WO2021047176A1 - 一种潜入式汽车搬运机器人及其控制方法 - Google Patents

一种潜入式汽车搬运机器人及其控制方法 Download PDF

Info

Publication number
WO2021047176A1
WO2021047176A1 PCT/CN2020/086306 CN2020086306W WO2021047176A1 WO 2021047176 A1 WO2021047176 A1 WO 2021047176A1 CN 2020086306 W CN2020086306 W CN 2020086306W WO 2021047176 A1 WO2021047176 A1 WO 2021047176A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
mechanical arm
assembly
steering
gear
Prior art date
Application number
PCT/CN2020/086306
Other languages
English (en)
French (fr)
Inventor
曹力
王晨
Original Assignee
杭州极木科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州极木科技有限公司 filed Critical 杭州极木科技有限公司
Publication of WO2021047176A1 publication Critical patent/WO2021047176A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S13/00Vehicle-manoeuvring devices separate from the vehicle
    • B60S13/02Turntables; Traversers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories

Definitions

  • the invention belongs to the technical field of robots, and in particular relates to a submerged car handling robot and a control method thereof.
  • the carrier plate robot must always hold the carrier plate, which is the lowest in terms of space utilization and transportation efficiency.
  • Comb-tooth robots need to build a special parking platform, lift the car, and then lift the consignment.
  • the parking space still needs to build a special platform for parking, which results in uneconomical space utilization.
  • the cost of site construction greatly reduces the commercial value of the product.
  • the orbital robot is mainly a mechanical arm gripping robot.
  • the advantage of this robot is that it can directly enter from the bottom of the car to carry out tire gripping and lifting. There is no need to build a special platform.
  • the robot drive system is directional drive, it can only Use rail to guide. On the one hand, it increases the construction cost of the track, and on the other hand, it causes the fixed route planning, and the space utilization rate and economy are not very satisfactory. Due to the low integration of the gripping arm design, it occupies too much space on the overall robot, which makes it impossible to arrange a large-capacity battery and control system, and it is also the bottleneck problem of being unable to deviate from the fixed track and improving intelligence.
  • the purpose of the present invention is to provide a submersible car handling robot and its control method in view of the deficiencies of the prior art.
  • the construction of a special parking platform is eliminated, and the robot can directly enter the bottom of the vehicle to carry the vehicle.
  • the two robots cooperate to complete the handling tasks.
  • the two machines can move straight, horizontally, rotate, and arc in multiple directions.
  • the space utilization is high, and the limitations of the space shape and channel width are small.
  • a submersible car handling robot including a main frame, the two sides of the main frame are symmetrically arranged clamping arms; each clamping arm includes two mechanical arm bodies, two The manipulator body is directly mounted on the main frame, or two manipulator bodies are installed together on the manipulator module frame to form a module, and then the manipulator module frame is installed on the main frame; two robotic arms in each group The bodies are connected by a linkage mechanism, and one of the robot arms is driven to rotate through the power unit, thereby driving the other robot body to rotate synchronously, so as to realize the simultaneous rotation of the two robot arms relative to the main frame to open or close; each group of gripping arms The two robotic arm bodies of the two complete the gripping and lifting of a tire.
  • lidar sensors are arranged in the middle of the two ends of the car handling robot to sense the surrounding situation, so as to assist in the completion of obstacle avoidance, navigation planning, car tire position recognition and other tasks; both ends of the car handling robot
  • the contact and non-contact obstacle detection sensors are respectively arranged, which can make the robot quickly make an emergency stop or avoid obstacles when it encounters an obstacle suddenly.
  • the mechanical arm body includes a heavy-duty universal wheel, a heavy-duty universal wheel mounting block, a central shaft of the mechanical arm, a tire support roller, a mechanical arm structure support block, and a mechanical arm end connecting block; After the axle connects several tire support rollers in series with the mechanical arm structure support block, one end is fixed to the arm end connecting block of the mechanical arm, and the other end is fixed to the heavy-duty universal wheel mounting block; the heavy-duty universal wheel is installed on the heavy-duty universal wheel. Wheel mounting block.
  • the gripping arm also includes two mechanical arm rotation axis mechanisms, a mechanical arm linkage mechanism, a mechanical arm linkage mechanism, and a mechanical arm push-pull block mechanism; the two mechanical arm rotation axis mechanisms are respectively installed with a mechanical arm body;
