WO2016045384A1 - 一种扩频处理方法及装置 - Google Patents

一种扩频处理方法及装置 Download PDF

Info

Publication number
WO2016045384A1
WO2016045384A1 PCT/CN2015/077700 CN2015077700W WO2016045384A1 WO 2016045384 A1 WO2016045384 A1 WO 2016045384A1 CN 2015077700 W CN2015077700 W CN 2015077700W WO 2016045384 A1 WO2016045384 A1 WO 2016045384A1
Authority
WO
WIPO (PCT)
Prior art keywords
binary pseudo
sequence
random
complex
random sequence
Prior art date
Application number
PCT/CN2015/077700
Other languages
English (en)
French (fr)
Inventor
李卫敏
袁志锋
刘向宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016045384A1 publication Critical patent/WO2016045384A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects

Definitions

  • CDMA Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • Current code division multiple access systems such as Direct Sequence-Code Division Multiple Access (DS-CDMA), Multi-Carrier Code Division Multiple Access (MC-CDMA, Multi-) Carrier Code Division Multiple Access), etc.
  • DS-CDMA Direct Sequence-Code Division Multiple Access
  • MC-CDMA Multi-Carrier Code Division Multiple Access
  • Multi-) Carrier Code Division Multiple Access etc.
  • different transmitters or terminals use different binary pseudo-random (PN, Pseudo-Noise) real sequence as a spreading sequence to spread the data symbols transmitted by each.
  • PN binary pseudo-random
  • the transmitters can modulate the spread data symbol sequences onto the same time-frequency resource for transmission, and then the receiver or base station receives the data from the receiver.
  • the superimposed signals of the transmitted signals of the respective transmitters are then used by the receiver to distinguish the transmission signals of the respective transmitters according to different spreading sequences used by different transmitters, thereby realizing the reception detection of the signals transmitted by the respective transmitters.
  • a binary pseudo-random sequence may also be referred to as a binary pseudo-random sequence, and its element value is usually expressed as 0 or 1, and may also be expressed as a bipolar sequence, that is, 0 is represented as +1, 1 is represented as -1, or, 0. Expressed as -1, 1 is represented as +1.
  • the receiver can be effectively suppressed by using a multi-user signal detector with interference cancellation function, such as serial interference cancellation multi-user detector, parallel interference cancellation multi-user detector, etc., thereby increasing system capacity. And achieve more load terminal access under a certain transmission rate condition, to achieve system overload.
  • a multi-user signal detector with interference cancellation function such as serial interference cancellation multi-user detector, parallel interference cancellation multi-user detector, etc.
  • the interference cancellation effect of the access access and the multi-user reception detection performance affect the number of terminal accesses of the system, thereby affecting the load capacity of the system or the supported overload level, and reducing the communication experience of the user's non-orthogonal overload access.
  • the embodiment of the invention provides a method and device for spreading spectrum, which can improve the receiving and detecting performance of code division multiple access non-orthogonal access, and ensure the effect of interference cancellation, so as to support a higher system overload level, thereby improving user non-positive Communicate the communication experience of overload access.
  • An embodiment of the present invention provides a method for spreading a frequency spectrum, including:
  • the data symbols to be transmitted are subjected to spreading processing using the generated complex spreading sequence.
  • the method further comprises: generating the two or more binary pseudo-random sequences.
  • the generating the two or more binary pseudo-random sequences comprises: generating separately by two or more binary pseudo-random sequence generators that are independent of each other.
  • the generating two or more binary pseudo-random sequences includes:
  • the pre-set split strategy includes:
  • the generated one binary pseudo-random sequence is periodically sampled to form two or more binary pseudo-random sequences.
  • the generating two or more binary pseudo-random sequences includes:
  • the length of the binary pseudo random sequence is the same as the length of the generated complex spreading sequence.
  • the generating the complex spreading sequence includes:
  • the two or more binary pseudo-random sequences are collectively mapped to a complex constellation diagram bit by bit, and the obtained complex sequence constitutes The complex spreading sequence;
  • mapping relationship between the two or more binary pseudo-random sequences and the complex constellation diagram is: multiple value sets and complex constellations of constituent elements of the two or more binary pseudo-random sequences a one-to-one correspondence between multiple constellation points;
  • the complex constellation diagram includes constellation points formed by two or more complex coordinates.
  • the two or more binary pseudo random sequences include a first binary pseudo random sequence and a second binary pseudo random sequence
  • the generating a complex spreading sequence includes:
  • phase shifting the second binary pseudo-random sequence according to a preset phase offset wherein the phase offset is a real number between 0 and 2 ⁇ ;
  • phase-shifted sequence is added bit by bit with the first binary pseudo-random sequence to obtain a complex spreading sequence.
  • the two or more binary pseudo random sequences include a first binary pseudo random sequence and a second binary pseudo random sequence
  • the generating a complex spreading sequence includes:
  • mapping the second binary pseudo-random sequence according to the mapping relationship between the binary pseudo-random sequence and the phase set; adding the mapped phase sequence to the first binary pseudo-random sequence bit by bit to obtain a complex spreading sequence; among them,
  • the mapping relationship between the binary pseudo-random sequence and the phase set is the constituent element of the binary pseudo-random sequence A one-to-one correspondence between a plurality of values of a prime and a plurality of phases in a set of phases; wherein the set of phases includes two or more phase values between 0 and 2 ⁇ .
  • the method further includes: performing the normalization process by multiplying the obtained complex spreading sequence by a normalization coefficient.
  • the complex spreading sequence used for performing spreading processing on the different data symbols to be transmitted is different.
  • the method before performing the spreading process on the data symbols to be sent, the method further includes: performing coding and modulation on the data bits to be sent to generate the data symbols to be sent.
  • the method further includes: performing carrier modulation on the spread spectrum processed data symbol sequence to form a transmit signal and transmitting the transmit signal to the receiver.
  • An embodiment of the present invention further provides a spread spectrum processing apparatus, including at least a generating module and a spread spectrum processing module, where
  • the generating module is configured to generate a complex spreading sequence according to two or more binary pseudo-random sequences
  • the spread spectrum processing module is configured to perform spreading processing on the data symbols to be transmitted by using the generated complex spread spectrum sequence.
  • the apparatus further comprises a generation module configured to generate the two or more binary pseudo-random sequences.
  • the generating module comprises two or more independent binary pseudo-random sequence generators, which are respectively configured to generate two or more binary pseudo-random sequences.
  • the generating module includes a binary pseudo random sequence generator
  • the binary pseudo-random sequence generator is configured to generate a binary pseudo-random sequence, and split the binary pseudo-random sequence into two or more binary pseudo-random sequences according to a preset splitting strategy; wherein
  • the pre-set split strategy includes:
  • a generated binary pseudo-random sequence is periodically sampled to form two or more binary pseudo-random sequences.
  • the generating module is configured to: bitify the two or more binary pseudo-random sequences according to a mapping relationship between two or more binary pseudo-random sequences and a complex constellation diagram Coordinate mapping to a complex constellation diagram, and the resulting complex sequence constitutes the complex spreading sequence;
  • mapping relationship between two or more binary pseudo-random sequences and a complex constellation diagram is: multiple sets of values of the constituent elements of the two or more binary pseudo-random sequences and multiple complex constellations A one-to-one correspondence between constellation points; wherein the complex constellation diagram includes constellation points formed by two or more complex coordinates.
  • the binary pseudo random sequence includes a first binary pseudo random sequence and a second binary pseudo random sequence
