of the i-th frequency point is equal to the real part of the 8-ith point.
- the recovery end only needs to retain M+1 data subcarriers, which can be restored without loss according to the conjugate symmetry feature. This will greatly simplify the process and increase processing efficiency.
- the frequency domain shaping unit may be used to perform frequency domain shaping on the Fourier transformed frequency domain signal to remove the conjugate symmetric frequency point and preserve the effective frequency point.
- M is an even number
- the frequency domain shaping unit can be:
- the frequency domain shaping unit can have a length of K.
- One implementation of the frequency domain shaping unit can be a filter.
- the frequency domain shaping unit may include a pass band (M+1 frequency points), a transition band, and a stop band. K is the sum of the length of the pass band, the length of the transition band, and the length of the stop band.
- the length K of the frequency domain shaping unit is not less than M+1 (M+1 ⁇ K).
- Frequency domain shaping needs to ensure that the effective frequency band is not distorted. Only the frequency domain shaping unit passband is required to be a subcarrier within the data bandwidth, which also effectively avoids spectrum aliasing.
- the size of the transition band corresponds to the cost of the frequency domain.
- the passband position of the frequency domain shaping unit corresponds to the M/2 frequency points in front of or behind [0, 1, ..., M/2-1, M/2+1, M/2+2, ..., M] Keep the M/2-1 frequency points before and after [M+1,...,3M/2-1,3M/2+1,...,2M-1], and the frequency point M/2 and frequency 3M/2.
- the corresponding frequency point [0,1,...,M/2,3M/2,3M/2+1,...,2M-1] or [M/2,M/2+1,...,M,M+ 1,...,3M/2-1,3M/2]
- the data after frequency domain shaping is
- u' [u 0 ', u 1 ',...,u' K-1 ] T .
- the size of the transition band corresponds to the cost of the frequency domain.
- the effect of the frequency domain shaping unit will affect the out-of-band and PAPR, and a better frequency domain shaping unit can further reduce the out-of-band.
- K 2M can get better results.
- FIG. 5 show schematic diagrams of raw data and frequency domain shaped data of four different frequency domain shaping units.
- the original 2M frequency points are first expanded or reduced to form K frequency points, and then K frequency points are frequency domain shaped.
- K 2M.
- the pass band of the frequency domain shaping unit is M+1 frequency points in the middle, and the transition band and the stop band are M-1 frequency points remaining on both sides.
- the frequency domain shaping only the middle M+1 frequency points are reserved, and the remaining frequency points of the input frequency domain data are set to 0 (ie, the frequency domain is reduced).
- the pass band of the frequency domain shaping unit is the M+1 frequency points of the two sides at the beginning, and the transition band and the stop band are M-1 frequency points in the middle.
- the M+1 frequency points on both sides are reserved, and the remaining frequency points of the input frequency domain data are set to 0 (ie, the frequency domain is reduced).
- M+1 ⁇ K, K ⁇ 2M the pass band of the frequency domain shaping unit is M+1 frequency points in the middle, and the transition band and the stop band are K-M-1 frequency points on both sides.
- the input frequency is The remaining frequency of the domain data is set to 0 (ie, the frequency domain is reduced).
- the input frequency domain data can be frequency domain extended, and the frequency points on one side of the spectrum are cyclically extended to the other side of the spectrum.
- M is an odd number
- part of the spectrum of the frequency domain signal after Fourier transform is redundant.
- the M frequency points in the frequency domain of the OQAM symbol are conjugate symmetry, and the M frequency points are effective frequency points.
- the frequency domain shaping unit can have a length of K.
- the frequency domain shaping unit may include a pass band (M frequency points), a transition band, and a stop band.
- the length K of the frequency domain shaping unit is not less than M (M ⁇ K).
- the passband position of the frequency domain shaping unit corresponds to (M+1)/2 frequency points before or after [0, 1, ..., M], and [M+1,..., 3M/2-1, 3M is reserved. (M-1)/2 frequency points in front of or behind /2+1,...,2M-1].
- FIGS. 10-13 show schematic diagrams of raw data and frequency domain shaped data for four different frequency domain shaping units.
- the original 2M frequency points are expanded or reduced to form K frequency points, and then K frequency points are frequency domain shaped.
- K 2M.
- the pass band of the frequency domain shaping unit is M frequency points in the middle.
- the transition zone and the stopband are the remaining M frequency points on both sides.
- the pass band of the frequency domain shaping unit is the M frequency points of the two sides at the beginning, and the transition band and the stop band are M frequency points in the middle.
- each M frequency point on both sides is reserved.
- FIG. 12 M ⁇ K ⁇ 2M.
- the pass band of the frequency domain shaping unit is M frequency points in the middle, and the transition band and the stop band are K-M frequency points on both sides.
- the frequency domain shaping only the middle M frequency points are reserved, and the remaining frequency points of the input frequency domain data are set to 0 (ie, the frequency domain is reduced).
- the input frequency domain data can be frequency domain extended, and the frequency points on one side of the spectrum are cyclically extended to the other side of the spectrum.
- the subcarrier mapping is specifically mapped to N subcarriers.
- the K frequency bins after frequency domain shaping can be mapped to N subcarriers to obtain frequency domain signals after subcarrier mapping.
- M is an even number, M+1 ⁇ K, it can be guaranteed that at least M+1 effective subcarriers are not distorted.
- M is an odd number, M ⁇ K, it can be guaranteed that at least M effective subcarriers are not distorted.
- Subcarrier mapping for different users allows for overlap. However, it is necessary to ensure that the effective subcarriers of each data are not affected by other users. If there are valid frequency subcarriers in the overlap, the influence of other users on these effective subcarrier positions can be ignored.
- the subcarrier mapping of two users can be as shown in FIG. 14, respectively.
- User 1's frequency domain data is mapped to subcarriers (0, 1, .., 15), where the effective frequency subcarriers are mapped to (4, 5, ..., 11, 12);
- user 2's frequency domain data is mapped to subcarriers. (9, .., 24), where the effective frequency subcarriers are mapped to (13, ..., 20, 21).
- the inverse Fourier transform is an inverse of the Four-point Fourier transform.
- the inverse Fourier transform can be discrete Fu Inverse Transform (IDFT) or Inverse Fast Fourier Transform (IFFT).
- IDFT Inverse Transform
- IFFT Inverse Fast Fourier Transform
- the processing method may further include: 206: transmitting the generated time domain signal.
- the time domain signal after the inverse Fourier transform is transmitted.
- FIG. 15 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the processing method shown in Fig. 15 is basically the inverse of the processing method shown in Fig. 2. As shown in FIG. 15, the method includes the following steps:
- the Fourier transform may specifically be a DFT or FFT of N points.
- Equalization can overcome the effects of channel and noise.
- the frequency domain signal after frequency domain recovery recovers the conjugate symmetric frequency point. That is, the frequency point that is deleted due to the conjugate symmetry characteristic is restored.
- the inverse Fourier transform is an inverse Fourier transform of 2M points.
- the equalized frequency domain signal includes: (M+1) frequency points. In 1504, then a total of M/2 frequency points for the front [1, 2, ..., M/2] and the following [M/2+1, M/2+2, ..., M-1] /2-1 frequency points are conjugate symmetric, and all 2M frequency domain data are recovered. If M is an odd number, in 1503, the equalized frequency domain signal includes: M frequency points. In 1504, then the previous frequency points [1, 2, ..., (M+1)/2] and the following frequency points [(M-1)/2, (M-1)/2+1, respectively, (M-1)/2+2,...,M-1] performs conjugate symmetry and recovers all 2M frequency domain data.
- the data after frequency domain recovery is expressed as:
- the inverse Fourier transform can be specifically 2M point IDFT or IFFT. Through the inverse Fourier transform, you can get:
- Fig. 16 is a view showing the effect of the equalized data and the frequency domain data recovery operation in the case where M is an even number, for example, 8. Equalize and reduce the 9 frequency points in the recovered effective frequency point bandwidth, and then recover 4 and 3 frequency points respectively, and recover all 16 frequency domain data. 17 is an effect of the equalized data and the frequency domain data recovery operation in the case where M is 7 (odd number). schematic diagram. Equalize and reduce the 7 frequency points in the recovered effective frequency bandwidth, and then recover 4 and 3 frequency points respectively, and recover all 14 frequency domain data.
- FIG. 18 is a schematic diagram of a communication processing method according to another embodiment of the present patent application. Compared with the embodiment shown in FIG. 2, the method of this embodiment includes:
- 1801 is basically the same as 201.
- half of the subcarriers can be phase shifted. Considering that M in the existing LTE system is even, the complexity of processing can be further reduced by phase shifting.
- phase shift here may be other values, such as K + 0.5 (K is an integer) subcarriers.
- the phase shifted data is represented as a vector:
- the Fourier transform can be specifically DFT or FFT.
- the frequency domain of the OQAM symbol is obtained.
- the frequency domain vector is z, where z n is the nth frequency point:
- n 0,1,...,M–1.
- the latter M frequency points are conjugate symmetric.
- the recovery end only needs to retain M data subcarriers, which can be restored without loss according to the conjugate symmetry characteristic. This will greatly simplify the process and increase processing efficiency.
- the frequency domain shaping unit can be used to perform frequency domain shaping on the Fourier transformed frequency domain signal. And only need to ensure that half of them (ie M) frequency points are not distorted, it will not affect the normal recovery of the data at the receiving end. In the case of phase shifting half subcarriers, when M is even, the frequency domain shaping only needs to preserve the first half or the latter half of the frequency points [0, 1, ..., M-1], and the frequency point [M, The first half or the latter half of M+1,...,2M-1].
- the frequency domain shaping unit can have a length of K.
- the frequency domain shaping unit may include a pass band (M frequency points), a transition band, and a stop band.
- the length K of the frequency domain shaping unit is not less than M (M ⁇ K).
- Frequency domain shaping needs to ensure that the effective frequency band is not distorted. Only the frequency domain shaping unit passband is required as a subcarrier within the data bandwidth, and spectrum aliasing is also effectively avoided.
- the passband position of the frequency domain shaping unit corresponds to the first half or the latter half of the frequency points [0, 1, ..., M-1] and the first half of the frequency points [M, M+1, ..., 2M-1] Or the latter half.
- FIG. 19-22 show schematic diagrams of raw data and frequency domain shaped data for four different frequency domain shaping units.
- the original 2M frequency points are expanded or reduced to form K frequency points, and then K frequency points are frequency domain shaped.
- K 2M.
- the pass band of the frequency domain shaping unit is M frequency points in the middle, and the transition band and the stop band are M/2 frequency points on both sides. After the frequency domain shaping, only the middle M frequency points are reserved.
- the pass band of the frequency domain shaping unit is the starting M/2 frequency points and the ending M/2 frequency points, and the transition band and the stop band are M frequency points in the middle. After frequency domain shaping, each M/2 frequency points on both sides are reserved.
- Fig. 19 2M.
- the pass band of the frequency domain shaping unit is M frequency points in the middle
- the transition band and the stop band are M/2 frequency points on both sides.
- the pass band of the frequency domain shaping unit is M frequency points in the middle, and the transition band and the stop band are the beginning and end of the band (K-M)/2 frequency points. After the frequency domain shaping, only the middle M frequency points are reserved, and the two ends of the input frequency domain data are set to 0 (ie, the frequency domain is reduced).
- K>2M the input frequency domain data can be frequency domain extended, and will be located on one side of the spectrum. The frequency cycle is extended to the other side of the spectrum.
- M 7
- the frequency points 0, 1, 2 and the frequency points 4, 5, 6 frequency points are conjugate symmetric, that is, the real part of the i-th frequency point is equal to the real part of the 6-ith point.
- the frequency point 3 and the frequency point 10 are not conjugate symmetric and are not equal.
- the recovery end only needs to retain M+1 data subcarriers, which can be restored without loss according to the conjugate symmetry feature.
- the frequency domain shaping unit can be used to perform frequency domain shaping on the Fourier transformed frequency domain signal, filtering out redundant data, and retaining the effective frequency point.
- M is an odd number
- (M-1)/2 frequency points in front of or behind M, 2+2, ..., M-1] reserved [M,...,(3M-3)/2,(3M+1)/2 , (..., 2M-1] (M-1)/2 frequency points before and after, and frequency point (M-1)/2 and frequency point (3M-1)/2.
