WO2021047282A1 - 一种富含腐殖质人工模拟土壤的制备方法 - Google Patents

一种富含腐殖质人工模拟土壤的制备方法 Download PDF

Info

Publication number
WO2021047282A1
WO2021047282A1 PCT/CN2020/102245 CN2020102245W WO2021047282A1 WO 2021047282 A1 WO2021047282 A1 WO 2021047282A1 CN 2020102245 W CN2020102245 W CN 2020102245W WO 2021047282 A1 WO2021047282 A1 WO 2021047282A1
Authority
WO
WIPO (PCT)
Prior art keywords
soil
humus
rich
artificial simulated
biomass material
Prior art date
Application number
PCT/CN2020/102245
Other languages
English (en)
French (fr)
Inventor
杨帆
Original Assignee
东北农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北农业大学 filed Critical 东北农业大学
Priority to US17/641,947 priority Critical patent/US20230217872A1/en
Publication of WO2021047282A1 publication Critical patent/WO2021047282A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/10Growth substrates; Culture media; Apparatus or methods therefor based on or containing inorganic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G24/00Growth substrates; Culture media; Apparatus or methods therefor
    • A01G24/20Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material
    • A01G24/22Growth substrates; Culture media; Apparatus or methods therefor based on or containing natural organic material containing plant material