  • the generating module is configured to: phase shift the second binary pseudo random sequence according to a preset phase offset, wherein the phase offset is a real number between 0 and 2 ⁇ ; The sequence is added bit by bit with the first binary pseudo random sequence to obtain the complex spreading sequence.
  • the binary pseudo random sequence includes a first binary pseudo random sequence and a second binary pseudo random sequence
  • the generating module is configured to: map the second binary pseudo random sequence according to a mapping relationship between the binary pseudo random sequence and the phase set; and bitrate the mapped phase sequence and the first binary pseudo random sequence Adding to obtain the complex spreading sequence;
  • the mapping relationship between the binary pseudo-random sequence and the phase set is a one-to-one correspondence between multiple values of constituent elements of the binary pseudo-random sequence and multiple phases in the phase set; wherein the phase set includes two Or more than two phase values between 0 and 2 ⁇ .
  • the generating module is further configured to perform normalization processing on the obtained complex spreading sequence by multiplying the normalization coefficient.
  • the complex spreading sequence generated by the generating module is different;
  • the spread spectrum processing module is configured to: use the generated different complex spread spectrum sequences to be sent Different data symbols are sent for spreading processing.
  • the device further includes: a pre-processing module, configured to perform code-modulation on the data bits to be sent to generate the data symbols to be sent.
  • a pre-processing module configured to perform code-modulation on the data bits to be sent to generate the data symbols to be sent.
  • the device further includes: a transmitting module, configured to perform carrier modulation on the spread spectrum processed data symbol sequence to form a transmit signal and send the transmit signal to the receiver.
  • a transmitting module configured to perform carrier modulation on the spread spectrum processed data symbol sequence to form a transmit signal and send the transmit signal to the receiver.
  • the embodiment of the invention further provides a computer readable storage medium storing program instructions, which can be implemented when the program instructions are executed.
  • the technical solution of the embodiment of the present invention includes generating a complex spreading sequence according to two or more binary pseudo-random sequences, and performing spreading processing on the data symbols to be transmitted by using the generated complex spreading sequence.
  • each of the transmitters uses a complex spreading sequence generated according to two or more binary pseudo-random sequences to spread the respective data symbols to be transmitted, thereby ensuring different transmitters.
  • the low cross-correlation between the complex spread spectrum sequences, combined with the interference cancellation signal detector used in the existing receiver effectively distinguishes the signals transmitted by the respective transmitters, improves the interference cancellation effect of the receiver, and non-orthogonal connection.
  • the performance of multiple users receiving detection which in turn supports a higher level of system overload, improves the user's experience of non-orthogonal overload access and communication.
  • Embodiment 1 is a flowchart of a method for spread spectrum processing according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram showing the connection of components of a spread spectrum processing apparatus according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of an application example 1 for generating a complex spreading sequence
  • FIG. 4 is a schematic diagram of an application example 2 for generating a complex spreading sequence
  • FIG. 5 is a schematic diagram showing an example of the composition of a binary pseudo-random generator
  • FIG. 6 is a schematic diagram of an application example 3 for generating a complex spreading sequence
  • FIG. 7 is a schematic diagram of an application example 4 of generating a complex spreading sequence
  • FIG. 8 is a schematic diagram of an application example 5 of generating a complex spreading sequence
  • FIG. 9 is a schematic diagram of an application example 6 for generating a complex spreading sequence
  • FIG. 10 is a schematic diagram showing an example of a mapping relationship between two binary pseudo-random sequences and a complex constellation diagram
  • 11 is a schematic diagram showing an example of a mapping relationship between three binary pseudo-random sequences and a complex constellation diagram.
  • FIG. 1 is a flowchart of a method for performing a spread spectrum processing according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes:
  • Step 100 Generate a complex spreading sequence according to two or more binary pseudo-random sequences.
  • the method may also include generating two or more binary pseudo-random sequences, including:
  • Two or more binary pseudo-random sequences may be generated by separate binary pseudo-random sequence generators respectively; or
  • a binary pseudo-random sequence generator may also be generated by a binary pseudo-random sequence generator, and then the binary pseudo-random sequence is split into two or more binary pseudo-random sequences according to a preset splitting strategy.
  • the split strategy includes but is not limited to:
  • a generated binary pseudo-random sequence is periodically sampled to form two or more binary pseudo-random sequences.
  • the length of the binary pseudo-random sequence is the same as the length of the generated complex spreading sequence.
  • Generating a complex spreading sequence in this step includes: following two or more binary pseudo-random sequences
  • the mapping relationship with the complex constellation diagram maps two or more binary pseudo-random sequences to the complex constellation map bit by bit, and the obtained complex sequence constitutes a complex spreading sequence. among them,
  • the complex constellation diagram includes constellation points formed by two or more complex coordinates, configured by the system or preset.
  • the mapping relationship between two or more binary pseudo-random sequences and a complex constellation diagram is: multiple sets of values of constituent elements of two or more binary pseudo-random sequences and multiple complex constellations One-to-one correspondence between constellation points. This mapping relationship can be configured by the system or preset.
  • the binary pseudo-random sequence in this step includes a first binary pseudo-random sequence and a second binary pseudo-random sequence; then, generating the complex spreading sequence in this step includes:
  • phase shifting the second binary pseudo-random sequence according to a preset phase offset wherein the phase offset is a real number between 0 and 2 ⁇ ;
  • phase-shifted sequence is added bit by bit with the first binary pseudo-random sequence to obtain a complex spreading sequence.
  • mapping the second binary pseudo-random sequence according to a mapping relationship between the binary pseudo-random sequence and the phase set; wherein the phase set includes two or more phase values between 0 and 2 ⁇ , configured by the system Or pre-set; the mapping relationship between the binary pseudo-random sequence and the phase set is a one-to-one correspondence between multiple values of constituent elements of the binary pseudo-random sequence and multiple phases in the phase set, configured by the system Or preset;
  • the mapped phase sequence is added bit by bit with the first binary pseudo random sequence to obtain a complex spreading sequence.
  • the two or more binary pseudo-random sequences in this step are generated by a binary pseudo-random sequence generator, or generated by a binary pseudo-random sequence generator according to a pseudo-random sequence mask configured by the system, or configured by the system.
  • the step further includes: normalizing the complex spreading sequence and multiplying the normalization coefficient. That is to say, the generated complex spreading sequence is a complex spreading sequence obtained by multiplying the normalization coefficient by normalization.
  • Step 101 Perform spreading processing on the data symbols to be transmitted by using the generated complex spreading sequence.
  • the data bits to be transmitted may be generated after the data bits to be transmitted are coded and modulated.
  • the spreading process is a process of multiplying the data symbols to be transmitted and each element of the complex spreading sequence by a complex number to form a sequence of data symbols having the same length as the complex spreading sequence.
  • the data symbols to be transmitted are subjected to spreading processing by using the generated complex spreading sequence, and the complex spreading sequences used for spreading the different data symbols to be transmitted may be different.
  • the data symbol sequence after the spread spectrum processing is subjected to carrier modulation to form a transmission signal and sent to the receiver.
  • the carrier modulation may be single carrier modulation or multi-carrier modulation.
  • the step may further comprise: receiving, by the receiver, transmission signals from two or more transmitters, and using the interference cancellation signal detector to perform reception detection on the signals transmitted by the plurality of transmitters.