- the frequency domain shaping unit can have a length of K.
- the frequency domain shaping unit may include a pass band (M+1 frequency points), a transition band, and a stop band.
- the length K of the frequency domain shaping unit is not less than M+1 (M+1 ⁇ K).
- FIG. 24 and Fig. 25, K 2M.
- the pass band of the frequency domain shaping unit is M+1 frequency points in the middle, and the transition band and the stop band are M-1 frequency points remaining on both sides. After frequency domain shaping, only the middle M+1 frequency points are reserved.
- the pass band of the frequency domain shaping unit is M+1 frequency points on both sides of the frequency domain data, and the transition band and the stop band are M-1 frequency points in the middle. After the frequency domain shaping, each M+1 frequency points on both sides of the frequency domain data are reserved.
- Fig. 24 and Fig. 25, K 2M.
- the pass band of the frequency domain shaping unit is M+1 frequency points in the middle, and the transition band and the stop band are M-1 frequency points remaining on both sides. After frequency domain shaping, only the middle M+1 frequency points are reserved.
- the pass band of the frequency domain shaping unit is M+1 frequency points on both sides of the frequency domain data, and the transition band and the stop band are M-1 frequency points in the middle. After the frequency domain shaping, each M+1 frequency points on both sides of
- the pass band of the frequency domain shaping unit is M+1 frequency points in the middle, and the transition band and the stop band are K-M-1 frequency points on both sides. After the frequency domain shaping, only the middle M+1 frequency points are reserved, and the remaining frequency points of the input frequency domain data are set to 0 (ie, the frequency domain is reduced).
- K>2M the input frequency domain data can be frequency-domain-expanded, and the frequency point on one side of the spectrum is cyclically extended to the other side of the spectrum.
- subcarrier mappings for different users allow for overlap. However, it is necessary to ensure that the effective subcarriers of each data are not affected by other users. If there are valid frequency subcarriers in the overlap, the influence of other users on these effective subcarrier positions can be ignored.
- the subcarrier mapping of two users can be as shown in FIG. 28, respectively.
- User 3's frequency domain data is mapped to subcarriers (0, 1, .., 15), where the effective frequency subcarriers are mapped to (4, 5, ..., 11);
- user 4's frequency domain data is mapped to subcarriers (8) , 9,,., 23), where the effective frequency subcarriers are mapped to (12, 13, ..., 19).
- FIG. 29 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the processing method shown in Fig. 29 is the inverse of the processing method shown in Fig. 17.
- the main difference between the processing method and the processing method shown in FIG. 15 is that it further includes: 3006, phase shifting. Specifically, the method includes the following steps:
- the equalized frequency domain signal includes: [0, 1, ..., M-1], for a total of M frequency points.
- the conjugate symmetry is then performed on the frequency points [0, 1, ..., M/2] and the frequency points [M/2, M/2+1, ..., M-1], respectively, and all 2M frequencies are used. Domain data recovery.
- the equalized frequency domain signal includes: [0, 1, ..., M], and a total of M+1 frequency points.
- the frequency domain restored data is subjected to inverse Fourier transform, and then phase shifting is performed:
- Fig. 31 is a view showing the effect of the equalized data and the frequency domain data recovery operation in the case where M is 8 (even). Equalize and reduce the 8 frequency points in the recovered effective frequency bandwidth, and then restore each of the 4 frequency points by conjugate, and recover all 16 frequency domain data.
- Fig. 32 is a view showing the effect of the equalized data and the frequency domain data recovery operation in the case where M is 7 (odd number). Equalize and reduce the 8 frequency points in the recovered effective frequency bandwidth, and then restore each of the 3 frequency points by conjugate, and recover all 14 frequency domain data.
- Figure 33 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the main difference between the embodiment shown in FIG. 33 and the embodiment shown in FIG. 2 is that, in the embodiment shown in FIG. 33, the processing method further includes: 3306, inserting a cyclic-prefix (CP).
- CP cyclic-prefix
- CP cyclic prefix
- the cyclic prefix makes the transmission channel and the data form a time domain cyclic convolution, that is, frequency domain multiplication, which is convenient for the receiving end frequency domain equalization.
- the data inserted into the CP needs to be transmitted.
- Figure 34 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the main difference between the embodiment shown in FIG. 34 and the embodiment shown in FIG. 18 is that, in the embodiment shown in FIG. 34, the processing method further includes: 3407, inserting a cyclic-prefix (CP).
- the method includes the following steps:
- Figure 35 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the main difference between the embodiment shown in FIG. 35 and the embodiment shown in FIG. 15 is that, in the embodiment shown in FIG. 35, the processing method further includes: 3501, removing the CP.
- the processing method of the embodiment shown in Fig. 35 can be used to recover data modulated by the embodiment shown in Fig. 33. Specifically, as shown in FIG. 35, the method includes the following steps:
- the received time domain signal is removed from the CP to obtain a time domain signal after the CP is removed.
- the Fourier transform may specifically be a DFT or FFT of N points.
- Figure 36 is a schematic diagram of a communication processing method in accordance with another embodiment of the present patent application.
- the main difference between the embodiment shown in FIG. 36 and the embodiment shown in FIG. 30 is that, in the embodiment shown in FIG. 36, the processing method further includes: 3601, removing the CP.
- the processing method of the embodiment shown in Fig. 36 can be used to recover data modulated by the embodiment shown in Fig. 34. Specifically, as shown in FIG. 36, the method includes the following steps:
- 3601 Remove the received time domain signal from the CP to obtain a time domain signal after the CP is removed.
- the Fourier transform may specifically be a DFT or FFT of N points.
- 3603-30609 basically the same as 3002-3007.
- the offset quadrature amplitude modulated symbols in the time domain include separate in-phase component symbols and quadrature component symbols.
- the lengths of the separated in-phase component symbols and quadrature component symbols are respectively M.
- the Fourier transform is performed separately on the separated in-phase component symbols and quadrature component symbols.
- the Fourier transform is an M-point Fourier transform.
- the processing method further includes: 3704, combining the separated in-phase component symbols and orthogonal component symbols. Specifically, as shown in FIG. 37, the method includes the following steps:
- the quadrature amplitude modulated symbols include separate inphase component symbols and quadrature component symbols.
- the lengths of the separated in-phase component symbols and quadrature component symbols are respectively M.
- the Fourier transform is an M-point Fourier transform.
- the separated in-phase component frequency domain signal and quadrature component frequency domain signal respectively include M frequency points.
- the frequency domain signal removes the conjugate symmetric frequency.
- the separated in-phase component frequency domain signal and the orthogonal component frequency domain signal are respectively extended respectively, and the expansion method may be to use the in-phase component frequency domain signal and the orthogonal component frequency domain signal M frequency points. Repeat to get 2M frequency points.
- the frequency points specifically selected in the frequency domain shaping reference may be made to the description of the embodiment shown in FIG. 2.
- the Fourier transform is performed separately on the separated in-phase component symbols and quadrature component symbols.
- Fourier transform is performed on the in-phase component symbols and the orthogonal component symbols to obtain a frequency domain signal.
- the I and Q frequency domain signals after the Fourier transform are respectively recorded as vectors:
- the above expanded spectrum is separately frequency domain shaped and then combined.
- the frequency domain shaping unit can be:
- the frequency domain shaping units f' I and f' Q may have a length of K.
- the same frequency-domain shaping unit f 'I and f' Q passband positions may correspond to [0,1, ..., M / 2-1 , M / 2 + 1, M / 2 + 2, ..., M] in M/2 frequency points in front or behind, retaining M/2-1 frequency points in front or back of [M+1,...,3M/2-1,3M/2+1,...,2M-1] And the frequency point M/2 and the frequency point 3M/2.
- the corresponding frequency point [0,1,...,M/2,3M/2,3M/2+1,...,2M-1] or [M/2,M/2+1,...,M,M+ 1,...,3M/2-1,3M/2] A total of M+1 frequency points.
- the frequency domain shaping unit f' I and f' Q have the same passband position, and can retain the (M+1)/2 frequency points, [M+1, ... in front of or behind [0, 1, ..., M]. , (M-1)/2 frequency points in front of or behind 3M/2-1, 3M/2+1, ..., 2M-1].
- the data after frequency domain shaping is
- the above two separated spectra are combined.
- the merging can be done by phase shifting in the frequency domain. example For example, no phase shift is taken for I road, and for Q road:
- the above shift to the Q path is equivalent to the delay of 1/2 QAM symbol time for the Q way time domain data (ie, the I and Q paths are separated by a half data period in the time domain).
- the combined data is
- FIG. 38 is a schematic diagram of a communication processing method according to another embodiment of the present patent application. Compared with the embodiment shown in Fig. 37, in the present embodiment, the combination is performed first and then the frequency domain shaping is performed. That is, the separated in-phase component symbols and quadrature component symbols after the Fourier transform are first combined, and then the combined data is subjected to frequency domain shaping.
- the merging can be done by phase shifting in the frequency domain. For example: no phase shift is taken for I road, and for Q road:
- the above shift to the Q path is equivalent to the delay of 1/2 QAM symbol time for the Q way time domain data (ie, the I and Q paths are separated by a half data period in the time domain).
- the combined data is
- w is frequency domain shaped.
- the process of frequency domain shaping is consistent with 203 in Figure 2.
- the processing method of this embodiment only needs to perform two Fourier transforms of M points, and multiplication by M times, which is required for calculation of Fourier transforms of one 2M point. The amount is lower. Processing is simpler.
- the data generated by this embodiment can also be restored using the processing method shown in FIG.
- FIG. 39 is a schematic diagram of a communication processing method according to another embodiment of the present patent application. Compared with the embodiment shown in FIG. 37, the method of this embodiment further includes: 3902, shifting the symbols of the offset orthogonal amplitude modulation on the separated time domain. Specifically, the method includes the following steps:
- 3901 is basically the same as 3701.
- performing Fourier transform on the offset quadrature amplitude modulated symbol in the time domain after phase shifting specifically including performing phase-shifted separated quadrature amplitude modulated data on Fourier Transform.
- a separate in-phase component frequency domain signal and a quadrature component frequency domain signal are obtained.
- the Fourier transform is an M-point Fourier transform.
- the separated in-phase component frequency domain signal and quadrature component frequency domain signal respectively include M frequency points.
- the above expanded spectrum is separately frequency domain shaped.
- the frequency domain shaping unit can be:
- the frequency domain shaping unit f" I and f" Q may have a length of K.
- the frequency domain shaping units f" I and f" Q may include a pass band (M frequency points), a transition band, and a stop band.
- the frequency domain shaping units f" I and f" Q have the same passband position and can correspond to the M frequency points that need to be reserved.
- the frequency domain shaping units f" I and f" Q may include a pass band, a transition band, and a stop band.
- the frequency domain shaping units f" I and f" Q have the same passband position and can correspond to the above-mentioned M+1 frequency points that need to be reserved.
- FIG. 40 is a schematic diagram of a communication processing method according to another embodiment of the present patent application.
- the separated in-phase component symbols and quadrature component symbols after Fourier transform are merged, and the combined data is subjected to frequency domain shaping.
- the frequency domain shaping method may refer to the frequency domain shaping method in the embodiment shown in FIG.
- the data generated by the embodiment shown in Figs. 39 and 40 can also be restored using the processing method shown in Fig. 30.
- the communication processing method of the four embodiments shown in FIG. 37-40 may further include: inserting the inverse Fourier transformed time domain signal into a cyclic-prefix (CP).
- CP cyclic-prefix
- the cyclic prefix makes the transmission channel and the data form a time domain cyclic convolution, that is, frequency domain multiplication, which is convenient for the receiving end frequency domain equalization.
- the data inserted into the CP needs to be transmitted. Accordingly, the receiving end needs to remove the CP.
- the processor includes a modulation unit 4101, a Fourier transform unit 4102, a frequency domain shaping unit 4103, a mapping unit 4104, and an inverse Fourier transform unit 4106.
- the modulating unit 4101 is configured to perform step 201.
- a Fourier transform unit is used to perform step 202.
- the frequency domain shaping unit is configured to perform step 203.
- the mapping unit is configured to perform step 204.
- the inverse Fourier transform unit is configured to perform step 205.
- the signal processor may further include a CP insertion unit for inserting the inverse Fourier transformed time domain signal into a cyclic-prefix (CP), as needed.
