WO2018014815A1 - 多载波系统及多载波系统的数据调制、解调方法及装置 - Google Patents

多载波系统及多载波系统的数据调制、解调方法及装置 Download PDF

Info

Publication number
WO2018014815A1
WO2018014815A1 PCT/CN2017/093227 CN2017093227W WO2018014815A1 WO 2018014815 A1 WO2018014815 A1 WO 2018014815A1 CN 2017093227 W CN2017093227 W CN 2017093227W WO 2018014815 A1 WO2018014815 A1 WO 2018014815A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
data
consecutive
cyclic shift
data sequence
Prior art date
Application number
PCT/CN2017/093227
Other languages
English (en)
French (fr)
Inventor
辛雨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/314,989 priority Critical patent/US11088883B2/en
Priority to EP24151914.9A priority patent/EP4344144A3/en
Priority to EP17830449.9A priority patent/EP3490208A4/en
Publication of WO2018014815A1 publication Critical patent/WO2018014815A1/zh
Priority to US17/369,261 priority patent/US11533212B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/264Pulse-shaped multi-carrier, i.e. not using rectangular window
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/26265Arrangements for sidelobes suppression specially adapted to multicarrier systems, e.g. spectral precoding

Definitions

  • the present invention relates to the field of communications, and in particular to a data modulation and demodulation method and apparatus for a multi-carrier system and a multi-carrier system.
  • LTE Long Term Evolution
  • LTE is a 4G wireless cellular communication technology.
  • LTE adopts Orthogonal Frequency Division Multiplexing (OFDM) technology, and time-frequency resources composed of subcarriers and OFDM symbols form a wireless physical time-frequency resource of the LTE system.
  • OFDM technology has been widely used in wireless communication. Due to the Cyclic Prefix (CP), the CP-OFDM system can solve the multipath delay problem well and divide the frequency selective channel into a set of parallel flat channels, which greatly simplifies channel estimation. The method also has a high channel estimation accuracy. However, due to the large spectral leakage of the CP-OFDM system, the frequency offset and time offset between adjacent sub-bands are sensitive, which in turn causes interference between sub-bands.
  • CP Cyclic Prefix
  • FBMC Filter Bank Multicarrier
  • GFDM Generalized Frequency Division Multiplexing
  • UFMC Universal Filtered Multicarrier
  • filtered OFDM Frtered OFDM, F-OFDM for short
  • MIMO Multiple Input Multiple Output
  • GFDM suppresses out-of-band leakage is not ideal, and processing complexity is high, not flexible Adjusting the symbol spacing
  • UFMC and F-OFDM also have the same effect of suppressing out-of-band leakage, and it is not possible to improve the performance by adjusting the symbol spacing while keeping the out-of-band leakage constant.
  • Embodiments of the present invention provide a data modulation and demodulation method and apparatus method and apparatus for a multi-carrier system and a multi-carrier system, so as to at least solve the problem that the related technology cannot effectively prevent out-of-band leakage while being compatible with the LTE system. Flexibility to adjust symbol spacing to accommodate different channel environments with low demodulation performance.
  • a data modulation method for a multi-carrier system includes: cyclically shifting time-domain data sequences of the consecutive L symbols, L ⁇ 2; using a specified waveform function pair The cyclically shifted time domain data sequence is modulated, wherein the independent variable interval length of the waveform function is greater than or equal to the symbol interval of the modulated L symbols.
  • the data sequence of the consecutive L symbols is a time domain data sequence after performing inverse fast Fourier transform (IFFT) IFFT (Inverse Fast Fourier Transform, IFFT) for the frequency domain data of the consecutive L symbols.
  • IFFT inverse fast Fourier transform
  • IFFT Inverse Fast Fourier Transform
  • the argument interval length of the waveform function is N ⁇ T1, where N is a real number greater than or equal to 1, and T1 is a symbol interval of the consecutive L symbols after modulation.
  • the method further includes determining, according to the value of the T1, a difference value of a cyclic shift amount of adjacent symbols among the consecutive L symbols.
  • the cyclic shift amount of the adjacent symbol satisfies one of the following formulas:
  • T0 mod(T1, T0);
  • Y(1), Y(2) And Y(L) is the cyclic shift amount and is a real number, i is an integer between [1, L-1]; T0 is an adjacent sub-range of the frequency domain data before the execution of the IFFT The reciprocal of the carrier spacing.
  • the modulation comprises a Filter Bank (abbreviated as FB) modulation.
  • FB Filter Bank
  • the waveform function comprises one of: a root raised cosine function, a raised cosine function, a piecewise function, and a rectangular function.
  • the maximum time span between the independent variables corresponding to the non-zero function values of the waveform function is greater than or equal to 2T1, wherein the maximum time span is the value corresponding to the non-zero function value in the independent variable interval.
  • the maximum time span is greater than or equal to 3T1.
  • T1 aT0, where a ranges from [15/14, 2] or [8/7, 2].
  • the modulating the data sequence of the cyclically shifted consecutive L symbols by using a specified waveform function comprises: separately performing the waveform functions corresponding to the consecutive L symbols Argument shifting; the waveform function after shifting the argument and the data sequence of the consecutive L symbols after the cyclic shift are grouped linearly.
  • a discrete function form of g(tD(i)) corresponding to the ith symbol is obtained by sampling a continuous function form of the waveform function, wherein a sampling interval is the continuous L symbols The time interval between adjacent discrete data in a time domain data sequence.
  • the consecutive L symbols are symbols on one subframe or one resource block in the multi-carrier system.
  • a data demodulation method for a multi-carrier system comprising: receiving modulated data, wherein the modulated data is respectively performed on a data sequence of consecutive L symbols.
  • Data obtained by cyclically shifting and modulating the data sequence after the first cyclic shift using a specified waveform function; performing waveform function demodulation on the data using the specified waveform function A sequence of data for consecutive L symbols.
  • the method further includes: performing a second cyclic shift on the data sequence of the consecutive L symbols; acquiring the modulated data according to the data sequence after the second cyclic shift Raw data.
  • the method further includes: determining, according to a value of T1, a difference of cyclic shift amounts of adjacent symbols in the consecutive L symbols, wherein the T1 is the modulated L consecutive symbols Symbol interval.
  • the cyclic shift amount of the second cyclic shift is opposite to the cyclic shift amount of the first cyclic shift and the modulus values are the same.
  • the method further includes: performing fast Fourier transform (FFT) on the data, and using a channel. Equilibrium and detection.
  • FFT fast Fourier transform
  • a data modulation apparatus for a multi-carrier system, comprising: a cyclic shift module configured to cyclically shift data sequences of consecutive L symbols a bit, L ⁇ 2; a modulation module configured to modulate the cyclically shifted data sequence using a specified waveform function, wherein a length of the independent variable interval of the waveform function is greater than or equal to the modulated L pieces Symbolic spacing of symbols.
  • the data sequence of the consecutive L symbols is a time domain data sequence after the inverse fast Fourier transform (IFFT) of the frequency domain data of the consecutive L symbols.
  • IFFT inverse fast Fourier transform
  • the argument interval length of the waveform function is N ⁇ T1, where N is a real number greater than or equal to 1, and T1 is a symbol interval of the consecutive L symbols after modulation.
  • the cyclic shifting module is further configured to determine a difference value of a cyclic shift amount of adjacent symbols among the consecutive L symbols according to the value of the T1.
  • the cyclic shift amount of the adjacent symbol satisfies one of the following formulas:
  • T0 mod(T1, T0);
  • Y(1), Y(2) And Y(L) is the cyclic shift amount and is a real number, i is an integer between [1, L-1]; T0 is an adjacent sub-range of the frequency domain data before the execution of the IFFT The reciprocal of the carrier spacing.
  • the modulation module is further configured to perform an independent variable shift on the waveform function corresponding to the consecutive L symbols; the waveform function after shifting the independent variable and the cyclically shifted The data sequence of consecutive L symbols performs a grouping linear operation.
  • the M group data sequence R(m) is arranged according to a convention, and the data sequence of the consecutive L symbols is obtained, wherein the M is The number of time domain data sequences in the T0 time, the T0 being the reciprocal of the adjacent subcarrier spacing of the frequency domain data before the execution of the IFFT.
  • a data demodulating apparatus for a multi-carrier system, comprising: a receiving module configured to receive modulated data, wherein the modulated data is for consecutive L symbols Data sequences are respectively subjected to a first cyclic shift and data obtained by modulating the first cyclically shifted data sequence using a specified waveform function; a demodulation module configured to use the specified waveform function, The data is subjected to waveform function demodulation to obtain a data sequence of the consecutive L symbols.
  • the device further includes: a cyclic shifting module, configured to respectively perform a second cyclic shift on the data sequence of the consecutive L symbols; and an acquiring module configured to be shifted according to the second cyclic
  • the data sequence acquires raw data of the modulated data.
  • the cyclic shifting module is further configured to determine, according to the value of T1, a difference of cyclic shift amounts of adjacent symbols in the consecutive L symbols, wherein the T1 is the continuous after modulation The symbol spacing of L symbols.
  • the apparatus further comprises: a processing module configured to perform FFT, channel equalization and detection on the data.
  • a multi-carrier system comprising: a transmitting node and a receiving node, wherein the transmitting node is configured to cyclically shift a data sequence of consecutive L symbols, L ⁇ 2: modulating the cyclically shifted data sequence using a specified waveform function, wherein an independent variable interval length of the waveform function is greater than or equal to a symbol interval of the modulated L symbols; the receiving node , set to receive modulated data,
  • the modulated data is a first cyclic shift of the data sequence of the consecutive L symbols and the data sequence after the first cyclic shift using the specified waveform function Performing data obtained by modulating; performing waveform function demodulation on the data using the specified waveform function to obtain a data sequence of the consecutive L symbols; and performing a second loop on the data sequence of the consecutive L symbols Shifting, and acquiring raw data of the modulated data according to the data sequence after the second cyclic shift.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the following steps: cyclically shifting data sequences of consecutive L symbols, L ⁇ 2; modulating the cyclically shifted data sequence using a specified waveform function Wherein the argument interval length of the waveform function is greater than or equal to the symbol interval of the modulated L symbols.
  • the storage medium is further arranged to store program code for performing the step of determining a difference value of a cyclic shift amount of adjacent symbols among the consecutive L symbols according to the value of the T1.
  • the storage medium is further arranged to store program code for performing the step of: the cyclic shift amount of the adjacent symbols satisfying one of the following formulas:
  • T0 mod(T1, T0);
  • Y(1), Y(2) And Y(L) is the cyclic shift amount and is a real number, i is an integer between [1, L-1]; T0 is an adjacent sub-range of the frequency domain data before the execution of the IFFT The reciprocal of the carrier spacing.
  • the storage medium is further configured to store program code for performing the following steps: performing independent variable shifting on the waveform functions corresponding to the consecutive L symbols; and the waveform function after shifting the independent variables And performing a packet linear operation on the data sequence of the consecutive L symbols after the cyclic shift.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing the step of: receiving modulated data, wherein the modulated data is a first cyclic shift of a sequence of consecutive L symbols and using the specified waveform a function of modulating the data sequence after the first cyclic shift; using the specified waveform function to perform waveform function demodulation on the data to obtain a data sequence of the consecutive L symbols.
  • the storage medium is further configured to store program code for performing a second cyclic shift on the data sequence of the consecutive L symbols; the data after the second cyclic shift The sequence acquires raw data of the modulated data.
  • the storage medium is further arranged to store program code for performing fast Fourier transform FFT, channel equalization and detection on the data.
  • the cyclically shifted data sequence is modulated by using a specified waveform function, wherein the length of the independent variable interval of the waveform function