  • the interference cancellation signal detector may be a SIC (Successive Interference Cancellation) signal detector or the like.
  • the receiver receives two or two transmission signals after being wirelessly transmitted over the air. Superimposed signals of signals transmitted by more than one transmitter.
  • each of the transmitters uses a complex spreading sequence generated according to two or more binary pseudo-random sequences to spread the respective data symbols to be transmitted, thereby ensuring different transmitters.
  • the low cross-correlation between the complex spread spectrum sequences combined with the interference cancellation signal detector used in the existing receiver, effectively distinguishes the signals transmitted by the respective transmitters, improves the interference cancellation effect of the receiver, and non-orthogonal connection.
  • the performance of multiple users receiving detection which in turn supports a higher level of system overload, improves the user's experience of non-orthogonal overload access and communication.
  • FIG. 2 is a schematic diagram showing the connection of components of a spread spectrum processing apparatus according to Embodiment 2 of the present invention. As shown in FIG. 2, at least a generating module and a spread spectrum processing module are included.
  • the generating module is configured to generate a complex spreading sequence according to two or more binary pseudo-random sequences
  • the spread spectrum processing module is configured to perform spreading processing on the data symbols to be transmitted by using the generated complex spread spectrum sequence.
  • the apparatus of the embodiment of the present invention further includes: a pre-processing module configured to generate, to be transmitted, data symbols to be transmitted after the data bits to be transmitted are coded and modulated.
  • a pre-processing module configured to generate, to be transmitted, data symbols to be transmitted after the data bits to be transmitted are coded and modulated.
  • the apparatus of the embodiment of the present invention further includes: a transmitting module, configured to perform carrier modulation on the sequence of the data symbols after the spreading processing to form a transmitting signal and send the signal to the receiver.
  • a transmitting module configured to perform carrier modulation on the sequence of the data symbols after the spreading processing to form a transmitting signal and send the signal to the receiver.
  • the generating module is configured to: map two or more binary pseudo-random sequences bit by bit to a complex constellation according to a mapping relationship between two or more binary pseudo-random sequences and a complex constellation diagram.
  • the resulting complex sequence constitutes a complex spreading sequence. among them,
  • mapping relationship between two or more binary pseudo-random sequences and a complex constellation diagram is: multiple sets of values of constituent elements of two or more binary pseudo-random sequences and multiple constellations of complex constellation diagrams A one-to-one correspondence between points.
  • This mapping relationship can be configured by the system or preset.
  • the complex constellation diagram includes constellation points formed by two or more complex coordinates, which are configured by the system or preset.
  • the binary pseudo-random sequence comprises a first binary pseudo-random sequence and a second binary pseudo-random sequence; then, the generating module is set to:
  • mapping the second binary pseudo-random sequence according to a mapping relationship between the binary pseudo-random sequence and the phase set; wherein the phase set includes two or more phase values between 0 and 2 ⁇ , configured by the system Or pre-set; the mapping relationship between the binary pseudo-random sequence and the phase set is a one-to-one correspondence between multiple values of constituent elements of the binary pseudo-random sequence and multiple phases in the phase set, configured by the system Or pre-setting; adding the mapped phase sequence to the first binary pseudo-random sequence bit by bit to obtain a complex spreading sequence.
  • the generating module is further configured to perform normalization processing on the complex spreading coefficient by multiplying the complex spreading coefficient to obtain a final complex spreading sequence.
  • the generating module is further configured to generate different complex spreading sequences for separately performing spreading processing on different data symbols to be sent by the spreading processing module.
  • the apparatus of the embodiment of the present invention further includes a generating module configured to generate two or more binary pseudo-random sequences.
  • the generation module includes two or more separate binary pseudo-random sequence generators arranged to generate two or more binary pseudo-random sequences, respectively.
  • the generating module includes a binary pseudo-random sequence generator configured to: generate a binary pseudo-random sequence, and split the binary pseudo-random sequence according to a preset splitting strategy. Forming two or more binary pseudo-random sequences; wherein the splitting strategy includes but is not limited to:
  • a generated binary pseudo-random sequence is periodically sampled to form two or more binary pseudo-random sequences.
  • the spread spectrum processing device of the embodiment of the present invention may be disposed in the transmitter or may be used as a single physical device.
  • FIG. 3 is a schematic diagram of an application example 1 for generating a complex spreading sequence
  • FIG. 4 is a schematic diagram of an application example 2 for generating a complex spreading sequence.
  • binary pseudo-random sequence generator 1 generates the first length of the same length as the complex spreading sequence.
  • binary pseudo-random sequence generator 2 generates and complex spread spectrum sequence length The same second binary pseudo-random sequence;
  • two binary pseudo-random sequences are formed by splitting a binary pseudo-random sequence generated by a binary pseudo-random sequence generator in the transmitter according to a splitting strategy, and the binary pseudo-random
  • the random sequence may be subjected to serial-to-parallel conversion, or segmentation storage, or periodically sampling to form two binary pseudo-random sequences of the same length as the complex spreading sequence, that is, the first binary pseudo-random sequence and the second binary pseudo-random sequence.
  • the length of the binary pseudo-random sequence generated by a binary pseudo-random sequence generator in the transmitter is twice the length of the complex spreading sequence, and the binary pseudo-random sequence element index initial The value is set to 0, that is, the elements of the even position of the binary pseudo-random sequence form a first binary pseudo-random sequence, and the elements of the odd-numbered positions of the binary pseudo-random sequence form a second binary pseudo-random sequence;
  • the segmentation storage mode it is assumed that the length of the binary pseudo-random sequence generated by a binary pseudo-random sequence generator in the transmitter is twice the length of the complex spreading sequence, then the binary pseudo-random sequence can be used.
  • the elements of the first half are stored as a first binary pseudo-random sequence, and the elements of the second half of the binary pseudo-random sequence are stored as a second binary pseudo-random sequence;
  • ComplexSeq represents a complex spreading sequence
  • Seq1 represents a first binary pseudo-random sequence
  • Seq2 represents a second binary pseudo-random sequence.
  • a 90° phase shift (or multiplication by e j ⁇ /2 ) for each element of Seq2 is equivalent to using Seq2 as the imaginary part of ComplexSeq
  • Seq1 as the real part of ComplexSeq.
  • the second binary pseudo-random sequence is "0, 1, 0, 1, 0, 0, 1, 1"
  • "0" is first represented as “1”
  • "1" is represented as "-1”
  • the second binary pseudo-random sequence is transformed into "1, -1, 1, -1, 1, 1, -1, -1”
  • each element of the transformed second binary pseudo-random sequence Performing a 90° phase shift is equivalent to multiplying e j ⁇ /2 to obtain “e j ⁇ /2 , -e j ⁇ /2 , e j ⁇ /2 , -e j ⁇ /2 , e j ⁇ /2 , e j ⁇ /2 , -e j ⁇ /2 , -e j ⁇ /2 ”
  • the first binary pseudo-random sequence is “1,0,0,1,1,0,1,0”, and the same is expressed as “-1,1, 1,-1,-1,1,-1,1”
  • the complex spreading sequence generated by bitwise addition is: "-1+e j ⁇ /2 , 1-e j ⁇ /2 , 1
  • the generated complex spread spectrum sequence may be multiplied by a normalization coefficient to obtain a complex spread spectrum sequence with a modulus value of 1 for each element: "(-1+j)/sqrt(2 ), (1-j)/sqrt(2), (1+j)/sqrt(2), (-1-j)/sqrt(2), (-1+j)/sqrt(2), (1 +j)/sqrt(2), (-1-j)/sqrt(2), (1-j)/sqrt(2)"; or, obtain a complex spread spectrum sequence with a sequence energy of 1: "(-1 +j)/4,(1-j)/4,(1+j)/4,(-1-j)/4,(-1+j)/4,(1+j)/4,(- 1-j)/4, (1-j)/4". Where j is the imaginary unit and sqrt() is the square root operation.
  • phase offset may also take other values between 0 and 2 ⁇ , such as 270° (or 3 ⁇ /2), or -90° (or - ⁇ /2), or -270° (or -3 ⁇ /2), etc. .
