WO2022062904A1 - 参考信号传输方法、装置、通信节点及存储介质 - Google Patents

参考信号传输方法、装置、通信节点及存储介质 Download PDF

Info

Publication number
WO2022062904A1
WO2022062904A1 PCT/CN2021/117213 CN2021117213W WO2022062904A1 WO 2022062904 A1 WO2022062904 A1 WO 2022062904A1 CN 2021117213 W CN2021117213 W CN 2021117213W WO 2022062904 A1 WO2022062904 A1 WO 2022062904A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical resource
symbols
reference signal
resource block
time
Prior art date
Application number
PCT/CN2021/117213
Other languages
English (en)
French (fr)
Inventor
暴桐
辛雨
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/028,055 priority Critical patent/US20230344577A1/en
Priority to EP21871276.8A priority patent/EP4221034A1/en
Publication of WO2022062904A1 publication Critical patent/WO2022062904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2628Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators

Definitions

  • the present application relates to the field of wireless communication networks, for example, to a reference signal transmission method, apparatus, communication node, and storage medium.
  • Long Term Evolution Long Term Evolution (Long Term Evolution, LTE) adopts Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) technology, and uses time-frequency resources formed by subcarriers and OFDM symbols to form wireless physical time-frequency resources of the LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the multipath delay problem of the CP-OFDM system can be well solved by adding a cyclic prefix (CP).
  • CP cyclic prefix
  • the frequency offset and time offset between sub-bands are relatively sensitive, which is likely to cause inter-sub-band interference.
  • the LTE system uses a guard interval in the frequency domain, but this reduces the spectral efficiency, so some new technologies need to be adopted to suppress out-of-band leakage.
  • the phase noise becomes larger, and the design of the phase tracking reference signal (PTRS) cannot meet the needs of estimating larger phase noise in the terahertz scene.
  • PTRS phase tracking reference
  • the present application provides a reference signal transmission method, device, communication node and storage medium, so as to meet the requirements of estimating phase noise and improve the demodulation performance of the receiving end.
  • An embodiment of the present application provides a reference signal transmission method, including:
  • the first reference signal is transmitted through the first H symbols in the physical resource block time domain, where H is greater than or equal to 2; the second reference signal is transmitted through the last T symbols in the physical resource block time domain, where T is greater than or equal to H.
  • the embodiment of the present application also provides a reference signal transmission device, including:
  • the first transmission module is configured to transmit the first reference signal through the first H symbols in the time domain of the physical resource block, where H is greater than or equal to 2; the second transmission module is configured to pass the last T in the time domain of the physical resource block. symbols transmit the second reference signal, where T is greater than or equal to H.
  • the embodiment of the present application also provides a communication node, including:
  • one or more processors configured to implement the above Reference signal transmission method.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the program is executed by a processor, the above-mentioned reference signal transmission method is implemented.
  • FIG. 1 is a flowchart of a reference signal transmission method according to an embodiment
  • FIG. 2 is a schematic diagram of transmitting a reference signal through a physical resource block according to an embodiment
  • FIG. 3 is a schematic diagram of transmitting a reference signal through a physical resource block according to another embodiment
  • FIG. 4 is a schematic diagram of transmitting a reference signal through a physical resource block according to yet another embodiment
  • FIG. 5 is a schematic diagram of transmitting a reference signal through a physical resource block according to another embodiment
  • FIG. 6 is a schematic diagram of transmitting a reference signal through a physical resource block according to another embodiment
  • FIG. 7 is a schematic diagram of transmitting a reference signal through a physical resource block according to another embodiment
  • FIG. 8 is a schematic diagram of modulating Mi symbols in the time domain in a physical resource block according to an embodiment
  • FIG. 9 is a schematic diagram of superposition of time-domain data sequences of Mi symbols provided by an embodiment
  • FIG. 10 is a schematic diagram of a waveform function provided by an embodiment
  • FIG. 11 is a schematic structural diagram of a reference signal transmission apparatus according to an embodiment
  • FIG. 12 is a schematic diagram of a hardware structure of a communication node according to an embodiment.
  • a reference signal transmission method is provided, and the method can be applied to a communication node, and the communication node may be a base station, an access node (Access Point, AP), a transmission and reception node (Transmission Receive Point, TRP), User terminal (User Equipment, UE), etc.
  • the UE uses the first H (H ⁇ 2) symbols of each physical resource block to send the first reference signal, and the last T (T ⁇ H) symbols to send the second reference signal, and the base station serves as the reference
  • the receiving end of the signal receives the corresponding reference signal by using the first H symbols and the last T symbols of each physical resource block.
  • the first reference signal and the second reference signal can be used by the receiving end for phase noise estimation and compensation, frequency offset correction, auxiliary channel estimation and auxiliary synchronization, etc., to meet the estimation requirements of phase noise, thereby improving the demodulation performance of the receiving end.
  • FIG. 1 is a flowchart of a method for transmitting a reference signal according to an embodiment. The method can be applied to communication nodes. As shown in FIG. 1 , the method provided in this embodiment includes step 110 and step 120 .
  • step 110 the first reference signal is transmitted through the first H symbols in the physical resource block time domain, where H is greater than or equal to 2.
  • step 120 the second reference signal is transmitted through the last T symbols in the physical resource block time domain, where T is greater than or equal to H.
  • the first reference signal is transmitted through the first H symbols in the physical resource block time domain
  • the second reference signal is transmitted through the last T symbols in the physical resource block time domain
  • the physical resource block is A resource unit composed of several symbols in the time domain and several sub-carriers in the frequency domain, and a symbol refers to an OFDM symbol.
  • the transmitting end can provide more accurate information for the receiving end, and the receiving end can perform phase noise estimation and compensation, frequency offset correction, channel estimation and synchronization according to the first reference signal and the second reference signal assisted, so as to improve the receiving end. terminal demodulation performance.
  • the first reference signals corresponding to the first H symbols of the physical resource block are the same as the reference signals corresponding to the first H symbols of the next physical resource block adjacent in the time domain.
  • the first reference signal is transmitted by using the first H symbols of the physical resource block, and the first reference signal transmitted on the first H symbols of the physical resource block is the next physical resource block adjacent in the time domain.
  • the reference signals corresponding to the first H symbols are the same and can resist uplink and downlink interference.
  • the second reference signals corresponding to the last T symbols of the physical resource block are the same as the reference signals corresponding to the last T symbols of the next physical resource block adjacent in the time domain.
  • the second reference signal is transmitted by using the last T symbols of the physical resource block, and the second reference signal transmitted on the last T symbols of the physical resource block is the same as that of the next physical resource block adjacent in the time domain.
  • the reference signals corresponding to the last T symbols are the same and can resist multipath delay.
  • the same second reference signal is transmitted on the last T symbols of at least two adjacent physical resource blocks in the time domain, which is equivalent to adding a symbol-based cycle to the continuous physical resources.
  • the prefix that is, the symbol where the last second reference signal of a physical resource block is located can be used as the cyclic prefix of the next physical resource block adjacent in the time domain.
  • the path component will not cause interference to the next OFDM symbol, and can effectively resist the multipath delay.
  • the transmission of the CP in the CP-OFDM system needs to occupy spectrum resources, and the receiving end needs to remove the CP during demodulation, so this spectrum is wasted, and the method of this embodiment does not need to add additional guard intervals between adjacent physical resource blocks. or cyclic prefix, which can save transmission overhead and improve spectrum resource utilization.
  • the first reference signals corresponding to the first H symbols of the physical resource block are the same as the reference signals corresponding to the first H symbols of the next physical resource block adjacent in the time domain.
  • the second reference signal corresponding to the last T symbols of the physical resource block is the same as the reference signal corresponding to the last T symbols of the next physical resource block adjacent in the time domain.
  • the first reference signal is transmitted by using the first H symbols of the physical resource block, and the first reference signal transmitted on the first H symbols of the physical resource block is the next physical resource block adjacent in the time domain.
  • the reference signals corresponding to the first H symbols are the same and can resist uplink and downlink interference.
  • the second reference signal is transmitted using the last T symbols of the physical resource block, and the second reference signal transmitted on the last T symbols of the physical resource block corresponds to the last T symbols of the next physical resource block adjacent in the time domain
  • the reference signal of the physical resource block is the same, that is, the last reference signal symbol of the physical resource block can be regarded as the cyclic prefix of the next physical resource block adjacent in the time domain, so as to overcome the problem of multi-path delay and improve the demodulation of the receiving end. performance.
  • the first reference signal is transmitted by the first H symbols of the physical resource block, and the second reference signal is transmitted by the last T symbols, and the first reference signal transmitted on the first H symbols of the physical resource block is the same as the adjacent lower reference signal in the time domain.
  • the reference signals corresponding to the first H symbols of a physical resource block are the same, and the second reference signal transmitted on the last T symbols of the physical resource block corresponds to the last T symbols of the next physical resource block adjacent in the time domain.
  • the reference signals are the same, increasing the continuity of the amplitude and phase of adjacent physical resource blocks, thereby reducing out-of-band leakage.
  • the first reference signal and the second reference signal can be used by the receiving end for phase noise estimation and compensation, frequency offset correction, auxiliary channel estimation and auxiliary synchronization, etc., thereby improving the demodulation performance of the receiving end.
  • each time slot includes L physical resource blocks, and L is greater than or equal to 1; the ith physical resource block in each time slot consists of M i symbols in the time domain and K in the frequency domain. It consists of i subcarriers, wherein M i is greater than or equal to the sum of T and H, K i is greater than or equal to 1, and i is a positive integer less than or equal to L.
  • each time slot includes at least one physical resource block, and each physical resource block is composed of M i symbols in the time domain and K i subcarriers in the frequency domain, where M i ⁇ H+T.
  • M i the number of symbols in the time domain and K i subcarriers in the frequency domain, where M i ⁇ H+T.
  • the first H symbols are used to transmit the first reference signal
  • the last T symbols are used to transmit the second reference signal. If dividing the first H symbols and the last T symbols, the remaining M i -HT symbols can be used to transmit related information.
  • the first reference signal transmitted on the first H symbols of the i-th physical resource block is the same as the reference signal corresponding to the first H symbols of the next physical resource block adjacent in the time domain, that is, it is the same as the i+1-th physical resource block.
  • the first reference signal transmitted on the first H symbols of the ith physical resource block is the same;
  • the second reference signal transmitted on the last T symbols of the i-th physical resource block corresponds to the last T symbols of the next adjacent physical resource block in the time domain.
  • the reference signal is the same, that is, it is the same as the second reference signal transmitted on the last T symbols of the i+1th physical resource block.
  • the first reference signal transmitted in the first H symbols of the physical resource block is the same as the first H symbols of the physical resource block contained in the next adjacent time slot in the time domain.
  • the first reference signal transmitted on the symbol is the same
  • the second reference signal transmitted on the next symbol of the physical resource block is the same as the second reference signal transmitted on the next T symbols of the physical resource block included in the adjacent next time slot in the time domain.
  • the two reference signals are the same.
  • the number of symbols included in each physical resource block may be the same or different.
  • the number of symbols contained in the P physical resource blocks is equal to the sum of T and H; the number of symbols contained in the LP physical resource blocks is greater than The sum of T and H; where P is greater than or equal to 0 and P is less than or equal to L.