- CP cyclic-prefix
- the processor includes a Fourier transform unit 4202, an inverse mapping unit 4203, an equalization unit 4204, a frequency domain recovery unit 4205, an inverse Fourier transform unit 4206, and a demodulation unit 4207.
- the Fourier transform unit 4202 is configured to perform step 1501.
- the inverse mapping unit 4203 is configured to perform step 1502.
- the equalization unit 4204 is configured to perform step 1503.
- the frequency domain recovery unit 4205 is configured to perform step 1504.
- the inverse Fourier transform unit 4206 is configured to perform step 1505.
- the demodulation unit 4207 is configured to perform step 1506.
- the signal processor may also include a CP removal unit for removing the CP prior to operation of the inverse Fourier transform unit, as desired.
- FIG. 43 is a schematic illustration of a signal processor in accordance with another embodiment of the present patent application.
- the processor includes a modulation unit 4301, a phase shifting unit 4302, a Fourier transform unit 4303, a frequency domain shaping unit 4304, a mapping unit 4104, and an inverse Fourier transform unit 4106.
- the modulating unit 4301 is configured to perform step 1801.
- the phase shifting unit 4302 is configured to perform step 1802.
- the Fourier transform unit 4303 is configured to perform step 1803.
- the frequency domain shaping unit is configured to perform step 1804.
- the mapping unit is operative to perform step 1805.
- the inverse Fourier transform unit is operative to perform step 1806.
- the signal processor may further include a CP insertion unit 4307 as needed.
- Figure 44 is a schematic illustration of a signal processor in accordance with another embodiment of the present patent application.
- the processor includes: a Fourier transform unit 4401, an inverse mapping unit 4402, an equalization unit 4403, a frequency domain recovery unit 4404, an inverse Fourier transform unit 4405, a phase shift unit 4406, and a demodulation unit 4207. .
- the Fourier transform unit 4401 is configured to perform step 3001.
- the inverse mapping unit 4402 is configured to perform step 3002.
- the equalization unit 4403 is configured to perform step 3003.
- the frequency domain recovery unit 4404 is configured to perform step 3004.
- the inverse Fourier transform unit 4405 is configured to perform step 3005.
- the phase shifting unit 4406 is configured to perform step 3006.
- the demodulation unit 4407 is configured to perform step 3007.
- the signal processor may also include a CP removal unit 4408 for removing the CP prior to operation of the inverse Fourier transform unit, as desired.
- Figure 45 is a schematic illustration of a signal processor in accordance with another embodiment of the present patent application.
- the signal processor includes a modulation unit 4501, a Fourier transform unit, a merging unit 4503, a frequency domain shaping unit 4504, a mapping unit 4505, and an inverse Fourier transform unit 4506.
- the modulating unit 4501 is configured to perform step 3801.
- the Fourier transform unit specifically includes a first Fourier transform unit 4502a and a second Fourier transform unit 4502c.
- the first Fourier transform unit 4502a and the second Fourier transform unit 4502c together perform step 3802 in the embodiment shown in FIG.
- the first Fourier transform unit 4502a is configured to perform Fourier transform on the I path data.
- the second Fourier transform unit 4502c is used to count the number of Q channels According to the Fourier transform.
- the merging unit 4503 is configured to perform step 3803.
- the frequency domain shaping unit 4504 is configured to perform step 3804.
- the mapping unit 4505 is configured to perform step 3805.
- the inverse Fourier transform unit is operative to perform step 3806.
- the signal generated by this embodiment can be recovered by the processor shown in FIG.
- Figure 46 is a schematic illustration of a signal processor in accordance with another embodiment of the present patent application.
- the processor includes a modulation unit 4601, a phase shifting unit, a Fourier transform unit, a merging unit 4604, a frequency domain shaping unit 4605, a mapping unit 4606, and an inverse Fourier transform unit 4607.
- the modulating unit 4501 is configured to perform step 4001.
- the phase shifting unit includes a first phase shifting unit 4502a and a second phase shifting unit 4502c.
- the first phase shifting unit 4502a and the second phase shifting unit 4502c together perform step 4002 in the embodiment shown in FIG.
- the first phase shifting unit 5401a is configured to phase shift the I channel data.
- the second phase shifting unit 5401c is configured to phase shift the Q channel data.
- the Fourier transform unit includes a first Fourier transform unit 4102a and a second Fourier transform unit 4102c.
- the first Fourier transform unit 4102a is configured to perform a Fourier transform on the phase-shifted I-channel data.
- the second Fourier transform unit 4102c is configured to perform Fourier transform on the phase-shifted Q-way data.
- the signal generated by this embodiment can be recovered by the processor shown in FIG.
- the signal processor may also include a CP insertion unit as needed. Accordingly, the processor at the receiving end may include a CP removing unit.
- the positions of the merging unit and the frequency domain forming unit may be interchanged. For details, refer to the embodiment shown in FIG. 37 or FIG.
- FIG 47 is a schematic illustration of a communication device in accordance with another embodiment of the present patent application.
- the communication device includes a first memory 4703 and a first processor 4702.
- the first memory 4703 is for storing instructions.
- the first processor 4702 is coupled to the first memory 4703 for executing instructions stored by the first memory 4703 to perform the steps of the method of the transmitting end when the instructions are executed.
- the communication device also includes a transmitter 4701 for transmitting a time domain signal generated by the first processor 4702.
- Figure 48 is a schematic illustration of a communication device in accordance with another embodiment of the present patent application.
- the communication device includes a second memory 4803 and a second processor 4802.
- the second memory 4803 is for storing instructions.
- the second processor 4802 is coupled to the second memory 4803 for executing instructions stored by the second memory 4803 to perform the steps of the method of the receiving end described above when the instructions are executed.
- the communication device also includes a receiver 4701 for receiving a time domain signal generated by the communication device illustrated in FIG.
- this patent application compares with the peak-to-average ratio of the prior art.
- the abscissa is the peak-to-average ratio in dB; the ordinate is the Complementary Cumulative Distribution Function (CCDF).
- CCDF Complementary Cumulative Distribution Function
- data can be divided into data blocks. This can reduce the complexity of the process.
- OQAM offsets the in-phase component and the quadrature component in the QAM symbol and then superimposes it to avoid The in-phase component and the quadrature component peak are directly superimposed.
- the M-point DFT and the N-point IDFT are performed on the QAM symbols, and the present patent application aligns the effective frequency subcarriers with the conventional SC-FDM by frequency domain shaping after phase shifting and 2M point DFT. And the single carrier characteristic of the SC-FDM structure is maintained after the N point IDFT.
- OQAM typically has a lower PAPR than QAM
- the data of the original M point is changed to the OQAM symbol of the 2M point.
- DFT the number of frequency points also becomes twice that of QAM. If it is directly combined with the SC-FDM result, it will occupy 2M frequency points, that is, the occupied bandwidth will become twice as large, resulting in serious waste of resources. If the bandwidth is directly compressed, such as 2M frequency points become M frequency points, the complexity is high and the performance is poor when the original data is restored at the receiving end.
- the inventors of the present application have found through research that after the Fourier transform of the OQAM-modulated symbol, a part of the spectrum of the data is redundant. Through the frequency domain shaping, the effective frequency point is selected to ensure that the effective frequency bandwidth is not distorted. As long as a part of the data is processed, the processing is simplified. Make possible impossible combinations.
- Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
- a storage medium may be any available media that can be accessed by a computer.
- the computer readable medium may include RAM, ROM, EEPROM, A CD-ROM or other optical disc storage, magnetic storage medium or other magnetic storage device, or any other medium that can be used to carry or store desired program code in the form of an instruction or data structure and that can be accessed by a computer.
- any connection may suitably be a computer readable medium.
- the software is transmitted from a website, server, or other remote source using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave
- coaxial cable , fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, wireless, and microwave
- disks and discs include compact discs (CDs), laser discs, optical discs, digital versatile discs (DVDs), floppy discs, and Blu-ray discs, where the discs are typically magnetically replicated, and The disc uses a laser to optically replicate the data. Combinations of the above should also be included within the scope of the computer readable media.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
本专利申请公开了一种通信处理方法、处理器和通信设备,该通信处理方法包括:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
Description
本申请要求于2015年12月31日提交中国专利局、申请号为201511032197.8、发明名称为“一种通信处理方法、处理器和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本专利申请涉及无线通信技术,尤其涉及一种通信处理方法、处理器和通信设备。
在未来无线通信系统中,高频、机器通信(machine type communications)、物联网等应用场景对器件的成本和能量消耗等提出了更高的要求。器件的选取与波形信号具有很大的相关性,譬如波形信号的峰均功率比(peak-to-average power ratio,PAPR)影响器件的选择。如果输入波形信号的峰均比高,则要求D/A转换以及功率放大器件具有较大的动态范围,否则会造成信号失真,影响系统性能。大动态范围的D/A转换以及功率放大器件的功耗高,能效低,价格也比较高,极大多数设备难以承受。因此,低峰均比技术具有极大的实际应用价值。
单载波频分复用(single carrier frequency division multiplexing,SC-FDM)技术是一种具有单载波特性的多载波技术,因为支持正交频分多址而得名。虽然经SC-FDM调制后数据的峰均比相对OFDM会降低一些,但是在很多应用场景中依然比较
高。
发明内容
有鉴于此,本专利申请提供了一种通信处理方法、处理器和通信设备,以获得较低的峰均功率比。
第一方面,本专利申请提供了一种通信处理方法,包括:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
在第一方面的第一种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其中M为正整数。
在第一方面的第二种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号的长度分别为M,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,得到分离
的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理方法在进行所述频域赋形前还包括:对分离的同相分量频域信号和正交分量频域信号进行合并。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第三种可能的实现方式中,在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第四种可能的实现方式中,在所述M为奇数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M]中前面或者后面的(M+1)/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
结合第一方面的第一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述方法还包括:将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
结合第一方面的第二种可能的实现方式,在第一方面的第六种可能的实现方式中,所述方法还包括:将所述分离的时域上的同相分量符号和正交分量符号进行移
相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
结合第一方面的第五种或第六种可能的实现方式,在第一方面的第七种可能的实现方式中,当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面一半或者后面一半频点。
结合第一方面的第五种或第六种可能的实现方式,在第一方面的第八种可能的实现方式中,当所述M为奇数时,所述频域赋形后的频域信号具体包括频点[0,1,…,(M-3)/2,(M+1)/2,M/2+2,…,M-1]中前面或者后面的(M-1)/2个频点、频点[M,…,(3M-3)/2,(3M+1)/2,…,2M-1]中前面或者后面的(M-1)/2个频点、以及频点(M-1)/2和频点(3M-1)/2。
结合第一方面的第五种至第八种任一可能的实现方式,在第一方面的第九种可能的实现方式中,将所述时域上的偏移正交幅度调制后的符号进行移相,包括:将所述时域上的偏移正交幅度调制后的符号进行移相半个子载波。