  • a symbol interval greater than or equal to the L symbols after modulation solves the problem that the related technology cannot effectively suppress out-of-band leakage and flexibly adjust the symbol interval to adapt to different channel environments and demodulation performance when compatible with the LTE system.
  • the low technical problem achieves better suppression of out-of-band leakage and narrows the main lobe width of the subcarriers in the frequency domain, and then the main lobe of adjacent subcarriers does not overlap, eliminating interference of adjacent subcarriers.
  • the effect of demodulation performance and flexibility of symbol interval adjustment is improved by a simple cyclic shift operation.
  • FIG. 1 is a network architecture diagram in accordance with an embodiment of the present invention.
  • FIG. 2 is a flowchart of a data modulation method of a multi-carrier system according to an embodiment of the present invention
  • FIG. 3 is a flow chart of a data modulation method of a multi-carrier system in accordance with an alternative embodiment of the present invention.
  • FIG. 4 is a flowchart of a data demodulation method of a multi-carrier system according to an embodiment of the present invention
  • FIG. 5 is a structural block diagram of a data modulation apparatus of a multi-carrier system according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a data demodulating apparatus of a multi-carrier system according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram (1) of a data demodulating apparatus of a multi-carrier system according to an alternative embodiment of the present invention.
  • FIG. 8 is a structural block diagram (2) of a data demodulating apparatus of a multi-carrier system according to an alternative embodiment of the present invention.
  • the network architecture includes: a sending node 12 and a receiving node 14, where The transmitting node 12 transmits the cyclically shifted and modulated data to the receiving node 14, and the receiving node 14 demodulates the data and cyclically shifts and acquires the original data according to the cyclically shifted data sequence, wherein the transmitting Node 12 and receiving node 14 may be devices such as base stations, terminals, or relays.
  • FIG. 2 is a flowchart of a data modulation method of a multi-carrier system according to an embodiment of the present invention, as shown in FIG. 2 . As shown, the process includes the following steps:
  • Step S202 cyclically shifting the data sequences of consecutive L symbols, L ⁇ 2;
  • Step S204 modulating the cyclically shifted data sequence using a specified waveform function, wherein the length of the argument interval of the waveform function is greater than or equal to the symbol interval of the modulated L symbols.
  • the data sequence of consecutive L symbols is cyclically shifted, L ⁇ 2, and the cyclically shifted data sequence is modulated by using a specified waveform function, wherein the length interval of the waveform function is greater than Or equal to the symbol interval of the modulated L symbols, which solves the problem that the related technology cannot effectively suppress out-of-band leakage and flexibly adjust the symbol interval to adapt to different channel environments and has low demodulation performance in the case of compatibility with the LTE system.
  • the execution body of the foregoing steps may be a base station, a terminal, a relay, a transmitting point, and the like, but is not limited thereto.
  • the data sequence of consecutive L symbols is a time domain data sequence after the inverse fast Fourier transform (IFFT) of the frequency domain data of consecutive L symbols, and in this embodiment, the IFFT can be effectively used.
  • the frequency domain data is converted into a time domain data sequence, but the invention is not limited thereto.
  • T0 is a reciprocal of adjacent subcarrier spacing of frequency domain data before performing IFFT, for example, when the adjacent subcarrier spacing of the frequency domain data is F.
  • the bandwidth system of LTE is 10 MHz
  • L time-domain data sequences Z1(i) can be obtained, i is an integer between [1, L]
  • Z1(i) is T0.
  • LTE can set the length of the time domain data sequence after each symbol IFFT processing to T0.
  • the data in T0 is cyclically shifted; when the time domain data sequence after each symbol IFFT processing is set, the time domain data sequence is T0.
  • direct data shifting is equivalent to cyclic shifting within each period T0.
  • Embodiments of the present invention employ cyclic shifting of data within T0, but are not limited thereto.
  • the argument interval length of the waveform function is N ⁇ T1, where N is a real number greater than or equal to 1, and T1 is a symbol interval of the modulated consecutive L symbols, in this embodiment.
  • N is a constant or a variable, and when it is a constant, the waveform function
  • the independent variable interval is proportional to the symbol interval of the modulated L symbols, but whether N is a constant or a variable, the length of the independent variable interval of the waveform function is greater than or equal to the symbol interval of the modulated L symbols, thus implementing
  • the out-of-band leakage is better suppressed and the main lobe width of the subcarriers in the frequency domain is narrowed, and then the main lobe of the adjacent subcarriers does not overlap, eliminating interference of adjacent subcarriers.
  • the difference of the cyclic shift amounts of adjacent symbols in consecutive L symbols is determined according to the value of T1.
  • the shift amount can be expressed by using time, that is, shifting The bit amount is equal to the product of the number of shifted data and Ts.
  • the time domain data sequence Z1(i) after the IFFT is cyclically shifted to obtain the data sequence Z2(i).
  • Y(1), Y(2) )...Y(L) is a cyclic shift amount and is a real number, and i is an integer between [1, L-1].
  • the cyclic shift is cyclically shifted to the right, but is not limited thereto, and a cyclic shift to the left or a combination of the two may be employed.
  • the invention realizes flexible change of symbol interval by different cyclic shift amount operations.
  • the cyclic shift amount is 0, that is, equivalent to no need to perform cyclic shift operation; when T1>T0, the symbol interval is greater than the reciprocal of the adjacent subcarrier spacing; when T1 ⁇ T0 The symbol interval is less than the reciprocal of the adjacent subcarrier spacing described above.
  • the symbol interval T1 can be increased to better achieve orthogonality between time-frequency domain data and improve demodulation performance.
  • the symbol interval T1 can be reduced or even reduced. Small enough to be less than T0 for super Nyquist transmission. Therefore, it is possible to flexibly adapt to changes in different channel environments by different cyclic shift amount operations.
  • K0 mod(K1, K0) (the above cyclic shift is cyclically shifted to the left)
  • Y(1), Y(2)...Y(L) are integers; i is an integer between [1, L-1]
  • the modulation described above includes filter bank FB modulation.
  • the FB modulation described above may be referred to as polyphase filter modulation, and may be processed in parallel for multiple filters, and the parameters of the FB modulation may be determined according to a specified waveform function.
  • FB modulation enables efficient and accurate parallel modulation of multiple filters.
  • the waveform function includes one of the following: a root raised cosine function, a raised cosine function, a piecewise function, and a rectangular function.
  • the raised cosine function may be a rising in the frequency domain.
  • the function of the cosine function obtained by the FFT in the time domain can also be directly the raised cosine function in the time domain;
  • the above-mentioned root raised cosine function can also be a function in the time domain obtained by the FFT of the raised cosine function in the frequency domain, or It is directly a function on the time domain;
  • the above piecewise function refers to a function in which a non-zero function value is represented by combining a plurality of mathematical expressions in different independent variable intervals. For example, a step function with multiple non-zero platform values.
  • the waveform function expands the time domain length of the function by adding a value of 0.
  • an independent variable interval with a function value of 0 may be added to one side of the independent variable interval, such that the independent variable The total length of the interval becomes (N+1) ⁇ T.
  • the maximum time span between the independent variables corresponding to the non-zero function values of the waveform function may be greater than or equal to 2T1, wherein the maximum time span is two of the independent variable intervals corresponding to the non-zero function values.
  • the time span between the arguments of the endpoint may be greater than or equal to 2T1, wherein the maximum time span is two of the independent variable intervals corresponding to the non-zero function values.
  • the maximum time span may also be greater than or equal to 3T1, and when the maximum time span may also be greater than or equal to 3T1, the out-of-band leakage may be more effectively suppressed.
  • the waveform function may be bilaterally symmetric with the intermediate point of the function independent variable interval, that is, the function values of the left NT1/2 segment and the right NT1/2 segment are bilaterally symmetric, optionally, the specified waveform.
  • the function may be a waveform function agreed in the standard/protocol, or a waveform function configured by the corresponding node for the transmitting node. For example, when the transmitting node is a UE, the base station configures a waveform function for the UE.
  • T1 aT0, where a ranges from [15/14, 2] or [8/7, 2], such that subcarriers are also orthogonal to each other when asynchronous. There will be no interference.
  • the step of modulating the cyclically shifted sequence of consecutive L symbols using the specified waveform function may be implemented by: respectively performing waveform functions corresponding to consecutive L symbols. Variable shifting; the waveform function after shifting the argument and the data sequence of consecutive L symbols after cyclic shift are grouped linearly.
  • the waveform functions corresponding to consecutive L symbols can be the same one.
  • the function can also be a variety of different functions. The above modulation can achieve better suppression of out-of-band leakage and narrow the main lobe width of the subcarriers in the frequency domain, and then the main lobes of adjacent subcarriers do not overlap, eliminating interference of adjacent subcarriers. .
  • each set of data sequence length is G, G is greater than or equal to N;
  • the M group data sequence R(m) is arranged according to a convention rule to obtain a continuous L symbol-modulated data sequence.
  • the above linearity The operation can be equivalent to the filtering process.
  • the discrete function form of g(tD(i)) corresponding to the i-th symbol is obtained by sampling the continuous function form of the waveform function, wherein the sampling interval is consecutive L symbols The time interval between adjacent discrete data in a time domain data sequence.
  • the discrete function value of the waveform function is obtained by sampling the value of the continuous function, and the sampling interval is equal to the interval between adjacent discrete data in the time domain data sequence of each symbol.
  • the time interval that is, the discrete function value of the above-described waveform function refers to a function value corresponding to the argument value at the same time position as the time domain data of each symbol.
  • N ⁇ K discrete data is included in the data sequence of length N ⁇ T, where N ⁇ K is an integer.
  • N ⁇ K is an integer.
  • the time of the first discrete data is 0, the time of the second discrete data is Ts, the third is 2Ts, and the time of the N ⁇ K discrete data is (N ⁇ K-1)Ts.
  • the discrete function value of the waveform function refers to the corresponding function value when the argument is 0, Ts, ..., (N ⁇ K-1)Ts.
  • the waveform function is a discrete function
  • the number of discrete function values of the waveform function and the number of discrete data in the time domain data sequence of length N ⁇ T1 after repeated expansion of the data sequence of each symbol the same.
  • This discrete function can be obtained by sampling a continuous function.
  • the values of the foregoing N and T1 are stipulated by the standard/protocol, or the corresponding node configuration, wherein when there are multiple values of the agreed T1, the corresponding node may also be configured.
  • the sending node is a UE
  • the value of T1 can be configured by the base station and sent to the UE.
  • the consecutive L symbols may be symbols on one subframe or one resource block in the multi-carrier system, but the foregoing L symbols may also be on other resource units. symbol.
  • the cyclic prefix is not added to the time domain data sequence, but cyclic shift is performed, and the time domain of consecutive L symbols is acquired.
  • the CP operation is not performed, which achieves better suppression of out-of-band leakage and narrows the main lobe width of the subcarriers in the frequency domain, and then adjacent subcarriers
  • the main lobe does not overlap, eliminating the interference of adjacent subcarriers, and achieving better compatibility with the LTE system, and improving the flexibility of demodulation performance and symbol interval adjustment by a simple cyclic shift operation.
  • FIG. 3 is a flowchart of a data modulation method of a multi-carrier system according to an alternative embodiment of the present invention, which is applied to a sending node 12. As shown in FIG. 3, the process includes the following steps:
  • Step S302 after performing IFFT on consecutive five symbols, acquiring five time domain data sequences Z1(i), where i is an integer between [1, 5], and the length of the data sequence Z1(i) is 1024;