  • FIG. 5 is a schematic diagram showing an example of the composition of a binary pseudo-random sequence generator, which may be composed of a linear feedback shift register, as shown in FIG. 5, assuming that the binary pseudo-random sequence generator is composed of three-level linearity.
  • the feedback shift register (such as register 1, register 2 and register 3 in Fig.
  • f c 0 x 0 + c 1 x 1 + c 2 x 2 + c 3 x 3
  • c 0 , c 1 , c 2 , c 3 is the feedback coefficient
  • a value of 1 indicates participation in the feedback
  • a value of 0 indicates no participation in the feedback
  • (x 1 , x 2 , x 3 ) are the values stored in the three registers, respectively
  • x 0 is the value of the feedback link c 0 .
  • the initial states (x 1 , x 2 , x 3 ) of the three registers cannot be set to (0, 0, 0).
  • the clock in Figure 5 is used to control the shift register operation.
  • FIG. 6 is a schematic diagram of an application example 3 for generating a complex spreading sequence
  • FIG. 7 is a schematic diagram of an application example 4 for generating a complex spreading sequence.
  • the second binary pseudo-random sequence is phase-mapped to obtain a phase sequence, and then the first two.
  • the meta pseudo-random sequence and the phase sequence obtained by the mapping are added bit by bit to generate a complex spreading sequence, as shown in formula (2):
  • ComplexSeq represents a complex spreading sequence
  • Seq1 represents a first binary pseudo-random sequence
  • SeqPhase represents a phase sequence after mapping of a second binary pseudo-random sequence.
  • the sequence element values include 1 and -1; assuming that the preset phase set includes 90° phase (or e j ⁇ /2 ) and -90° phase (or e - J ⁇ /2 ), and assume that the pre-set sequence element value "1" is mapped to 90° phase (or e j ⁇ /2 ), and the sequence element value "-1" is mapped to -90° phase (or e -j ⁇ /2) ).
  • the second binary pseudo-random sequence is “0, 1, 0, 1, 0, 0, 1, 1”, first, “0” is represented as “1”, and “1” is represented as "-1”, the second binary pseudo-random sequence is transformed into "1, -1, 1, -1, 1, 1, -1, -1"; then according to the mapping between the binary pseudo-random sequence and the phase set relationship between the second binary pseudo-random sequence is mapped to the transformed phase sequences "e j ⁇ / 2, e -j ⁇ / 2, e j ⁇ / 2, e -j ⁇ / 2, e j ⁇ / 2, e j ⁇ / 2, e -j ⁇ /2 , e -j ⁇ /2 "; assume that the first binary pseudo-random sequence is "1,0,0,1,1,0,1,0", and the same is expressed as "-1,1,1 , -1, -1, 1, -1, 1", then the complex spread spectrum sequence generated by adding the first binary pseudo-random sequence and the phase sequence bit by bit is
  • mapping between the phase set and the binary pseudo-random sequence and the phase set may also be configured by the system or preset to other forms, and details are not described herein again.
  • FIG. 8 is a schematic diagram of an application example 5 for generating a complex spreading sequence
  • FIG. 9 is a schematic diagram of an application example 6 for generating a complex spreading sequence.
  • the first binary pseudo random sequence and the second binary pseudo random sequence are bit by bit according to the mapping relationship between the two binary pseudo random sequences and the complex constellation diagram.
  • Co-mapping to a complex constellation map to generate a complex spreading sequence as shown in equation (3):
  • ComplexSeq i represents the i-th value of the complex spreading sequence, and is mapped by (Seq1 i , Seq2 i ) according to the mapping relationship between the binary pseudo-random sequence and the complex constellation diagram, and Seq1 i represents the first The i-th value of the binary pseudo-random sequence, Seq2 i represents the ith value of the second binary pseudo-random sequence.
  • the sequence element values include 1 and -1; assuming that the complex constellation is preset, the four complex coordinates include 1+j, -1+j, -1-
  • the four constellation points formed by j and 1-j are pre-set (Seq1 i , Seq2 i ) to be mapped to a complex number 1+j when the value is (1, 1), and mapped to (-1, 1) when the value is (1, 1)
  • the complex number -1+j is mapped to the complex number -1j when the value is (-1, -1), and is mapped to the complex number 1-j when the value is (1, -1), as shown in Fig. 10.
  • the first binary pseudo random sequence is "1, 0, 0, 1, 1, 0, 1, 0"
  • the second binary pseudo random sequence is "0, 1, 0, 1, 0. , 0, 1, 1"
  • first, "0” is represented as “1”
  • first binary pseudo-random sequence is transformed into “-1, 1, 1, -1, -1, 1, -1, 1”
  • the second binary pseudo-random sequence is transformed and expressed as "1, -1, 1, -1, 1, 1, -1, -1"
  • the mapping relationship between the two binary pseudo-random sequences and the complex constellation map maps the first binary pseudo-random sequence and the second binary pseudo-random sequence bit by bit to the complex constellation points on the complex constellation diagram to obtain a complex sequence: "-1+j, 1-j, 1+j, -1-j, -1+j, 1+j, -1-j, 1-j", the sequence is the generated complex spreading sequence.
  • a complex constellation diagram composed of more complex constellation points and a mapping relationship between more than two binary pseudo-random sequences and a complex constellation diagram.
  • a complex spread spectrum sequence can be generated by mapping three binary pseudo-random sequences bit by bit to a complex constellation diagram, as shown in formula (4):
  • the ComplexSeq i represents the i-th value of the complex spreading sequence, and is mapped by (Seq1 i , Seq2 i , Seq3 i ) according to the mapping relationship between the binary pseudo-random sequence and the complex constellation diagram, wherein Seq1 i represents the ith value of the first binary pseudo-random sequence, Seq2 i represents the ith value of the second binary pseudo-random sequence, and Seq3 i represents the ith value of the third binary pseudo-random sequence.
  • Seq1 i represents the ith value of the first binary pseudo-random sequence
  • Seq2 i represents the ith value of the second binary pseudo-random sequence
  • Seq3 i represents the ith value of the third binary pseudo-random sequence.
  • the transmitter For the MC-CDMA system, the transmitter generates a complex spreading sequence according to two or more binary pseudo-random sequences, and the data symbols to be transmitted are subjected to spreading processing to obtain a spread data symbol sequence, and then spread spectrum
  • the subsequent sequence of data symbols is multi-carrier modulated, mapped onto a plurality of subcarriers, used to form a transmitted signal, and transmitted to the receiver.
  • multiple transmitters may use the same frequency domain bandwidth or subcarrier resources; correspondingly, after receiving the signals transmitted by multiple transmitters, the receiver uses the interference cancellation signal detector to receive signals transmitted by multiple transmitters. Detect, get the data sent by each transmitter.
  • the method of the embodiment of the present invention ensures that the receiver effectively distinguishes multiple transmitters using the same time-frequency resource, thereby effectively improving the system capacity and loading at a certain transmission rate.
  • the increased number of terminal accesses supports a higher level of system overload, which in turn improves the user's experience of non-orthogonal overload access and communication.
  • each transmitter uses a complex spreading sequence generated according to two or more binary pseudo-random sequences to spread the transmitted data symbols.
  • the receiver uses the interference cancellation signal detector to receive and detect the signals transmitted by the respective transmitters, thereby realizing effective differentiation of the transmission signals transmitted by the respective transmitters. No., thus supporting a higher level of system overload, effectively improving system access efficiency and terminal access experience.
  • each transmitter adopts Transmitting the transmitted data symbols according to the complex spreading sequence generated by two or more binary pseudo-random sequences, and the receiver uses the interference cancellation signal detector to receive and detect the signals transmitted by the respective terminal transmitters. It effectively distinguishes the signals transmitted by each terminal, thereby supporting a higher system overload level, improving the user terminal's experience of free scheduling access and communication, and also reducing system scheduling signaling and reducing terminal transmission delay.
  • each of the transmitters uses a complex spreading sequence generated according to two or more binary pseudo-random sequences to spread the respective data symbols to be transmitted, thereby ensuring different complex spreading of different transmitters.
  • the low cross-correlation between the sequences combined with the interference cancellation signal detector used in the existing receiver, effectively distinguishes the signals transmitted by the respective transmitters, improves the interference cancellation effect of the receiver, and non-orthogonal access multi-users. Received detection performance, which in turn supports higher system overload levels, improves user non-orthogonal overload access and communication experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提出了一种扩频处理方法及装置,包括根据两个或两个以上二元伪随机序列生成复数扩频序列;利用生成的复数扩频序列对待发送的数据符号进行扩频处理。