结合第一方面或第一方面以上各种任一可能的实现方式,在第一方面的第十种可能的实现方式中,所述方法还包括:发送所述时域信号。
第二方面,本专利申请提出了一种通信处理方法,包括:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;将所述傅里叶变换后的频域信号进行
子载波逆映射,得到子载波逆映射后的频域信号;将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
在第二方面的第一种可能的实现方式中,所述频域恢复后的频域信号包括:2M个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
结合第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
结合第二方面的第一种可能的实现方式,在第二方面的第三种可能的实现方式中,当所述M为奇数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,(M+1)/2]和频点[(M-1)/2,(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称。
结合第二方面的第一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述方法还包括:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
结合第二方面的第四种可能的实现方式,在第二方面的第六种可能的实现方式中,当所述M为奇数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,(M-1)/2]和频点[(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称。
第三方面,本专利申请提出了一种通信设备,包括:存储器,用于存储指令;处理器与所述存储器相连,用于执行所述存储器存储的所述指令,以在执行所述指令时执行如下步骤:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
在第三方面的第一种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其
中M为正整数。
在第三方面的第二种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号长度为M;所述傅里叶变换为M点傅里叶变换,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理器还用于:对分离的同相分量频域信号和正交分量频域信号进行合并。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第三种可能的实现方式中,在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
结合第三方面的第一种或第二种可能的实现方式,在第三方面的第四种可能的实现方式中,在所述M为奇数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M]中前面或者后面的(M+1)/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
结合第三方面的第一种可能的实现方式,在第三方面的第五种可能的实现方式
中,所述处理器还用于:将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
结合第三方面的第五种可能的实现方式,在第三方面的第六种可能的实现方式中,所述处理器还用于:将所述分离的时域上的同相分量符号和正交分量符号进行移相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
结合第三方面的第五种或第六种可能的实现方式,在第三方面的第七种可能的实现方式中,当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面一半或者后面一半频点。
结合第三方面的第五种或第六种可能的实现方式,在第三方面的第八种可能的实现方式中,当所述M为奇数时,所述频域赋形后的频域信号具体包括频点[0,1,…,(M-3)/2,(M+1)/2,M/2+2,…,M-1]中前面或者后面的(M-1)/2个频点、频点[M,…,(3M-3)/2,(3M+1)/2,…,2M-1]中前面或者后面的(M-1)/2个频点、以及频点(M-1)/2和频点(3M-1)/2。
结合第三方面的第六种至第八种任一可能的实现方式,在第三方面的第九种可
能的实现方式中,将所述时域上的偏移正交幅度调制后的符号进行移相,包括:将所述时域上的偏移正交幅度调制后的符号进行移相半个子载波。
结合第三方面或第三方面的以上任一可能的实现方式,在第三方面的第十种可能的实现方式中,所述的通信设备,还包括发送器,用于发送所述时域信号。
第四方面,本专利申请提出了一种通信设备,包括:存储器,用于存储指令;处理器与所述存储器相连,用于执行所述存储器存储的所述指令,以在执行所述指令时执行如下步骤:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;将所述傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号;将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
在第四方面的第一种可能的实现方式中,所述频域恢复后的频域信号包括:2M个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
在第四方面的第二种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
在第四方面的第三种可能的实现方式中,当所述M为奇数时,所述均衡后的频域信
号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,(M+1)/2]和频点[(M-1)/2,(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称。
结合第四方面的第一种可能的实现方式,在第四方面的第四种可能的实现方式中,所述处理器还用于:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
结合第四方面的第四种可能的实现方式,在第四方面的第六种可能的实现方式中,当所述M为奇数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,(M-1)/2]和频点[(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称。
第五方面,本专利申请提供了一种处理器,包括:调制单元,用于:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;傅里叶变换单元,用于:将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;频域赋形单元,用于对所述傅里叶变换后的频域信号进行频域赋形,得到频
域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;映射单元,用于将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;傅里叶逆变换单元,用于将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
在第五方面的第一种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其中M为正整数。
在第五方面的第二种可能的实现方式中,所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号的长度分别为M,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理器还包括合并器,用于:对分离的同相分量频域信号和正交分量频域信号进行合并。
结合第五方面的第一种或第二种可能的实现方式,在第五方面的第三种可能的实现方式中,在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点
[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
结合第五方面的第一种或第二种可能的实现方式,在第五方面的第四种可能的实现方式中,在所述M为奇数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M]中前面或者后面的(M+1)/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
结合第五方面的第一种可能的实现方式,在第五方面的第五种可能的实现方式中,所述处理器还包括:移相单元,用于将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
结合第五方面的第一种可能的实现方式,在第五方面的第六种可能的实现方式中,所述处理器还包括:移相单元,用于:将所述分离的时域上的同相分量符号和正交分量符号进行移相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
结合第五方面的第五种或第六种可能的实现方式,在第五方面的第七种可能的实现方式中,当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面
一半或者后面一半频点。
结合第五方面的第五种或第六种可能的实现方式,在第五方面的第八种可能的实现方式中,当所述M为奇数时,所述频域赋形后的频域信号具体包括频点[0,1,…,(M-3)/2,(M+1)/2,M/2+2,…,M-1]中前面或者后面的(M-1)/2个频点、频点[M,…,(3M-3)/2,(3M+1)/2,…,2M-1]中前面或者后面的(M-1)/2个频点、以及频点(M-1)/2和频点(3M-1)/2。
结合第五方面的第五种至第八种任一可能的实现方式,在第五方面的第九种可能的实现方式中,将所述时域上的偏移正交幅度调制后的符号进行移相,包括:将所述时域上的偏移正交幅度调制后的符号进行移相半个子载波。
第六方面,本专利申请提供了一种处理器,包括:傅里叶变换单元,用于:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;逆映射单元,用于:将所述傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号;均衡单元,用于:将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;频域恢复单元,用于:将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;傅里叶逆变换单元,用于:将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;解调单元,用于:将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
在第六方面的第一种可能的实现方式中,所述频域恢复后的频域信号包括:2M
个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
结合第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
结合第六方面的第一种可能的实现方式,在第六方面的第三种可能的实现方式中,当所述M为奇数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,(M+1)/2]和频点[(M-1)/2,(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称。
结合第六方面的第一种可能的实现方式,在第六方面的第四种可能的实现方式中,所述处理器还包括:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
结合第六方面的第四种可能的实现方式,在第六方面的第五种可能的实现方式中,当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
第七方面,本专利申请提出了一种计算机程序产品包括程序代码用于:当被计算器件运行时,执行上述通信处理方法。
通过上述方案,先对原始数据进行偏移正交幅度调制(OffsetQuadratureAmplitudeModulation,简称OQAM)。OQAM调制可以将数据的正交分量与同相分量相互错开一定时间距离,具有进一步降低PAPR的作用。而且,OQAM调制不会改变数据的单载波性质。OQAM调制后的数据经过傅里叶变换后,数据的频谱有一部分是冗余。通过频域赋形,选择出有效频点,保证有效频点带宽不失真。只要对一部分数据进行处理即可,简化了处理。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1A是根据本文的各个实施例的无线通信系统的示意图。
图1B是单载波频分复用方法的流程示意图
图2是根据本专利申请一个实施例,一种通信处理方法的示意图。
图3示出了输入QAM符号、输出OQAM符号的示意图。
图4示出了一种情况下,傅里叶变换后的频域信号的频域效果图。
图5-8示出了一种情况下,四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。
图9示出了另一种情况下,傅里叶变换后的频域信号的频域效果图。
图10-13示出了一种情况下,四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。
图14示出了一种情况下,两个用户的子载波映射示意图。
图15是根据本专利申请的另一个实施例,一种通信处理方法的示意图。
图16、图17分别示出了两种情况下,均衡后的数据与进行频域数据恢复操作的效果示意图
图18是根据本专利申请另一个实施例,一种通信处理方法的示意图。
图19示出了另一种情况下,傅里叶变换后的频域信号的频域效果图。
图20-23示出了另一种情况下,四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。
图24示出了另一种情况下,傅里叶变换后的频域信号的频域效果图。
图25-28示出了另一种情况下,四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。
图29示出了一种情况下,两个用户的子载波映射示意图。
图30是根据本专利申请的另一个实施例,一种通信处理方法的示意图。
图31、图32分别示出了两种情况下,均衡后的数据与进行频域数据恢复操作的效果示意图
图33-40分别示出根据本专利申请另一个实施例,一种通信处理方法的示意图。
图41-46分别示出根据本专利申请另一个实施例,一种信号处理器的示意图。
图47、48分别示出根据本专利申请另一个实施例,一种通信设备的示意图。
图49是本专利申请与已有技术的峰均比对比示意图。
本专利申请所涉及到的终端可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调单元的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端设备(Terminal Equipment)等等。为方便描述,本专利申请中,上面提到的设备统称为终端或UE。
本专利申请所涉及到的基站(Base Station,简称BS)是一种部署在无线接入网中用以为UE提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在第三代3G网络中,称为节点B(NodeB)等等。为方便描述,本专利申请中,上述为UE提供无线通信功能的装置统称为基站或BS。
在本说明书中使用的术语"部件"、"模块"、"系统"等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件
可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
此外,结合接入终端设备描述了各个实施例。接入终端设备也可以称为系统、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信设备、用户代理、用户装置或UE(User Equipment,用户设备)。接入终端设备可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调单元的其它处理设备。此外,结合基站描述了各个实施例。基站可用于与移动设备通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code Division Multiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的NB(NodeB,基站),还可以是LTE(Long Term Evolution,长期演进)中的eNB或eNodeB(Evolutional Node B,演进型基站),或者中继站或接入点,或者未来5G网络中的基站设备等。
此外,本专利申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或
工程技术的制品。本申请中使用的术语"制品"涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁第二存储器4803件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读第二存储器4803)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语"机器可读介质"可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
现在,参照图1A,示出根据本文的各个实施例的无线通信系统100。无线通信系统100包括基站102,基站102可包括多个天线组。每个天线组可以包括一个或多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线108和110,附加组可包括天线112和114。图1A中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。基站102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件,例如处理器、调制单元、复用器、解调单元、解复用器或天线等。
基站102可以与一个或多个接入终端设备,例如接入终端设备116和接入终端设备122,通信。然而,可以理解,基站102可以与类似于接入终端设备116或122的任意数目的接入终端设备通信。接入终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA
和/或用于在无线通信系统100上通信的任意其它适合设备。如图所示,接入终端设备116与天线112和114通信,其中天线112和114通过前向链路118向接入终端设备116发送信息,并通过反向链路120从接入终端设备116接收信息。此外,接入终端设备122与天线104和106通信,其中天线104和106通过前向链路124向接入终端设备122发送信息,并通过反向链路126从接入终端设备122接收信息。在频分双工(Frequency Division Duplex,FDD)系统中,例如,前向链路118可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。此外,在时分双工(Time Division Duplex,TDD)系统中,前向链路118和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为基站102的扇区。例如,可将天线组设计为与基站102覆盖区域的扇区中的接入终端设备通信。在基站102通过前向链路118和124分别与接入终端设备116和122进行通信的过程中,基站102的发射天线可利用波束成形来改善前向链路118和124的信噪比。此外,与基站通过单个天线向它所有的接入终端设备发送信号的方式相比,在基站102利用波束成形向相关覆盖区域中随机分散的接入终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,基站102、接入终端设备116或接入终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取,例如生成、从其它通信装置接收、
或在第二存储器4803中保存等,要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块或多个传输块中,传输块可被分段以产生多个码块。
图1B是单载波频分复用(single carrier frequency division multiple access,简称SC-FDMA)方法的流程示意图。如图1B所示,该方法包括如下步骤:将数据进行正交幅度调制(Quadrature Amplitude Modulation,QAM),得到QAM后的M点的QAM符号。将QAM后的符号进行M点的离散傅里叶变换(Discrete Fourier Transform,DFT),得到频域信号。将频域信号进行子载波映射,映射到N个子载波上。将子载波映射后的频域信号进行N点的离散傅里叶逆变换(Inverse Discrete Fourier Transform,IDFT),得到时域信号。然后可以将该时域信号发送出去。
通信领域的技术人员都清楚虽然OQAM通常比QAM具有更低的PAPR,但是非常难甚至不可能将OQAM应用到SC-FDMA。在进行OQAM之后,将原来M点的符号变成了2M点的OQAM符号。在经过DFT之后,频点数量也变成QAM时的两倍。如果直接与SC-FDM结果相结合,会占用2M个频点,即占用带宽变成原来的两倍,造成严重的资源浪费。如果直接将带宽压缩(如2M个频点变成M个频点),在接收端恢复原始数据时复杂度高并且性能差。
但是本申请的发明人经过研究后发现:OQAM调制后的数据经过傅里叶变换后,数据的频谱有一部分是冗余。通过频域赋形,选择出有效频点,保证有效频点带宽不失真。只要对一部分数据进行处理即可,简化了处理。使得不可能的结合变成可能。
图2是根据本专利申请一个实施例,一种通信处理方法的流程示意图。如图2所示,该方法包括如下步骤:
201、将数据进行偏移正交幅度调制(OQAM),得到时域上的偏移正交幅度调制后的符号。
202、将时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到频域信号。
203、对频域信号进行频域赋形,得到频域赋形后的频域信号,频域赋形后的频域信号去除了共轭对称的频点。
204、将频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号。
205、将子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
在201中,输入数据可以是信道编码后的比特,这时OQAM调制将比特映射成同相分量(I路)符号和正交分量(Q路)符号。输入数据也可以是QAM调制后的符号,这时OQAM调制只需要将数据的I路和Q路错开。输入数据中还可以包括导频信号。在本实施例中,OQAM调制后的符号包括交错在一起的同相分量(I路)和正交分量(Q路)符号。如图3所示,I路和Q路符号之间有小于一个符号间隔的延时,比较典型的延时为半个符号间隔。
上述交错在一起的同相分量和正交分量符号长度可以为2M,M为整数。以输入数据为QAM调制后的符号为例。记一个QAM符号为列向量为:
x=[x0,x1,...,xM-1]T,
其中,xi为输入的第i个QAM调制符号,并且和分别为QAM调制符号
的同相分量和正交分量,i=0,1,…,M-1,j为虚数单位。则以上QAM符号对应的OQAM符号可以表示为向量y,yi为第i个元素,记为
在202中,将时域上的偏移正交幅度调制后的符号进行2M点傅里叶变换,得到频域信号。傅里叶变换具体可以为离散傅里叶变换(Discrete Fourier Transform,简称DFT)或快速傅里叶变换(Fast Fourier Transform,简称FFT)。经过傅里叶变换后,得到频域信号。记该频域信号为频域向量为z’,其中z’n为第n个频点:
将频点z’n分别写为:
以上式中n=0,1,…,M–1。
经研究发现,当M为偶数时z’n具有以下对称性:
经研究发现,当M为偶数时,经过傅里叶变换后的频域信号的频谱,有一部分是冗余的。OQAM符号的频域的(M-1)个频点为冗余,(M+1)个频点为有效频点。
如图4所示,以M=8为例,频点1,2,3和频点5,6,7共轭对称,即第i个频点实部与第8-i个点实部相等,虚部数据相反,i=1,…,3。频点9,10,11与频点13,14,15共轭对称,即第8+i个频点实部与第16-i个点实部相等,虚部数据相反,i=1,…,3,频点0与频点8共轭对称。恢复端只需要保留M+1个数据子载波,根据共轭对称特性即可以无损恢复。这将极大地简化处理过程、提高处理效率。
在203中,可以使用频域赋形单元对经过傅里叶变换后的频域信号进行频域赋形,去除共轭对称的频点,保留有效频点。在本实施例中,当M为偶数时,去除了共轭对称的频点后,只需保留(M+1)个有效频点即可。可以保留[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、保留[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
频域赋形单元可以为:
f′=[f0′,f1′,...,fK′-1]T,
频域赋形单元长度可以为K。频域赋形单元的一种实现形式可以是滤波器。频域赋形单元可以包括通带(M+1个频点)、过渡带以及阻带。K为通带长度、过渡带长度和阻带长度这三者之和。频域赋形单元的长度K不小于M+1(M+1≤K)。频域赋形需要保证有效频点频带不失真。只需要频域赋形单元通带为数据带宽内的子载波即可,这还有效避免了频谱混叠。过渡带的大小对应频域的开销。频域赋形单元的效果会影响
到带外和PAPR,一个比较好的频域赋形单元可以将带外进一步降低。K=2M即可获得比较好的效果。
频域赋形单元的通带位置对应[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、保留[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。例如,对应频点[0,1,…,M/2,3M/2,3M/2+1,…,2M-1]或者[M/2,M/2+1,…,M,M+1,…,3M/2-1,3M/2]总共M+1个频点。频域赋形后的数据为
u′=[u0′,u1′,...,u′K-1]T.