  • each time slot includes L physical resource blocks, and each of the P physical resource blocks includes H+T symbols, that is, there are no remaining symbols that can be used to transmit related information.
  • the P physical resource blocks are reference signal blocks; the LP physical resource blocks all contain more than H+T symbols, that is, there are remaining symbols that can be used to transmit related information.
  • the LP physical resource blocks for the data block are reference signal blocks; the LP physical resource blocks all contain more than H+T symbols, that is, there are remaining symbols that can be used to transmit related information.
  • the first H symbols in the time domain of each physical resource block in each time slot are used to transmit the first reference signal, and the last T symbols are used to transmit the second reference signal.
  • symbols other than the first H symbols and the last T symbols are used to transmit related information
  • P is equal to L the first H symbols in the time domain of each physical resource block in each slot are used
  • the last T symbols are used for transmitting the second reference signal, and each physical resource block does not contain relevant information
  • P is greater than 0 and P is less than L
  • the P symbols in each time slot The first H symbols in the time domain of each physical resource block in the physical resource block are used to transmit the first reference signal, and the last T symbols are used to transmit the second reference signal, and each physical resource block does not contain relevant information
  • the first H symbols in the time domain of each of the LP physical resource blocks in each slot are used to transmit the first reference signal, the last T symbols are used to transmit the second reference signal, and the first H symbols are divided symbols
  • FIG. 2 is a schematic diagram of transmitting reference signals through physical resource blocks according to an embodiment.
  • the first reference signal on the first H symbols of the physical resource block is the same as the second reference signal on the first H symbols of the adjacent next physical resource block in the time domain; the last T reference signal of the physical resource block
  • the reference signals on symbols are the same as the reference signals on the last T symbols of the adjacent next physical resource block in the time domain.
  • Each physical resource block is a reference signal block, and no other related information is transmitted.
  • FIG. 3 is a schematic diagram of transmitting reference signals through physical resource blocks according to another embodiment.
  • the first reference signal on the first H symbols of the physical resource block is the same as the second reference signal on the first H symbols of the adjacent next physical resource block in the time domain; the last T reference signal of the physical resource block
  • the reference signals on symbols are the same as the reference signals on the last T symbols of the adjacent next physical resource block in the time domain.
  • Each physical resource block is a data block, that is, both reference signals and service data are sent.
  • FIG. 4 is a schematic diagram of transmitting a reference signal through a physical resource block according to yet another embodiment.
  • the first reference signal transmitted by the first two symbols of the first physical resource block is the same as the first reference signal transmitted by the first two symbols of the next adjacent physical resource block in the time domain.
  • the second reference signal transmitted by the last three symbols of the physical resource block is the same as the second reference signal transmitted by the last three symbols of the next physical resource block adjacent in the time domain.
  • the 4 symbols except the first 2 symbols and the last 3 symbols can be used to transmit other related information, such as service data (shown in the unfilled box area) and the third reference signal.
  • the last 5 symbols in the second physical resource block transmit the reference signal, which can provide a longer cyclic prefix for the next physical resource block adjacent in the time domain, and can overcome the problem of multipath delay to a greater extent.
  • the first reference signals on the first H symbols of the physical resource block are the same as the second reference signals on the first H symbols of the next adjacent physical resource block in the time domain; the physical resource block The reference signals on the last T symbols of , are the same as the reference signals on the last T symbols of the adjacent next physical resource block in the time domain.
  • Each physical resource block is a data block, that is, both reference signals and service data are sent.
  • FIG. 5 is a schematic diagram of transmitting reference signals through physical resource blocks according to yet another embodiment.
  • the first reference signal transmitted on the first H symbols of the physical resource block is the same as the first reference signal transmitted on the first H symbols of the adjacent next physical resource block in the time domain; the last reference signal of the physical resource block
  • the second reference signal transmitted on the T symbols of the time domain is the same as the second reference signal transmitted on the last T symbols of the next adjacent physical resource block in the time domain.
  • the first physical resource block is a reference signal block
  • the second physical resource block is a data block.
  • the length of the latter is an integer multiple of the length of the former.
  • the length of the second physical resource block is the length of the first physical resource. 2 times the length of the block.
  • the first reference signal on the first H symbols of each time slot is the same as the first reference signal on the first H symbols of the next adjacent time slot in the time domain.
  • the second reference signal on the last T symbols of each time slot is the same as the second reference signal on the last T symbols of the adjacent next time slot in the time domain, M 1 >T+H, T >H.
  • FIG. 7 is a schematic diagram of transmitting a reference signal through a physical resource block according to yet another embodiment.
  • L physical resource blocks are included in a time slot, among which there are P physical resource blocks including T+H symbols, and LP physical resource blocks including more than T+H symbols, L ⁇ P ⁇ 0.
  • the last T of the P physical resource blocks 3 symbols transmit the second reference signal
  • the P physical resource blocks are all reference signal blocks.
  • Each of the LP physical resource blocks contains more than T+H symbols
  • the other M i -TH symbols transmit other related information, such as service data
  • the LP physical resource blocks are all data blocks.
  • it also includes:
  • Step 1010 Perform an inverse fast Fourier transform (Inverse Fast Fourier Transform, IFFT) on the frequency domain data of each symbol in the physical resource block to obtain oversampled time domain data of each symbol.
  • IFFT inverse Fast Fourier transform
  • Step 1020 Modulate the oversampled time-domain data of each symbol by a waveform function, wherein the length of the independent variable interval of the waveform function is the product of N and T1, and the length of the modulated time-domain data sequence of each symbol is is the product of N and T1, N is a real number greater than 1, and T1 is a positive number.
  • Step 1030 sequentially delay the modulated time domain data sequence of each symbol by T1 on the basis of the time domain data sequence of the adjacent previous symbol, so that the interval between adjacent symbols in the physical resource block is T1, and delay the The time-domain data sequence for each symbol after is superimposed.
  • FIG. 8 is a schematic diagram of modulating M i symbols in the time domain in a physical resource block according to an embodiment.
  • each horizontal line represents each sub-carrier
  • the solid line represents that the sub-carrier carries data
  • the dashed line represents that the sub-carrier does not carry data, which is equivalent to that the sub-carrier carries zero data.
  • FIG. 9 is a schematic diagram of superposition of time-domain data sequences of M i symbols provided by an embodiment.
  • the reciprocal of the subcarrier spacing of these 14 symbols is T0.
  • the five boxes in the first row represent the time-domain data sequence of the first symbol (obtained by waveform modulation of the time-domain data on the first symbol); the five boxes in the second row (shown in the slashed area) represents the time-domain data sequence of the second symbol (obtained by waveform modulation of the time-domain data on the second symbol), and the time-domain data sequence of the second symbol is compared to the first symbol
  • the time-domain data sequence is delayed by T1;
  • the five boxes in the third row represent the time-domain data sequence of the third symbol (obtained by waveform modulation of the time-domain data on the third symbol) , the time-domain data sequence of the third symbol is delayed by T1 compared to the time-domain data sequence of the second symbol, that is, it is delayed by 2T1 compared to the time-domain data sequence of the first symbol; and so on, the last row of The five boxes (shown in the dotted area) represent the time-domain
  • the first reference signal is transmitted on the first two symbols
  • the second reference signal is transmitted on the last three symbols
  • the first reference signal transmitted on the first two symbols on the physical resource block is in phase with the time domain.
  • the first reference signal transmitted on the first H symbols of the adjacent next physical resource block is the same
  • the second reference signal transmitted on the last three symbols on the physical resource block is the same as the last reference signal of the next adjacent physical resource block in the time domain.
  • the second reference signals transmitted on the T symbols of the plane are the same.
  • the distance between the two vertical solid lines represents the length of a physical resource block; the two dashed solid lines represent the overall start position and end position of all symbols of the physical resource block after waveform modulation.
  • a time-domain data sequence of a certain length can be superimposed backward from the overall starting position (the vertical dashed line on the left) to the end position (the vertical solid line on the right) before the end position of the length of the physical resource block (the vertical solid line on the right).
  • the time-domain data sequence of a certain length will be superimposed from the overall end position (the vertical dashed line to the right) to the starting position of the length of the physical resource block (the vertical solid line to the left).
  • the length of a physical resource block is guaranteed to remain unchanged, that is, cyclic superposition.
  • the time-domain data sequences of M i symbols after waveform modulation can be linearly superimposed, and the time-domain data sequences exceeding the length of the physical resource block are respectively superimposed on the adjacent previous physical resource block and the next physical resource block.
  • waveform modulation refers to, with T0 as a period, firstly duplicating the time domain data of each symbol in the physical resource block to obtain time domain data corresponding to each symbol with a length of 5 ⁇ T0;
  • the discrete function value of the set waveform function is also used to perform dot multiplication with the data sequence with each symbol length of 5 ⁇ T0 to perform waveform modulation, and obtain the waveform modulated corresponding to 14 symbols.
  • the time-domain data sequences with a length of 5 ⁇ T0 after 14 waveform modulations are sequentially delayed (or staggered) by T1 in the time domain and then superimposed, and a time-domain data sequence with a length of 13 ⁇ T1+5T0 is obtained.
  • data sequence Use the length of the physical resource block (two solid lines) to intercept the time-domain data sequence with a length of 13 ⁇ T1+5T0, and superimpose the time-domain data sequences before and after the two solid lines to the end of the two solid line areas.
  • the length of the truncated time-domain data sequence is kept as 14 ⁇ T1, that is, the length of the physical resource block is kept as 14 ⁇ T1, where T1>T0.
  • the number of subcarriers included in the L physical resource blocks in each time slot is the same, and the subcarrier intervals in the L physical resource blocks in each time slot are the same.
  • T1 is greater than T0, or, T1 is less than or equal to T0; wherein, T0 is the inverse of the subcarrier spacing.
  • T1 when T1 is greater than T0, T1 is a times T0, where a has a value range of [15/14, 2], or [8/7, 2].
  • the value of T1 is to 2T0, or for to 2T0.
  • it also includes:
  • Step 1001 Add zero data to multiple subcarriers on both sides of the subcarriers in the frequency domain in the physical resource block.
  • oversampling is achieved by adding zero data.
  • the waveform function is one of a root raised cosine function, a raised cosine function, a piecewise function and a rectangular function; wherein the raised cosine function is a raised cosine function in the time domain, or a raised cosine function in the frequency domain.
  • the function is changed to the function in the time domain through IFFT;
  • the root raised cosine function is the root raised cosine function in the time domain, or the root raised cosine function in the frequency domain is changed to the function in the time domain through IFFT;
  • a zero function value is represented by the combination of multiple data expressions in different independent variable intervals.
  • FIG. 10 is a schematic diagram of a waveform function provided by an embodiment.
  • the thin solid line represents an extended root raised cosine function
  • the waveform function 1 shown by the dotted line is the root raised cosine function in the frequency domain
  • the function in the time domain is transformed by IFFT.
  • the thick solid line The waveform function 2 shown is a raised cosine function in the time domain.
  • the maximum time span of the independent variable interval corresponding to the non-zero function value of the waveform function is greater than T1; or, the maximum time span of the independent variable interval corresponding to the non-zero function value of the waveform function is equal to 5T1.
  • step 1020 includes:
  • the oversampling time-domain data on each symbol is copied to obtain a data sequence corresponding to each symbol whose length is the product of N and T1, where T0 is the reciprocal of the subcarrier interval;
  • the discrete function values are dot-multiplied with a data sequence of length N and T1 corresponding to each symbol, respectively, to obtain a corresponding waveform-modulated time-domain data sequence whose length is the product of N and T1.