Description

一种扩频处理方法及装置 技术领域
本文涉及码分多址接入(CDMA,Code Division Multiple Access)技术,尤指一种扩频处理方法及装置。
背景技术
码分多址接入(CDMA,Code Division Multiple Access)是多用户多址接入技术的主要方案之一。目前的码分多址接入系统,比如直接序列扩频码分多址接入(DS-CDMA,Direct Sequence-Code Division Multiple Access)、多载波码分多址接入(MC-CDMA,Multi-Carrier Code Division Multiple Access)等,在上行链路中,不同发射机或终端采用不同的二元伪随机(PN,Pseudo-Noise)实数序列作为扩频序列对各自发送的数据符号进行扩频处理,再对扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。由于不同发射机发送的数据符号承载在不同的扩频序列上,这些发射机可以把扩频后的数据符号序列调制到相同的时频资源上进行传输,那么,接收机或基站会接收到来自于各个发射机的发射信号的叠加信号,然后接收机根据不同发射机采用的不同的扩频序列来区分各个发射机的发射信号,实现对各个发射机发射信号的接收检测。
二元伪随机序列也可以称为二进制伪随机序列,其元素取值通常表示为0或1,也可以表示为双极性序列,即0表示为+1,1表示为-1,或者,0表示为-1,1表示为+1。
由于不同发射机采用的扩频序列之间具有非完全正交性,因此,不同发射机的发射信号之间会相互干扰,从而造成了多址干扰。对于这种多址干扰,接收机可以通过采用具有干扰消除功能的多用户信号检测器来有效抑制,比如串行干扰消除多用户检测器、并行干扰消除多用户检测器等,从而提高系统容量,并实现在一定传输速率条件下负载更多的终端接入数量,实现系统过载。
然而,当系统过载时,不同发射机采用的二元伪随机序列之间的低互相关性并不容易保证,尤其是长度较短的二元伪随机序列,这会影响码分多址非正交接入的干扰消除效果以及多用户接收检测性能,影响系统的终端接入数量,从而影响了系统的负载能力或支持的过载水平,降低了用户非正交过载接入的通信体验。
发明内容
本发明实施例提供一种扩频处理方法及装置,能够改善码分多址非正交接入的接收检测性能,保证干扰消除的效果,以支持更高的系统过载水平,从而提升用户非正交过载接入的通信体验。
本发明实施例提供了一种扩频处理方法,包括:
根据两个或两个以上二元伪随机序列生成复数扩频序列;
利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
可选地,该方法之前还包括:产生所述两个或两个以上二元伪随机序列。
可选地,所述产生两个或两个以上二元伪随机序列包括:由各自独立的两个或两个以上二元伪随机序列生成器分别生成。
可选地,所述产生两个或两个以上二元伪随机序列包括:
由一个二元伪随机序列生成器生成一个二元伪随机序列;
按照预先设置的拆分策略将该生成的二元伪随机序列拆分形成两个或两个以上二元伪随机序列;
其中,预先设置的拆分策略包括:
对所述生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;
或者,对所述生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;
或者,对所述生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
可选地,所述产生两个或两个以上二元伪随机序列包括:
由二元伪随机序列生成器生成;或者,由二元伪随机序列生成器根据系统配置的伪随机序列掩码生成;或者,由系统配置。
可选地,所述二元伪随机序列的长度与所述生成的复数扩频序列的长度相同。
可选地,所述生成复数扩频序列包括:
按照两个或两个以上二元伪随机序列与复数星座图之间的映射关系,将所述两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成所述复数扩频序列;其中,
所述两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:所述两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系;
所述复数星座图包括两个或两个以上复数坐标形成的星座点。
可选地,所述两个或两个以上二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
所述生成复数扩频序列包括:
按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;
将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到复数扩频序列。
可选地,所述两个或两个以上二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
所述生成复数扩频序列包括:
根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;将映射后的相位序列与第一二元伪随机序列逐位相加得到复数扩频序列;其中,
二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元 素的多种取值与相位集合中的多个相位之间的一一对应关系;其中,相位集合包括两个或两个以上位于0到2π之间的相位值。
可选地,该方法还包括:所述得到的复数扩频序列乘以归一化系数进行归一化处理。
可选地,对所述待发送的不同数据符号进行扩频处理采用的复数扩频序列不同。
可选地,所述对待发送的数据符号进行扩频处理之前还包括:对待发送的数据比特进行编码调制后生成所述待发送的数据符号。
可选地,该方法之后还包括:对所述扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。
本发明实施例还提供了一种扩频处理装置,至少包括生成模块、扩频处理模块,其中,
所述生成模块,设置为根据两个或两个以上二元伪随机序列生成复数扩频序列;
所述扩频处理模块,设置为利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
可选地,所述装置还包括产生模块,设置为生成所述两个或两个以上二元伪随机序列。
可选地,所述产生模块包括两个或两个以上各自独立的二元伪随机序列生成器,设置为分别生成两个或两个以上二元伪随机序列。
可选地,所述产生模块包括一个二元伪随机序列生成器;
该二元伪随机序列生成器设置为生成一个二元伪随机序列,按照预先设置的拆分策略将该二元伪随机序列拆分形成所述两个或两个以上二元伪随机序列;其中,预先设置的拆分策略包括:
对生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
可选地,所述生成模块是设置为:按照两个或两个以上二元伪随机序列与复数星座图之间的映射关系,将所述两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成所述复数扩频序列;其中,
两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:所述两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系;其中,复数星座图包括两个或两个以上复数坐标形成的星座点。
可选地,所述二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
所述生成模块是设置为:按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到所述复数扩频序列。
可选地,所述二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
所述生成模块是设置为:根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;将映射后的相位序列与第一二元伪随机序列逐位相加得到所述复数扩频序列;其中,
二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元素的多种取值与相位集合中的多个相位之间的一一对应关系;其中,相位集合包括两个或两个以上位于0到2π之间的相位值。
可选地,所述生成模块还设置为,对所述得到的复数扩频序列乘以归一化系数进行归一化处理。
可选地,所述生成模块生成的复数扩频序列不同;
所述扩频处理模块是设置为:用于利用生成的不同复数扩频序列对待发 送的不同数据符号进行扩频处理。
可选地,所述装置还包括:预处理模块,设置为对待发送的数据比特进行编码调制后生成所述待发送的数据符号。
可选地,所述装置还包括:发射模块,设置为对所述扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。
本发明实施例还提供一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现上述方法。
与相关技术相比,本发明实施例技术方案包括根据两个或两个以上二元伪随机序列生成复数扩频序列;利用生成的复数扩频序列对待发送的数据符号进行扩频处理。本发明实施例方法通过各个发射机分别采用根据两个或两个以上二元伪随机序列生成的复数扩频序列对各自的待发送的数据符号进行扩频处理,保证了不同发射机采用的不同复数扩频序列之间的低互相关性,再结合已有的接收机采用的干扰消除信号检测器,有效区别了各个发射机发射的信号,改善了接收机干扰消除的效果以及非正交接入多用户接收检测的性能,进而支持了更高的系统过载水平,提升了用户非正交过载接入与通信的体验。
附图概述
图1为本发明实施例1扩频处理方法的流程图;
图2为本发明实施例2扩频处理装置的组成连接示意图;
图3为生成复数扩频序列的应用示例1的示意图;
图4为生成复数扩频序列的应用示例2的示意图;
图5为二元伪随机生成器的组成示例的示意图;
图6为生成复数扩频序列的应用示例3的示意图;
图7为生成复数扩频序列的应用示例4的示意图;
图8为生成复数扩频序列的应用示例5的示意图;
图9为生成复数扩频序列的应用示例6的示意图;
图10为两个二元伪随机序列与复数星座图之间的映射关系的示例示意图;
图11为三个二元伪随机序列与复数星座图之间的映射关系的示例示意图。
本发明的实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
实施例1
图1为本发明实施例1扩频处理方法的流程图,如图1所示,包括:
步骤100:根据两个或两个以上二元伪随机序列生成复数扩频序列。