过渡带的大小对应频域的开销。频域赋形单元的效果会影响到带外和PAPR,一个比较好的频域赋形单元可以将带外进一步降低。K=2M即可获得比较好的效果。
图5-8示出了四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。如首先对原来的2M个频点进行扩展或者缩减形成K个频点,然后对K个频点进行频域赋形。在图5和图6中,K=2M。在图5中,频域赋形单元的通带为正中间M+1个频点,过渡带和阻带为两边剩下的M-1个频点。经过频域赋形后,只保留中间M+1个频点,将输入频域数据的余下频点置0即可(即频域缩减)。在图6中,频域赋形单元的通带为开始的两边的M+1个频点,过渡带和阻带为正中间的M-1个频点。经过频域赋形后,保留两侧的各M+1个频点,将输入频域数据的余下频点置0即可(即频域缩减)。在图7中,M+1≤K,K≤2M。在图7中,频域赋形单元的通带为正中间M+1个频点,过渡带和阻带为两边的K-M-1个频点。经过频域赋形后,只保留中间M+1个频点,将输入频
域数据的余下频点置0即可(即频域缩减)。在图8中,K>2M。在图8中,可以对输入频域数据进行频域扩展,将位于频谱一侧的频点循环扩展到频谱的另一侧。
当M为奇数时,经研究发现z’n具有以下对称性:
当M为奇数时,经过傅里叶变换后的频域信号的频谱,有一部分是冗余的。OQAM符号频域的M个频点为共轭对称,M个频点为有效频点。
如图9所示,频点0,1,2,3和频点4,5,6,7(M=7)频点共轭对称,频点8,9,10与频点11,12,13共轭对称。
在本实施例中,当M为奇数时,去除了共轭对称的频点后,只需保留M个有效频点即可。可以保留[0,1,…,M]中前面或者后面的(M+1)/2个频点、[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
频域赋形单元长度可以为K。频域赋形单元可以包括通带(M个频点)、过渡带以及阻带。频域赋形单元的长度K不小于M(M≤K)。频域赋形单元的通带位置对应[0,1,…,M]中前面或者后面的(M+1)/2个频点、保留[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
图10-13示出了四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。首先对原来的2M个频点进行扩展或者缩减形成K个频点,然后对K个频点进行频域赋形。在图10和图11中,K=2M。在图10中,频域赋形单元的通带为正中间M个频点,
过渡带和阻带为两边剩下的M个频点。经过频域赋形后,只保留中间M个频点。在图11中,频域赋形单元的通带为开始的两边的M个频点,过渡带和阻带为正中间的M个频点。经过频域赋形后,保留两侧的各M个频点。在图12中,M≤K<2M。在图12中,频域赋形单元的通带为正中间M个频点,过渡带和阻带为两边的K-M个频点。经过频域赋形后,只保留中间M个频点,将输入频域数据的余下频点置0即可(即频域缩减)。在图13中,K>2M。在图13中,可以对输入频域数据进行频域扩展,将位于频谱一侧的频点循环扩展到频谱的另一侧。
在204中,子载波映射具体映射到N个子载波。频域赋形后的K个频点可以映射到N个子载波上,得到子载波映射后的频域信号。当M为偶数时,M+1≤K,可以保证至少M+1个有效子载波不失真。当M为奇数时,M≤K,可以保证至少M个有效子载波不失真。
值得注意的是,子载波上还可映射有其他用户的数据。这提高了子载波的使用效率。不同用户的子载波映射允许重叠。但是需要保证各路数据的有效子载波不受到其它用户的影响。重叠部分中如果存在有效频点子载波,其他用户在这些有效子载波位置的影响可以忽略。譬如两个用户的子载波映射可以分别如图14所示。用户1的频域数据映射在子载波(0,1,..,15),其中有效频点子载波映射于(4,5,…,11,12);用户2的频域数据映射在子载波(9,..,24),其中有效频点子载波映射于(13,…,20,21)。
在205中,傅里叶逆变换为N点傅里叶逆变换。傅里叶逆变换具体可以为离散傅
里叶逆变换(IDFT)或快速傅里叶逆变换(IFFT)。其中K≤N,M<N。
上述处理方法还可以包括:206、发送所生成的时域信号。在本实施例中,即将傅里叶逆变换后的时域信号发送出去。
对于上述所生成的时域信号可以适当的方式进行恢复。下面举一个例子进行说明。本领域技术人员应当清楚,还有其他适当的处理方法。图15是根据本专利申请的另一个实施例,一种通信处理方法的示意图。图15所示的处理方法基本上是图2所示的处理方法的逆过程。如图15所示,该方法包括如下步骤:
1501、将接收的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号。傅里叶变换具体可以为N点的DFT或FFT。
1502、将傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号。可以逆映射到K个子载波上。
1503、将子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号。均衡可以克服信道和噪声带来的影响。
1504、将均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号。频域恢复后的频域信号恢复了共轭对称的频点。即恢复了因具有共轭对称特性而被删除的频点。
1505、将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号。傅里叶逆变换是2M点的傅里叶逆变换。
1506、将时域上的偏移正交幅度调制后的符号进行OQAM解调。
如果M为偶数,在1503中,均衡后的频域信号包括:(M+1)个频点。在1504中,然后分别对前面[1,2,…,M/2]共M/2个频点和后面的[M/2+1,M/2+2,…,M-1]共M/2-1个频点进行共轭对称,将所有2M个频域数据恢复。如果M为奇数,在1503中,均衡后的频域信号包括:M个频点。在1504中,然后分别对前面的频点[1,2,…,(M+1)/2]和后面的频点[(M-1)/2,(M-1)/2+1,(M-1)/2+2,…,M-1]进行共轭对称,将所有2M个频域数据恢复。
频域恢复后的数据表示为:
在1505中,傅里叶逆变换具体可以为2M点IDFT或IFFT。通过傅里叶逆变换可以得到:
在1506中,进行OQAM解调,最终恢复原来数据。图16是M为偶数,例如为8的情况下、均衡后的数据与进行频域数据恢复操作的效果示意图。均衡并缩减恢复有效频点带宽内的9个频点,然后分别共轭恢复4个和3个频点,将所有16个频域数据恢复。图17是M为7(奇数)的情况下、均衡后的数据与进行频域数据恢复操作的效果
示意图。均衡并缩减恢复有效频点带宽内的7个频点,然后分别共轭恢复4个和3个频点,将所有14个频域数据恢复。
图18是根据本专利申请另一个实施例,一种通信处理方法的示意图。与图2所示的实施例相比,本实施例的方法包括:
1801、与201基本相同。
1802、对时域上的偏移正交幅度调制后的符号进行移相,得到移相后的OQAM符号。
1803、对移相后的OQAM符号进行傅里叶变换,得到傅里叶变换后的频域信号。
1804-1806、与203-205基本相同。
在1802中,可以移相半个子载波。考虑到现有的LTE系统中M是偶数,通过移相可以进一步减少处理的复杂程度。
OQAM符号中的第i个元素yi上的移相可以表示为:
这里的移相可以是其它值,例如K+0.5(K为整数)个子载波。移相后的数据表示为向量:
1803、对经移相的正交幅度调制后的数据进行2M点傅里叶变换。傅里叶变换具体可以为DFT或FFT。经过傅里叶变换后,得到OQAM符号的频域。记频域向量为z,其中zn为第n个频点:
将频点zn分别写为:
以上式中n=0,1,…,M–1.