  • the process of obtaining the waveform-modulated time-domain data sequence through point multiplication can be understood as a process of windowing.
  • the waveform function is a continuous function, and the discrete function value of the waveform function is obtained by sampling the value of the continuous function, and the sampling interval is equal to the adjacent discrete values in the time domain data of each symbol.
  • the time interval between data; or, the waveform function is a discrete function, the number of discrete function values of the waveform function and the number of discrete data in the time domain data sequence whose length of each symbol is the product of N and T1 same.
  • each time slot includes L physical resource blocks, and L is greater than or equal to 1; the waveform functions used for modulation of the L physical resource blocks in each time slot are the same; the L physical resources The reference signals on the last T symbols of the block are the same.
  • the waveform functions used for modulation of physical resource blocks in different time slots are the same or different.
  • FIG. 11 is a schematic structural diagram of a reference signal transmission apparatus according to an embodiment. As shown in FIG. 11 , the reference signal transmission apparatus includes: a first transmission module 210 and a second transmission module 220 .
  • the first transmission module 210 is configured to transmit the first reference signal through the first H symbols in the physical resource block time domain, where H is greater than or equal to 2; the second transmission module 220 is configured to transmit the first reference signal through the physical resource block time domain. The last T symbols transmit the second reference signal, where T is greater than or equal to H.
  • the first reference signal and the second reference signal are used by the receiving end to perform phase estimation and compensation, frequency offset correction, auxiliary channel estimation, etc., so as to meet the estimation requirements of phase noise, thereby improving the demodulation of the receiving end. performance.
  • the first reference signals corresponding to the first H symbols of the physical resource block are the same as the reference signals corresponding to the first H symbols of the next physical resource block adjacent in the time domain.
  • the first reference signal is sent through the first H symbols of each physical resource block, and the first reference signal corresponding to the first H symbols of the physical resource block is the first H symbols of the next physical resource block adjacent in the time domain.
  • the reference signals corresponding to the symbols are the same and can resist uplink and downlink interference.
  • the second reference signals corresponding to the last T symbols of the physical resource block are the same as the reference signals corresponding to the last T symbols of the next physical resource block adjacent in the time domain.
  • the second reference signal is sent through the last T symbols of each physical resource block, and the second reference signal corresponding to the last T symbols of the physical resource block is the same as the last T symbols of the next physical resource block adjacent in the time domain.
  • the reference signals corresponding to the symbols are the same, that is, the last reference signal symbol of the physical resource block can be regarded as the cyclic prefix of the next physical resource block adjacent in the time domain, so as to overcome the problem of multi-path delay and improve the receiving end. demodulation performance.
  • the first reference signal corresponding to the first H symbols of the physical resource block is the same as the reference signal corresponding to the first H symbols of the next physical resource block adjacent in the time domain, and the physical resource block
  • the second reference signals corresponding to the last T symbols of are the same as the reference signals corresponding to the last T symbols of the next physical resource block adjacent in the time domain, which can reduce out-of-band leakage.
  • each time slot includes L physical resource blocks, and L is greater than or equal to 1; the ith physical resource block in each time slot consists of M i symbols in the time domain and K in the frequency domain. It consists of i subcarriers, wherein M i is greater than or equal to the sum of T and H, K i is greater than or equal to 1, and i is a positive integer less than or equal to L.
  • the number of symbols contained in the P physical resource blocks is equal to the sum of T and H; the number of symbols contained in the LP physical resource blocks is greater than The sum of T and H; where P is greater than or equal to 0 and P is less than or equal to L.
  • the first H symbols in the time domain of each physical resource block in each time slot are used to transmit the first reference signal, and the last T symbols are used to transmit the second reference signal.
  • symbols other than the first H symbols and the last T symbols are used to transmit related information
  • P is equal to L the first H symbols in the time domain of each physical resource block in each slot are used
  • the last T symbols are used for transmitting the second reference signal, and each physical resource block does not contain relevant information
  • P is greater than 0 and P is less than L
  • the P symbols in each time slot The first H symbols in the time domain of each physical resource block in the physical resource block are used to transmit the first reference signal, and the last T symbols are used to transmit the second reference signal, and each physical resource block does not contain relevant information
  • the first H symbols in the time domain of each of the LP physical resource blocks in each slot are used to transmit the first reference signal, the last T symbols are used to transmit the second reference signal, and the first H symbols are divided symbols
  • the number of subcarriers included in the L physical resource blocks in each time slot is the same, and the subcarrier intervals in the L physical resource blocks in each time slot are the same.
  • it also includes:
  • the oversampling module is set to perform IFFT on the frequency domain data of each symbol in the physical resource block to obtain the oversampled time domain data of each symbol; the waveform modulation module is set to perform the oversampling of each symbol through the waveform function.
  • the superposition module is set to sequentially delay the time-domain data sequence of each symbol after modulation by T1 on the basis of the time-domain data sequence of the adjacent previous symbol, so that the phase in the physical resource block
  • the adjacent symbol interval is T1 and the time-domain data sequences of each delayed symbol are superimposed.
  • T1 is greater than T0, or, T1 is less than or equal to T0; wherein, T0 is the inverse of the subcarrier spacing.
  • T1 when T1 is greater than T0, T1 is a times T0, where a has a value range of [15/14, 2], or [8/7, 2].
  • it also includes:
  • the adding module is configured to add zero data to multiple subcarriers on both sides of the subcarrier in the frequency domain in the physical resource block.
  • the waveform function is one of a root raised cosine function, a raised cosine function, a piecewise function and a rectangular function; wherein, the raised cosine function is a raised cosine function in the time domain, or a frequency domain.
  • the raised cosine function above is changed to the function on the time domain by IFFT;
  • the root raised cosine function is the root raised cosine function on the time domain, or the root raised cosine function on the frequency domain is changed to the function on the time domain by IFFT;
  • Non-zero function values in the piecewise function are represented by combinations of multiple data expressions in different independent variable intervals.
  • the maximum time span of the independent variable interval corresponding to the non-zero function value of the waveform function is greater than T1; or, the maximum time span of the independent variable interval corresponding to the non-zero function value of the waveform function is equal to 5T1.
  • the waveform modulation module is set to:
  • the oversampling time-domain data on each symbol is copied to obtain a data sequence corresponding to each symbol whose length is the product of N and T1, where T0 is the reciprocal of the subcarrier interval;
  • the discrete function values are dot-multiplied with a data sequence of length N and T1 corresponding to each symbol, respectively, to obtain a corresponding waveform-modulated time-domain data sequence whose length is the product of N and T1.
  • the waveform function is a continuous function, and the discrete function value of the waveform function is obtained by sampling the value of the continuous function, and the sampling interval is equal to the adjacent discrete values in the time domain data of each symbol.
  • the time interval between data; or, the waveform function is a discrete function, the number of discrete function values of the waveform function and the number of discrete data in the time domain data sequence whose length of each symbol is the product of N and T1 same.
  • each time slot includes L physical resource blocks, and L is greater than or equal to 1; the waveform functions used for modulation of the L physical resource blocks in each time slot are the same; the physical resource blocks in different time slots The modulation uses the same or different waveform functions.
  • the reference signal transmission apparatus proposed in this embodiment and the reference signal transmission method applied to a communication node proposed in the above embodiment belong to the same concept.
  • the embodiment of the present application also provides a communication node.
  • the above-mentioned reference signal transmission method applied to a communication node may be performed by a reference signal transmission apparatus, and the reference signal transmission apparatus may be implemented by means of software and/or hardware and integrated in the communication node.
  • the communication node is a transmitting end or a receiving end of the reference signal.
  • FIG. 12 is a schematic diagram of the hardware structure of a communication node provided by an embodiment.
  • the communication node provided by the present application includes one or more processors 51 , wherein the one or more processors 51 are in When executed, the reference signal transmission method provided by any embodiment of the present application is implemented, and correspondingly, the communication node may be a terminal.
  • the communication node may also include a storage device 52; the number of processors 51 in the communication node may be one or more, and one processor 51 is taken as an example in FIG. 12; the storage device 52 is used to store one or more programs; the one One or more programs are executed by the one or more processors 51, so that the one or more processors 51 implement the reference signal transmission method as described in the embodiments of the present application.
  • the communication node further includes: a communication device 53 , an input device 54 and an output device 55 .
  • the processor 51 , the storage device 52 , the communication device 53 , the input device 54 and the output device 55 in the communication node may be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 12 .
  • the input device 54 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the communication node.
  • the output device 55 may include a display device such as a display screen.
  • the communication device 53 may include a receiver and a transmitter.
  • the communication device 53 is configured to transmit and receive information according to the control of the processor 51 .
  • the storage device 52 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules (for example, the first transmission module) corresponding to the reference signal transmission method described in the embodiments of the present application. 210 and the second transmission module 220).
  • the storage device 52 may include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to use of the communication node, and the like.
  • storage device 52 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • storage device 52 may include memory located remotely from processor 51, which may be connected to the communication node through a network.
  • networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • An embodiment of the present application further provides a storage medium, where a computer program is stored in the storage medium, and when the computer program is executed by a processor, the reference signal transmission method described in any one of the embodiments of the present application is implemented.
  • the reference signal transmission method includes: transmitting a first reference signal through the first H symbols in the physical resource block time domain, where H is greater than or equal to 2; transmitting the second reference signal through the last T symbols in the physical resource block time domain Reference signal, where T is greater than or equal to H.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Examples (non-exhaustive list) of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (Read Only Memory) Memory, ROM), erasable programmable read only memory (Erasable Programmable Read Only Memory, EPROM), flash memory, optical fiber, portable CD-ROM, optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in connection with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal in baseband or as part of a carrier wave, with computer-readable program code embodied thereon. Such propagated data signals may take a variety of forms including, but not limited to, electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to: wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present application may be written in one or more programming languages, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional A procedural programming language, such as the "C" language or similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or may be connected to an external computer (eg, use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • terminal encompasses any suitable type of wireless user equipment such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-dependent instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as, but not limited to, Read-Only Memory (ROM), Random Access Memory (RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • a general purpose computer such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开一种参考信号传输方法、装置、通信节点及存储介质。该参考信号传输方法通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。