本步骤中,该方法之前还可包括产生两个或两个以上二元伪随机序列,包括:
两个或两个以上二元伪随机序列可以由各自独立的二元伪随机序列生成器分别生成;或者,
也可以由一个二元伪随机序列生成器生成一个二元伪随机序列,再按照预先设置的拆分策略将该二元伪随机序列拆分形成两个或两个以上二元伪随机序列。其中,拆分策略包括但不限于:
对生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
可选地,二元伪随机序列的长度与生成的复数扩频序列的长度相同。
本步骤中生成复数扩频序列包括:按照两个或两个以上二元伪随机序列 与复数星座图之间的映射关系,将两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成复数扩频序列。其中,
复数星座图包括两个或两个以上复数坐标形成的星座点,由系统配置或预先设置。其中,两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系。该映射关系可以由系统配置或预先设置。
可选地,本步骤中的二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;那么,本步骤中生成复数扩频序列包括:
按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;
将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到复数扩频序列。
或者,
根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;其中,相位集合包括两个或两个以上位于0到2π之间的相位值,由系统配置或预先设置;二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元素的多种取值与相位集合中的多个相位之间的一一对应关系,由系统配置或预先设置;
将映射后的相位序列与第一二元伪随机序列逐位相加得到复数扩频序列。
本步骤中的两个或两个以上二元伪随机序列由二元伪随机序列生成器生成,或者由二元伪随机序列生成器根据系统配置的伪随机序列掩码生成,或者由系统配置。
可选地,本步骤还包括:复数扩频序列再乘以归一化系数进行归一化处理。也就是所说,生成的复数扩频序列为乘以归一化系数进行归一化处理后得到的复数扩频序列。
步骤101:利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
本步骤之前还可包括:对待发送的数据比特进行编码调制后生成待发送的数据符号。
本步骤中,扩频处理为所述待发送的数据符号与所述复数扩频序列的每个元素进行复数相乘形成与所述复数扩频序列长度相同的数据符号序列的过程。
本步骤中,利用生成的复数扩频序列对待发送的数据符号进行扩频处理,还包括:对待发送的不同数据符号进行扩频处理所采用的复数扩频序列可以是不同的。
本步骤之后还可包括:对扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。其中,载波调制可以是单载波调制、或多载波调制。
本步骤之后还可包括:接收机接收来自两个或两个以上发射机发射的发射信号,采用干扰消除信号检测器对多个发射机发射的信号进行接收检测。其中,干扰消除信号检测器可以是串行干扰消除(SIC,Successive Interference Cancellation)信号检测器等。
当两个或两个以上发射机在相同的时频资源上形成各自的发射信号时,两个或两个以上发射机的发射信号经过空中无线传播后,接收机接收到的是两个或两个以上发射机发射的信号的叠加信号。
本发明实施例方法通过各个发射机分别采用根据两个或两个以上二元伪随机序列生成的复数扩频序列对各自的待发送的数据符号进行扩频处理,保证了不同发射机采用的不同复数扩频序列之间的低互相关性,再结合已有的接收机采用的干扰消除信号检测器,有效区别了各个发射机发射的信号,改善了接收机干扰消除的效果以及非正交接入多用户接收检测的性能,进而支持了更高的系统过载水平,提升了用户非正交过载接入与通信的体验。
实施例2
图2为本发明实施例2扩频处理装置的组成连接示意图,如图2所示,至少包括生成模块和扩频处理模块,其中,
所述生成模块,设置为根据两个或两个以上二元伪随机序列生成复数扩频序列;
所述扩频处理模块,设置为利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
可选地,本发明实施例装置还包括:预处理模块,设置为对待发送的数据比特进行编码调制后生成待发送的数据符号。
可选地,本发明实施例装置还包括:发射模块,设置为对扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。
其中,生成模块是设置为:按照两个或两个以上二元伪随机序列与复数星座图之间的映射关系,将两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成复数扩频序列。其中,
两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系。该映射关系可以由系统配置或预先设置。
其中,复数星座图包括两个或两个以上复数坐标形成的星座点,由系统配置或预先设置。
可选地,二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;那么,生成模块是设置为:
按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到复数扩频序列。
或者,
根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;其中,相位集合包括两个或两个以上位于0到2π之间的相位值,由系统配置或预先设置;二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元素的多种取值与相位集合中的多个相位之间的一一对应关系,由系统配置或预先设置;将映射后的相位序列与第一二元伪随机序列逐位相加得到复数扩频序列。
可选地,生成模块还设置为对复数扩频序列乘以归一化系数进行归一化处理后得到最终采用的复数扩频序列。
可选地,生成模块还设置为生成不同的复数扩频序列,用于供所述扩频处理模块对待发送的不同数据符号分别进行扩频处理。
可选地,本发明实施例装置还包括产生模块,设置为生成两个或两个以上二元伪随机序列。
产生模块包括两个或两个以上各自独立的二元伪随机序列生成器,设置为分别生成两个或两个以上二元伪随机序列。
或者,产生模块包括一个二元伪随机序列生成器,该二元伪随机序列生成器是设置为:生成一个二元伪随机序列,按照预先设置的拆分策略将该二元伪随机序列拆分形成两个或两个以上二元伪随机序列;其中,拆分策略包括但不限于:
对生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;或者,
对生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
本发明实施例扩频处理装置可以设置在发射机中,也可以单独作为一个物理设备。
下面结合应用示例对本发明实施例实现进行详细描述。
假设发射机根据两个二元伪随机序列生成复数扩频序列,并且,两个二元伪随机序列的长度与复数扩频序列的长度相同。图3为生成复数扩频序列的应用示例1的示意图,图4为生成复数扩频序列的应用示例2示意图。
如图3所示,两个二元伪随机序列分别由发射机中的两个二元伪随机序列生成器独立生成:二元伪随机序列生成器1生成与复数扩频序列长度相同的第一二元伪随机序列,二元伪随机序列生成器2生成与复数扩频序列长度 相同的第二二元伪随机序列;
或者,如图4所示,两个二元伪随机序列是由发射机中的一个二元伪随机序列生成器生成的一个二元伪随机序列按照拆分策略拆分后形成,该二元伪随机序列可以经过串并变换、或者分段存储、或者周期抽样后形成与复数扩频序列长度相同的两个二元伪随机序列,即第一二元伪随机序列和第二二元伪随机序列。
如果采用串并变换方式,假设由发射机中的一个二元伪随机序列生成器生成的二元伪随机序列的长度为复数扩频序列长度的两倍,且该二元伪随机序列元素索引初始值设置为0,也就是说,该二元伪随机序列的偶数位置的元素形成第一二元伪随机序列,该二元伪随机序列的奇数位置的元素形成第二二元伪随机序列;
如果采用分段存储方式,假设由发射机中的一个二元伪随机序列生成器生成的二元伪随机序列的长度为复数扩频序列长度的两倍,那么,可以将该二元伪随机序列前半部分的元素存储为第一二元伪随机序列,将该二元伪随机序列后半部分的元素存储为第二二元伪随机序列;
如果采用周期抽样方式,假设由发射机中的一个二元伪随机序列生成器生成的二元伪随机序列的长度为复数扩频序列长度的多倍,那么,可以从该二元伪随机序列中周期地取出一部分位置上的元素作为第一二元伪随机序列,同理周期地取出另一部分位置上的元素作为第二二元伪随机序列。
在图4、图5所示的两个示例中,对第二二元伪随机序列的各个元素进行90°的相位偏移(或乘以ejπ/2)后,与第一二元伪随机序列的各个元素逐位相加生成复数扩频序列,如公式(1)所示:
ComplexSeq=Seq1+Seq2*ejπ/2           (1)
公式(1)中,ComplexSeq表示复数扩频序列,Seq1表示第一二元伪随机序列,Seq2表示第二二元伪随机序列。其中,对Seq2的各个元素进行90°的相位偏移(或乘以ejπ/2)相当于将Seq2作为ComplexSeq的虚部,而Seq1作为ComplexSeq的实部。
举例来看,假设第二二元伪随机序列为“0,1,0,1,0,0,1,1”,则,首先 将“0”表示为“1”,“1”表示为“-1”,第二二元伪随机序列变换为“1,-1,1,-1,1,1,-1,-1”;然后对变换后的第二二元伪随机序列的各个元素进行90°相位偏移,相当于乘以ejπ/2,得到“ejπ/2,-ejπ/2,ejπ/2,-ejπ/2,ejπ/2,ejπ/2,-ejπ/2,-ejπ/2”;假设第一二元伪随机序列为“1,0,0,1,1,0,1,0”,同理表示为“-1,1,1,-1,-1,1,-1,1”;那么,二者逐位相加生成的复数扩频序列为:“-1+ejπ/2,1-ejπ/2,1+ejπ/2,-1-ejπ/2,-1+ejπ/2,1+ejπ/2,-1-ejπ/2,1-ejπ/2”,该复数扩频序列可以表示为:“-1+j,1-j,1+j,-1-j,-1+j,1+j,-1-j,1-j”。可选地,可以对生成的复数扩频序列乘以归一化系数进行归一化处理,得到每个元素的模值为1的复数扩频序列:“(-1+j)/sqrt(2),(1-j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(-1+j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(1-j)/sqrt(2)”;或者,得到序列能量为1的复数扩频序列:“(-1+j)/4,(1-j)/4,(1+j)/4,(-1-j)/4,(-1+j)/4,(1+j)/4,(-1-j)/4,(1-j)/4”。其中,j表示虚数单位,sqrt()表示平方根运算。