  • Step S304 cyclically shifting the five time domain data sequences Z1(i) to obtain a time domain data sequence Z2(i), wherein the Z2(i) data sequence length is still 1024;
  • Step S308 the 1024 sets of data sequence S (m) and 1024 sets of waveform function packet data sequence linear operation, the budget results are interpolated according to the agreed rules to obtain a time domain data sequence ZO;
  • Step S310 the time domain data sequence ZO performs DAC operation and radio frequency operation, and transmits the processed data through the antenna.
  • the technical problem that the related technology can not effectively suppress out-of-band leakage and flexibly adjust the symbol interval to adapt to different channel environments and has low demodulation performance is solved, which is better achieved. Suppressing out-of-band leakage and narrowing the main lobe width of the subcarriers in the frequency domain, and then the main lobes of adjacent subcarriers do not overlap, eliminating interference of adjacent subcarriers, and achieving better performance with the LTE system.
  • the flexibility of demodulation performance and symbol interval adjustment is improved by a simple cyclic shift operation
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • FIG. 4 is a flowchart of a data demodulation method of a multi-carrier system according to an embodiment of the present invention, such as As shown in Figure 4, the process includes the following steps:
  • Step S402 receiving modulated data, wherein the modulated data is subjected to a first cyclic shift of data sequences of consecutive L symbols, and the first cyclically shifted data sequence is modulated by using a specified waveform function.
  • the data
  • Step S404 using the specified waveform function, performing waveform function demodulation on the data to obtain a data sequence of consecutive L symbols.
  • the data sequence solves the technical problem that the related technology cannot effectively suppress the out-of-band leakage and flexibly adjust the symbol interval to adapt to different channel environments and has low demodulation performance in the case of compatibility with the LTE system, and achieves better technical problems. Suppressing out-of-band leakage and narrowing the main lobe width of the subcarriers in the frequency domain, and then the main lobes of adjacent subcarriers do not overlap, eliminating interference of adjacent subcarriers, and achieving better performance with the LTE system. At the same time, the flexibility of demodulation performance and symbol interval adjustment is improved by a simple cyclic shift operation.
  • the original data of the modulated data is obtained by performing a second cyclic shift on the data sequences of consecutive L symbols; and acquiring the modulated data according to the data sequence after the second cyclic shift
  • the original data of the data in the present embodiment, the original data is data before the modulation of the received data.
  • the difference of the cyclic shift amounts of adjacent symbols in consecutive L symbols is determined according to the value of T1, where T1 is the symbol interval of the modulated consecutive L symbols.
  • the cyclic shift amount of the second cyclic shift is opposite to the cyclic shift amount of the first cyclic shift and the modulus value is the same, but is not limited thereto, and the loop of the second cyclic shift
  • the shift amount may be the same as the direction of the cyclic shift amount of the first cyclic shift and/or the modulus value is different.
  • the data may be subjected to FFT, channel equalization and detection after the second cyclic shift.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • a data modulating device for a multi-carrier system is also provided in this embodiment, and the device is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a cyclic shift module 52 configured to cyclically shift data sequences of consecutive L symbols Bit, L ⁇ 2; modulation module 54, configured to modulate the cyclically shifted data sequence using a specified waveform function, wherein the length of the argument interval of the waveform function is greater than or equal to the symbol interval of the modulated L symbols.
  • the data sequence of the consecutive L symbols is a time domain data sequence after performing fast inverse Fourier transform IFFT on the frequency domain data of consecutive L symbols.
  • the independent variable interval length of the waveform function is N ⁇ T1, where N is a real number greater than or equal to 1, and T1 is a symbol interval of the modulated consecutive L symbols.
  • the cyclic shifting module 52 is further configured to determine a difference value of cyclic shift amounts of adjacent symbols among consecutive L symbols according to the value of T1.
  • the cyclic shift amount of the adjacent symbols satisfies one of the following formulas:
  • T0 mod(T1, T0);
  • Y(1), Y(2) )...Y(L) is the cyclic shift amount and is a real number, i is an integer between [1, L-1]; T0 is the reciprocal of the adjacent subcarrier spacing of the frequency domain data before the IFFT is performed.
  • the modulation module 54 is further configured to perform an independent variable shift on a waveform function corresponding to consecutive L symbols; a waveform function after shifting the independent variable and consecutive L symbols after the cyclic shift
  • the data sequence is grouped linearly.
  • the modulation module 54 is further configured to The waveform function corresponding to consecutive L symbols is subjected to independent variable shift: g(tD(i)), where g(t) is a waveform function, and D(i) is an independent variable shift of the waveform function corresponding to the ith symbol
  • g(tD(i) a waveform function
  • D(i) an independent variable shift of the waveform function corresponding to the ith symbol
  • the quantity, D(i+1) - D(i) T1
  • i is an integer between [1, L].
  • M the M group data sequence R(m) is arranged according to a convention, and a data sequence of L consecutive symbols is obtained, wherein M is T0 time
  • T0 the reciprocal of the adjacent subcarrier spacing of the frequency domain data before the IFFT is performed.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the data demodulation device of the multi-carrier system is also provided in the embodiment, and the device is used to implement the above-mentioned embodiments and preferred embodiments, and the description thereof has been omitted.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: a receiving module 62 configured to receive modulated data, wherein the modulated data is Performing a first cyclic shift on the data sequences of consecutive L symbols and modulating the first cyclically shifted data sequence using the specified waveform function; the demodulation module 64 is configured to use the specified waveform function, A waveform function is demodulated on the data to obtain a data sequence of consecutive L symbols.
  • FIG. 7 is a structural block diagram (1) of a data demodulating apparatus of a multi-carrier system according to an alternative embodiment of the present invention.
  • the apparatus includes the same as shown in FIG.
  • the apparatus further includes: a cyclic shifting module 72 configured to perform a second cyclic shift on the data sequences of the consecutive L symbols; and an obtaining module 74 configured to obtain the data sequence according to the second cyclic shift Raw data of the modulated data.
  • the cyclic shifting module 72 is further configured to determine a difference of cyclic shift amounts of adjacent symbols among consecutive L symbols according to the value of T1, where T1 is a continuous L after modulation. Symbolic spacing of symbols.
  • FIG. 8 is a structural block diagram (2) of a data demodulating apparatus of a multi-carrier system according to an alternative embodiment of the present invention.
  • the apparatus includes the same as shown in FIG.
  • the apparatus further includes a processing module 82 coupled to the cyclic shifting module 72 and the acquisition module 74 for FFT, channel equalization and detection of the data.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device Execution, and in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of The integrated circuit module is implemented. Thus, the invention is not limited to any specific combination of hardware and software.
  • a multi-carrier system is also provided in this embodiment, and the system is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the multi-carrier system includes: a transmitting node 12 and a receiving node 14, wherein the transmitting node 12 is configured to cyclically shift a data sequence of consecutive L symbols, L ⁇ 2; after cyclic shifting using a specified waveform function
  • the data sequence is modulated, wherein the length of the argument interval of the waveform function is greater than or equal to the symbol interval of the modulated L symbols; the receiving node 14 is configured to receive the modulated data, wherein the modulated data is continuous
  • the data sequence of the L symbols is respectively subjected to the first cyclic shift and the data obtained by modulating the first cyclically shifted data sequence using the specified waveform function; the waveform function is demodulated using the specified waveform function to obtain a data sequence of consecutive L symbols; performing a second cyclic shift on the data sequences of consecutive L symbols, and acquiring original data of the modulated data according to the data sequence after the second cyclic shift
  • Embodiments of the present invention also provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps: S1, cyclically shifting data sequences of consecutive L symbols, L ⁇ 2; S2, using The specified waveform function modulates the cyclically shifted data sequence, wherein the length of the argument interval of the waveform function is greater than or equal to the symbol interval of the modulated L symbols.
  • the storage medium is further arranged to store program code for performing the step of determining a difference value of a cyclic shift amount of adjacent symbols among consecutive L symbols according to the value of T1.
  • the storage medium is further arranged to store program code for performing the following steps: the amount of cyclic shift of adjacent symbols satisfies one of the following formulas:
  • T0 mod(T1, T0);
  • Y(1), Y(2) )...Y(L) is the cyclic shift amount and is a real number, i is an integer between [1, L-1]; T0 is the reciprocal of the adjacent subcarrier spacing of the frequency domain data before the IFFT is performed.
  • the storage medium is further configured to store program code for performing the following steps: S1, performing independent variable shifting on waveform functions corresponding to consecutive L symbols; S2, and waveform function after shifting the independent variable
  • S1 performing independent variable shifting on waveform functions corresponding to consecutive L symbols
  • S2 performing independent variable shifting on waveform functions corresponding to consecutive L symbols
  • S2 performing independent variable shifting on waveform functions corresponding to consecutive L symbols
  • the storage medium is further arranged to store program code for performing the following steps: obtaining a discrete function form of g(tD(i)) corresponding to the i-th symbol by sampling a continuous function form of the waveform function, wherein The sampling interval is the time interval between adjacent discrete data in a time domain data sequence of consecutive L symbols.
  • Embodiments of the present invention also provide another storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps: S1, receiving modulated data, wherein the modulated data is a data sequence for consecutive L symbols. Performing the first cyclic shift separately and using the specified waveform function to modulate the data obtained by shifting the first cyclically shifted data sequence; S2, using the specified waveform function, performing waveform function demodulation on the data to obtain consecutive L symbols The sequence of data.
  • the storage medium is further configured to store program code for performing the following steps: S1, respectively performing a second cyclic shift on the data sequence of consecutive L symbols; S2, the data sequence according to the second cyclic shift Get the raw data of the modulated data.
  • the storage medium is further arranged to store program code for performing the following steps: fast Fourier transform FFT, channel equalization and detection of the data.
  • the foregoing storage medium may include, but is not limited to, a USB flash drive, a Read-Only Memory (ROM), and a Random Access Memory (RAM).
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device so that they may be stored in the storage device by the computing device Execution, and in some cases, the steps shown or described may be performed in an order different than that herein, or they may be separately fabricated into individual integrated circuit modules, or a plurality of The integrated circuit module is implemented. Thus, the invention is not limited to any specific combination of hardware and software.
  • the cyclically shifted data sequence is modulated by using a specified waveform function, wherein the length of the independent variable interval of the waveform function
  • a symbol interval greater than or equal to the L symbols after modulation solves the problem that the related technology cannot effectively suppress out-of-band leakage and flexibly adjust the symbol interval to adapt to different channel environments and demodulation performance when compatible with the LTE system.
  • the low technical problem achieves better suppression of out-of-band leakage and narrows the main lobe width of the subcarriers in the frequency domain, and then the main lobe of adjacent subcarriers does not overlap, eliminating interference of adjacent subcarriers.
  • the effect of demodulation performance and flexibility of symbol interval adjustment is improved by a simple cyclic shift operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)