Definitions

  • the invention relates to a preparation method of simulated soil.
  • Black soil also known as black soil chernozem, is one of the most fertile soil resources for crop production in the world. Black soil has high organic matter content, fertile soil, and heavy storage of humus, which is most suitable for farming. In order to feed the growing world population, the black soil has been severely degraded in the past few decades. In particular, due to the abuse of pesticides, chemical fertilizers, etc. and the backward restoration system, serious soil erosion and pollution problems have been caused, and barren soil, saline-alkali soil and contaminated soil have gradually formed.
  • the purpose of the present invention is to solve the problem that the existing organic fertilizer has low tolerance to rain erosion, thereby affecting its repair effect on the problem soil, and to provide a method for preparing artificial simulated soil rich in humus.
  • a preparation method of artificial simulated soil rich in humus is completed according to the following steps:
  • step one The mass ratio of biomass material powder, problem soil, alkaline additives and distilled water described in step one is (3 ⁇ 5):(0.5 ⁇ 50):(0.3 ⁇ 2):(25 ⁇ 100);
  • step one The mass ratio of glucose, problem soil, alkaline additives and distilled water mentioned in step one is (3 ⁇ 5):(0.5 ⁇ 50):1.0:(25 ⁇ 50);
  • the biomass material powder described in step one is prepared according to the following steps:
  • biomass material powder is cleaned to remove impurities on the surface of the biomass material, then dried, and finally the dried biomass material is crushed to obtain biomass material powder;
  • the present invention uses biomass materials and problem soil as raw materials, and adopts a novel method of combining hydrothermal humification and thermochemistry to prepare artificial simulated soil rich in humus.
  • Artificial black soil has rich organic matter content, suitable soil acidity and alkalinity, and matches the mineralogical composition of real black soil.
  • the artificial simulated soil rich in humus prepared by the present invention has an appearance similar to natural black soil and can be adjusted according to different target soils.
  • the organic matter content is 12.0% ⁇ 60.7m 2 /g, and the rich humus is evenly dispersed on the surface of the soil minerals, which improves its tolerance to rainwater and surface runoff erosion;
  • the glucose, cellulose, hemicellulose and lignin in the biomass material are decomposed and re-bonded to form fulvic acid and humic acid under the action of alkaline additives and high temperature and high pressure reaction conditions.
  • the alkaline environment at the initial stage of the reaction forms a certain degree of activation on the mineral surface of the raw material soil, increasing the hydroxyl groups on the surface of the soil minerals, and then bonding with the formed humic substances through physical and chemical interactions to form a matching firm humics-minerals structure , Improve the resistance to erosion;
  • biomass materials such as straw, rice husk, etc.
  • biomass materials are cheap and easy to obtain, which reduces the preparation cost of artificial soil
  • the present invention combines soil raw materials and biomass materials to simulate geochemical processes to prepare artificial soil rich in organic matter, which can simultaneously increase the content of humus, improve the salinization of soil raw materials, decline in fertility, serious pollution and other problems, and can Improve the soil's water and soil conservation capacity and increase the soil's ability to absorb nutrients.
  • the artificial soil rich in humus prepared by the present invention has a water holding capacity equivalent to that of natural black soil, and the adsorption capacity of typical nitrogen, phosphorus, and potassium elements is 3-15 times, 1-3 times and 4-20 times that of the soil itself, respectively. ;
  • the preparation method of the present invention is simple, and the raw materials are cheap and easily available, so it is suitable for large-scale synthetic preparation;
  • the artificial simulated soil rich in humus prepared by the present invention is used to increase the water holding capacity of the soil and the absorption capacity of nutrient elements.
  • Figure 1 is the sampling location of the desertified soil in the first embodiment
  • Figure 2 is a comparison photo of the soil in Example 1, 1 is the desertified soil, and 2 is the artificial simulated soil rich in humus prepared in Example 1;
  • Figure 3 is a first scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • Example 4 is a second scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 5 is a third scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • Example 6 is a fourth scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 7 is a fifth scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 8 is a sixth scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • Fig. 9 is a first scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2.
  • Example 10 is a second scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2;
  • Example 11 is a third scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 2;
  • Fig. 12 is a fourth scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2;
  • Figure 13 is the XRD spectrum, in the figure 1 is the XRD curve of the desertified soil, 2 is the XRD curve of the natural cultivated soil, 3 is the XRD curve of the artificial simulated soil rich in humus prepared in Example 1, and 4 is the XRD curve of the rich soil prepared in Example 2.
  • XRD curve of artificial simulated soil containing humus 5 is the XRD curve of natural black soil;
  • Figure 14 is the infrared spectrum of the artificial simulated soil rich in humus.
  • Figure 1 is the infrared spectrum of natural black soil
  • 2 is the infrared spectrum of natural cultivated soil
  • 3 is the infrared spectrum of the artificial simulated soil rich in humus prepared in Example 1.
  • Figure 4 is an infrared spectrogram of the artificial simulated soil rich in humus prepared in Example 2;
  • FIG. 15 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 1.
  • FIG. 15 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 1.
  • Fig. 16 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 2.
  • Fig. 17 is an energy dispersive X-ray spectrum diagram of the artificial simulated soil rich in humus prepared in Example 2.
  • This embodiment is a method for preparing artificial simulated soil rich in humus, which is completed according to the following steps:
  • step one The mass ratio of biomass material powder, problem soil, alkaline additives and distilled water described in step one is (3 ⁇ 5):(0.5 ⁇ 50):(0.3 ⁇ 2):(25 ⁇ 100);
  • step one The mass ratio of glucose, problem soil, alkaline additives and distilled water mentioned in step one is (3 ⁇ 5):(0.5 ⁇ 50):1.0:(25 ⁇ 50);
  • the biomass material powder described in step one is prepared according to the following steps:
  • biomass material powder is cleaned to remove impurities on the surface of the biomass material, then dried, and finally the dried biomass material is crushed to obtain biomass material powder;
  • This embodiment uses biomass materials and problem soil as raw materials, and adopts a novel method of combining hydrothermal humification and thermochemistry to prepare artificial simulated soil rich in humus.
  • Artificial black soil has rich organic matter content, suitable soil acidity and alkalinity, and mineralogical composition matching real black soil.
  • the artificial simulated soil rich in humus prepared in this embodiment has an appearance similar to natural black soil, and can be based on different target soils. Regulate the organic matter content to 12.0% ⁇ 60.7m 2 /g, and the rich humus is evenly dispersed on the surface of soil minerals, which improves its tolerance to rainwater and surface runoff erosion;
  • the glucose, cellulose, hemicellulose and lignin in the biomass material are decomposed and re-bonded to form fulvic acid and humic acid under the action of alkaline additives and high temperature and high pressure reaction conditions.
  • the alkaline environment at the initial stage of the reaction forms a certain degree of activation on the mineral surface of the raw material soil, increasing the hydroxyl groups on the surface of the soil minerals, and then bonding with the formed humic substances through physical and chemical interactions to form a matching firm humics-minerals structure , Improve the resistance to erosion;
  • biomass materials such as straw, rice husk, etc.
  • biomass materials are cheap and easy to obtain, which reduces the preparation cost of artificial soil
  • soil raw materials and biomass materials are combined to simulate geochemical processes to prepare artificial soil rich in organic matter, which can simultaneously increase the content of humus, improve the salinization of soil raw materials, decrease fertility, serious pollution and other problems, and It can improve the soil's water and soil conservation capacity and increase the soil's ability to absorb nutrient elements.