Description

参考信号传输方法、装置、通信节点及存储介质 技术领域
本申请涉及无线通信网络领域,例如涉及一种参考信号传输方法、装置、通信节点及存储介质。
背景技术
长期演进技术(Long Term Evolution,LTE)采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)技术,利用子载波和OFDM符号构成的时频资源组成LTE系统的无线物理时频资源。在OFDM技术中,通过增加循环前缀(Cyclic Prefix,CP)能很好地解决CP-OFDM系统多径时延问题,但是由于CP-OFDM频谱的带外泄漏比较大,使CP-OFDM对相邻子带间的频偏和时偏比较敏感,容易造成子带间干扰。LTE系统在频域上使用了保护间隔,但这样降低了频谱效率,因此需要采用一些新技术来抑制带外泄漏。而随着太赫兹场景载波频率的增加,相位噪声变大,相位跟踪参考信号(Phase Tracking Reference Signal,PTRS)的设计无法满足太赫兹场景中需要估计更大的相位噪声的需求。
发明内容
本申请提供一种参考信号传输方法、装置、通信节点及存储介质,以满足估计相位噪声的需求,提高接收端的解调性能。
本申请实施例提供一种参考信号传输方法,包括:
通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
本申请实施例还提供了一种参考信号传输装置,包括:
第一传输模块,设置为通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;第二传输模块,设置为通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
本申请实施例还提供了一种通信节点,包括:
一个或多个处理器;存储装置,设置为存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上 述的参考信号传输方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该程序被处理器执行时实现上述的参考信号传输方法。
附图说明
图1为一实施例提供的一种参考信号传输方法的流程图;
图2为一实施例提供的通过物理资源块传输参考信号的示意图;
图3为另一实施例提供的通过物理资源块传输参考信号的示意图;
图4为再一实施例提供的通过物理资源块传输参考信号的示意图;
图5为又一实施例提供的通过物理资源块传输参考信号的示意图;
图6为又一实施例提供的通过物理资源块传输参考信号的示意图;
图7为又一实施例提供的通过物理资源块传输参考信号的示意图;
图8为一实施例提供的对物理资源块中时域上Mi个符号进行调制的示意图;
图9为一实施例提供的Mi个符号的时域数据序列叠加的示意图;
图10为一实施例提供的波形函数的示意图;
图11为一实施例提供的一种参考信号传输装置的结构示意图;
图12为一实施例提供的一种通信节点的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。此处所描述的具体实施例仅仅用于解释本申请。为了便于描述,附图中仅示出了与本申请相关的部分。
在本申请实施例中,提供一种参考信号传输方法,该方法可应用于通信节点,通信节点可以为基站、接入节点(Access Point,AP)、传输接收节点(Transmission Receive Point,TRP)、用户终端(User Equipment,UE)等。例如,UE作为参考信号的发送端,利用每个物理资源块的前H(H≥2)个符号发送第一参考信号、后T(T≥H)个符号发送第二参考信号,基站作为参考信号的接收端,利用每个物理资源块的前H个符号以及后T个符号接收相应的参考信号。第一参考信号和第二参考信号可供接收端进行相位噪声估计与补偿、频偏纠正、辅助信道估计和辅助同步等,满足对相位噪声的估计需求,进而提高接收端的解调性能。
图1为一实施例提供的一种参考信号传输方法的流程图。该方法可应用于 通信节点。如图1所示,本实施例提供的方法包括步骤110和步骤120。
在步骤110中,通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2。
在步骤120中,通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
本实施例中,通过物理资源块时域上最前面的H个符号传输第一参考信号,通过物理资源块时域上的最后面的T个符号传输第二参考信号,其中,物理资源块是由时域上的若干符号和频域上的若干子载波构成的资源单位,符号是指OFDM符号。在此基础上,发送端可以为接收端提供更准确的信息,接收端能够根据第一参考信号和第二参考信号辅助进行相位噪声估计与补偿、频偏纠正、信道估计和同步等,提高接收端的解调性能。
在一实施例中,所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同。
在本实施例中,利用物理资源块的前H个符号传输第一参考信号,并且该物理资源块的前H个符号上传输的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同,能够抵抗上下行干扰。
在一实施例中,所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同。
本实施例中,利用物理资源块的后T个符号传输第二参考信号,并且该物理资源块的后T个符号上传输的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同,能够抵抗多径时延。这种情况下,存在至少两个时域上相邻的物理资源块的后T个符号上传输了相同的第二参考信号,相当于在连续的物理资源中增加了一个以符号为单位的循环前缀,即,一个物理资源块的最后面的第二参考信号所在的符号可以被用作时域上相邻的下一个物理资源块的循环前缀,这种情况下,在前的OFDM符号的多径分量就不会对下一个OFDM符号造成干扰,能够有效抵抗多径时延。CP-OFDM系统中CP的传输需要占用频谱资源,接收端解调时需要去除CP,因此浪费了这段频谱,而本实施例的方法不需要在相邻的物理资源块之间额外增加保护间隔或循环前缀,能够节省传输开销,提高频谱资源利用率。
在一实施例中,所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同。所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同。
在本实施例中,利用物理资源块的前H个符号传输第一参考信号,并且该物理资源块的前H个符号上传输的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同,能够抵抗上下行干扰。利用物理资源块的后T个符号传输第二参考信号,并且该物理资源块的后T个符号上传输的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同,即所述物理资源块的最后面的参考信号符号可以看作时域上相邻的下一个物理资源块的循环前缀,从而克服多径时延的问题,提高接收端解调性能。利用物理资源块的前H个符号传输第一参考信号,后T个符号传输第二参考信号,并且该物理资源块的前H个符号上传输的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同,该物理资源块的后T个符号上传输的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同,增加了相邻物理资源块幅度和相位的连续性,从而减少带外泄露。第一参考信号和第二参考信号可供接收端进行相位噪声估计与补偿、频偏纠正、辅助信道估计和辅助同步等,进而提高接收端的解调性能。
在一实施例中,每个时隙中包含L个物理资源块,L大于或等于1;每个时隙中第i个物理资源块由时域上的M i个符号和频域上的K i个子载波组成,其中,M i大于或等于T与H的和,K i大于或等于1,i为小于或等于L的正整数。
本实施例中,每个时隙中包含至少一个物理资源块,每个物理资源块由时域上的M i个符号和频域上的K i个子载波组成,M i≥H+T。对于第i个物理资源块,在M i个符号中,前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,如果除前H个符号和后T个符号以外还有剩余的符号,则剩余的M i-H-T个符号可用于传输相关信息。第i个物理资源块的前H个符号上传输的第一参考信号与时域上相邻下一个物理资源块的前H个符号对应的参考信号相同,即与第i+1个物理资源块的前H个符号上传输的第一参考信号相同;第i个物理资源块的后T个符号上传输的第二参考信号与时域上相邻下一个物理资源块的后T个符号对应的参考信号相同,即与第i+1个物理资源块的后T个符号上传输的第二参考信号相同。假设每个时隙中只包含一个物理资源块,则该物理资源块的前H个符号上传输的第一参考信号与时域上相邻下一个时隙中包含的物理资源块的前H个符号上传输的第一参考信号相同,该物理资源块的后个符号上传输的第二参考信号与时域上相邻下一个时隙中包含的物理资源块的后T个符号上传输的第二参考信号相同。其中,每个物理资源块中包含的符号的数量可以相同,也可以不同。
在一实施例中,在每个时隙中的L个物理资源块中,有P个物理资源块中包含的符号数量等于T与H的和;有L-P个物理资源块中包含的符号数量大于T与H的和;其中,P大于或等于0,且P小于或等于L。
本实施例中,每个时隙包含L个物理资源块,其中,P个物理资源块中均包含H+T个符号,即不存在可用于传输相关信息的剩余的符号,这种情况下,这P个物理资源块为参考信号块;L-P个物理资源块中均包含多于H+T个符号,即存在可用于传输相关信息的剩余的符号,这种情况下,这L-P个物理资源块为数据块。
在一实施例中,在P等于0的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,除前H个符号和后T个符号以外的符号用于传输相关信息;在P等于L的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,每个物理资源块中不包含相关信息;在P大于0且P小于L的情况下,每个时隙中的P个物理资源块中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,且每个物理资源块中不包含相关信息,每个时隙中的L-P个物理资源块中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,且除前H个符号和后T个符号以外的符号用于传输相关信息;其中,所述相关信息包括业务数据和第三参考信号中的至少之一。
图2为一实施例提供的通过物理资源块传输参考信号的示意图。如图2所示,每个物理资源块中包含M i=4个符号(i=1,2),其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T=2个符号(点状区域所示)用于传输第二参考信号,M i=T+H,T=H。物理资源块的最前面的H个符号上的第一参考信号与时域上相邻下一个物理资源块的最前面的H个符号上的第二参考信号相同;物理资源块的最后面的T个符号上的参考信号与所述时域上相邻下一个物理资源块的最后面的T个符号上的参考信号相同。每个物理资源块为参考信号块,不传输其它相关信息。