Abstract

本发明提供了一种多载波系统及多载波系统的数据调制、解调方法及装置,其中该方法包括:对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔。通过上述技术方案,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏,且在与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。

Description

多载波系统及多载波系统的数据调制、解调方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种多载波系统及多载波系统的数据调制、解调方法及装置。
背景技术
长期演进技术(Long Term Evolution,简称为LTE)是4G的无线蜂窝通信技术。LTE采用正交频分复用(Orthogonal Frequency Division Multiplexing,简称为OFDM)技术,子载波和OFDM符号构成的时频资源组成LTE系统的无线物理时频资源。目前OFDM技术在无线通信中已经被广泛地应用。由于采用了循环前缀(Cyclic Prefix,简称为CP),CP-OFDM系统能很好的解决多径时延问题,并且将频率选择性信道分成了一套平行的平坦信道,大大地简化了信道估计方法并有较高的信道估计精度。但是,由于CP-OFDM系统的频谱泄漏比较大,对相邻子带间的频偏和时偏比较敏感,继而引起子带间的干扰。
目前,抑制带外泄漏成为5G技术研究的一个重要方向。相关技术提出了多种新型多载波方案,具体包括:滤波器组多载波(Filter Bank Multicarrier,简称为FBMC)、通用频分复用(Generalized Frequency Division Multiplexing,简称为GFDM)、通用滤波多载波(Universal Filtered Multicarrier,简称为UFMC)和滤波的正交频分复用(Filtered OFDM,简称为F-OFDM)等技术方案,其中,FBMC可以很好地抑制带外泄漏,但是其与LTE技术并不兼容、且还存在信道估计问题以及与多输入多输出(Multiple Input Multiple Output,简称为MIMO)技术相结合的问题等;GFDM抑制带外泄漏效果并不理想,而且处理复杂度较高,不能灵活调整符号间隔;UFMC和F-OFDM抑制带外泄漏的效果也同样不理想,而且,在保持带外泄漏不变的情况下,无法通过调整符号间隔来提高性能。
因此,对于相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种多载波系统及多载波系统的数据调制、解调方法及装置方法及装置,以至少解决相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的问题。
根据本发明的一个实施例,提供了一种多载波系统的数据调制方法,包括:对所述连续L个符号的时域数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的所述时域数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔。
可选地,所述连续L个符号的所述数据序列为所述连续L个符号的频域数据分别进行快速傅立叶反变换IFFT(Inverse Fast Fourier Transform,简写为IFFT)后的时域数据序列。
可选地,所述波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的所述连续L个符号的符号间隔。
可选地,所述方法还包括:根据所述T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值。
可选地,所述相邻符号的循环移位量满足以下公式之一:
mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为所述循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
可选地,所述调制包括滤波器组(Filter Bank,简称为FB)调制。
可选地,所述波形函数包括以下之一:根升余弦函数,升余弦函数,分段函数和矩形函数。
可选地,所述波形函数非零函数值对应的自变量之间的最大时间跨度大于或等于2T1,其中,所述最大时间跨度为所述自变量区间中对应于所述非零函数值的两个端点的自变量之间的时间跨度。
可选地,所述最大时间跨度大于或等于3T1。
可选地,T1=aT0,其中,a取值范围为[15/14,2]或[8/7,2]。
可选地,所述使用指定的波形函数对所述循环移位后的所述连续L个符号的所述数据序列进行调制,包括:对所述连续L个符号对应的所述波形函数分别进行自变量移位;将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算。
可选地,通过以下方式对所述连续L个符号对应的所述波形函数进行自变量移位:g(t-D(i)),其中,g(t)为所述波形函数,D(i)为第i个符号对应的所述波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
可选地,将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算,包括:对所述循环移位后的所述连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对所述第i个符号对应的g(t-D(i))的离散函数形式进行所述M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;将所述S(m)与L个所述Yi(m)进行线性运算,生成数据序列R(m),即
Figure PCTCN2017093227-appb-000001
其中,m=1,2,......,M;将M组 数据序列R(m)按照约定规则排列,得到所述连续L个符号调制后的数据序列,其中,所述M为T0时间内时域数据序列的个数,所述T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
可选地,通过对所述波形函数的连续函数形式进行采样得到所述第i个符号对应的g(t-D(i))的离散函数形式,其中,采样的间隔为所述连续L个符号的时域数据序列中相邻离散数据间的时间间隔。
可选地,所述连续L个符号为所述多载波系统中一个子帧上或一个资源块上的符号。
根据本发明的另一个实施例,提供了一种多载波系统的数据解调方法,包括:接收调制后的数据,其中,所述调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
可选地,所述方法还包括:对所述连续L个符号的数据序列分别进行第二循环移位;依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
可选地,所述方法还包括:根据T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值,其中,所述T1为调制后的所述连续L个符号的符号间隔。
可选地,所述第二循环移位的循环移位量与所述第一循环移位的循环移位量方向相反且模值相同。
可选地,对所述连续L个符号的时域数据序列分别进行第二循环移位之后,所述方法还包括:对所述数据进行快速傅立叶变换(Fast Fourier Transform,简写为FFT),信道均衡和检测。
根据本发明的另一个实施例,提供了一种多载波系统的数据调制装置,包括:循环移位模块,设置为对连续L个符号的数据序列分别进行循环移 位,L≥2;调制模块,设置为使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔。
可选地,所述连续L个符号的所述数据序列为所述连续L个符号的频域数据分别进行快速傅立叶反变换IFFT后的时域数据序列。
可选地,所述波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的所述连续L个符号的符号间隔。
可选地,所述循环移位模块还设置为根据所述T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值。
可选地,所述相邻符号的循环移位量满足以下公式之一:
mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为所述循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
可选地,所述调制模块还设置为对所述连续L个符号对应的所述波形函数进行自变量移位;将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算。
可选地,所述调制模块还设置为通过以下方式对所述连续L个符号对应的所述波形函数进行自变量移位:g(t-D(i)),其中,g(t)为所述波形函数,D(i)为第i个符号对应的所述波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
可选地,所述调制模块还设置为对所述循环移位后的所述连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对所述第i个符号对应的g(t-D(i))的离散函数形式进行所述M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或 等于N;将所述S(m)与L个所述Yi(m)进行线性运算,生成数据序列R(m),即
Figure PCTCN2017093227-appb-000002
其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到所述连续L个符号调制后的数据序列,其中,所述M为T0时间内时域数据序列的个数,所述T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
根据本发明的另一个实施例,提供了一种多载波系统的数据解调装置,包括:接收模块,设置为接收调制后的数据,其中,所述调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;解调模块,设置为使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
可选地,所述装置还包括:循环移位模块,设置为对所述连续L个符号的数据序列分别进行第二循环移位;获取模块,设置为依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
可选地,所述循环移位模块还设置为根据T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值,其中,所述T1为调制后的所述连续L个符号的符号间隔。
可选地,所述装置还包括:处理模块,设置为对所述数据进行FFT,信道均衡和检测。
根据本发明的另一个实施例,提供了一种多载波系统,包括:发送节点和接收节点,其中,所述发送节点,设置为对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔;所述接收节点,设置为接收调制后的数据, 其中,所述调制后的数据为对所述连续L个符号的所述数据序列分别进行第一循环移位并使用所述指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列;对所述连续L个符号的数据序列分别进行第二循环移位,以及依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
根据本发明的另一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:根据所述T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:所述相邻符号的循环移位量满足以下公式之一:
mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为所述循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:对所述连续L个符号对应的所述波形函数分别进行自变量移位;将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的数据序列进行分组线性运算。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:通过以下方式对所述连续L个符号对应的所述波形函数进行自变量移位:g(t-D(i)),其中,g(t)为所述波形函数,D(i)为第i个符号对应的所述波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:对所述循环移位后的所述连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对所述第i个符号对应的g(t-D(i))的离散函数形式进行所述M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;将所述S(m)与L个所述Yi(m)进行线性运算,生成数据序列R(m),即