  • the humus-rich artificial soil prepared in this embodiment has a water holding capacity equivalent to that of natural black soil, and the adsorption capacity of typical nitrogen, phosphorus, and potassium elements is 3-15 times, 1-3 times and 4-20 times that of the soil itself, respectively. Times
  • the preparation method of this embodiment is simple, and the raw materials are cheap and easy to obtain, so it is suitable for large-scale synthetic preparation;
  • the artificial simulated soil rich in humus prepared in this embodiment is used to increase the water holding capacity of the soil and the absorption capacity of nutrient elements.
  • Embodiment 2 The difference between this embodiment and Embodiment 1 is that in step 1, the biomass material is first cleaned to remove impurities on the surface of the biomass material, and then dried at a temperature of 60°C to 80°C for 10 hours to 24 hours .
  • the other steps are the same as the first embodiment.
  • Specific embodiment three this embodiment is different from specific embodiment one or two in that the biomass material described in step one is one or a mixture of several of corn stalks, rice husks, leaves and wood chips .
  • the other steps are the same as in the first or second embodiment.
  • Specific embodiment four This embodiment is different from one of specific embodiments 1 to 3 in that the particle size of the biomass material powder described in step 1 is 100 mesh to 200 mesh. The other steps are the same as in the first to third specific embodiments.
  • Specific embodiment five This embodiment is different from one of specific embodiments 1 to 4 in that: the problem soil described in step 1 is one or several of desertified soil, heavy metal contaminated soil, organic contaminated soil, and saline-alkali soil. kind of mixture.
  • the other steps are the same as those in the first to fourth specific embodiments.
  • the mass fraction of sand in the desertified soil is ⁇ 80%, the soil is ⁇ 10%, and the balance is plant residues and soil moisture;
  • the heavy metal contaminated soil is one or several of Pb, Hg, Cu, and Zn Contaminated soil:
  • Organically contaminated soil is soil contaminated by organic pesticides, petroleum, and pesticides, or some of them.
  • this embodiment is different from one of specific embodiments one to five in that: the alkaline auxiliary agent in step one is one of NaOH, KOH, and a mixture of Ca(OH) 2 and Na 2 CO 3 Or a mixture of several of them; the mass ratio of Ca(OH) 2 to NaCO 3 in the mixture of Ca(OH) 2 and Na 2 CO 3 is 1:1.
  • the other steps are the same as those in the first to fifth specific embodiments.
  • Embodiment 7 This embodiment is different from one of Embodiments 1 to 6 in that the centrifugal speed described in step 2 is 4000 r/min to 12000 r/min. The other steps are the same as those in the first to sixth specific embodiments.
  • Specific embodiment eight This embodiment is different from one of specific embodiments 1 to 7 in that the centrifugation time described in step 2 is 5 min to 20 min. The other steps are the same as those in the first to seventh specific embodiments.
  • Embodiment 9 The difference between this embodiment and Embodiments 1 to 8 is that the vacuum drying temperature in step 2 is 60° C. to 80° C., and the vacuum drying time is 18 h to 24 hours.
  • the other steps are the same as those in the first to eighth specific embodiments.
  • This embodiment differs from one of specific embodiments 1 to 9 in that: in step 2, the soil mixture is placed in a high-temperature and high-pressure hydrothermal reactor, and then the high-temperature and high-pressure hydrothermal reactor is heated to 185°C to 195°C °C, and then hydrothermally react at a temperature of 185°C ⁇ 195°C and a pressure of 2MPa ⁇ 3MPa for 22h ⁇ 23h to obtain a reaction product; centrifuge the reaction product to obtain a solid substance; vacuum dry the solid substance to obtain a rich Humus artificially simulates the soil.
  • the other steps are the same as those in the first to ninth specific embodiments.
  • Example 1 A preparation method of artificial simulated soil rich in humus is completed according to the following steps:
  • step one The mass ratio of glucose, desertified soil, alkaline additives and distilled water mentioned in step one is 3.24:2.70:1.0:30;
  • the alkaline auxiliary agent mentioned in step one is KOH:
  • the desertified soil described in step one contains 81% of sand and 10% of soil, and the balance is plant residues and soil moisture;
  • the organic matter content of the artificial simulated soil rich in humus prepared in Example 1 was 13.0%.
  • the adsorption capacity of the typical nitrogen, phosphorus, and potassium elements of the artificial simulated soil rich in humus prepared in Example 1 is 7.6 times, 1.3 times and 8.8 times that of the soil itself, respectively.
  • Example 2 A preparation method of artificial simulated soil rich in humus is completed according to the following steps:
  • step one The mass ratio of olive leaves, problem soil, alkaline additives and distilled water mentioned in step one is 4:16.7:1:36;
  • the alkaline auxiliary agent mentioned in step one is KOH:
  • the problem soil in step one is desertified soil, in which the sand is 80%, the soil is 10%, and the balance is plant residues and soil moisture;
  • the biomass material powder described in step one is prepared according to the following steps:
  • biomass material is cleaned to remove impurities on the surface of the biomass material, and then dried at a temperature of 60°C for 20 hours, and finally the dried biomass material is pulverized to obtain biomass material powder;
  • the particle size is 150 mesh;
  • the organic matter content of the artificial simulated soil rich in humus prepared in Example 2 was 16.7%.
  • the adsorption capacity of the typical nitrogen, phosphorus, and potassium elements of the artificial simulated soil rich in humus prepared in Example 2 is 4.0 times, 1.2 times and 4.3 times that of the soil itself, respectively.
  • Figure 1 is the sampling location of the desertified soil in the first embodiment
  • Figure 2 is a comparison photo of the soil in Example 1, 1 is the desertified soil, and 2 is the artificial simulated soil rich in humus prepared in Example 1;
  • the artificial simulated soil rich in humus obtained by the method of Example 1 has an appearance color and shape similar to that of natural black soil.
  • Figure 3 is a first scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • Example 4 is a second scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 5 is a third scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • Example 6 is a fourth scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 7 is a fifth scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 1;
  • FIG. 8 is a sixth scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 1;
  • Fig. 9 is a first scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2.
  • Example 10 is a second scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2;
  • Example 11 is a third scanning electron microscope photo of the artificial simulated soil rich in humus prepared in Example 2;
  • Fig. 12 is a fourth scanning electron micrograph of the artificial simulated soil rich in humus prepared in Example 2;
  • Figure 13 is the XRD spectrum, in the figure 1 is the XRD curve of the desertified soil, 2 is the XRD curve of the natural cultivated soil, 3 is the XRD curve of the artificially simulated soil rich in humus prepared in Example 1, and 4 is the XRD curve of the rich soil prepared in Example 2.
  • XRD curve of artificial simulated soil containing humus 5 is the XRD curve of natural black soil;
  • Figure 14 is the infrared spectrum of the artificial simulated soil rich in humus.
  • Figure 1 is the infrared spectrum of natural black soil
  • 2 is the infrared spectrum of natural cultivated soil
  • 3 is the infrared spectrum of the artificial simulated soil rich in humus prepared in Example 1.
  • Figure 4 is an infrared spectrogram of the artificial simulated soil rich in humus prepared in Example 2;
  • FIG. 15 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 1.
  • FIG. 15 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 1.
  • the peak area ratio between 1650-1800cm -1 and 1500-1650cm -1 the results of desertified soil and artificial simulated soil rich in humus are 0.35 and 0.34, indicating that the level of humus has increased.
  • Fig. 16 is an infrared spectrum peak diagram of the artificial simulated soil rich in humus prepared in Example 2.
  • Fig. 16 the region with a wave number ranging from 800 to 1800 cm -1 on the infrared spectrum is divided into three peak groups of 1650 to 1800 cm -1 , 1500 to 1650 cm -1 and 1040-1260 cm -1.
  • the peak area ratio of 1650-1800cm -1 and 1500-1650cm -1 the results of desertified soil and artificial simulated soil rich in humus are 0.35 and 0.22, indicating that the level of humus has increased.
  • Fig. 17 is an energy dispersive X-ray spectrum diagram of the artificial simulated soil rich in humus prepared in Example 2.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