图3为另一实施例提供的通过物理资源块传输参考信号的示意图。如图3所示,每个物理资源块中包含M i=6个符号(i=1,2),其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T=2个符号(点状区域所示)用于传输第二参考信号,中间的M i-T-H=2个符号(无填充的方框区域所示)可用于传输其他的相关信息,例如业务数据,M i>T+H,T=H。物理资源块的最前面的H个符号上的第一参考信号与时域上相邻下一个物理资源块的最前面的H个符号上的第二参考信号相同;物理资源块的最后面的T个符号上的参考信号与所述时域上相邻下一个物理资源块的最后面的T个符号上的参考信号相同。每个物理资源块为数据块,即,既发送参考信号,也发送业务数据。
图4为再一实施例提供的通过物理资源块传输参考信号的示意图。如图4 所示,对于第i=1个物理资源块,包含M 1=9个符号,其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T=3个符号(点状区域所示)用于传输第二参考信号,M 1>T+H,T>H;对于第i=2个物理资源块,包含M 2=9个符号,其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T’=5个符号(点状区域所示)用于传输第二参考信号,M 2>T’+H,T’>H;第1个物理资源块的前2个符号所传输的第一参考信号与时域上相邻下一个物理资源块的前2个符号所传输的第一参考信号相同,第1个物理资源块的后3个符号所传输的第二参考信号与时域上相邻下一个物理资源块的最后3个符号所传输的第二参考信号相同。第1个物理资源块中,除前2个符号和后3个符号以外的4个符号可用于传输其他的相关信息,例如业务数据(无填充的方框区域所示)和第三参考信号。第2个物理资源块中最后5个符号传输参考信号,能为时域上相邻下一个物理资源块提供更长的循环前缀,能够在更大程度上克服多径时延的问题。本实施例中,物理资源块的最前面的H个符号上的第一参考信号与时域上相邻下一个物理资源块的最前面的H个符号上的第二参考信号相同;物理资源块的最后面的T个符号上的参考信号与所述时域上相邻下一个物理资源块的最后面的T个符号上的参考信号相同。每个物理资源块为数据块,即,既发送参考信号,也发送业务数据。
图5为又一实施例提供的通过物理资源块传输参考信号的示意图。如图5所示,对于第i=1个物理资源块,包含M 1=5个符号,其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T=3个符号(点状区域所示)用于传输第二参考信号,M 1=T+H,T>H;对于第i=2个物理资源块,包含M 2=10个符号,其中,前H=2个符号(斜线区域所示)用于传输第一参考信号,后T=3个符号(点状区域所示)用于传输第二参考信号,中间的M 2-T-H=5个符号(无填充的方框区域所示)可用于传输其他的相关信息,例如业务数据,M 2>T+H,T>H。物理资源块的最前面的H个符号上传输的第一参考信号与时域上相邻下一个物理资源块的最前面的H个符号上传输的第一参考信号相同;物理资源块的最后面的T个符号上传输的第二参考信号与所述时域上相邻下一个物理资源块的最后面的T个符号上传输的第二参考信号相同。第1个物理资源块为参考信号块,第2个物理资源块为数据块。
在一实施例中,对于时域上相邻的两个物理资源块,后者的长度是前者的长度的整数倍,例如图5中,第2个物理资源块的长度是第1个物理资源块的长度的2倍。
图6为又一实施例提供的通过物理资源块传输参考信号的示意图;如图6所示,一个时隙包含L=1个物理资源块。一个物理资源块中(或一个时隙中)包含M i=14个符号(i=1),在时域上处于时隙最前面的H=2个符号上传输第一 参考信号,在时域上处于时隙最后面的T=3个符号上传输第二参考信号,在时域上处于所述时隙最中间的M i-T-H=9个符号上传输其他的相关信息,例如业务数据。每个时隙的最前面的H个符号上的第一参考信号与时域上相邻下一个时隙的最前面的H个符号上的第一参考信号相同。每个时隙的最后面的T个符号上的第二参考信号与时域上相邻下一个时隙的最后面的T个符号上的第二参考信号相同,M 1>T+H,T>H。
图7为又一实施例提供的通过物理资源块传输参考信号的示意图。如图7所示,在一个时隙中包含L个物理资源块,其中,有P个物理资源块包含T+H个符号,有L-P个物理资源块包含多于T+H个符号,L≥P≥0。图7中,P个物理资源块均包含T+H=5个符号,P个物理资源块的最前面的H=2个符号上传输第一参考信号,P个物理资源块的最后面的T=3个符号传输第二参考信号,P个物理资源块均为参考信号块。L-P个物理资源块均包含多于T+H个符号,L-P个物理资源块的最前面的H=2个符号上传输第一参考信号,L-P个物理资源块的最后面的T=3个符号传输第二参考信号,其他的M i-T-H个符号传输其他相关信息,例如业务数据,L-P个物理资源块均为数据块。L个物理资源块中最前面的2(H=2)个符号上的第一参考信号相同,L个物理资源块中最后面的3(T=3)个符号上的第二参考信号相同。P个物理资源块中的部分物理资源块置于该时隙的最前面,剩余的部分物理资源块置于该时隙的最后面,L-P个物理资源块可以置于时隙的中间。
在一实施例中,还包括:
步骤1010:对物理资源块中每个符号的频域数据分别进行快速傅里叶逆变换(Inverse Fast Fourier Transform,IFFT),得到每个符号的过采样时域数据。
步骤1020:通过波形函数对每个符号的过采样时域数据进行调制,其中,所述波形函数的自变量区间长度为N与T1的乘积,经过调制的每个符号的时域数据序列的长度为N与T1的乘积,N为大于1的实数,T1为正数。
步骤1030:依次将调制后的每个符号的时域数据序列在相邻的上一个符号的时域数据序列的基础上延迟T1,使得物理资源块中的相邻符号间隔为T1,并将延迟后的每个符号的时域数据序列叠加。
图8为一实施例提供的对物理资源块中时域上M i个符号进行调制的示意图。
如图8所示,每条横线代表每个子载波,实线代表该子载波承载了数据,虚线代表该子载波没有承载数据,也等价于该子载波承载了零数据。在物理资源块中时域上M i个符号的频域数据的两边的子载波上分别添加零数据,从而在IFFT操作后可以获得过采样时域数据,然后经过波形调制获得M i个符号对应的 长度为N×T1的时域数据序列,然后将调制后的每个符号的时域数据序列在相邻上一个符号的时域数据序列的基础上延迟(或错开)T1后进行叠加。
图9为一实施例提供的M i个符号的时域数据序列叠加的示意图。
本实施例中,物理资源块时域上包含有M i=14个符号,这14个符号的最前面的H=2个符号上传输第一参考信号,最后面的T=3个符号上传输第二参考信号,中间的M i-H-T=9个符号上发送业务数据。这14个符号的子载波间隔的倒数为T0。
第一行的五个方框(斜线区域所示)表示第一个符号的时域数据序列(由第一个符号上的时域数据经过波形调制得到);第二行的五个方框(斜线区域所示)表示第二个符号的时域数据序列(由第二个符号上的时域数据经过波形调制得到),第二个符号的时域数据序列相比于第一个符号的时域数据序列延迟了T1;第三行的五个方框(无填充区域所示)表示第三个符号的时域数据序列(由第三个符号上的时域数据经过波形调制得到),第三个符号的时域数据序列相比于第二个符号的时域数据序列延迟了T1,即相比于第一个符号的时域数据序列延迟了2T1;以此类推,最后一行的五个方框(点状区域所示)表示第14个符号的时域数据序列(由第14个符号上的时域数据经过波形调制得到),第14个符号的时域数据序列相比于第13个符号的时域数据序列延迟了T1,即相比于第一个符号的时域数据序列延迟了13T1。其中,最前面的2个符号上传输第一参考信号,最后面的3个符号上传输第二参考信号,物理资源块上最前面的2个符号上传输的第一参考信号与时域上相邻下一个物理资源块最前面的H个符号上传输的第一参考信号相同,物理资源块上最后面的3个符号上传输的第二参考信号与时域上相邻下一个物理资源块最后面的T个符号上传输的第二参考信号相同。
图9中,两条竖实线之间的距离表示一个物理资源块的长度;两条虚实线分别表示该物理资源块的所有符号经过波形调制后的整体的起始位置和结束位置。在叠加过程中,可以将从整体的起始位置(靠左的竖虚线)起向后一定长度的时域数据序列叠加至该物理资源块长度的结束位置(靠右的竖实线)之前的相同长度的区域内,将从整体的结束位置(靠右的竖虚线)起向前一定长度的时域数据序列叠加至该物理资源块长度的起始位置(靠左的竖实线)之后的相同长度的区域内,从而保证一个物理资源块的长度不变,即循环叠加。或者,对波形调制后M i个符号的时域数据序列可以进行线性叠加,将超出物理资源块长度的时域数据序列分别叠加在相邻的上一个物理资源块和下一个物理资源块中。
在一实施例中,波形调制是指,以T0为周期,首先分别对物理资源块中的 每个符号的时域数据进行复制,得到每个符号对应的长度为5×T0的时域数据;此外,在延迟和叠加之前,还使用设定的波形函数的离散函数值分别与每个符号长度为5×T0的数据序列进行点乘,以进行波形调制,得到14个符号对应的经过波形调制后的长度为5×T0的时域数据序列。
如图9所示,将14个波形调制后长度为5×T0的时域数据序列在时域上依次延迟(或错开)T1后进行叠加,得到的是长度为13×T1+5T0的时域数据序列。利用物理资源块的长度(两条实线)截取长度为13×T1+5T0的时域数据序列,将两条实线之前和之后的时域数据序列分别叠加到两条实线区域内的最后面和最前面,使截取后的时域数据序列的长度保持为14×T1,即物理资源块的长度保持为14×T1,其中T1>T0。本实施例中,每个符号的时域数据经过波形调制后的长度为5×T0=5T0/T1×T1,即N=(5T0/T1)。
在一实施例中,每个时隙中的L个物理资源块中包含的子载波个数相同,每个时隙中的L个物理资源块中的子载波间隔相同。
在一实施例中,T1大于T0,或者,T1小于或等于T0;其中,T0为子载波间隔的倒数。
在一实施例中,在T1大于T0的情况下,T1为T0的a倍,其中,a的取值范围为[15/14,2],或者为[8/7,2]。
本实施例中,T1的取值为
Figure PCTCN2021117213-appb-000001
至2T0,或者为
Figure PCTCN2021117213-appb-000002
至2T0。
在一实施例中,还包括:
步骤1001:在所述物理资源块中频域上的子载波的两边的多个子载波上添加零数据。本实施例中,通过添加零数据以实现过采样。
在一实施例中,波形函数为根升余弦函数、升余弦函数、分段函数和矩形函数中的一种;其中,升余弦函数为时域上的升余弦函数,或者频域上的升余弦函数通过IFFT变化到时域上的函数;根升余弦函数为时域上的根升余弦函数,或者频域上的根升余弦函数通过IFFT变化到时域上的函数;分段函数中的非零函数值由在不同自变量区间的多个数据表达式组合表示。