Figure PCTCN2017093227-appb-000003
其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到所述连续L个符号调制后的数据序列,其中,所述M为T0时间内时域数据序列的个数,所述T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
根据本发明的另一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:接收调制后的数据,其中,所述调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:对所述连续L个符号的数据序列分别进行第二循环移位;依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
可选地,存储介质还设置为存储用于执行以下步骤的程序代码:对所述数据进行快速傅立叶变换FFT,信道均衡和检测。
通过本发明实施例,由于对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的网络构架图;
图2是根据本发明实施例的多载波系统的数据调制方法的流程图;
图3是根据本发明可选实施例的多载波系统的数据调制方法的流程图;
图4是根据本发明实施例的多载波系统的数据解调方法的流程图;
图5是根据本发明实施例的多载波系统的数据调制装置的结构框图;
图6是根据本发明实施例的多载波系统的数据解调装置的结构框图;
图7是根据本发明可选实施例的多载波系统的数据解调装置的结构框图(一);
图8是根据本发明可选实施例的多载波系统的数据解调装置的结构框图(二)。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
图1是根据本发明实施例的网络构架图,本申请实施例可以运行于图1所示的网络架构上,如图1所示,该网络架构包括:发送节点12和接收节点14,其中,发送节点12将循环移位并调制后的数据发送到接收节点14中,接收节点14对上述数据进行解调并再次循环移位并依据循环移位后的数据序列获取原数据,其中,上述发送节点12和接收节点14可以为基站、终端或者中继等设备。
在本实施例中提供了一种运行于图1所示的网络架构的多载波系统的数据调制方法,图2是根据本发明实施例的多载波系统的数据调制方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,对连续L个符号的数据序列分别进行循环移位,L≥2;
步骤S204,使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔。
通过上述步骤,采用对连续L个符号的数据序列分别进行循环移位,L≥2,并使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而 相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。
可选地,上述步骤的执行主体可以为基站、终端、中继和发射点(transmitting point)等,但不限于此。
在一个可选的实施例中,连续L个符号的数据序列为连续L个符号的频域数据分别进行快速傅立叶反变换IFFT后的时域数据序列,在本实施例中,采用IFFT可以有效地将频域数据转换为时域数据序列,但是本发明并不限于此。
可选地,T0为在执行IFFT之前频域数据的相邻子载波间隔的倒数,例如,当频域数据的相邻子载波间隔为F的情况下
Figure PCTCN2017093227-appb-000004
当LTE的带宽系统为10MHz时,连续L个符号分别进行IFFT之后,可以得到L个时域数据序列Z1(i),i为[1,L]之间的整数,Z1(i)是以T0为周期的无限长数据序列,则有T0=1024x Ts,其中,M为T0时间内时域数据序列的个数,具体为M=1024,Ts为相邻数据间的时间间隔。此外,为了简化,LTE可以设定每个符号IFFT处理后的时域数据序列长度为T0。
可选地,当设定每个符号IFFT处理后的时域数据序列长度为T0,则对T0内的数据循环移位;当设定每个符号IFFT处理后的时域数据序列是以T0为周期的无限长数据序列,则直接进行数据移位与对每个周期T0内进行循环移位是等效的。本发明实施例采用对T0内的数据循环移位,但是并不限于此。
在一个可选的实施例中,波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的连续L个符号的符号间隔,在本实施例中,可选地,上述N为常量或者变量,当为常量时,波形函数的 自变量区间与调制后的L个符号的符号间隔成正比,但是无论N是常量还是变量,波形函数的自变量区间长度均是大于或等于调制后的L个符号的符号间隔,因此,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰。
在一个可选的实施例中,根据T1的取值确定连续L个符号中相邻符号的循环移位量的差值,在本实施例中,移位量可以使用时间来表示,即,移位量等于移位数据个数与Ts的乘积。IFFT之后的时域数据序列Z1(i)经过循环移位后得到数据序列Z2(i)。
在一个可选的实施例中,上述相邻符号的循环移位量满足以下公式之一:mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为循环移位量且为实数,i为[1,L-1]之间的整数。在本实施例中,循环移位采用向右循环移位,但是并不限于此,也可以采用向左循环移位或者两者结合的方式。在LTE系统中,1ms子帧内有14个符号,因此平均符号间隔为1/14ms。本发明通过不同的循环移位量操作,实现了符号间隔的灵活变化。当T1=T0时,则循环移位量为0,即等效于不需要进行循环移位操作;当T1>T0时,则符号间隔大于上述相邻子载波间隔的倒数;当T1<T0时,则符号间隔小于上述相邻子载波间隔的倒数。当信道条件较差时,可以增大符号间隔T1,从而更好地实现时频域数据间的正交性,提高解调性能;当信道条件比较好时,可以减小符号间隔T1,甚至减小到小于T0,以实现超奈奎斯特传输。因此,通过不同的循环移位量操作,实现灵活地适应不同的信道环境的变化。
可选地,循环移位量也可以采用离散数据个数来表示,因此在本实施例中Ts为时域数据序列中相邻离散数据间的时间间隔,在时间T0内包含的离散数据个数为K0,则有,K0×Ts=T0;在时间T1内包含的离散数据个数为K1,则有,K1×Ts=T1。则相邻符号的循环移位量满足以下公式之 一:mod((mod(Y(i+1),K0)-mod(Y(i),K0)+K0),K0)=mod(K1,K0);(上述循环移位为向右循环移位);
K0-mod((mod(Y(i+1),K0)-mod(Y(i),K0)+K0),K0)=mod(K1,K0)(上述循环移位为向左循环移位);其中,Y(1)、Y(2)...Y(L)为整数;i为[1,L-1]之间的整数
需要说明的是,当每个符号IFFT处理后的时域数据序列按照列矢量进行排列时,并且数据序列是从上往下排列时,上述向右循环移位就等价于这里的向下循环移位,同理,上述的向左循环移位就等价于这里的向上循环移位。
在一个可选的实施例中,上述调制包括滤波器组FB调制。本实施例中,上述FB调制可以称为多相滤波调制,可以对于多个滤波并行处理,且FB调制的参数可以根据指定的波形函数确定。采用FB调制能够实现有效和准确地对多个滤波进行并行调制。
在一个可选的实施例中,上述波形函数包括以下之一:根升余弦函数,升余弦函数,分段函数和矩形函数,在本实施例中,上述升余弦函数可以是频域上的升余弦函数通过FFT得到的时域上的函数,也可以直接就是时域上的升余弦函数;上述根升余弦函数也可以是频域上的升余弦函数通过FFT得到的时域上的函数,或者直接就是时域上函数;上述分段函数指非零函数值使用多个数学表达式在不同的自变量区间进行组合来表示的函数。例如,具有多个非零平台值的阶梯函数。通过采用上述函数作为波形函数能够保证符号间没有干扰,彼此正交。
可选地,上述波形函数通过增加0值来扩展函数的时域长度,比如对于N×T长度的波形函数,可以在自变量区间的一边增加函数值为0的一段自变量区间,使得自变量区间总长度变为(N+1)×T。
在一个可选的实施例中,波形函数非零函数值对应的自变量之间的最大时间跨度可以大于或等于2T1,其中,最大时间跨度为自变量区间中对应于非零函数值的两个端点的自变量之间的时间跨度。
在一个可选的实施例中,上述最大时间跨度也可以大于或等于3T1,当最大时间跨度也可以大于或等于3T1时,可以更加有效地抑制带外泄漏。在本实施例中,上述波形函数可以以函数自变量区间的中间点为轴左右对称,即左边NT1/2段和右边NT1/2段的函数值是左右对称的,可选地,指定的波形函数可以是在标准/协议中约定的波形函数,或者由相应节点为该发送节点配置的波形函数,例如,发送节点为UE时,由基站为该UE配置波形函数。
在一个可选的实施例中,T1=aT0,其中,a取值范围为[15/14,2]或[8/7,2],这样可以使得子载波之间在异步时也是相互正交的,不会产生干扰。
在一个可选的实施例中,上述使用指定的波形函数对循环移位后的连续L个符号的数据序列进行调制的步骤可以通过如下方式实现:对连续L个符号对应的波形函数分别进行自变量移位;将自变量移位后的波形函数与循环移位后的连续L个符号的数据序列进行分组线性运算,在本实施例中,连续L个符号对应的波形函数可以为相同的一种函数,也可以为不同的多种函数。通过上述调制的方式可以实现较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰。
在一个可选的实施例中,通过以下方式对连续L个符号对应的波形函数进行自变量移位:g(t-D(i)),其中,g(t)为波形函数,D(i)为第i个符号对应的波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
在一个可选的实施例中,上述将自变量移位后的波形函数与循环移位后的连续L个符号的数据序列进行分组线性运算步骤可以通过如下方式实现:对循环移位后的连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对第i个符号对应的g(t-D(i))的离散函数形式进行M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;将S(m)与L个Yi(m)进行线性运算,生 成数据序列R(m),即
Figure PCTCN2017093227-appb-000005
其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到连续L个符号调制后的数据序列,在本实施例中,上述线性运算可以等效于滤波处理。当T1=T0时,上述线性运算等效于非时变滤波处理,或等效于非时变响应函数的卷积运算;当T1≠T0时,上述线性运算等效于时变滤波处理,或等效于时变响应函数的卷积运算。因此M组线性运算可以等效于滤波器组处理。
在一个可选的实施例中,通过对上述波形函数的连续函数形式进行采样得到第i个符号对应的g(t-D(i))的离散函数形式,其中,采样的间隔为连续L个符号的时域数据序列中相邻离散数据间的时间间隔。
在本实施例中,当波形函数为连续函数时,上述波形函数的离散函数值通过对该连续函数的值进行采样得到,采样的间隔等于每一符号的时域数据序列中相邻离散数据间的时间间隔,即,上述波形函数的离散函数值是指与每个符号的时域数据所在时刻位置相同的自变量值对应的函数值。每一符号的数据序列经过重复扩展后,变为长度为N×T1的数据序列,该数据序列中相邻离散数据间的时间间隔为Ts,在时间T内包含的离散数据个数为K,则有,K×Ts=T,N×K×Ts=N×T。因此在长度为N×T的数据序列里包含有N×K个离散数据,其中N×K为整数。当第1个离散数据所在时刻为0时,第2个离散数据所在时刻则为Ts,第3个为2Ts,第N×K个离散数据所在时刻为(N×K-1)Ts。由于上述波形函数的自变量区间长度也为N×T,因此该波形函数的离散函数值就是指自变量为0,Ts,...,(N×K-1)Ts时对应的函数值。
可选地,当上述波形函数为离散函数时,该波形函数的离散函数值的个数与每一符号的数据序列经过重复扩展后长度为N×T1的时域数据序列中离散数据的个数相同。该离散函数可以通过对连续函数采样得到。