一种富含腐殖质人工模拟土壤的制备方法,涉及模拟土壤的制备方法,其目的是要解决现有有机肥对雨水冲刷耐受能力低,进而影响了其对问题土壤的修复效果的问题;该方法包括:一、制备土壤混合物;二、将土壤混合物置于高温高压水热反应釜中进行水热反应,得到富含腐殖质人工模拟土壤。该制备方法简便,原料廉价易得,因此适合大批量的合成制备;制备的富含腐殖质人工模拟土壤用于增加土壤持水性和对营养元素的吸收性能力。

Description

一种富含腐殖质人工模拟土壤的制备方法 技术领域
本发明涉及模拟土壤的制备方法。
背景技术
黑土,又称黑土黑钙土,是世界上最肥沃的作物生产土壤资源之一。黑土有机质含量高,土壤肥沃,储存着厚重的腐殖质最适合农耕。为了养活日益增长的世界人口,黑土在过去几十年发生了严重的退化。特别地,由于农药、化肥等的滥用及落后的修复体系,造成了水土流失、污染问题严重,逐渐形成了贫瘠土、盐碱土及污染土等。
现有的针对不同土壤问题的有机肥料虽然可以一定程度上从物理、生物、化学等方面解决土壤盐碱化、板结严重、土壤贫瘠、地力下降等问题,但是由于其与土壤结构和组成的显著区别,不能与土壤进行完全匹配,增加了被雨水冲刷的风险,进而影响了其对问题土壤的修复效果。
发明内容
本发明的目的是要解决现有有机肥对雨水冲刷耐受能力低,进而影响了其对问题土壤的修复效果的问题,而提供一种富含腐殖质人工模拟土壤的制备方法。
一种富含腐殖质人工模拟土壤的制备方法,是按以下步骤完成:
一、制备土壤混合物:
将生物质材料粉或葡萄糖与问题土壤混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到土壤混合物;
步骤一中所述的生物质材料粉、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):(0.3~2):(25~100);
步骤一中所述的葡萄糖、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):1.0:(25~50);
步骤一中所述的生物质材料粉是按以下步骤制备的:
首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
二、将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至180℃~200℃,再在温度为180℃~200℃和压力为0.5MPa~5MPa的条件下水热反应20h~28h,得到反应产物;将反应产物进行离心,得到固体物质;将固体物质进行真空干燥,得到富 含腐殖质人工模拟土壤。
本发明的原理及优点:
一、本发明以生物质材料和问题土壤为原料,采用新型的水热腐殖化与热化学相结合的方法制备得到的富含腐殖质的人工模拟土壤。人工黑土具有丰富的有机质含量、适宜的土壤酸碱性、匹配真实黑土的矿物学成分,本发明制备的富含腐殖质的人工模拟土壤具有与天然黑土相似的外观形态,并且可以根据不同目标土壤调控有机质含量为12.0%~60.7m 2/g,且丰富的腐殖质匀分散在土壤矿物表面,提高了其对雨水及地表径流冲刷的耐受性;
二、将生物质材料中的葡萄糖、纤维素、半纤维素和木质素在碱性助剂作用和高温高压的反应条件下,进行分解和重新键合形成富里酸和腐殖酸。同时,反应初期的碱性环境对原料土壤的矿物表面形成一定度的活化作用,增加了土壤矿物表面的羟基基团,进而与形成的腐殖质通过物理化学作用键合形成匹配坚固的humics-minerals结构,提高了耐冲刷能力;
三、生物质材料(如秸秆、稻壳等)作为一种农业废弃物,由于其廉价易得,降低了人工土壤的制备成本;
四、本发明将土壤原料和生物质材料组合模拟地球化学过程制备富含有机质的人工土壤,其可以同时增加腐殖质的含量、改善土壤原料的盐碱化、肥力下降、污染严重等问题,并可以提高土壤的水土保持能力,增加土壤对营养元素的吸收能力。本发明制备的富含腐殖质的人工土壤具有与天然黑土相当的持水能力,对典型氮、磷、钾元素的吸附量分别是土壤本身的3~15倍、1~3倍和4~20倍;
五、本发明制备方法简便,原料廉价易得,因此适合大批量的合成制备;
本发明制备的富含腐殖质人工模拟土壤用于增加土壤持水性和对营养元素的吸收性能力。
附图说明
图1为实施例一中沙漠化土壤的采样地点;
图2为实施例一中土壤对比照片,1为沙漠化土壤,2为实施例一制备的富含腐殖质人工模拟土壤;
图3为实施例一制备的富含腐殖质人工模拟土壤的第一扫描电镜照片;
图4为实施例一制备的富含腐殖质人工模拟土壤的第二扫描电镜照片;
图5为实施例一制备的富含腐殖质人工模拟土壤的第三扫描电镜照片;
图6为实施例一制备的富含腐殖质人工模拟土壤的第四扫描电镜照片;
图7为实施例一制备的富含腐殖质人工模拟土壤的第五扫描电镜照片;
图8为实施例一制备的富含腐殖质人工模拟土壤的第六扫描电镜照片;
图9为实施例二制备的富含腐殖质人工模拟土壤的第一扫描电镜照片;
图10为实施例二制备的富含腐殖质人工模拟土壤的第二扫描电镜照片;
图11为实施例二制备的富含腐殖质人工模拟土壤的第三扫描电镜照片;
图12为实施例二制备的富含腐殖质人工模拟土壤的第四扫描电镜照片;
图13为XRD谱图,图中1为沙漠化土壤的XRD曲线,2天然耕地土壤的XRD曲线,3为实施例一制备的富含腐殖质人工模拟土壤的XRD曲线,4为实施例二制备的富含腐殖质人工模拟土壤的XRD曲线,5为天然黑土的XRD曲线;
图14为富含腐殖质人工模拟土壤的红外光谱图,图中1为天然黑土的红外光谱图,2天然耕地土壤的红外光谱图,3为实施例一制备的富含腐殖质人工模拟土壤的红外光谱图,4为实施例二制备的富含腐殖质人工模拟土壤的红外光谱图;
图15为实施例一制备的富含腐殖质人工模拟土壤的红外光谱分峰图。
图16为实施例二制备的富含腐殖质人工模拟土壤的红外光谱分峰图。
图17为实施例二制备的富含腐殖质人工模拟土壤的能量色散X射线光谱图。
具体实施方式
具体实施方式一:本实施方式是一种富含腐殖质人工模拟土壤的制备方法,是按以下步骤完成:
一、制备土壤混合物:
将生物质材料粉或葡萄糖与问题土壤混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到土壤混合物;