图10为一实施例提供的波形函数的示意图。如图10所示,细实线所表示的是一种扩展根升余弦函数,虚线所示的波形函数1是频域上的根升余弦函数通过IFFT变化到时域上的函数,粗实线所示的波形函数2是时域上的升余弦函数。
在一实施例中,所述波形函数的非零函数值对应的自变量区间的最大时间跨度大于T1;或者,所述波形函数的非零函数值对应的自变量区间的最大时间 跨度等于5T1。
在一实施例中,步骤1020,包括:
以T0为周期,对每个符号上的过采样时域数据进行复制,得到每个符号对应的长度为N与T1的乘积的数据序列,T0为子载波间隔的倒数;将所述波形函数的离散函数值分别与每个符号对应的长度为N与T1的乘积的数据序列进行点乘,得到对应的波形调制后的长度为N与T1的乘积的时域数据序列。
本实施例中,通过点乘得到波形调制后的时域数据序列的过程可以理解为加窗处理的过程。
在一实施例中,所述波形函数为连续函数,所述波形函数的离散函数值通过对所述连续函数的值进行采样得到,采样的间隔等于每个符号的时域数据中相邻的离散数据间的时间间隔;或者,所述波形函数为离散函数,所述波形函数的离散函数值的个数与每个符号的长度为N与T1的乘积的时域数据序列中离散数据的个数相同。
在一实施例中,每个时隙中包含L个物理资源块,L大于或等于1;每个时隙中的L个物理资源块调制使用的波形函数相同;所述L个所述物理资源块最后面的T个符号上的参考信号相同。不同时隙中的物理资源块调制使用的波形函数相同或不同。
本申请实施例还提供一种参考信号传输装置。图11为一实施例提供的一种参考信号传输装置的结构示意图。如图11所示,所述参考信号传输装置包括:第一传输模块210和第二传输模块220。
第一传输模块210,设置为通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;第二传输模块220,设置为通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
本实施例的参考信号传输装置,第一参考信号和第二参考信号供接收端进行相位估计与补偿、频偏纠正和辅助信道估计等,满足对相位噪声的估计需求,进而提高接收端的解调性能。
在一实施例中,所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同。
通过每个物理资源块的前H个符号发送第一参考信号,且所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同,能够抵抗上下行干扰。
在一实施例中,所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同。
通过每个物理资源块的后T个符号发送第二参考信号,且所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同,即所述物理资源块的最后面的参考信号符号可以看作时域上相邻的下一个物理资源块的循环前缀,从而克服多径时延的问题,提高接收端解调性能。
在一实施例中,所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同,所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同,能够降低带外泄露。
在一实施例中,每个时隙中包含L个物理资源块,L大于或等于1;每个时隙中第i个物理资源块由时域上的M i个符号和频域上的K i个子载波组成,其中,M i大于或等于T与H的和,K i大于或等于1,i为小于或等于L的正整数。
在一实施例中,在每个时隙中的L个物理资源块中,有P个物理资源块中包含的符号数量等于T与H的和;有L-P个物理资源块中包含的符号数量大于T与H的和;其中,P大于或等于0,且P小于或等于L。
在一实施例中,在P等于0的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,除前H个符号和后T个符号以外的符号用于传输相关信息;在P等于L的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,每个物理资源块中不包含相关信息;在P大于0且P小于L的情况下,每个时隙中的P个物理资源块中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,且每个物理资源块中不包含相关信息,每个时隙中的L-P个物理资源块中的每个物理资源块时域上的前H个符号用于传输第一参考信号,后T个符号用于传输第二参考信号,且除前H个符号和后T个符号以外的符号用于传输相关信息;其中,所述相关信息包括业务数据和第三参考信号中的至少之一。
在一实施例中,每个时隙中的L个物理资源块中包含的子载波个数相同,每个时隙中的L个物理资源块中的子载波间隔相同。
在一实施例中,还包括:
过采样模块,设置为对物理资源块中每个符号的频域数据分别进行IFFT,得到每个符号的过采样时域数据;波形调制模块,设置为通过波形函数对每个 符号的过采样时域数据进行调制,其中,所述波形函数的自变量区间长度为N与T1的乘积,经过调制的每个符号的时域数据序列的长度为N与T1的乘积,N为大于1的实数,T1为正数;叠加模块,设置为依次将调制后的每个符号的时域数据序列在相邻的上一个符号的时域数据序列的基础上延迟T1,使得所述物理资源块中的相邻符号间隔为T1,并将延迟后的每个符号的时域数据序列叠加。
在一实施例中,T1大于T0,或者,T1小于或等于T0;其中,T0为子载波间隔的倒数。
在一实施例中,在T1大于T0的情况下,T1为T0的a倍,其中,a的取值范围为[15/14,2],或者为[8/7,2]。
在一实施例中,还包括:
添加模块,设置为在所述物理资源块中频域上子载波两边多个子载波上添加零数据。
在一实施例中,所述波形函数为根升余弦函数、升余弦函数、分段函数和矩形函数中的一种;其中,所述升余弦函数为时域上的升余弦函数,或者频域上的升余弦函数通过IFFT变化到时域上的函数;所述根升余弦函数为时域上的根升余弦函数,或者频域上的根升余弦函数通过IFFT变化到时域上的函数;所述分段函数中的非零函数值由在不同自变量区间的多个数据表达式组合表示。
在一实施例中,所述波形函数的非零函数值对应的自变量区间的最大时间跨度大于T1;或者,所述波形函数的非零函数值对应的自变量区间的最大时间跨度等于5T1。
在一实施例中,波形调制模块设置为:
以T0为周期,对每个符号上的过采样时域数据进行复制,得到每个符号对应的长度为N与T1的乘积的数据序列,T0为子载波间隔的倒数;将所述波形函数的离散函数值分别与每个符号对应的长度为N与T1的乘积的数据序列进行点乘,得到对应的波形调制后的长度为N与T1的乘积的时域数据序列。
在一实施例中,所述波形函数为连续函数,所述波形函数的离散函数值通过对所述连续函数的值进行采样得到,采样的间隔等于每个符号的时域数据中相邻的离散数据间的时间间隔;或者,所述波形函数为离散函数,所述波形函数的离散函数值的个数与每个符号的长度为N与T1的乘积的时域数据序列中离散数据的个数相同。
在一实施例中,每个时隙中包含L个物理资源块,L大于或等于1;每个时隙中的L个物理资源块调制使用的波形函数相同;不同时隙中的物理资源块调 制使用的波形函数相同或不同。
本实施例提出的参考信号传输装置与上述实施例提出的应用于通信节点的参考信号传输方法属于同一构思,未在本实施例中详尽描述的技术细节可参见上述任意实施例,并且本实施例具备与执行应用于第二节点的参考信号传输方法相同的效果。
本申请实施例还提供一种通信节点。上述应用于通信节点的参考信号传输方法可以由参考信号传输装置执行,该参考信号传输装置可以通过软件和/或硬件的方式实现,并集成在所述通信节点中。所述通信节点为参考信号的发送端或接收端。
图12为一实施例提供的一种通信节点的硬件结构示意图,如图12所示,本申请提供的通信节点,包括一个或多个处理器51,其中所述一个或多个处理器51在执行时实现本申请任一实施例提供的参考信号传输方法,相应的,通信节点可以为终端。
通信节点还可以包括存储装置52;该通信节点中的处理器51可以是一个或多个,图12中以一个处理器51为例;存储装置52用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器51执行,使得所述一个或多个处理器51实现如本申请实施例中所述的参考信号传输方法。
通信节点还包括:通信装置53、输入装置54和输出装置55。
通信节点中的处理器51、存储装置52、通信装置53、输入装置54和输出装置55可以通过总线或其他方式连接,图12中以通过总线连接为例。
输入装置54可用于接收输入的数字或字符信息,以及产生与通信节点的用户设置以及功能控制有关的按键信号输入。输出装置55可包括显示屏等显示设备。
通信装置53可以包括接收器和发送器。通信装置53设置为根据处理器51的控制进行信息收发通信。
存储装置52作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例所述参考信号传输方法对应的程序指令/模块(例如,第一传输模块210和第二传输模块220)。存储装置52可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据通信节点的使用所创建的数据等。此外,存储装置52可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一 些实例中,存储装置52可包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至通信节点。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本申请实施例中任一所述的参考信号传输方法。其中,参考信号传输方法,包括:通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是,但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、闪存、光纤、便携式CD-ROM、光存储器件、磁存储器件、或者上述的任意合适的组合。计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于:电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:无线、电线、光缆、无线电频率(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机 上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络,包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN),连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已。
本领域内的技术人员应明白,术语终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (19)