在本实施例中,上述N和T1的取值是可以由标准/协议约定的,或相应的节点配置得到,其中,当约定的T1的取值有多个时也可以由相应的节点配置得到,如,发送节点为UE时可以由基站配置T1的值并下发给UE。
在一个可选的实施例中,上述连续L个符号可以为多载波系统中一个子帧上或一个资源块上的符号,但并不限于此,上述L个符号也可以是其他资源单位上的符号。
在本发明中实施例中,在获取连续L个符号的时域数据序列后并没有对该时域数据序列加循环前缀,而是进行了循环移位,并且在获取连续L个符号的时域数据序列之后,调制之前,可以增加其他处理的过程但不进行加CP的操作,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。
在一个可选的实施例中,图3是根据本发明可选实施例的多载波系统的数据调制方法的流程图,应用于发送节点12,如图3所示,该流程包括如下步骤:
步骤S302,对于连续5个符号分别进行IFFT之后,获取5个时域数据序列Z1(i),其中,i为[1,5]之间的整数,数据序列Z1(i)的长度为1024;
步骤S304,对该5个时域数据序列Z1(i)分别进行循环移位,得到时域数据序列Z2(i),其中Z2(i)数据序列长度仍为1024;
步骤S306,对5个时域数据序列Z2(i)分别进行1024倍的抽样分组,得到1024组数据序列S(m),m=1,2,......,1024,其中,每组数据序列的长度为5;
步骤S308,将上述1024组数据序列S(m)与1024组波形函数的分组数据序列进行线性运算,将预算结果按照约定规则进行插值排列得到时域数据序列ZO;
步骤S310,时域数据序列ZO进行DAC操作及射频操作,通过天线发送处理后的数据。
通过上述步骤,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中提供了一种运行于图1所示的网络架构的多载波系统的数据解调方法,图4是根据本发明实施例的多载波系统的数据解调方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,接收调制后的数据,其中,调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对第一循环移位后的数据序列进行调制得到的数据;
步骤S404,使用指定的波形函数,对数据进行波形函数解调,获得连续L个符号的数据序列。
通过上述步骤,实现了对于调制后的数据的解调,获得连续L个符号 的数据序列,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。
在一个可选的实施例中,通过以下方式获取调制后的数据的原始数据:对连续L个符号的数据序列分别进行第二循环移位;依据第二循环移位后的数据序列获取调制后的数据的原始数据,在本实施例中,上述原始数据为对上述接收的数据进行调制之前的数据。
在一个可选的实施例中,根据T1的取值确定连续L个符号中相邻符号的循环移位量的差值,其中,T1为调制后的连续L个符号的符号间隔。
在一个可选的实施例中,第二循环移位的循环移位量与第一循环移位的循环移位量方向相反且模值相同,但是并不限于此,第二循环移位的循环移位量可以与第一循环移位的循环移位量方向相同和/或模值不同。
在一个可选的实施例中,在进行第二循环移位后可以对数据进行FFT,信道均衡和检测。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种多载波系统的数据调制装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本发明实施例的多载波系统的数据调制装置的结构框图,如图5所示,该装置包括:循环移位模块52,设置为对连续L个符号的数据序列分别进行循环移位,L≥2;调制模块54,设置为使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔。
在一个可选的实施例中,上述连续L个符号的数据序列为连续L个符号的频域数据分别进行快速傅立叶反变换IFFT后的时域数据序列。
在一个可选的实施例中,上述波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的连续L个符号的符号间隔。
在一个可选的实施例中,上述循环移位模块52还设置为根据T1的取值确定连续L个符号中相邻符号的循环移位量的差值。
在一个可选的实施例中,上述相邻符号的循环移位量满足以下公式之一:
mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行IFFT之前频域数据的相邻子载波间隔的倒数。
在一个可选的实施例中,上述调制模块54还设置为对连续L个符号对应的波形函数进行自变量移位;将自变量移位后的波形函数与循环移位后的连续L个符号的数据序列进行分组线性运算。
在一个可选的实施例中,上述调制模块54还设置为通过以下方式对 连续L个符号对应的波形函数进行自变量移位:g(t-D(i)),其中,g(t)为波形函数,D(i)为第i个符号对应的波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
在一个可选的实施例中,上述调制模块54还设置为对循环移位后的连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对第i个符号对应的g(t-D(i))的离散函数形式进行M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;将S(m)与L个Yi(m)进行线性运算,生成数据序列R(m),即
Figure PCTCN2017093227-appb-000006
其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到连续L个符号调制后的数据序列,其中,M为T0时间内时域数据序列的个数,T0为在执行IFFT之前频域数据的相邻子载波间隔的倒数。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
实施例4
在本实施例中还提供了一种多载波系统的数据解调装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的多载波系统的数据解调装置的结构框图,如图6所示,该装置包括:接收模块62,设置为接收调制后的数据,其中,调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对第一循环移位后的数据序列进行调制得到的数据;解调模块64,设置为使用指定的波形函数,对数据进行波形函数解调,获得连续L个符号的数据序列。
在一个可选的实施例中,图7是根据本发明可选实施例的多载波系统的数据解调装置的结构框图(一),如图7所示,该装置除包括图6所示的所有模块外,该装置还包括:循环移位模块72,设置为对连续L个符号的数据序列分别进行第二循环移位;获取模块74,设置为依据第二循环移位后的数据序列获取调制后的数据的原始数据。
在一个可选的实施例中,循环移位模块72还设置为根据T1的取值确定连续L个符号中相邻符号的循环移位量的差值,其中,T1为调制后的连续L个符号的符号间隔。
在一个可选的实施例中,图8是根据本发明可选实施例的多载波系统的数据解调装置的结构框图(二),如图8所示,该装置除包括图7所示的所有模块外,该装置还包括:处理模块82,与循环移位模块72和获取模块74相连接,设置为对数据进行FFT,信道均衡和检测。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来 执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
实施例5
在本实施例中还提供了一种多载波系统,该系统用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
多载波系统包括:发送节点12和接收节点14,其中,上述发送节点12,设置为对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔;上述接收节点14,用于接收调制后的数据,其中,调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对第一循环移位后的数据序列进行调制得到的数据;使用指定的波形函数,对数据进行波形函数解调,获得连续L个符号的数据序列;对连续L个符号的数据序列分别进行第二循环移位,以及依据第二循环移位后的数据序列获取调制后的数据的原始数据
实施例6
本发明的实施例还提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:S1,对连续L个符号的数据序列分别进行循环移位,L≥2;S2,使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:根据T1的取值确定连续L个符号中相邻符号的循环移位量的差值。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:相邻符号的循环移位量满足以下公式之一:
mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行IFFT之前频域数据的相邻子载波间隔的倒数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S1,对连续L个符号对应的波形函数分别进行自变量移位;S2,将自变量移位后的波形函数与循环移位后的连续L个符号的数据序列进行分组线性运。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:通过以下方式对连续L个符号对应的波形函数进行自变量移位:g(t-D(i)),其中,g(t)为波形函数,D(i)为第i个符号对应的波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S1,对循环移位后的连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;S2,对第i个符号对应的g(t-D(i))的离散函数形式进行M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;S3,将S(m)与L个Yi(m)进行线性运算,生成数据序列R(m),即
Figure PCTCN2017093227-appb-000007
其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到连续L个符号调制后的数据序列, 其中,M为T0时间内时域数据序列的个数,T0为在执行IFFT之前频域数据的相邻子载波间隔的倒数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:通过对波形函数的连续函数形式进行采样得到第i个符号对应的g(t-D(i))的离散函数形式,其中,采样的间隔为连续L个符号的时域数据序列中相邻离散数据间的时间间隔。
本发明的实施例还提供了另一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:S1,接收调制后的数据,其中,调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对第一循环移位后的数据序列进行调制得到的数据;S2,使用指定的波形函数,对数据进行波形函数解调,获得连续L个符号的数据序列。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S1,对连续L个符号的数据序列分别进行第二循环移位;S2,依据第二循环移位后的数据序列获取调制后的数据的原始数据。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:对数据进行快速傅立叶变换FFT,信道均衡和检测。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来 执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明实施例,由于对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的数据序列进行调制,其中,波形函数的自变量区间长度大于或等于调制后的L个符号的符号间隔,解决了相关技术无法在与LTE系统兼容的情况下,实现有效抑制带外泄漏且灵活地调整符号间隔以适应不同的信道环境且解调性能较低的技术问题,实现了较好地抑制带外泄漏且使得子载波在频域上的主瓣宽度变窄,继而相邻子载波的主瓣不会出现重叠,消除了相邻子载波的干扰,在实现与LTE系统较好地兼容的同时,通过简单的循环移位操作,提高了解调性能和符号间隔调整的灵活性的效果。