步骤一中所述的生物质材料粉、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):(0.3~2):(25~100);
步骤一中所述的葡萄糖、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):1.0:(25~50);
步骤一中所述的生物质材料粉是按以下步骤制备的:
首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
二、将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至180 ℃~200℃,再在温度为180℃~200℃和压力为0.5MPa~5MPa的条件下水热反应20h~28h,得到反应产物;将反应产物进行离心,得到固体物质;将固体物质进行真空干燥,得到富含腐殖质人工模拟土壤。
本实施方式的原理及优点:
一、本实施方式以生物质材料和问题土壤为原料,采用新型的水热腐殖化与热化学相结合的方法制备得到的富含腐殖质的人工模拟土壤。人工黑土具有丰富的有机质含量、适宜的土壤酸碱性、匹配真实黑土的矿物学成分,本实施方式制备的富含腐殖质的人工模拟土壤具有与天然黑土相似的外观形态,并且可以根据不同目标土壤调控有机质含量为12.0%~60.7m 2/g,且丰富的腐殖质匀分散在土壤矿物表面,提高了其对雨水及地表径流冲刷的耐受性;
二、将生物质材料中的葡萄糖、纤维素、半纤维素和木质素在碱性助剂作用和高温高压的反应条件下,进行分解和重新键合形成富里酸和腐殖酸。同时,反应初期的碱性环境对原料土壤的矿物表面形成一定度的活化作用,增加了土壤矿物表面的羟基基团,进而与形成的腐殖质通过物理化学作用键合形成匹配坚固的humics-minerals结构,提高了耐冲刷能力;
三、生物质材料(如秸秆、稻壳等)作为一种农业废弃物,由于其廉价易得,降低了人工土壤的制备成本;
四、本实施方式将土壤原料和生物质材料组合模拟地球化学过程制备富含有机质的人工土壤,其可以同时增加腐殖质的含量、改善土壤原料的盐碱化、肥力下降、污染严重等问题,并可以提高土壤的水土保持能力,增加土壤对营养元素的吸收能力。本实施方式制备的富含腐殖质的人工土壤具有与天然黑土相当的持水能力,对典型氮、磷、钾元素的吸附量分别是土壤本身的3~15倍、1~3倍和4~20倍;
五、本实施方式制备方法简便,原料廉价易得,因此适合大批量的合成制备;
本实施方式制备的富含腐殖质人工模拟土壤用于增加土壤持水性和对营养元素的吸收性能力。
具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后在温度为60℃~80℃进行干燥10h~24h。其它步骤与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的生物质材料为玉米秸秆、稻壳、树叶和木屑中的一种或其中几种的混合物。其它步骤与具 体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤一中所述的生物质材料粉的粒径为100目~200目。其它步骤与具体实施方式一至三相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤一中所述的问题土壤为沙漠化土壤、重金属污染土壤、有机污染土壤和盐碱土壤中的一种或其中几种的混合物。其它步骤与具体实施方式一至四相同。
本实施方式中沙漠化土壤中沙子的质量分数≥80%,泥土≤10%,余量为植物残体和土壤水分;重金属污染土壤为Pb、Hg、Cu和Zn中的一种或其中几种重金属污染的土壤;有机污染土壤为有机农药、石油和杀虫剂中的一种或其中几种有机物污染的土壤。
具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤一中所述的碱性助剂为NaOH、KOH和Ca(OH) 2与Na 2CO 3的混合物中的一种或其中几种的混合物;所述的Ca(OH) 2与Na 2CO 3的混合物中Ca(OH) 2与NaCO 3的质量比为1:1。其它步骤与具体实施方式一至五相同。
具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤二中所述的离心速度为4000r/min~12000r/min。其它步骤与具体实施方式一至六相同。
具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤二中所述的离心时间为5min~20min。其它步骤与具体实施方式一至七相同。
具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤二中所述的真空干燥温度为60℃~80℃,真空干燥时间为18h~24h。其它步骤与具体实施方式一至八相同。
具体实施方式十:本实施方式与具体实施方式一至九之一不同点是:步骤二中将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至185℃~195℃,再在温度为185℃~195℃和压力为2MPa~3MPa的条件下水热反应22h~23h,得到反应产物;将反应产物进行离心,得到固体物质;将固体物质进行真空干燥,得到富含腐殖质人工模拟土壤。其它步骤与具体实施方式一至九相同。
采用以下实施例验证本发明的有益效果:
实施例一:一种富含腐殖质人工模拟土壤的制备方法,是按以下步骤完成:
一、制备土壤混合物:
将葡萄糖与沙漠化土壤混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到土壤混合物;
步骤一中所述的葡萄糖、沙漠化土壤、碱性助剂和蒸馏水的质量比为3.24:2.70:1.0: 30;
步骤一中所述的碱性助剂为KOH:
步骤一中所述的沙漠化土壤中沙子为81%,泥土为10%,余量为植物残体和土壤水分;