  1. 一种参考信号传输方法,包括:
    通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;
    通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
  2. 根据权利要求1所述的方法,其中,
    所述物理资源块的前H个符号对应的第一参考信号与时域上相邻的下一个物理资源块的前H个符号对应的参考信号相同。
  3. 根据权利要求1所述的方法,其中,
    所述物理资源块的后T个符号对应的第二参考信号与时域上相邻的下一个物理资源块的后T个符号对应的参考信号相同。
  4. 根据权利要求1所述的方法,其中,每个时隙中包含L个物理资源块,L大于或等于1;
    每个时隙中第i个物理资源块由时域上的M i个符号和频域上的K i个子载波组成,其中,M i大于或等于T与H的和,K i大于或等于1,i为小于或等于L的正整数。
  5. 根据权利要求4所述的方法,其中,在每个时隙中的L个物理资源块中,
    有P个物理资源块中包含的符号数量均等于T与H的和;有L-P个物理资源块中包含的符号数量均大于T与H的和;
    其中,P大于或等于0,且P小于或等于L。
  6. 根据权利要求5所述的方法,其中,
    在P等于0的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输所述第一参考信号,后T个符号用于传输所述第二参考信号,除所述前H个符号和所述后T个符号以外的符号用于传输相关信息;
    在P等于L的情况下,每个时隙中的每个物理资源块时域上的前H个符号用于传输所述第一参考信号,后T个符号用于传输所述第二参考信号,每个物理资源块中不包含相关信息;
    在P大于0且P小于L的情况下,每个时隙中的P个物理资源块中的每个物理资源块时域上的前H个符号用于传输所述第一参考信号,后T个符号用于传输所述第二参考信号,且所述P个物理资源块中的每个物理资源块中不包含相关信息,每个时隙中的L-P个物理资源块中的每个物理资源块时域上的前H 个符号用于传输所述第一参考信号,后T个符号用于传输所述第二参考信号,且所述L-P个物理资源块中的每个物理资源块时域上除前H个符号和后T个符号以外的符号用于传输相关信息;
    其中,所述相关信息包括业务数据和第三参考信号中的至少之一。
  7. 根据权利要求4所述的方法,其中,每个时隙中的L个物理资源块中包含的子载波个数相同,每个时隙中的L个物理资源块中的子载波间隔相同。
  8. 根据权利要求1所述的方法,还包括:
    对所述物理资源块中的每个符号的频域数据进行快速傅里叶逆变换IFFT,得到每个符号的过采样时域数据;
    通过波形函数对每个符号的过采样时域数据进行调制,其中,所述波形函数的自变量区间长度为N与T1的乘积,经过调制的每个符号的时域数据序列的长度为N与T1的乘积,N为大于1的实数,T1为正数;
    依次将调制后的每个符号的时域数据序列在相邻的上一个符号的时域数据序列的基础上延迟T1,使得所述物理资源块中的相邻符号间隔为T1,并将延迟后的每个符号的时域数据序列叠加。
  9. 根据权利要求8所述的方法,其中,T1大于T0,或者,T1小于或等于T0;
    其中,T0为子载波间隔的倒数。
  10. 根据权利要求9所述的方法,其中,在T1大于T0的情况下,T1为T0的a倍,其中,a的取值范围为[15/14,2],或者为[8/7,2]。
  11. 根据权利要求8所述的方法,还包括:
    在所述物理资源块中频域上的子载波的两边的多个子载波上添加零数据。
  12. 根据权利要求8所述的方法,其中,所述波形函数为根升余弦函数、升余弦函数、分段函数和矩形函数中的一种;
    其中,所述升余弦函数为时域上的升余弦函数,或者频域上的升余弦函数通过IFFT变化到时域上的函数;
    所述根升余弦函数为时域上的根升余弦函数,或者频域上的根升余弦函数通过IFFT变化到时域上的函数;
    所述分段函数中的非零函数值由在不同自变量区间的多个数据表达式组合表示。
  13. 根据权利要求8所述的方法,其中,所述波形函数的非零函数值对应的 自变量区间的最大时间跨度大于T1;或者,
    所述波形函数的非零函数值对应的自变量区间的最大时间跨度等于5T1。
  14. 根据权利要求8所述的方法,其中,所述通过波形函数对每个符号的过采样时域数据进行调制,包括:
    以T0为周期,对每个符号上的过采样时域数据进行复制,得到每个符号对应的长度为N与T1的乘积的数据序列,T0为子载波间隔的倒数;
    将所述波形函数的离散函数值分别与每个符号对应的长度为N与T1的乘积的数据序列进行点乘,得到对应的波形调制后的长度为N与T1的乘积的时域数据序列。
  15. 根据权利要求14所述的方法,其中,所述波形函数为连续函数,所述波形函数的离散函数值通过对所述连续函数的值进行采样得到,采样的间隔等于每个符号的时域数据中相邻的离散数据间的时间间隔;或者,
    所述波形函数为离散函数,所述波形函数的离散函数值的个数与每个符号的长度为N与T1的乘积的时域数据序列中离散数据的个数相同。
  16. 根据权利要求8所述的方法,其中,每个时隙中包含L个物理资源块,L大于或等于1;
    每个时隙中的L个物理资源块调制使用的波形函数相同;
    不同时隙中的物理资源块调制使用的波形函数相同或不同。
  17. 一种参考信号传输装置,包括:
    第一传输模块,设置为通过物理资源块时域上的前H个符号传输第一参考信号,其中,H大于或等于2;
    第二传输模块,设置为通过物理资源块时域上的后T个符号传输第二参考信号,其中,T大于或等于H。
  18. 一种通信节点,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-16中任一项所述的参考信号传输方法。
  19. 一种计算机可读存储介质,存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-16中任一项所述的参考信号传输方法。
PCT/CN2021/117213 2020-09-28 2021-09-08 参考信号传输方法、装置、通信节点及存储介质 WO2022062904A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/028,055 US20230344577A1 (en) 2020-09-28 2021-09-08 Reference signal transmission method and device, communication node, and storage medium
EP21871276.8A EP4221034A1 (en) 2020-09-28 2021-09-08 Reference signal transmission method and device, communication node, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011043278.9 2020-09-28
CN202011043278.9A CN112134676A (zh) 2020-09-28 2020-09-28 参考信号传输方法、装置、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2022062904A1 true WO2022062904A1 (zh) 2022-03-31