经研究发现,当M为偶数时zn具有以下对称性:
由此可以看出,经过移相和傅里叶变换后的频域信号的频谱具有共轭对称性。也就是说在OQAM符号的频谱中,有部分是冗余。
如图19所示,M=8,前面M个频点共轭对称。第i个频点实部与第7-i个点实部相等,虚部数据相反,i=0,1,…,3。后面的M个频点共轭对称。第8+i个频点实部与第15-i个点实部相等,虚部数据相反,i=0,1,…,3。恢复端只需要保留M个数据子载波,根据共轭对称特性即可以无损恢复。这将极大地简化处理过程、提高处理效率。
在1804中,可以使用频域赋形单元对经过傅里叶变换后的频域信号进行频域赋形。并且只需保证其中的一半(即M个)频点不失真,就不影响接收端数据的正常恢复。在移相半个子载波的情况下,当M为偶数时,频域赋形时只需保留频点[0,1,…,M-1]中的前面一半或者后面一半、频点[M,M+1,…,2M-1]中的前面一半或者后面一半。
频域赋形单元长度可以为K。频域赋形单元可以包括通带(M个频点)、过渡带以及阻带。频域赋形单元的长度K不小于M(M≤K)。频域赋形需要保证有效频点频带不失真。只需要频域赋形单元通带为数据带宽内的子载波即可,还有效避免了频谱混叠。
频域赋形单元的通带位置对应频点[0,1,…,M-1]中的前面一半或者后面一半和频点[M,M+1,…,2M-1]中的前面一半或者后面一半。
图19-22示出了四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。首先对原来的2M个频点进行扩展或者缩减形成K个频点,然后对K个频点进行频域赋形。在图19和图20中,K=2M。在图19中,频域赋形单元的通带为正中间M个频点,过渡带和阻带为两边各M/2个频点。经过频域赋形后,只保留中间M个频点。在图20中,频域赋形单元的通带为开始的M/2个频点和结尾的M/2个频点,过渡带和阻带为正中间的M个频点。经过频域赋形后,保留两侧的各M/2个频点。在图21中,M≤K<2M,频域赋形单元的通带为正中间M个频点,过渡带和阻带为频带开始以及结尾各(K-M)/2个频点。经过频域赋形后,只保留中间M个频点,将输入频域数据的两端置0即可(即频域缩减)。在图22中,K>2M,可以对输入频域数据进行频域扩展,将位于频谱一侧的
频点循环扩展到频谱的另一侧。
当M为奇数时,经研究发现zn具有以下对称性:
当M为奇数时,经过傅里叶变换后的频域信号的频谱,有一部分是冗余的。OQAM符号频域的M个频点为冗余,M个频点为有效频点。
如图23所示,M=7,频点0,1,2和频点4,5,6频点共轭对称,即,第i个频点实部与第6-i个点实部相等,虚部数据相反,i=0,…,2。频点7,8,9与频点11,12,13共轭对称,即,第7+i个频点实部与第13-i个点实部相等,虚部数据相反,i=0,…,2。频点3与频点10不共轭对称也不相等。恢复端只需要保留M+1个数据子载波,根据共轭对称特性即可以无损恢复。
在1804中,可以使用频域赋形单元对经过傅里叶变换后的频域信号进行频域赋形,滤掉冗余数据,保留有效频点。在本实施例中,M为奇数时,只需保留(M+1)个有效频点即可,即保留[0,1,…,(M-3)/2,(M+1)/2,M/2+2,…,M-1]中前面或者后面的(M-1)/2个频点、保留[M,…,(3M-3)/2,(3M+1)/2,…,2M-1]中前面或者后面的(M-1)/2个频点、以及频点(M-1)/2和频点(3M-1)/2。
频域赋形单元长度可以为K。频域赋形单元可以包括通带(M+1个频点)、过渡带以及阻带。频域赋形单元的长度K不小于M+1(M+1≤K)。
图24-27示出了四种不同的频域赋形单元的原始数据、频域赋形后数据的示意图。在图24和图25中,K=2M。在图24中,频域赋形单元的通带为正中间M+1个频点,过渡带和阻带为两边剩下的M-1个频点。经过频域赋形后,只保留中间M+1个频点。在图25中,频域赋形单元的通带为频域数据两边的M+1个频点,过渡带和阻带为正中间的M-1个频点。经过频域赋形后,保留频域数据两侧的各M+1个频点。在图26中,M≤K<2M,频域赋形单元的通带为正中间M+1个频点,过渡带和阻带为两边的K-M-1个频点。经过频域赋形后,只保留中间M+1个频点,将输入频域数据的余下频点置0即可(即频域缩减)。在图27中,K>2M,可以对输入频域数据进行频域扩展,将位于频谱一侧的频点循环扩展到频谱的另一侧。
值得注意的是,不同用户的子载波映射允许重叠。但是需要保证各路数据的有效子载波不受到其它用户的影响。重叠部分中如果存在有效频点子载波,其他用户在这些有效子载波位置的影响可以忽略。譬如两个用户的子载波映射可以分别如图28所示。用户3的频域数据映射在子载波(0,1,..,15),其中有效频点子载波映射于(4,5,…,11);用户4的频域数据映射在子载波(8,9,..,23),其中有效频点子载波映射于(12,13,…,19)。
对于上述所生成的信号可以适当的方式进行恢复。下面举一个例子进行说明。本领域技术人员应当清楚,还有其他适当的处理方法。图29是根据本专利申请的另一个实施例,一种通信处理方法的示意图。图29所示的处理方法是图17所示的处理方法的逆过程。
如图30所示,该处理方法与图15所示的处理方法的主要区别在于:还包括:3006、移相。具体地,该方法包括如下步骤:
3001-3005、与1501-1505基本相同。
3006、将时域上的偏移正交幅度调制后的符号进行移相,得到经移相的时域上的偏移正交幅度调制后的符号。
3007、将经移相的时域上的偏移正交幅度调制后的符号进行OQAM解调。
在3004中,具体恢复的频点略有不同。下面将进一步详细描述。
如果M为偶数,在3003中,均衡后的频域信号包括:[0,1,…,M-1],共M个频点。在3004中,然后分别对频点[0,1,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称,将所有2M个频域数据恢复。如果M为奇数,在3003中,均衡后的频域信号包括:[0,1,…,M],共M+1个频点。然后分别对频点[1,2,…,(M-1)/2]和频点[(M-1)/2+1,(M-1)/2+2,…,M-1]共(M-1)/2进行共轭对称,将所有2M个频域数据恢复。频域恢复后的数据表示为:
在3005中,将频域恢复后的数据进行傅里叶逆变换,然后进行进行移相后得到:
图31是M为8(偶数)的情况下、均衡后的数据与进行频域数据恢复操作的效果示意图。均衡并缩减恢复有效频点带宽内的8个频点,然后分别共轭恢复各4个频点,将所有16个频域数据恢复。图32是M为7(奇数)的情况下、均衡后的数据与进行频域数据恢复操作的效果示意图。均衡并缩减恢复有效频点带宽内的8个频点,然后分别共轭恢复各3个频点,将所有14个频域数据恢复。
图33是根据本专利申请另一个实施例,一种通信处理方法的示意图。图33所示的实施例与图2所示的实施例相比,主要区别在于:图33所示的实施例中,处理方法还包括:3306、插入循环前缀(cyclic-prefix,CP)。具体地,该方法包括如下步骤:
3301-3305、与201-205基本相同。
3306、将傅里叶逆变换后的时域信号插入循环前缀(cyclic-prefix,CP)。循环前缀使得传输信道与数据构成时域循环卷积,即频域相乘,便于接收端频域均衡。进行信号发送时,需发送插入CP的数据。
图34是根据本专利申请另一个实施例,一种通信处理方法的示意图。图34所示的实施例与图18所示的实施例相比,主要区别在于:图34所示的实施例中,处理方法还包括:3407、插入循环前缀(cyclic-prefix,CP)。具体地,如图34所示,该方法包括如下步骤:
3401-3406、与1801-1806基本相同。
3407、将傅里叶逆变换后的时域信号插入循环前缀(cyclic-prefix,CP)。循环前
缀使得传输信道与数据构成时域循环卷积,即频域相乘,便于接收端频域均衡。进行信号发送时,需发送插入CP的数据。
图35是根据本专利申请另一个实施例,一种通信处理方法的示意图。图35所示的实施例与图15所示的实施例相比,主要区别在于:图35所示的实施例中,处理方法还包括:3501、移除CP。图35所示的实施例的处理方法可以用于恢复经图33所示的实施例进行调制的数据。具体地,如图35所示,该方法包括如下步骤:
3501、将接收的时域信号移除CP,得到移除CP后的时域信号。
3502、将移除CP后的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号。傅里叶变换具体可以为N点的DFT或FFT。
3503-3507、与1502-1506基本相同。
图36是根据本专利申请另一个实施例,一种通信处理方法的示意图。图36所示的实施例与图30所示的实施例相比,主要区别在于:图36所示的实施例中,处理方法还包括:3601、移除CP。图36所示的实施例的处理方法可以用于恢复经图34所示的实施例进行调制的数据。具体地,如图36所示,该方法包括如下步骤:
3601、将接收的时域信号移除CP,得到移除CP后的时域信号。
3602、将移除CP后的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号。傅里叶变换具体可以为N点的DFT或FFT。
3603-30609、与3002-3007基本相同。
图37是根据本专利申请另一个实施例,一种通信处理方法的示意图。与图2所示
的实施例相比,在本实施例中,时域上的偏移正交幅度调制后的符号包括分离的同相分量符号和正交分量符号。分离的同相分量符号和正交分量符号的长度分别为M。傅里叶变换是对分离的同相分量符号和正交分量符号分别进行。傅里叶变换为M点傅里叶变换。处理方法还包括:3704、对分离的同相分量符号和正交分量符号进行合并。具体地,如图37所示,该方法包括如下步骤:
3701、将数据进行偏移正交幅度调制(OQAM),得到时域上的偏移正交幅度调制后的符号。时域上的偏移正交幅度调制后的符号包括分离的同相分量符号和正交分量符号。分离的同相分量符号和正交分量符号的长度分别为M。
3702、将偏移正交幅度调制后的分离的同相分量符号和正交分量符号分别进行傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号。傅里叶变换为M点傅里叶变换。分离的同相分量频域信号和正交分量频域信号分别包括M个频点。
3703、对分离的同相分量频域信号和正交分量频域信号进行频域赋形,得到频域赋形后的分离的同相分量频域信号和正交分量频域信号,频域赋形后的频域信号去除了共轭对称的频点。在频域赋形时,先对分离的同相分量频域信号和正交分量频域信号分别进行扩展,扩展的方法可以是将同相分量频域信号和正交分量频域信号的M个频点进行重复,得到2M个频点。频域赋形时具体选取的频点可以参考对图2所示实施例的说明。
3704、对频域赋形后的分离的同相分量符号和正交分量符号进行合并,得到频域赋形后的合并后的同相分量符号和正交分量符号。
3705-3706、与204-205基本相同。
在3701中,OQAM调制之后的同相分量符号和正交分量符号分别记为向量:
在3702中,傅里叶变换是对分离的同相分量符号和正交分量符号分别进行。对同相分量符号和正交分量符号进行傅里叶变换,得到频域信号。其中傅里叶变换之后的I路和Q路频域信号分别记为向量:
将以上扩展后的频谱分别进行频域赋形然后合并。频域赋形单元可以为:
频域赋形单元f′I和f′Q长度可以为K。
当M为偶数时,只需保留(M+1)个有效频点即可。可以保留[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、保留[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。频域赋形单元f′I和f′Q需要保证有效频点频带不失真。
频域赋形单元f′I和f′Q的通带位置相同,可以对应[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、保留[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。例如,对应频点[0,1,…,M/2,3M/2,3M/2+1,…,2M-1]或者[M/2,M/2+1,…,M,M+1,…,3M/2-1,3M/2]总共M+1个频点。
当M为奇数时,只需保留M个有效频点即可。可以保留[0,1,…,M]中前面或者后面的(M+1)/2个频点、[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
频域赋形单元f′I和f′Q通带位置相同,可以保留[0,1,…,M]中前面或者后面的(M+1)/2个频点、[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的(M-1)/2个频点。
频域赋形后的数据为
在3704中,对以上两路分离的频谱进行合并。可以通过在频域移相进行合并。例
如:对I路不采取移相,对Q路则采取:
以上对Q路的移相等价于对Q路时域数据进行1/2个QAM符号时间的时延(即在时域上将I路和Q路通过半个数据周期的分隔区分开来)。合并后的数据为
u=u′I+u″Q.
图38是根据本专利申请另一个实施例,一种通信处理方法的示意图。与图37所示的实施例相比,在本实施例中,先进行合并再进行频域赋形。即,先对傅里叶变换后的分离的同相分量符号和正交分量符号进行合并,再对合并后的数据进行频域赋形。
可以通过在频域移相进行合并。例如:对I路不采取移相,对Q路则采取:
以上对Q路的移相等价于对Q路时域数据进行1/2个QAM符号时间的时延(即在时域上将I路和Q路通过半个数据周期的分隔区分开来)。合并后的数据为
w=wI+w′Q.