二、将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在温度为200℃和压力为3.5MPa的条件下水热反应24h,得到反应产物;将反应产物进行离心,离心速度为60000r/min,离心时间为6min,得到固体物质;将固体物质在温度为70℃下真空干燥20h,得到富含腐殖质人工模拟土壤。
实施例一制备的富含腐殖质人工模拟土壤的中有机质含量为13.0%。
实施例一制备的富含腐殖质人工模拟土壤对典型氮、磷、钾元素的吸附量分别是土壤本身的7.6倍、1.3倍和8.8倍。
实施例二:一种富含腐殖质人工模拟土壤的制备方法,是按以下步骤完成:
一、制备土壤混合物:
将橄榄树叶与问题土壤混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到土壤混合物;
步骤一中所述的橄榄树叶、问题土壤、碱性助剂和蒸馏水的质量比为4:16.7:1:36;
步骤一中所述的碱性助剂为KOH:
步骤一中所述的问题土壤为沙漠化土壤,所述的沙漠化土壤中沙子为80%,泥土为10%,余量为植物残体和土壤水分;
步骤一中所述的生物质材料粉是按以下步骤制备的:
首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后在温度为60℃下干燥20h,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;所述的生物质材料粉的粒径为150目;
二、将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至200℃,再在温度为200℃和压力为3.2MPa的条件下水热反应24h,得到反应产物;将反应产物进行离心,离心速度为8000r/min,离心时间为10min,得到固体物质;将固体物质在温度为80℃下真空干燥22h,得到富含腐殖质人工模拟土壤。
实施例二制备的富含腐殖质人工模拟土壤的中有机质含量为16.7%。
实施例二制备的富含腐殖质人工模拟土壤对典型氮、磷、钾元素的吸附量分别是土壤本身的4.0倍、1.2倍和4.3倍。
图1为实施例一中沙漠化土壤的采样地点;
图2为实施例一中土壤对比照片,1为沙漠化土壤,2为实施例一制备的富含腐殖质人工模拟土壤;
从图1和图2可知,以沙漠化土壤为原料,添加树叶生物质,通过实施例一的方法得到的富含腐殖质人工模拟土壤具有与天然黑土类似的外观颜色和形状。
图3为实施例一制备的富含腐殖质人工模拟土壤的第一扫描电镜照片;
图4为实施例一制备的富含腐殖质人工模拟土壤的第二扫描电镜照片;
图5为实施例一制备的富含腐殖质人工模拟土壤的第三扫描电镜照片;
图6为实施例一制备的富含腐殖质人工模拟土壤的第四扫描电镜照片;
图7为实施例一制备的富含腐殖质人工模拟土壤的第五扫描电镜照片;
图8为实施例一制备的富含腐殖质人工模拟土壤的第六扫描电镜照片;
从图3~图8可知,以沙漠化土壤为原料,添加葡萄糖,通过实施例一的方法得到的富含腐殖质人工模拟土壤表面均匀分布纤维状结构,同时存在少量球状结构。
图9为实施例二制备的富含腐殖质人工模拟土壤的第一扫描电镜照片;
图10为实施例二制备的富含腐殖质人工模拟土壤的第二扫描电镜照片;
图11为实施例二制备的富含腐殖质人工模拟土壤的第三扫描电镜照片;
图12为实施例二制备的富含腐殖质人工模拟土壤的第四扫描电镜照片;
从图9~图12可知,以沙漠化土壤为原料,添加橄榄树叶,通过实施例二的方法制备的富含腐殖质人工模拟土壤表面均匀分布大量粒径不均一的片状和颗粒状结构,同时存在少量球状结构。
图13为XRD谱图,图中1为沙漠化土壤的XRD曲线,2天然耕地土壤的XRD曲线,3为实施例一制备的富含腐殖质人工模拟土壤的XRD曲线,4为实施例二制备的富含腐殖质人工模拟土壤的XRD曲线,5为天然黑土的XRD曲线;
从图13可知,四条XRD曲线上出现在20.7°,26.6°,36.5°,39.5°,40.3°,42.4°,45.8°,50.1°,分别54.9°和57.3°的9个峰表明存在二氧化硅。此外,多种矿物如CaCO 3、Ca 2(SiO 4)、CaMg(Si 2O 6)、MgSiO 3、Mg 2(Si 2O 6)、Mg 2SiO 4、Mg(SiO 3)和Mg(SiO 3)等的特征峰也同时出现了。
图14为富含腐殖质人工模拟土壤的红外光谱图,图中1为天然黑土的红外光谱图,2天然耕地土壤的红外光谱图,3为实施例一制备的富含腐殖质人工模拟土壤的红外光谱图,4为实施例二制备的富含腐殖质人工模拟土壤的红外光谱图;
从图14可知,在波数3627,1637和1537cm -1处,天然黑土具有非常明显的特征峰, 表面存在丰富的-OH基团。在波数3357和1640~1620cm -1处,天然耕作土壤和人造土壤的曲线上存在两个非常强烈的吸收峰。对于所有曲线中,位于1100-1000、782、692和600cm -1波数处的谱带存在的吸收峰都归因于C-O、C-H、-OH和/或-NH 2基团的振动。
图15为实施例一制备的富含腐殖质人工模拟土壤的红外光谱分峰图。
从图15可知,对红外谱图上波数范围为800-1800cm -1的区域划分1650-1800cm -1、1500-1650cm-1和1040-1260cm -1三个峰群。通过对比1650-1800cm -1和1500-1650cm -1的峰群面积比,沙漠化土壤和富含腐殖质人工模拟土壤,结果为0.35和0.34,表明腐殖质水平有所提高。
图16为实施例二制备的富含腐殖质人工模拟土壤的红外光谱分峰图。
从图16可知,对红外谱图上波数范围为800~1800cm -1的区域划分1650~1800cm -1、1500-1650cm-1和1040-1260cm -1三个峰群。通过对比1650-1800cm -1和1500-1650cm -1的峰群面积比,沙漠化土壤和富含腐殖质人工模拟土壤,结果为0.35和0.22,表明腐殖质水平有所提高。
图17为实施例二制备的富含腐殖质人工模拟土壤的能量色散X射线光谱图。
将图17中的数据列于表1。
表1
  Wt% σ
O 50.4 0.3
Si 29.6 0.2
C 18.2 0.4
Ca 1.3 0.1
K 0.6 0.1
从图17和表1可知,实施例二制备的富含腐殖质人工模拟土壤含有C,Si,Ca,K和Ca元素,这些元素的存在是来自于土壤固有成分。