Family

ID=73844377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117213 WO2022062904A1 (zh) 2020-09-28 2021-09-08 参考信号传输方法、装置、通信节点及存储介质

Country Status (4)

Country Link
US (1) US20230344577A1 (zh)
EP (1) EP4221034A1 (zh)
CN (1) CN112134676A (zh)
WO (1) WO2022062904A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134676A (zh) * 2020-09-28 2020-12-25 中兴通讯股份有限公司 参考信号传输方法、装置、通信节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125184A (zh) * 2013-04-23 2014-10-29 电信科学技术研究院 一种导频信号的传输方法及设备
WO2017155276A1 (ko) * 2016-03-11 2017-09-14 엘지전자 주식회사 V2x 통신에서의 참조신호 송신 방법 및 이를 위한 장치
CN107612859A (zh) * 2016-07-12 2018-01-19 中兴通讯股份有限公司 发射设备、数据调制方法和装置、信号发送方法和装置
CN107734660A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 资源配置方法、装置及设备
US20200145272A1 (en) * 2018-11-01 2020-05-07 Research Cooperation Foundation Of Yeungnam University Method for eliminating interference between resource blocks for filterbank multicarrier scheme and apparatus using thereof
CN112134676A (zh) * 2020-09-28 2020-12-25 中兴通讯股份有限公司 参考信号传输方法、装置、通信节点及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104125184A (zh) * 2013-04-23 2014-10-29 电信科学技术研究院 一种导频信号的传输方法及设备
WO2017155276A1 (ko) * 2016-03-11 2017-09-14 엘지전자 주식회사 V2x 통신에서의 참조신호 송신 방법 및 이를 위한 장치
CN107612859A (zh) * 2016-07-12 2018-01-19 中兴通讯股份有限公司 发射设备、数据调制方法和装置、信号发送方法和装置
CN107734660A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 资源配置方法、装置及设备
US20200145272A1 (en) * 2018-11-01 2020-05-07 Research Cooperation Foundation Of Yeungnam University Method for eliminating interference between resource blocks for filterbank multicarrier scheme and apparatus using thereof
CN112134676A (zh) * 2020-09-28 2020-12-25 中兴通讯股份有限公司 参考信号传输方法、装置、通信节点及存储介质

Also Published As

Publication number Publication date
CN112134676A (zh) 2020-12-25
US20230344577A1 (en) 2023-10-26
EP4221034A1 (en) 2023-08-02

Similar Documents

Publication Publication Date Title
US8761303B2 (en) Unequal multipath protection of different frames within a superframe using different cyclic prefix lengths
US8532204B2 (en) Peak-to-average power ratio (PAR) reduction based on active-set tone reservation
US10263748B2 (en) Method and apparatus for transmitting uplink data and user equipment
US10002995B2 (en) Multiple transmission windows for OFDM symbol
WO2022007507A1 (zh) 数据传输方法、装置、设备和存储介质
CN108289069B (zh) 一种参考信号的传输方法、发送端和接收端
CN104104623B (zh) 正交频分复用系统中信道估计方法及其装置
JP2007329539A (ja) 無線送信装置及び無線送信方法
CN107819716B (zh) 一种基于频域的频偏补偿方法及设备
CN113452641A (zh) 一种fbmc信道估计方法、系统、计算机设备、终端
WO2022062904A1 (zh) 参考信号传输方法、装置、通信节点及存储介质
US11737077B2 (en) Transmission device and transmission method
US8976878B2 (en) Polynomial phases for multi-carrier modulation schemes with time domain windowing
CN113225292B (zh) 利用导频分块降低ofdm峰均比的方法
US20230049687A1 (en) Systems and Methods for Shaped Single Carrier Orthogonal Frequency Division Multiplexing with Low Peak to Average Power Ratio
KR102177342B1 (ko) 통신 시스템의 신호 수신 방법 및 장치
WO2022020993A1 (zh) 时域加窗方法及相关产品
WO2023016432A1 (zh) 数据传输方法、装置、通信节点及存储介质
US20240097956A1 (en) Projected signals using discrete prolate spheroidal sequences
Adegbite et al. Time-domain SI estimation for SLM based OFDM systems without SI transmission
WO2024041016A1 (zh) 信号传输方法、设备和存储介质
TWI642280B (zh) 無線通訊設備及無線訊號產生方法
WO2023016433A1 (zh) 参考信号配置方法、设备和存储介质
CN106850492B (zh) 一种适用于ofdm系统的峰均比降低方法
WO2023280094A1 (zh) 信号发送方法、接收方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871276

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023005648

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2021871276

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021871276

Country of ref document: EP

Effective date: 20230428

ENP Entry into the national phase

Ref document number: 112023005648

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230327