Claims (35)

  1. 一种多载波系统的数据调制方法,包括:
    对连续L个符号的数据序列分别进行循环移位,L≥2;
    使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔。
  2. 根据权利要求1所述的方法,其中,所述连续L个符号的所述数据序列为所述连续L个符号的频域数据分别进行快速傅立叶反变换IFFT后的时域数据序列。
  3. 根据权利要求2所述的方法,其中,所述波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的所述连续L个符号的符号间隔。
  4. 根据权利要求3所述的方法,其中,所述方法还包括:根据所述T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值。
  5. 根据权利要求4所述的方法,其中,所述相邻符号的循环移位量满足以下公式之一:
    mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
    T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为所述循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
  6. 根据权利要求1所述的方法,其中,所述调制包括滤波器组调制。
  7. 根据权利要求1所述的方法,其中,所述波形函数包括以下之一:根升余弦函数,升余弦函数,分段函数和矩形函数。
  8. 根据权利要求3所述的方法,其中,所述波形函数非零函数值对应的自变量之间的最大时间跨度大于或等于2T1,其中,所述最大时间跨度为所述自变量区间中对应于所述非零函数值的两个端点的自变量之间的时间跨度。
  9. 根据权利要求8所述的方法,其中,所述最大时间跨度大于或等于3T1。
  10. 根据权利要求5所述的方法,其中,T1=aT0,其中,a取值范围为[15/14,2]或[8/7,2]。
  11. 根据权利要求2所述的方法,其中,所述使用指定的波形函数对所述循环移位后的所述连续L个符号的所述数据序列进行调制,包括:
    对所述连续L个符号对应的所述波形函数分别进行自变量移位;
    将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算。
  12. 根据权利要求11所述的方法,其中,通过以下方式对所述连续L个符号对应的所述波形函数进行自变量移位:g(t-D(i)),其中,g(t)为所述波形函数,D(i)为第i个符号对应的所述波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
  13. 根据权利要求12所述的方法,其中,将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算,包括:
    对所述循环移位后的所述连续L个符号的离散数据序列进行M倍的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;
    对所述第i个符号对应的g(t-D(i))的离散函数形式进行所述M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;
    将所述S(m)与L个所述Yi(m)进行线性运算,生成数据序列R(m),即
    Figure PCTCN2017093227-appb-100001
    其中,m=1,2,......,M;
    将M组数据序列R(m)按照约定规则排列,得到所述连续L个符号调制后的数据序列,其中,所述M为T0时间内时域数据序列的个数,所述T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
  14. 根据权利要求12或13所述的方法,其中,通过对所述波形函数的连续函数形式进行采样得到所述第i个符号对应的g(t-D(i))的离散函数形式,其中,采样的间隔为所述连续L个符号的时域数据序列中相邻离散数据间的时间间隔。
  15. 根据权利要求1至13中任一项所述的方法,其中,所述连续L个符号为所述多载波系统中一个子帧上或一个资源块上的符号。
  16. 一种多载波系统的数据解调方法,包括:
    接收调制后的数据,其中,所述调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;
    使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
  17. 根据权利要求16所述的方法,其中,所述方法还包括:
    对所述连续L个符号的数据序列分别进行第二循环移位;
    依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
  18. 根据权利要求17所述的方法,其中,所述方法还包括:根据T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值,其中,所述T1为调制后的所述连续L个符号的符号间隔。
  19. 根据权利要求17所述的方法,其中,所述第二循环移位的循环移位量与所述第一循环移位的循环移位量方向相反且模值相同。
  20. 根据权利要求17所述的方法,其中,对所述连续L个符号的时域数据序列分别进行第二循环移位之后,所述方法还包括:对所述数据进行快速傅立叶变换FFT,信道均衡和检测。
  21. 一种多载波系统的数据调制装置,包括:
    循环移位模块,设置为对连续L个符号的数据序列分别进行循环移位,L≥2;
    调制模块,设置为使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔。
  22. 根据权利要求21所述的装置,其中,所述连续L个符号的所述数据序列为所述连续L个符号的频域数据分别进行快速傅立叶反变换IFFT后的时域数据序列。
  23. 根据权利要求22所述的装置,其中,所述波形函数的自变量区间长度为N×T1,其中,N为大于或等于1的实数,T1为调制后的所述连续L个符号的符号间隔。
  24. 根据权利要求23所述的装置,其中,所述循环移位模块还设置为根据所述T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值。
  25. 根据权利要求24所述的装置,其中,所述相邻符号的循环移位量满足以下公式之一:
    mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);
    T0-mod((mod(Y(i+1),T0)-mod(Y(i),T0)+T0),T0)=mod(T1,T0);其中,Y(1)、Y(2)...Y(L)为所述循环移位量且为实数,i为[1,L-1]之间的整数;T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
  26. 根据权利要求22所述的装置,其中,所述调制模块还设置为对所述连续L个符号对应的所述波形函数进行自变量移位;将自变量移位后的所述波形函数与所述循环移位后的所述连续L个符号的所述数据序列进行分组线性运算。
  27. 根据权利要求26所述的装置,其中,所述调制模块还设置为通过以下方式对所述连续L个符号对应的所述波形函数进行自变量移位:g(t-D(i)),其中,g(t)为所述波形函数,D(i)为第i个符号对应的所述波形函数的自变量移位量,D(i+1)-D(i)=T1,i为[1,L]之间的整数。
  28. 根据权利要求27所述的装置,其中,所述调制模块还设置为对所述循环移位后的所述连续L个符号的离散数据序列进行M倍 的第一抽样分组,得到M组数据序列S(m),m=1,2,......,M,其中,每组数据序列的长度为L;对所述第i个符号对应的g(t-D(i))的离散函数形式进行所述M倍的第二抽样分组,得到M组数据序列Yi(m),m=1,2,......,M,其中,每组数据序列长度为G,G大于或等于N;将所述S(m)与L个所述Yi(m)进行线性运算,生成数据序列R(m),即
    Figure PCTCN2017093227-appb-100002
    其中,m=1,2,......,M;将M组数据序列R(m)按照约定规则排列,得到所述连续L个符号调制后的数据序列,其中,所述M为T0时间内时域数据序列的个数,所述T0为在执行所述IFFT之前所述频域数据的相邻子载波间隔的倒数。
  29. 一种多载波系统的数据解调装置,包括:
    接收模块,设置为接收调制后的数据,其中,所述调制后的数据为对连续L个符号的数据序列分别进行第一循环移位并使用指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;
    解调模块,设置为使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
  30. 根据权利要求29所述的装置,其中,所述装置还包括:
    循环移位模块,设置为对所述连续L个符号的数据序列分别进行第二循环移位;
    获取模块,设置为依据所述第二循环移位后的所述数据序列获取所述调制后的数据的原始数据。
  31. 根据权利要求30所述的装置,其中,所述循环移位模块还设置为根据T1的取值确定所述连续L个符号中相邻符号的循环移位量的差值,其中,所述T1为调制后的所述连续L个符号的符号间隔。
  32. 根据权利要求30所述的装置,其中,所述装置还包括:处理模块,设置为对所述数据进行快速傅立叶变换FFT,信道均衡和检测。
  33. 一种多载波系统,包括:发送节点和接收节点,其中,
    所述发送节点,设置为对连续L个符号的数据序列分别进行循环移位,L≥2;使用指定的波形函数对循环移位后的所述数据序列进行调制,其中,所述波形函数的自变量区间长度大于或等于调制后的所述L个符号的符号间隔;
    所述接收节点,设置为接收调制后的数据,其中,所述调制后的数据为对所述连续L个符号的所述数据序列分别进行第一循环移位并使用所述指定的波形函数对所述第一循环移位后的所述数据序列进行调制得到的数据;使用所述指定的波形函数,对所述数据进行波形函数解调,获得所述连续L个符号的数据序列。
  34. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至16中任一项所述的方法。
  35. 一种存储介质,其特征在于,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求17至20中任一项所述的方法。
PCT/CN2017/093227 2016-07-22 2017-07-17 多载波系统及多载波系统的数据调制、解调方法及装置 WO2018014815A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/314,989 US11088883B2 (en) 2016-07-22 2017-07-17 Multicarrier system and data modulation and demodulation method and device for multicarrier system
EP24151914.9A EP4344144A3 (en) 2016-07-22 2017-07-17 Multicarrier system and data modulation and demodulation method and device for multicarrier system
EP17830449.9A EP3490208A4 (en) 2016-07-22 2017-07-17 MULTI-CARRYING SYSTEM AND DATA MODULATION AND DEMODULATION METHOD AND DEVICE FOR A MULTI-SUPPORT SYSTEM
US17/369,261 US11533212B2 (en) 2016-07-22 2021-07-07 Data modulation and device and demodulation device for the multicarrier system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610592069.7 2016-07-22
CN201610592069.7A CN107645464B (zh) 2016-07-22 2016-07-22 多载波系统及多载波系统的数据调制、解调方法及装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/314,989 A-371-Of-International US11088883B2 (en) 2016-07-22 2017-07-17 Multicarrier system and data modulation and demodulation method and device for multicarrier system
US17/369,261 Continuation US11533212B2 (en) 2016-07-22 2021-07-07 Data modulation and device and demodulation device for the multicarrier system