然后对w进行频域赋形。频域赋形的过程与图2中203一致。
本实施例的处理方法与图1B所示的处理方法相比,只需要进行2个M点的傅里叶变换,以及M次的乘法,比1个2M点的傅里叶变换所需的计算量更低。处理更简单。
经本实施例生成的数据也可以使用图14所示的处理方法进行恢复。
图39是根据本专利申请另一个实施例,一种通信处理方法的示意图。与图37所示的实施例相比,本实施例的方法还包括:3902、将分离的时域上的偏移正交幅度调制后的符号进行移相。具体地,该方法包括如下步骤:
3901、与3701基本相同。
3902、将偏移正交幅度调制后的分离的同相分量符号和正交分量符号分别进行移相操作,例如都移相半个子载波。
3903、与3702类似,将移相后的时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括将经移相的分离的正交幅度调制后的数据进行傅里叶变换。得到分离的同相分量频域信号和正交分量频域信号。傅里叶变换为M点傅里叶变换。分离的同相分量频域信号和正交分量频域信号分别包括M个频点。
3904、与3703类似。但所选取的频点不同。
3905-3906、与3705-3706基本相同。
在3901中,OQAM调制之后的I路和Q路数据分别记为向量:
在3902中,移相后的分离的同相分量符号和正交分量符号分别记为向量:
在3904中将以上频谱进行扩展
将以上扩展后的频谱分别进行频域赋形。频域赋形单元可以为:
频域赋形单元f″I和f″Q长度可以为K。
当M为偶数时,只需保留M个有效频点即可。可以保留[0,1,…,M-1]中的前面M/2个频点、[M,M+1,…,2M-1]中的前面或者后面M/2个频点。频域赋形单元f″I和f″Q可以包括通带(M个频点)、过渡带以及阻带。频域赋形单元f″I和f″Q的通带位置相同,可以对应上述需要保留的M个频点。
当M为奇数时,只需保留(M+1)个有效频点即可。可以保留[0,1,…,(M-3)/2,(M+1)/2,M/2+2,…,M-1]中前面或者后面的(M-1)/2个频点、保留[M,…,(3M-3)/2,(3M+1)/2,…,2M-1]中前面或者后面的(M-1)/2个频点、以及频点(M-1)/2和频点(3M-1)/2。频域赋形单元f″I和f″Q可以包括通带、过渡带以及阻带。频域赋形单元f″I和f″Q的通带位置相同,可以对应上述需要保留的M+1个频点。
图40是根据本专利申请另一个实施例,一种通信处理方法的示意图。与图38所示的实施例相比,在本实施例中,先对傅里叶变换后的分离的同相分量符号和正交分量符号进行合并,再对合并后的数据进行频域赋形。合并方法可以参考图37所示实施例的合并方法,频域赋形的方法可以参考图39所示实施例中的频域赋形方法。
经图39、40所示实施例生成的数据也可以使用图30所示的处理方法进行恢复。
图37-40所示四个实施例的通信处理方法还可以包括:将傅里叶逆变换后的时域信号插入循环前缀(cyclic-prefix,CP)。循环前缀使得传输信道与数据构成时域循环卷积,即频域相乘,便于接收端频域均衡。进行信号发送时,需发送插入CP的数据。相应地,接收端需要去掉CP。
图41是根据本专利申请另一个实施例,一种信号处理器的示意图。如图41所示,该处理器包括:调制单元4101、傅里叶变换单元4102、频域赋形单元4103、映射单元4104和傅里叶逆变换单元4106。
调制单元4101,用于执行步骤201。傅里叶变换单元,用于执行步骤202。频域赋形单元,用于执行步骤203。映射单元,用于执行步骤204。傅里叶逆变换单元,用于执行步骤205。
根据需要,该信号处理器还可以包括CP插入单元,用于将傅里叶逆变换后的时域信号插入循环前缀(cyclic-prefix,CP)。
图42是根据本专利申请另一个实施例,一种信号处理器的示意图。如图42所示,该处理器包括:傅里叶变换单元4202、逆映射单元4203、均衡单元4204、频域恢复单元4205、傅里叶逆变换单元4206和解调单元4207。
傅里叶变换单元4202用于执行步骤1501。逆映射单元4203用于执行步骤1502。均衡单元4204用于执行步骤1503。频域恢复单元4205用于执行步骤1504。傅里叶逆变换单元4206用于执行步骤1505。解调单元4207用于执行步骤1506。
根据需要,该信号处理器还可以包括CP移除单元,用于在傅里叶逆变换单元操作前移除CP。
图43是根据本专利申请另一个实施例,一种信号处理器的示意图。如图43所示,该处理器包括:调制单元4301、移相单元4302、傅里叶变换单元4303、频域赋形单元4304、映射单元4104和傅里叶逆变换单元4106。
调制单元4301用于执行步骤1801。移相单元4302用于执行步骤1802。傅里叶变换单元4303用于执行步骤1803。频域赋形单元用于执行步骤1804。映射单元用于执行步骤1805。傅里叶逆变换单元用于执行步骤1806。根据需要,该信号处理器还可以包括CP插入单元4307。
图44是根据本专利申请另一个实施例,一种信号处理器的示意图。如图44所示,该处理器包括:傅里叶变换单元4401、逆映射单元4402、均衡单元4403、频域恢复单元4404、傅里叶逆变换单元4405、移相单元4406和解调单元4207。
傅里叶变换单元4401用于执行步骤3001。逆映射单元4402用于执行步骤3002。均衡单元4403用于执行步骤3003。频域恢复单元4404用于执行步骤3004。傅里叶逆变换单元4405用于执行步骤3005。移相单元4406用于执行步骤3006。解调单元4407用于执行步骤3007。根据需要,该信号处理器还可以包括CP移除单元4408,用于在傅里叶逆变换单元操作前移除CP。
图45是根据本专利申请另一个实施例,一种信号处理器的示意图。如图45所示,该信号处理器包括调制单元4501、傅里叶变换单元、合并单元4503、频域赋形单元4504、映射单元4505和傅里叶逆变换单元4506。
调制单元4501,用于执行步骤3801。傅里叶变换单元具体包括第一傅里叶变换单元4502a和第二傅里叶变换单元4502c。第一傅里叶变换单元4502a和第二傅里叶变换单元4502c一起执行图38所示实施例中的步骤3802。具体地,第一傅里叶变换单元4502a用于对I路数据进行傅里叶变换。第二傅里叶变换单元4502c用于对Q路数
据进行傅里叶变换。
合并单元4503用于执行步骤3803。频域赋形单元4504用于执行步骤3804。映射单元4505用于执行步骤3805。傅里叶逆变换单元用于执行步骤3806。
本实施例所生成的信号可以通过图42所示的处理器进行数据恢复。
图46是根据本专利申请另一个实施例,一种信号处理器的示意图。如图46所示,该处理器包括:调制单元4601、移相单元、傅里叶变换单元、合并单元4604、频域赋形单元4605、映射单元4606和傅里叶逆变换单元4607。
调制单元4501,用于执行步骤4001。移相单元包括第一移相单元4502a和第二移相单元4502c。第一移相单元4502a和第二移相单元4502c一起执行图40所示实施例中步骤4002。具体地,第一移相单元5401a用于对I路数据进行移相。第二移相单元5401c用于对Q路数据进行移相。傅里叶变换单元包括第一傅里叶变换单元4102a和第二傅里叶变换单元4102c。第一傅里叶变换单元4102a用于对经移相的I路数据进行傅里叶变换。第二傅里叶变换单元4102c用于对经移相的Q路数据进行傅里叶变换。本实施例所生成的信号可以通过图44所示的处理器进行数据恢复。
根据需要,该信号处理器还可以包括CP插入单元。相应地,接收端的处理器可以包括CP移除单元。
合并单元与频域赋形单元的位置可以互换,具体可以参考图37或图39所示实施例。
图47是根据本专利申请另一个实施例,一种通信设备的示意图。如图47所示,
该通信设备包括:第一存储器4703和第一处理器4702。第一存储器4703用于存储指令。第一处理器4702与第一存储器4703相连,用于执行第一存储器4703存储的指令,以在执行指令时执行上述发送端的方法的步骤。该通信设备还包括发送器4701,用于发送经第一处理器4702生成的时域信号。
图48是根据本专利申请另一个实施例,一种通信设备的示意图。如图48所示,该通信设备包括:第二存储器4803和第二处理器4802。第二存储器4803用于存储指令。第二处理器4802与第二存储器4803相连,用于执行第二存储器4803存储的指令,以在执行指令时执行上述接收端的方法的步骤。该通信设备还包括接收器4701,用于接收经图47所示的通信设备所生成的时域信号。
如图49所示,本专利申请与已有技术的峰均比对比。图中横坐标为峰均比,以dB为单位;纵坐标为补累计分布函数(Complementary Cumulative Distribution Function,CCDF),给定一个比较高的PAPR,对应的CCDF越低表示越好,或者给定一个比较低的CCDF,对应曲线取得的PAPR越低越好,即在CCDF取1e-4时,对应曲线越偏左表示性能越好。采取矩形窗频域赋形器时,即频域赋形后只剩下M个有效频点,其它M个频点为0。经研究发现本专利提出的方案可以获得0.6dB的增益。过渡带与通带宽度的比值为25%时,折算为开销25%。经研究发现本专利申请的方案比现有技术提高性能0.6dB。本专利申请可以有效降低PAPR。
在本专利申请中,数据可以分成数据块。这样可以降低处理的复杂程度。
在本专利申请中,OQAM将QAM符号中的同相分量和正交分量偏移后再叠加,避免
了同相分量和正交分量峰值直接叠加。传统的SC-FDM中对QAM符号进行M点DFT和N点IDFT,而本专利申请通过借助移相和2M点DFT之后的频域赋形,将有效频点子载波与传统的SC-FDM保持一致,并且在N点IDFT之后依然保持SC-FDM结构的单载波特性。通过结合OQAM和SC-FDM的特点,有效降低PAPR。
在本申请出现之前,在通信领域的技术人员都清楚虽然OQAM通常比QAM具有更低的PAPR,但是非常难甚至不可能将OQAM应用到SC-FDMA。在进行OQAM之后,将原来M点的数据变成了2M点的OQAM符号。在经过DFT之后,频点数量也变成QAM时的两倍。如果直接与SC-FDM结果相结合,会占用2M个频点,即占用带宽变成原来的两倍,造成严重的资源浪费。如果直接将带宽压缩,如2M个频点变成M个频点,在接收端恢复原始数据时复杂度高并且性能差。
但是本申请的发明人经过研究后发现:OQAM调制后的符号经过傅里叶变换后,数据的频谱有一部分是冗余。通过频域赋形,选择出有效频点,保证有效频点带宽不失真。只要对一部分数据进行处理即可,简化了处理。使得不可能的结合变成可能。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本专利申请可以用硬件实现,或固件实现,或它们的组合方式来实现。当使用软件实现时,可以将上述功能存储在计算机可读介质中或作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是计算机能够存取的任何可用介质。以此为例但不限于:计算机可读介质可以包括RAM、ROM、EEPROM、
CD-ROM或其他光盘存储、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质。此外。任何连接可以适当的成为计算机可读介质。例如,如果软件是使用同轴电缆、光纤光缆、双绞线、数字用户线(DSL)或者诸如红外线、无线电和微波之类的无线技术从网站、服务器或者其他远程源传输的,那么同轴电缆、光纤光缆、双绞线、DSL或者诸如红外线、无线和微波之类的无线技术包括在所属介质的定影中。如本专利申请所使用的,盘(Disk)和碟(disc)包括压缩光碟(CD)、激光碟、光碟、数字通用光碟(DVD)、软盘和蓝光光碟,其中盘通常磁性的复制数据,而碟则用激光来光学的复制数据。上面的组合也应当包括在计算机可读介质的保护范围之内。
总之,以上仅为本专利申请技术方案的较佳实施例而已,并非用于限定本专利申请的保护范围。凡在本专利申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本专利申请的保护范围之内。
Claims (36)
- 一种通信处理方法,其特征在于包括:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
- 如权利要求1所述的方法,其特征在于:所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其中M为正整数。
- 如权利要求1所述的方法,其特征在于:所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号的长度分别为M,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别 进行所述傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理方法在进行所述频域赋形前还包括:对分离的同相分量频域信号和正交分量频域信号进行合并。
- 如权利要求2或3所述的方法,其特征在于:在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
- 如权利要求2所述的方法,其特征在于:所述方法还包括:将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
- 如权利要求3所述的方法,其特征在于:所述方法还包括:将所述分离的时域上的同相分量符号和正交分量符号进行移相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包 括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
- 如权利要求6所述的方法,其特征在于:当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面一半或者后面一半频点。
- 一种通信处理方法,其特征在于包括:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;将所述傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号;将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
- 如权利要求8所述的方法,其特征在于:所述频域恢复后的频域信号包括:2M个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
- 如权利要求9所述的方法,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
- 如权利要求9所述的方法,其特征在于:所述方法还包括:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
- 如权利要求11所述的方法,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
- 一种通信设备,其特征在于包括:存储器,用于存储指令;处理器与所述存储器相连,用于执行所述存储器存储的所述指令,以在执行所述指令时执行如下步骤:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后的频域信号;将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
- 如权利要求13所述的通信设备,其特征在于:所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其中M为正整数。
- 如权利要求13所述的通信设备,其特征在于:所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号长度为M;所述傅里叶变换为M点傅里叶变换,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理器还用于:对分离的同相分量频域信号和正交分量频域信号进行合并。
- 如权利要求13或14所述的通信设备,其特征在于:在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
- 如权利要求14所述的通信设备,其特征在于:所述处理器还用于:将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
- 如权利要求15所述的通信设备,其特征在于:所述处理器还用于:将所述分离的时域上的同相分量符号和正交分量符号进行移相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
- 如权利要求17或18所述的通信设备,其特征在于:当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面一半或者后面 一半频点。