Claims (10)

  1. 一种富含腐殖质人工模拟土壤的制备方法,其特征在于一种富含腐殖质人工模拟土壤的制备方法是按以下步骤完成:
    一、制备土壤混合物:
    将生物质材料粉或葡萄糖与问题土壤混合,再加入碱性助剂和蒸馏水,搅拌均匀,得到土壤混合物;
    步骤一中所述的生物质材料粉、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):(0.3~2):(25~100);
    步骤一中所述的葡萄糖、问题土壤、碱性助剂和蒸馏水的质量比为(3~5):(0.5~50):1.0:(25~50);
    步骤一中所述的生物质材料粉是按以下步骤制备的:
    首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后进行干燥,最后把干燥的生物质材料进行粉碎,得到生物质材料粉;
    二、将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至180℃~200℃,再在温度为180℃~200℃和压力为0.5MPa~5MPa的条件下水热反应20h~28h,得到反应产物;将反应产物进行离心,得到固体物质;将固体物质进行真空干燥,得到富含腐殖质人工模拟土壤。
  2. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤一中首先对生物质材料进行清洗,去除生物质材料表面的杂质,然后在温度为60℃~80℃进行干燥10h~24h。
  3. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤一中所述的生物质材料为玉米秸秆、稻壳、树叶和木屑中的一种或其中几种的混合物。
  4. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤一中所述的生物质材料粉的粒径为100目~200目。
  5. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤一中所述的问题土壤为沙漠化土壤、重金属污染土壤、有机污染土壤和盐碱土壤中的一种或其中几种的混合物。
  6. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤一中所述的碱性助剂为NaOH、KOH和Ca(OH) 2与Na 2CO 3的混合物中的一种或其中几种的混合物;所述的Ca(OH) 2与Na 2CO 3的混合物中Ca(OH) 2与NaCO 3的质量比为1:1。
  7. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤 二中所述的离心速度为4000r/min~12000r/min。
  8. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤二中所述的离心时间为5min~20min。
  9. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤二中所述的真空干燥温度为60℃~80℃,真空干燥时间为18h~24h。
  10. 根据权利要求1所述的一种富含腐殖质人工模拟土壤的制备方法,其特征在于步骤二中将土壤混合物置于高温高压水热反应釜中,再将高温高压水热反应釜升温至185℃~195℃,再在温度为185℃~195℃和压力为2MPa~3MPa的条件下水热反应22h~23h,得到反应产物;将反应产物进行离心,得到固体物质;将固体物质进行真空干燥,得到富含腐殖质人工模拟土壤。
PCT/CN2020/102245 2019-09-10 2020-07-16 一种富含腐殖质人工模拟土壤的制备方法 WO2021047282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/641,947 US20230217872A1 (en) 2019-09-10 2020-07-16 Preparation Method for Artificially Simulated Soil Rich in Humus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910857065.0 2019-09-10
CN201910857065.0A CN110521537B (zh) 2019-09-10 2019-09-10 一种富含腐殖质人工模拟土壤的制备方法

Publications (1)

Publication Number Publication Date
WO2021047282A1 true WO2021047282A1 (zh) 2021-03-18

Family

ID=68668190

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/128741 WO2021047112A1 (zh) 2019-09-10 2019-12-26 一种难溶磷素有效化的方法
PCT/CN2020/102245 WO2021047282A1 (zh) 2019-09-10 2020-07-16 一种富含腐殖质人工模拟土壤的制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128741 WO2021047112A1 (zh) 2019-09-10 2019-12-26 一种难溶磷素有效化的方法

Country Status (3)