上述相位偏移也可以取0到2π之间的其他值,比如270°(或3π/2)、或-90°(或-π/2)、或-270°(或-3π/2)等。
图5为二元伪随机生成器的组成示例的示意图,上述二元伪随机序列生成器可以由线性反馈移位寄存器构成,如图5所示,假设二元伪随机序列生成器由三级线性反馈移位寄存器(如图5中的寄存器1、寄存器2和寄存器3)构成,用于生成周期为7的二元伪随机序列,反馈函数表示为f=c0x0+c1x1+c2x2+c3x3,(c0,c1,c2,c3)为反馈系数,取值为1表示参与反馈,取值为0则表示不参与反馈,(x1,x2,x3)分别为三个寄存器中存储的值,x0为反馈链路c0的值。对于三级线性反馈移位寄存器,c0和c3的取值为1,相应的,反馈连接多项式可以表示为g=1+c1x+c2x2+x3。对于图3中的两个二元伪随机序列生成器,即二元伪随机序列生成器1和二元伪随机序列生成器2,二者采用不同的反馈函数或反馈连接多项式,比如,二元伪随机序列生成器1采用反馈连接多项式g1=1+x+x3,则反馈系数为(1,1,0,1),二元伪随机序列生成器2采用反馈连接多项式g2=1+x2+x3,则反馈系数为(1,0,1,1)。需要说明的是,三个寄存器的初始状态(x1,x2,x3)不能设置为(0,0,0)。图5中的时钟用于控制移位寄存操作。
假设发射机根据两个二元伪随机序列生成复数扩频序列,并且,两个二 元伪随机序列的长度与复数扩频序列的长度相同。两个二元伪随机序列的生成过程如上所述。图6为生成复数扩频序列的应用示例3的示意图,图7为生成复数扩频序列的应用示例4的示意图。
在图6、图7所示的两个示例中,首先,根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行相位映射得到相位序列,然后第一二元伪随机序列与映射得到的相位序列逐位相加生成复数扩频序列,如公式(2)所示:
ComplexSeq=Seq1+SeqPhase               (2)
公式(2)中,ComplexSeq表示复数扩频序列,Seq1表示第一二元伪随机序列,SeqPhase表示第二二元伪随机序列映射后的相位序列。
举例来看,对于二元双极性伪随机序列,其序列元素取值包括1和-1;假设预先设置相位集合包括90°相位(或ejπ/2)和-90°相位(或e-jπ/2),并假设预先设置序列元素取值“1”映射为90°相位(或ejπ/2),序列元素取值“-1”映射为-90°相位(或e-jπ/2)。本实施例中,假设第二二元伪随机序列为“0,1,0,1,0,0,1,1”,则,首先将“0”表示为“1”,“1”表示为“-1”,第二二元伪随机序列变换为“1,-1,1,-1,1,1,-1,-1”;然后根据二元伪随机序列与相位集合之间的映射关系将变换后的第二二元伪随机序列映射为相位序列“ejπ/2,e-jπ/2,ejπ/2,e-jπ/2,ejπ/2,ejπ/2,e-jπ/2,e-jπ/2”;假设第一二元伪随机序列为“1,0,0,1,1,0,1,0”,同理表示为“-1,1,1,-1,-1,1,-1,1”,那么,第一二元伪随机序列与相位序列逐位相加生成的复数扩频序列为:“-1+ejπ/2,1+e-jπ/2,1+ejπ/2,-1+e-jπ/2,-1+ejπ/2,1+ejπ/2,-1+e-jπ/2,1+e-jπ/2”,该复数扩频序列可以表示为:“-1+j,1-j,1+j,-1-j,-1+j,1+j,-1-j,1-j”。同上所述,还可以对生成的复数扩频序列乘以归一化系数进行归一化处理,得到每个元素的模值为1的复数扩频序列:“(-1+j)/sqrt(2),(1-j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(-1+j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(1-j)/sqrt(2)”;或者,得到序列能量为1的复数扩频序列:“(-1+j)/4,(1-j)/4,(1+j)/4,(-1-j)/4,(-1+j)/4,(1+j)/4,(-1-j)/4,(1-j)/4”。其中,j表示虚数单位,sqrt()表示平方根运算。
上述相位集合以及二元伪随机序列与相位集合之间的映射关系也可以由系统配置或预设置为其他形式,这里不再赘述。
假设发射机根据两个二元伪随机序列生成复数扩频序列,并且,两个二元伪随机序列的长度与复数扩频序列的长度相同。两个二元伪随机序列的生成过程如上所述。图8为生成复数扩频序列的应用示例5的示意图,图9为生成复数扩频序列的应用示例6的示意图。
在图8、图9所示的两个示例中,根据两个二元伪随机序列与复数星座图之间的映射关系,将第一二元伪随机序列、第二二元伪随机序列逐位共同映射到复数星座图生成复数扩频序列,如公式(3)所示:
(Seq1i,Seq2i)—>ComplexSeqi              (3)
公式(3)中,ComplexSeqi表示复数扩频序列的第i个值,根据二元伪随机序列与复数星座图之间的映射关系由(Seq1i,Seq2i)映射得到,Seq1i表示第一二元伪随机序列的第i个值,Seq2i表示第二二元伪随机序列的第i个值。
举例来看,对于两个二元双极性伪随机序列,其序列元素取值包括1和-1;假设预先设置复数星座图包括四个复数坐标1+j、-1+j、-1-j、1-j形成的四个星座点,并预先设置(Seq1i,Seq2i)取值为(1,1)时映射为复数1+j,取值为(-1,1)时映射为复数-1+j,取值为(-1,-1)时映射为复数-1-j,取值为(1,-1)时映射为复数1-j,如图10所示。本实施例中,假设第一二元伪随机序列为“1,0,0,1,1,0,1,0”,第二二元伪随机序列为“0,1,0,1,0,0,1,1”,则,首先将“0”表示为“1”,“1”表示为“-1”,第一二元伪随机序列变换后表示为“-1,1,1,-1,-1,1,-1,1”,第二二元伪随机序列变换后表示为“1,-1,1,-1,1,1,-1,-1”;然后,根据两个二元伪随机序列与复数星座图之间的映射关系将第一二元伪随机序列、第二二元伪随机序列逐位共同映射到复数星座图上的复数星座点得到复数序列为:“-1+j,1-j,1+j,-1-j,-1+j,1+j,-1-j,1-j”,该序列即生成的复数扩频序列。同上所述,还可以对生成的复数扩频序列乘以归一化系数进行归一化处理,得到每个元素的模值为1的复数扩频序列:“(-1+j)/sqrt(2),(1-j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(-1+j)/sqrt(2),(1+j)/sqrt(2),(-1-j)/sqrt(2),(1-j)/sqrt(2)”;或者,得到序列能量为1的复数扩频序列:“(-1+j)/4,(1-j)/4,(1+j)/4,(-1-j)/4,(-1+j)/4,(1+j)/4,(-1-j)/4,(1-j)/4”。其中,j表示虚数单位,sqrt()表示平方根运算。
上述复数星座图以及两个二元伪随机序列与复数星座图之间的映射关系 也可以定义为其他形式。
还可以定义具有更多个复数星座点构成的复数星座图以及多于两个的二元伪随机序列与复数星座图之间的映射关系。比如,如图11所示,可以通过三个二元伪随机序列逐位共同映射到复数星座图生成复数扩频序列,如公式(4)所示:
(Seq1i,Seq2i,Seq3i)—>ComplexSeqi            (4)
公式(4)中,ComplexSeqi表示复数扩频序列的第i个值,根据二元伪随机序列与复数星座图之间的映射关系由(Seq1i,Seq2i,Seq3i)映射得到,其中,Seq1i表示第一二元伪随机序列的第i个值,Seq2i表示第二二元伪随机序列的第i个值,Seq3i表示第三二元伪随机序列的第i个值。过程与上述类似,这里不再赘述。
上述实施例所述的方法还可以灵活的扩展为其他形式,这里不再赘述。
基于上述实施例,在应用时,可以应用于MC-CDMA系统,或竞争接入场景、或免调度接入场景等:
对于应用于MC-CDMA系统,发射机根据两个或两个以上二元伪随机序列生成复数扩频序列,对待发送的数据符号进行扩频处理得到扩频后的数据符号序列,然后将扩频后的数据符号序列进行多载波调制,映射到多个子载波上,用于形成发射信号,并发送给接收机。其中,多个发射机可以使用相同的频域带宽或子载波资源;相应的,接收机接收到多个发射机发射的信号后,采用干扰消除信号检测器对多个发射机发射的信号进行接收检测,得到各个发射机发送的数据。应用于MC-CDMA系统时,通过本发明实施例方法,保证了接收机有效的区分使用相同时频资源的多个发射机,从而有效地提高了系统容量,在一定传输速率条件下负载了更多的终端接入数量,支持了更高的系统过载水平,进而提升了用户非正交过载接入与通信的体验。
对于应用于竞争接入场景,多个甚至大量用户终端会同时请求接入系统,各个发射机采用根据两个或两个以上二元伪随机序列生成的复数扩频序列对发送数据符号进行扩频处理,那么,接收机采用干扰消除信号检测器对各个发射机发射的信号进行接收检测,实现了有效区分各个发射机发射的发射信 号,从而支持了更高的系统过载水平,有效地改善了系统接入效率以及终端接入体验。
对于应用于免调度接入场景,用户终端需要发送数据时即可在可用的时频资源上进行数据传输,存在多个用户终端同时使用相同的时频资源进行数据传输的情况;各个发射机采用根据两个或两个以上二元伪随机序列生成的复数扩频序列对发送数据符号进行扩频处理,并且,接收机采用干扰消除信号检测器对各个终端发射机发射的信号进行接收检测,实现了有效区分各个终端发射的信号,从而支持了更高的系统过载水平,提升了用户终端免调度接入与通信的体验,同时还减少了系统调度信令,降低了终端传输时延。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相光硬件完成,上述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本发明不限制于任何特定形式的硬件和软件的结合。
工业实用性
本申请通过各个发射机分别采用根据两个或两个以上二元伪随机序列生成的复数扩频序列对各自的待发送的数据符号进行扩频处理,保证了不同发射机采用的不同复数扩频序列之间的低互相关性,再结合已有的接收机采用的干扰消除信号检测器,有效区别了各个发射机发射的信号,改善了接收机干扰消除的效果以及非正交接入多用户接收检测的性能,进而支持了更高的系统过载水平,提升了用户非正交过载接入与通信的体验。