- 一种通信设备,其特征在于包括:存储器,用于存储指令;处理器与所述存储器相连,用于执行所述存储器存储的所述指令,以在执行所述指令时执行如下步骤:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;将所述傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号;将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
- 如权利要求20所述的通信设备,其特征在于:所述频域恢复后的频域信号包括:2M个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
- 如权利要求21所述的通信设备,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后 的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
- 如权利要求21所述的通信设备,其特征在于:所述处理器还用于:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
- 如权利要求23所述的通信设备,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
- 一种处理器,其特征在于包括:调制单元,用于:将数据进行偏移正交幅度调制,得到时域上的偏移正交幅度调制后的符号;傅里叶变换单元,用于:将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,得到傅里叶变换后的频域信号;频域赋形单元,用于对所述傅里叶变换后的频域信号进行频域赋形,得到频域赋形后的频域信号,所述频域赋形后的频域信号去除了共轭对称的频点;映射单元,用于将所述频域赋形后的频域信号映射到子载波上,得到子载波映射后 的频域信号;傅里叶逆变换单元,用于将所述子载波映射后的频域信号进行傅里叶逆变换,得到时域信号。
- 如权利要求25所述的处理器,其特征在于:所述时域上的偏移正交幅度调制后的符号包括交错在一起的时域上的同相分量符号和正交分量符号,所述交错在一起的时域上的同相分量符号和正交分量符号长度为2M;所述傅里叶变换为2M点傅里叶变换,其中M为正整数。
- 如权利要求25所述的处理器,其特征在于:所述时域上的偏移正交幅度调制后的符号包括分离的时域上的同相分量符号和正交分量符号,所述分离的时域上的同相分量符号和正交分量符号的长度分别为M,其中M为正整数;所述将所述时域上的偏移正交幅度调制后的符号进行所述傅里叶变换,得到所述傅里叶变换后的频域信号,包括:对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,得到分离的同相分量频域信号和正交分量频域信号,所述傅里叶变换为M点傅里叶变换;所述处理器还包括合并器,用于:对分离的同相分量频域信号和正交分量频域信号进行合并。
- 如权利要求26或27所述的处理器,其特征在于:在所述M为偶数的情况下,所述频域赋形后的频域信号具体包括频点[0,1,…,M/2-1,M/2+1,M/2+2,…,M]中前面或者后面的M/2个频点、和频点[M+1,…,3M/2-1,3M/2+1,…,2M-1]中前面或者后面的M/2-1个频点、以及频点M/2和频点3M/2。
- 如权利要求26所述的处理器,其特征在于:所述处理器还包括:移相单元,用于:将所述时域上的偏移正交幅度调制后的符号进行移相,得到经移相的所述时域上的偏移正交幅度调制后的符号;将所述时域上的偏移正交幅度调制后的符号进行傅里叶变换,具体包括:将所述经移相的所述时域上的偏移正交幅度调制后的符号进行傅里叶变换。
- 如权利要求27所述的处理器,其特征在于:所述处理器还包括:移相单元,用于:将所述分离的时域上的同相分量符号和正交分量符号进行移相,得到经移相的所述分离的时域上的同相分量符号和正交分量符号;对所述分离的同相分量符号和正交分量符号分别进行所述傅里叶变换,具体包括:将所述经移相的分离的同相分量符号和正交分量符号进行所述傅里叶变换。
- 如权利要求29或30所述的处理器,其特征在于:当所述M为偶数时,所述频域赋形后的频域信号具体包括频点[0,1,…,M-1]中的前面一半或者后面一半频点、和频点[M,M+1,…,2M-1]中的前面一半或者后面 一半频点。
- 一种处理器,其特征在于包括:傅里叶变换单元,用于:将接收到的时域信号进行傅里叶变换,得到傅里叶变换后的频域信号;逆映射单元,用于:将所述傅里叶变换后的频域信号进行子载波逆映射,得到子载波逆映射后的频域信号;均衡单元,用于:将所述子载波逆映射后的频域信号进行均衡,得到均衡后的频域信号;频域恢复单元,用于:将所述均衡后的频域信号进行频域恢复,得到频域恢复后的频域信号,所述频域恢复后的频域信号恢复了共轭对称的频点;傅里叶逆变换单元,用于:将频域恢复后的频域信号进行傅里叶逆变换,得到时域上的偏移正交幅度调制后的符号;解调单元,用于:将所述时域上的偏移正交幅度调制后的符号进行偏移正交幅度解调,得到数据。
- 如权利要求32所述的处理器,其特征在于:所述频域恢复后的频域信号包括:2M个频点;所述傅里叶逆变换包括:2M点傅里叶逆变换,其中M为正整数。
- 如权利要求32所述的处理器,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括(M+1)个频点;所述将所述均衡后 的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2+1,M/2+2,…,M-1]进行共轭对称。
- 如权利要求32所述的处理器,其特征在于:所述处理器还包括:将所述傅里叶变换后的频域信号进行移相,得到经移相的所述傅里叶变换后的频域信号;将所述傅里叶逆变换的数据进行偏移正交幅度解调,包括将所述经移相的所述傅里叶变换后的频域信号进行偏移正交幅度解调。
- 如权利要求35所述的处理器,其特征在于:当所述M为偶数时,所述均衡后的频域信号包括M个频点;所述将所述均衡后的频域信号进行所述频域恢复,包括对频点[1,2,…,M/2]和频点[M/2,M/2+1,…,M-1]进行共轭对称。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201511032197.8A CN106936754B (zh) | 2015-12-31 | 2015-12-31 | 一种通信处理方法、处理器和通信设备 |
CN201511032197.8 | 2015-12-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017114025A1 true WO2017114025A1 (zh) | 2017-07-06 |
Family
ID=59224544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/106815 WO2017114025A1 (zh) | 2015-12-31 | 2016-11-22 | 一种通信处理方法、处理器和通信设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106936754B (zh) |
WO (1) | WO2017114025A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109905370B (zh) * | 2019-01-24 | 2020-04-17 | 北京邮电大学 | 一种物理层安全调制方法、装置、电子设备及存储介质 |
CN117640324A (zh) * | 2022-08-12 | 2024-03-01 | 华为技术有限公司 | 通信方法、装置、设备以及存储介质 |
WO2024087172A1 (zh) * | 2022-10-28 | 2024-05-02 | 京东方科技集团股份有限公司 | 信号传输方法及通信设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006144A (zh) * | 2009-09-01 | 2011-04-06 | 华为技术有限公司 | 预编码方法、装置及频域均衡方法、装置 |
CN102255707A (zh) * | 2011-08-29 | 2011-11-23 | 林子怀 | 针对sc-fdma mu- mimo系统的基于互信息的空间频率调度方法 |
CN102904854A (zh) * | 2011-07-29 | 2013-01-30 | 上海贝尔股份有限公司 | 一种在滤波器组多载波系统中减小峰均比的方法和装置 |
EP2840749A1 (en) * | 2013-08-23 | 2015-02-25 | Alcatel Lucent | Receiver and receive method for a filtered multicarrier signal |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1787413B (zh) * | 2005-10-28 | 2010-08-11 | 东南大学 | 低峰均比正交频分复用传输技术方法 |
CN100464543C (zh) * | 2006-01-27 | 2009-02-25 | 东南大学 | 兼容的单载波正交频分多址信号发送方法 |
JP4237784B2 (ja) * | 2006-08-04 | 2009-03-11 | 株式会社東芝 | 送信装置及び受信装置並びに無線通信システム |
CN101795257B (zh) * | 2010-01-22 | 2014-03-05 | 东南大学 | 带循环前缀的偏移调制正交频分复用传输方法 |
CN103733585B (zh) * | 2011-06-30 | 2017-02-15 | 奥兰治 | Oqam多载波信号的时移、相移和频移估计 |
US9172577B2 (en) * | 2013-02-19 | 2015-10-27 | Futurewei Technologies, Inc. | System and method for orthogonal frequency division multiplexing-offset quadrature amplitude modulation |
-
2015
- 2015-12-31 CN CN201511032197.8A patent/CN106936754B/zh active Active
-
2016
- 2016-11-22 WO PCT/CN2016/106815 patent/WO2017114025A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102006144A (zh) * | 2009-09-01 | 2011-04-06 | 华为技术有限公司 | 预编码方法、装置及频域均衡方法、装置 |
CN102904854A (zh) * | 2011-07-29 | 2013-01-30 | 上海贝尔股份有限公司 | 一种在滤波器组多载波系统中减小峰均比的方法和装置 |
CN102255707A (zh) * | 2011-08-29 | 2011-11-23 | 林子怀 | 针对sc-fdma mu- mimo系统的基于互信息的空间频率调度方法 |
EP2840749A1 (en) * | 2013-08-23 | 2015-02-25 | Alcatel Lucent | Receiver and receive method for a filtered multicarrier signal |
Non-Patent Citations (2)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 9)", 3GPP TS 36.211 V9.1.0, 31 March 2010 (2010-03-31), pages 1 - 85, XP055397723 * |
WANG, WENJIN ET AL.: "CP-OQAM-OFDM Based SC-FDMA: Adjustable User Bandwidth and Space-Time Coding", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 12, no. 09, 30 September 2013 (2013-09-30), pages 4506 - 4517, XP011527988 * |
Also Published As
Publication number | Publication date |
---|---|
CN106936754A (zh) | 2017-07-07 |
CN106936754B (zh) | 2020-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105991257B (zh) | 基于滤波器组的信号生成、发送和接收方法及其装置 | |
RU2617446C2 (ru) | Система и способ для мультиплексирования с ортогональным частотным разделением каналов/квадратурной амплитудной модуляции со сдвигом | |
CN107370701B (zh) | 传输信号的方法、发送端和接收端 | |
US10560298B2 (en) | Signal transmission method, transmit end, and receive end | |
CN106161316B (zh) | 导频序列参考信号发送、接收方法及其装置 | |
CN111901279A (zh) | 数据传输方法、装置、设备和存储介质 | |
WO2018014815A1 (zh) | 多载波系统及多载波系统的数据调制、解调方法及装置 | |
US10523486B2 (en) | Data modulation and demodulation method and data transmission method and node for multi-carrier system | |
CN101119350B (zh) | 正交频分复用系统、快速同步的方法和发送端设备 | |
WO2017121412A1 (zh) | 多载波系统的数据调制、解调方法、帧生成方法及节点 | |
WO2017114025A1 (zh) | 一种通信处理方法、处理器和通信设备 | |
JP2007074351A (ja) | マルチキャリア無線通信システム、送信機及び受信機並びにマルチキャリア無線通信方法 | |
CN107666455B (zh) | 一种传输信号的方法及网络设备 | |
WO2018058678A1 (zh) | 一种信号处理方法及设备 | |
CN1972267A (zh) | 一种离散傅立叶变换扩频正交频分复用方法和设备 | |
CN112187690A (zh) | 符号处理的方法与装置 | |
CN102369707B (zh) | 消除导频上的同频干扰的方法和装置 | |
US9628317B2 (en) | Generalized frequency division multiplexing radio transmission using frequency domain offset-QAM | |
CN112134676A (zh) | 参考信号传输方法、装置、通信节点及存储介质 | |
WO2023142825A1 (zh) | 一种数据处理方法、装置及相关设备 | |
WO2023143159A1 (zh) | 一种符号处理的方法与装置 | |
WO2022161224A1 (zh) | 数据发送方法、数据接收方法及相关装置 | |
Zieliński et al. | Modern Wireless Digital Communications: 4G and 5G Mobile Internet Access (with Grzegorz Cisek as a co-author) | |
CN108207025B (zh) | 同步信号发送方法和装置 | |
Dong et al. | Reduction of out-of-band power and peak-to-average power ratio in ofdm-based cognitive radio using alternating projections |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16880815 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16880815 Country of ref document: EP Kind code of ref document: A1 |