Country Link
US (1) US20230217872A1 (zh)
CN (1) CN110521537B (zh)
WO (2) WO2021047112A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110521537B (zh) * 2019-09-10 2022-03-01 东北农业大学 一种富含腐殖质人工模拟土壤的制备方法
CN114431106A (zh) * 2022-02-15 2022-05-06 东北农业大学 一种富含人工腐殖质的酸性水稻育秧土壤的构建方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007308322A (ja) * 2006-05-17 2007-11-29 Kawasaki Plant Systems Ltd 廃棄物を用いた肥料の製造方法及び肥料
JP4610912B2 (ja) * 2004-03-09 2011-01-12 カワサキプラントシステムズ株式会社 廃棄物を原料とした緑化資材組成物及びこれを用いた緑化資材
CN103708982A (zh) * 2013-12-15 2014-04-09 张彩年 一种功能性改土有机无机复合肥及生产方法
CN106518150A (zh) * 2016-11-30 2017-03-22 苏州科技大学 一种净水污泥和硅藻土制备的复合陶粒
CN106929034A (zh) * 2017-04-20 2017-07-07 中国科学院生态环境研究中心 一种固体废弃物制备盐碱土壤改良剂的新工艺
CN108307980A (zh) * 2018-02-02 2018-07-24 中国科学院生态环境研究中心 一种废弃生物质制备无土栽培基质的方法
CN109719115A (zh) * 2018-12-15 2019-05-07 佛山市铁人环保科技有限公司 一种场地重金属污染土壤资源化低成本处置方法
CN110521537A (zh) * 2019-09-10 2019-12-03 东北农业大学 一种富含腐殖质人工模拟土壤的制备方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4307871A1 (de) * 1993-03-12 1994-09-15 Wilhelm Ottomeyer Gmbh & Co Kg Verfahren und Einrichtung zur Bodenverbesserung
CA2308445A1 (en) * 1997-11-04 1999-05-14 University Of Guelph Method of using pelargonium sp. as hyperaccumulators for remediating contaminated soil
JP2000263031A (ja) * 1999-03-16 2000-09-26 Nkk Corp 汚染土壌の修復方法
CN1986495B (zh) * 2005-12-21 2010-05-26 河北天人化工股份有限公司 一种清液型复合小麦叶面肥及其生产工艺
CN103316904A (zh) * 2013-04-10 2013-09-25 天津市环境保护科学研究院 一种铬污染土壤的修复方法
CN104388094B (zh) * 2014-10-13 2017-04-05 广东省生态环境与土壤研究所(广东省土壤科学博物馆) 一种铁基生物炭材料、其制备工艺以及其在土壤污染治理中的应用
CN104692976A (zh) * 2015-03-20 2015-06-10 路永宽 多元素水溶肥
CN105154101B (zh) * 2015-09-02 2017-05-24 山东农大肥业科技有限公司 一种酸性土壤调理剂的生产方法及连续蒸压装置
US10301226B2 (en) * 2016-04-13 2019-05-28 True Organic Products, Inc. Ph adjusted organic fertilizer from anaerobic digestate and grain by-products
CN106576997B (zh) * 2016-12-02 2020-06-23 首钢环境产业有限公司 一种利用污染土壤和餐厨垃圾制备园林绿化土的方法
CN107254317A (zh) * 2016-12-21 2017-10-17 扬州工业职业技术学院 一种秸秆的预处理方法以及包含经预处理后秸秆的修复剂
CN106944472A (zh) * 2017-04-21 2017-07-14 航天凯天环保科技股份有限公司 一种水田镉污染土壤修复剂及其制备方法和应用
CN107793243A (zh) * 2017-12-05 2018-03-13 广西金智风工程发展有限公司 植物栽培基质及其制备方法
CN109721421A (zh) * 2018-12-30 2019-05-07 青岛海大生物集团有限公司 一种含海藻多糖和黄腐酸复合增效磷肥的制备及应用
CN110016350A (zh) * 2019-04-29 2019-07-16 深圳润康生态环境股份有限公司 耕地重金属污染土壤修复制剂及其制备方法
CN110511073B (zh) * 2019-09-11 2021-11-30 东北农业大学 一种难溶磷素有效化的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610912B2 (ja) * 2004-03-09 2011-01-12 カワサキプラントシステムズ株式会社 廃棄物を原料とした緑化資材組成物及びこれを用いた緑化資材
JP2007308322A (ja) * 2006-05-17 2007-11-29 Kawasaki Plant Systems Ltd 廃棄物を用いた肥料の製造方法及び肥料
CN103708982A (zh) * 2013-12-15 2014-04-09 张彩年 一种功能性改土有机无机复合肥及生产方法
CN106518150A (zh) * 2016-11-30 2017-03-22 苏州科技大学 一种净水污泥和硅藻土制备的复合陶粒
CN106929034A (zh) * 2017-04-20 2017-07-07 中国科学院生态环境研究中心 一种固体废弃物制备盐碱土壤改良剂的新工艺
CN108307980A (zh) * 2018-02-02 2018-07-24 中国科学院生态环境研究中心 一种废弃生物质制备无土栽培基质的方法
CN109719115A (zh) * 2018-12-15 2019-05-07 佛山市铁人环保科技有限公司 一种场地重金属污染土壤资源化低成本处置方法
CN110521537A (zh) * 2019-09-10 2019-12-03 东北农业大学 一种富含腐殖质人工模拟土壤的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG FAN; ZHANG SHUAISHUAI; CHENG KUI; ANTONIETTI MARKUS: "A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation", SCIENCE OF THE TOTAL ENVIRONMENT, ELSEVIER, AMSTERDAM, NL, vol. 686, 5 June 2019 (2019-06-05), AMSTERDAM, NL, pages 1140 - 1151, XP085795768, ISSN: 0048-9697, DOI: 10.1016/j.scitotenv.2019.06.045 *

Also Published As

Publication number Publication date
CN110521537B (zh) 2022-03-01
US20230217872A1 (en) 2023-07-13
WO2021047112A1 (zh) 2021-03-18
CN110521537A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021047282A1 (zh) 一种富含腐殖质人工模拟土壤的制备方法
CN108840766A (zh) 一种盐碱土壤改良剂及其制备方法
US11279877B2 (en) Method for improving soil
WO2007022760A2 (de) Bodenverbesserungsmittel und verfahren zu dessen herstellung
CN101085920B (zh) 一种南方旱地酸性土壤调理剂的制备方法
CN1803734A (zh) 风化煤小麦专用基质缓释肥料的生产方法
CN103360158A (zh) 一种黑木耳栽培料配伍及此栽培料的制作方法
CN106365750A (zh) 一种葡萄种植叶面肥及其制作方法
CN114409471A (zh) 一种矿源生物炭土壤调理剂及其制备方法
CN101768023A (zh) 一种有机硅肥料及其制备方法
CN110759787A (zh) 一种富含腐植酸盐的土壤调理剂的制备方法
Santos et al. Impact of temperature on vacuum pyrolysis of Syagrus coronata for biochar production
CN108849391A (zh) 一种油茶幼苗培育基质配方及其制备方法
CN112645757A (zh) 一种适用于土壤修复的肥料及其制备方法
JP6498852B1 (ja) 植物生育促進剤
CN111233574A (zh) 一种亚表层土壤盐基饱和度调理剂的制备方法
CN113149719B (zh) 一种用于酸化土壤改良的钙基生物炭及其制备方法
CN103360157A (zh) 一种香菇栽培料配伍及此栽培料的制作方法
EP3569585B1 (de) Haferkleie als zuschlagsstoff oder hauptbestandteil von pflanzensubstraten
CN106116976A (zh) 菊芋秸秆肥料及其制备方法
KUO et al. Physicochemical Properties of Biochar Derived from Agricultural and Forestry Processing Wastes as Cultural Medium Substance and Its Effect on Growth Quality of Vegetable Plug Seedlings
CN114431106A (zh) 一种富含人工腐殖质的酸性水稻育秧土壤的构建方法
Frackowiak et al. Impact of different lignocellulosic materials used in core of particleboard on modulus of elasticity and bending strength
CN117486656A (zh) 一种生物质炭基肥
CN101880187B (zh) 混合草皮基质在提高高羊茅色素含量方面的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862577

Country of ref document: EP

Kind code of ref document: A1