Publications (1)

Publication Number Publication Date
WO2018014815A1 true WO2018014815A1 (zh) 2018-01-25

Family

ID=60991977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093227 WO2018014815A1 (zh) 2016-07-22 2017-07-17 多载波系统及多载波系统的数据调制、解调方法及装置

Country Status (4)

Country Link
US (2) US11088883B2 (zh)
EP (2) EP4344144A3 (zh)
CN (1) CN107645464B (zh)
WO (1) WO2018014815A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959647B (zh) * 2016-10-14 2022-02-25 中兴通讯股份有限公司 多载波系统的符号配置方法及装置、数据解调方法及装置
CN114362875B (zh) * 2018-03-05 2024-06-21 中兴通讯股份有限公司 使用扩展码的传输
EP3891945A4 (en) 2018-12-05 2021-12-15 ZTE Corporation TRANSMISSIONS USING INDIVIDUAL SPECTRAS
CN115225443B (zh) * 2022-06-28 2023-08-25 苏州大学 载波循环移位方法和循环移位光滤波器组多载波系统
WO2024113323A1 (zh) * 2022-12-01 2024-06-06 华为技术有限公司 一种信号传输方法和装置
CN118233265A (zh) * 2022-12-20 2024-06-21 北京三星通信技术研究有限公司 用于发送和接收信号的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321146A (zh) * 2007-12-28 2008-12-10 华为技术有限公司 多载波正交频分复用系统中峰均比抑制的方法和装置
CN101867547A (zh) * 2010-05-24 2010-10-20 北京科技大学 一种降低滤波器组多载波系统的峰均比的方法
CN103441734A (zh) * 2013-07-02 2013-12-11 重庆邮电大学 Mdft滤波器组多载频调制系统及其优化设计方法
WO2014175711A1 (en) * 2013-04-26 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in multicarrier communication system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2401516A (en) * 2003-04-17 2004-11-10 Univ Southampton Peak-to-average power ratio reduction by subtracting shaped pulses from a baseband signal
BRPI0914194B8 (pt) * 2008-09-22 2022-07-12 Panasonic Corp Aparelho e método de comunicação
US8320267B2 (en) * 2009-06-23 2012-11-27 Motorola Mobility Llc Reference signal sounding for uplink pilot time slot in wireless communication system
CN102098262B (zh) * 2010-12-31 2013-08-14 上海华为技术有限公司 无线通信中数据发射方法及系统、接收方法及系统
KR102308541B1 (ko) * 2015-01-16 2021-10-05 삼성전자주식회사 필터뱅크 기반 다중 반송파 무선 통신 시스템에서 패킷 전송 방법 및 장치
US10397946B2 (en) * 2015-12-17 2019-08-27 Lg Electronics Inc. Uplink reference signal transmitting or receiving method in wireless communication system, and apparatus therefor
EP3236626B1 (en) * 2016-04-21 2020-09-23 Institut Mines Telecom / Telecom Bretagne Filter for linear modulation based communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101321146A (zh) * 2007-12-28 2008-12-10 华为技术有限公司 多载波正交频分复用系统中峰均比抑制的方法和装置
CN101867547A (zh) * 2010-05-24 2010-10-20 北京科技大学 一种降低滤波器组多载波系统的峰均比的方法
WO2014175711A1 (en) * 2013-04-26 2014-10-30 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving data in multicarrier communication system
CN103441734A (zh) * 2013-07-02 2013-12-11 重庆邮电大学 Mdft滤波器组多载频调制系统及其优化设计方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3490208A4 *
XIN, YU ET AL.: "FB-OFDM: A Novel Multicarrier Scheme for 5G", EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATION (EUCNC, 30 June 2016 (2016-06-30), pages 271 - 276, XP032957224 *
ZHANG, WANCHUN ET AL.: "FB-OFDM: A Novel Multicarrier Scheme for 5G", ZTE TECHNOLOGY JOURNAL, vol. 22, no. 3, 30 June 2016 (2016-06-30), pages 1 - 4, XP032957224 *

Also Published As

Publication number Publication date
EP3490208A1 (en) 2019-05-29
US11533212B2 (en) 2022-12-20
US20190312764A1 (en) 2019-10-10
CN107645464A (zh) 2018-01-30
US20210359888A1 (en) 2021-11-18
EP3490208A4 (en) 2019-07-24
US11088883B2 (en) 2021-08-10
CN107645464B (zh) 2022-08-19
EP4344144A3 (en) 2024-05-29
EP4344144A2 (en) 2024-03-27

Similar Documents

Publication Publication Date Title
WO2018014815A1 (zh) 多载波系统及多载波系统的数据调制、解调方法及装置
Abdoli et al. Filtered OFDM: A new waveform for future wireless systems
Michailow et al. Generalized frequency division multiplexing: Analysis of an alternative multi-carrier technique for next generation cellular systems
EP3334058B1 (en) Method and device for transmitting or receiving a signal
CN101507221B (zh) 一种用于消除载波间干扰的传输方法和装置
JP2015516740A (ja) フィルタ・バンク・マルチキャリア信号送信およびチャネル推定の方法および装置
CN115001924A (zh) 基于序列的信号处理方法及装置
US10931501B2 (en) Data processing method and apparatus
WO2017121412A1 (zh) 多载波系统的数据调制、解调方法、帧生成方法及节点
CN109802908A (zh) 基于序列的信号处理方法、信号处理装置及计算机可读存储介质
US10523486B2 (en) Data modulation and demodulation method and data transmission method and node for multi-carrier system
WO2018024127A1 (zh) 一种传输信号的方法及网络设备
US20240094336A1 (en) Affine frequency division multiplexing waveforms for doubly dispersive channels
WO2013155908A1 (zh) 一种re检测方法及装置
WO2018166496A1 (zh) 一种用于无线通信的方法、装置和系统
WO2023093821A1 (zh) 通信方法及装置
WO2023284752A1 (zh) 数据传输、数据调制方法、装置、电子设备和存储介质
Effendi et al. Performance evaluation of wavelet packet modulation for wireless digital communications
WO2017076326A1 (zh) 多载波系统中导频信号的传输方法和装置
WO2023213227A1 (zh) 数据的传输方法、装置、存储介质及电子装置
CN106961407B (zh) 一种数据调制、解调方法和数据调制、解调装置
CN104363196B (zh) 一种同步方法和接收端
CN113574947A (zh) 用于共轭数据调制的系统和方法
JP2018536341A (ja) マルチキャリア変調装置、マルチキャリア復調装置、方法及びシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17830449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017830449

Country of ref document: EP

Effective date: 20190222