Claims (25)

  1. 一种扩频处理方法,包括:
    根据两个或两个以上二元伪随机序列生成复数扩频序列;
    利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
  2. 根据权利要求1所述的扩频处理方法,该方法之前还包括:产生所述两个或两个以上二元伪随机序列。
  3. 根据权利要求2所述的扩频处理方法,其中,所述产生两个或两个以上二元伪随机序列包括:由各自独立的两个或两个以上二元伪随机序列生成器分别生成。
  4. 根据权利要求2所述的扩频处理方法,其中,所述产生两个或两个以上二元伪随机序列包括:
    由一个二元伪随机序列生成器生成一个二元伪随机序列;
    按照预先设置的拆分策略将该生成的二元伪随机序列拆分形成两个或两个以上二元伪随机序列;
    其中,预先设置的拆分策略包括:
    对所述生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;
    或者,对所述生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;
    或者,对所述生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
  5. 根据权利要求2所述的方法,其中,所述产生两个或两个以上二元伪随机序列包括:
    由二元伪随机序列生成器生成;或者,由二元伪随机序列生成器根据系统配置的伪随机序列掩码生成;或者,由系统配置。
  6. 根据权利要求1或2所述的扩频处理方法,其中,所述二元伪随机序 列的长度与所述生成的复数扩频序列的长度相同。
  7. 根据权利要求1所述的扩频处理方法,其中,所述生成复数扩频序列包括:
    按照两个或两个以上二元伪随机序列与复数星座图之间的映射关系,将所述两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成所述复数扩频序列;其中,
    所述两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:所述两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系;
    所述复数星座图包括两个或两个以上复数坐标形成的星座点。
  8. 根据权利要求1所述的扩频处理方法,其中,所述两个或两个以上二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
    所述生成复数扩频序列包括:
    按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;
    将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到所述复数扩频序列。
  9. 根据权利要求1所述的扩频处理方法,其中,所述两个或两个以上二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
    所述生成复数扩频序列包括:
    根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;将映射后的相位序列与第一二元伪随机序列逐位相加得到所述复数扩频序列;其中,
    二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元素的多种取值与相位集合中的多个相位之间的一一对应关系;其中,相位集合包括两个或两个以上位于0到2π之间的相位值。
  10. 根据权利要求7~9任一项所述的方法,该方法还包括:所述得到的 复数扩频序列乘以归一化系数进行归一化处理。
  11. 根据权利要求1或2所述的扩频处理方法,其中,对所述待发送的不同数据符号进行扩频处理采用的复数扩频序列不同。
  12. 根据权利要求1或2所述的扩频处理方法,所述对待发送的数据符号进行扩频处理之前,所述方法还包括:对待发送的数据比特进行编码调制后生成所述待发送的数据符号。
  13. 根据权利要求1或2所述的扩频处理方法,该方法之后还包括:对所述扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。
  14. 一种扩频处理装置,包括生成模块和扩频处理模块,其中,
    所述生成模块,设置为根据两个或两个以上二元伪随机序列生成复数扩频序列;
    所述扩频处理模块,设置为利用生成的复数扩频序列对待发送的数据符号进行扩频处理。
  15. 根据权利要求14所述的扩频处理装置,所述装置还包括产生模块,设置为生成所述两个或两个以上二元伪随机序列。
  16. 根据权利要求15所述的扩频处理装置,其中,所述产生模块包括两个或两个以上各自独立的二元伪随机序列生成器,设置为分别生成两个或两个以上二元伪随机序列。
  17. 根据权利要求15所述的扩频处理装置,其中,所述产生模块包括一个二元伪随机序列生成器;
    该二元伪随机序列生成器设置为生成一个二元伪随机序列,按照预先设置的拆分策略将该二元伪随机序列拆分形成所述两个或两个以上二元伪随机序列;其中,预先设置的拆分策略包括:
    对生成的一个二元伪随机序列进行串并变换以形成两个或两个以上二元伪随机序列;或者,
    对生成的一个二元伪随机序列进行分段存储以形成两个或两个以上二元伪随机序列;或者,
    对生成的一个二元伪随机序列进行周期抽样以形成两个或两个以上二元伪随机序列。
  18. 根据权利要求14所述的扩频处理装置,所述生成模块是设置为:按照两个或两个以上二元伪随机序列与复数星座图之间的映射关系,将所述两个或两个以上二元伪随机序列逐位共同映射到复数星座图,得到的复数序列构成所述复数扩频序列;其中,
    两个或两个以上二元伪随机序列与复数星座图之间的映射关系为:所述两个或两个以上二元伪随机序列的组成元素的多种取值集合与复数星座图的多个星座点之间的一一对应关系;其中,复数星座图包括两个或两个以上复数坐标形成的星座点。
  19. 根据权利要求14所述的扩频处理装置,其中,所述二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
    所述生成模块是设置为:按照预先设置的相位偏移量对第二二元伪随机序列进行相位偏移,其中,相位偏移量为0到2π之间的实数;将进行相位偏移后的序列与第一二元伪随机序列逐位相加得到所述复数扩频序列。
  20. 根据权利要求14所述的扩频处理装置,其中,所述二元伪随机序列包括第一二元伪随机序列和第二二元伪随机序列;
    所述生成模块是设置为:根据二元伪随机序列与相位集合之间的映射关系,对第二二元伪随机序列进行映射;将映射后的相位序列与第一二元伪随机序列逐位相加得到所述复数扩频序列;其中,
    二元伪随机序列与相位集合之间的映射关系为二元伪随机序列的组成元素的多种取值与相位集合中的多个相位之间的一一对应关系;其中,相位集合包括两个或两个以上位于0到2π之间的相位值。
  21. 根据权利要求18~20任一项所述的扩频处理装置,所述生成模块还设置为,对所述得到的复数扩频序列乘以归一化系数进行归一化处理。
  22. 根据权利要求14或15所述的扩频处理装置,其中,所述生成模块生成的复数扩频序列不同;
    所述扩频处理模块是设置为:利用生成的不同复数扩频序列对待发送的 不同数据符号进行扩频处理。
  23. 根据权利要求14或15所述的扩频处理装置,所述装置还包括:预处理模块,设置为对待发送的数据比特进行编码调制后生成所述待发送的数据符号。
  24. 根据权利要求14或15所述的扩频处理装置,所述装置还包括:发射模块,设置为对所述扩频处理后的数据符号序列进行载波调制后形成发射信号并发送给接收机。
  25. 一种计算机可读存储介质,存储有程序指令,当该程序指令被执行时可实现权利要求1-13任一项所述的方法。
PCT/CN2015/077700 2014-09-26 2015-04-28 一种扩频处理方法及装置 WO2016045384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410505511.9A CN105515608A (zh) 2014-09-26 2014-09-26 一种扩频处理方法及装置
CN201410505511.9 2014-09-26

Publications (1)

Publication Number Publication Date
WO2016045384A1 true WO2016045384A1 (zh) 2016-03-31

Family

ID=55580243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077700 WO2016045384A1 (zh) 2014-09-26 2015-04-28 一种扩频处理方法及装置

Country Status (2)

Country Link
CN (1) CN105515608A (zh)
WO (1) WO2016045384A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107343321B (zh) * 2016-04-29 2022-11-08 中兴通讯股份有限公司 接入方法及装置、发射机、接收机、终端
US11368243B2 (en) 2016-05-26 2022-06-21 Nokia Technologies Oy Codeword adaptation for non-orthogonal coded access
CN108023661B (zh) * 2016-10-31 2019-08-06 深圳市中兴微电子技术有限公司 一种获取伪随机序列的方法和装置
CN108306707B (zh) * 2017-01-12 2024-02-20 中兴通讯股份有限公司 一种多址接入的方法、装置和通讯系统
CN109245796B (zh) * 2017-07-03 2021-06-15 中兴通讯股份有限公司 一种生成数据的方法及装置
CN107612586B (zh) * 2017-09-28 2020-04-03 中国工程物理研究院电子工程研究所 一种基于可编程射频移相器的可重配置射频扩频方法
CN108513699B (zh) * 2018-04-27 2019-11-15 北京小米移动软件有限公司 数据的加扰的初始化序列的确定方法和数据解扰方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284226A (zh) * 1998-01-24 2001-02-14 摩托罗拉公司 生成复数伪随机序列以便处理码分多址信号的方法和系统
CN1968029A (zh) * 2005-11-16 2007-05-23 弥亚微电子(上海)有限公司 一种采用特殊扩频序列的扩频调制解调方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6393047B1 (en) * 1998-06-16 2002-05-21 Telefonaktiebolaget Lm Ericsson (Publ) Quadriphase spreading codes in code division multiple access communications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1284226A (zh) * 1998-01-24 2001-02-14 摩托罗拉公司 生成复数伪随机序列以便处理码分多址信号的方法和系统
CN1968029A (zh) * 2005-11-16 2007-05-23 弥亚微电子(上海)有限公司 一种采用特殊扩频序列的扩频调制解调方法及装置

Also Published As

Publication number Publication date
CN105515608A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
WO2016045384A1 (zh) 一种扩频处理方法及装置
JP6522745B2 (ja) マルチユーザー符号分割多元接続通信方法及び対応する送信機、受信機
JP6598857B2 (ja) 符号分割多元接続によるマルチユーザ通信方法及び装置
US10523383B2 (en) System and method for generating waveforms and utilization thereof
WO2016078303A1 (zh) 数据传输方法及装置
US10484209B2 (en) Data transmission method and device
US10171128B2 (en) Data transmission method and apparatus
WO2018100428A1 (en) Method and device for signal processing in communication system
WO2016155390A1 (zh) 一种数据传输方法及装置
CN108207028B (zh) 一种数据生成方法及装置、设备
WO2019136741A1 (en) Methods and computing device for facilitating multiple access in a wireless communication network
KR102635707B1 (ko) 데이터 송신, 수신 방법 및 장치, 데이터 전송 시스템 및 저장 매체
CN109962751B (zh) 一种数据处理方法及装置
JP2018517362A (ja) 部分的衝突多重アクセスのためのシステムおよび方法
KR20240081875A (ko) 프리코딩이 적용된 준직교 수열을 이용한 인덱스 변조된 직교 주파수 분할 다중화 송/수신 장치 및 방법
JP2015037322A (ja) 送信機および符号化する方法
JP2009124563A (ja) 周波数選択性減衰パスのマルチコードマルチキャリア符合分割多重接続システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844998

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844998

Country of ref document: EP

Kind code of ref document: A1