  • the mechanical arm push-pull block mechanism is connected to the power unit, and its movement is driven by the power unit; one end of the mechanical arm link mechanism is connected with the mechanical arm push-pull block mechanism, and the other end is connected with a mechanical arm rotating shaft mechanism;
  • the mechanical arm rotating shaft mechanism has The mechanical arm rotating lever mechanism;
  • the mechanical arm linkage mechanism has two mechanical arm linkage lever mechanisms, the two mechanical arm linkage lever mechanisms are respectively connected with the two mechanical arm rotating linkage lever mechanisms, and the two mechanical arm linkage lever mechanisms pass Two mutually meshing mechanical arm linkage transmission gears are connected.
  • the mechanical arm rotating shaft mechanism includes a top mounting plate of the mechanical arm rotating shaft mechanism, a mechanical arm rotating pull rod mechanism, a mechanical arm rotating pin, a mechanical arm rotating mechanism fixing seat mechanism, a mechanical arm connecting pin, and a mechanical arm fixing connecting block mechanism
  • the bottom mounting plate of the mechanical arm rotating shaft mechanism is fixed as a whole by bolts; the mechanical arm rotating shaft mechanism is connected with the mechanical arm body through a mechanical arm connecting pin;
  • the mechanical arm linkage mechanism includes a mechanical arm linkage link fixing cover, two mechanical arm linkage rod mechanisms, two mechanical arm linkage transmission gears, and a mechanical arm linkage mechanism gear box; the mechanical arm linkage rod
  • the mechanism includes a mechanical arm linkage rod, a mechanical arm linkage handle, a mechanical arm linkage rod shaft, and a flat key for the mechanical arm linkage rod shaft; the mechanical arm linkage rod shaft is pressed into the mechanical arm linkage rod shaft by a flat key
  • the mechanical arm linkage rod shaft penetrates the mechanical arm linkage handle, and the two are fixedly connected; the mechanical arm linkage rod is inserted into the corresponding connection hole of the mechanical arm linkage handle; two mechanical arm linkage transmission gears are installed In the gear box of the mechanical arm linkage mechanism, they mesh with each other; the two mechanical arm linkage rod shafts are respectively inserted into the gear shaft holes in the two mechanical arm linkage transmission gears; the mechanical arm linkage linkage fixed cover has Two bearing holes, the bearing hole penetrates the linkage rod shaft of the mechanical arm, and
  • the car handling robot adopts an ultra-thin universal drive wheel drive system as the power system, and the ultra-thin universal drive wheel drive system adopts four ultra-thin universal drive wheel drive units;
  • the drive unit includes a housing assembly, a traveling drive system assembly, a steering drive system assembly, a traveling drive rotating disc system, a steering drive rotating disc system, and a wheel train assembly; the housing assembly is fixed on the main frame;
  • the traveling The drive system assembly includes a travel drive motor, a travel drive reducer, and a travel drive gear transmission mechanism to provide travel driving force for the ultra-thin universal drive wheels;
  • the steering drive system assembly includes a steering drive motor, a steering drive reducer, and a steering
  • the driving gear transmission mechanism provides the steering driving force for the ultra-thin universal drive wheels;
  • the driving driving rotating disc system is installed inside the housing assembly to transmit the driving driving force provided by the driving driving system assembly to the wheel train assembly;
  • the steering drive rotating disc system is installed under the traveling drive rotating
  • the travel drive gear transmission mechanism includes a travel drive system output cylindrical gear assembly, a first travel drive system idler cylindrical gear assembly, and a travel drive system input cylindrical gear assembly that are fixed inside the housing assembly and connected in sequence , Travel drive system input bevel gear assembly, second travel drive system idler cylindrical gear assembly; the cylindrical gear in the travel drive system output cylindrical gear assembly is designed with a keyway to cooperate with the output shaft of the travel drive reducer to receive travel drive
  • the power is transmitted through the gear train to the driving drive rotating disc system;
  • the steering drive gear transmission mechanism includes a first steering drive system output cylindrical gear assembly and a second steering drive system output cylindrical gear fixed inside the housing assembly and connected in sequence Assembly, steering drive system input bevel gear assembly, steering drive system transmission idler gear assembly; the cylindrical gear in the first steering drive system output cylindrical gear assembly is designed with a keyway to match the output shaft of the steering drive reducer to receive The steering drive force is transmitted to the steering drive rotating disc system through the gear train.
  • the steering drive rotating disk system includes a steering drive steering gear wheel assembly; the gear wheel in the steering drive steering gear wheel assembly meshes with the steering drive gear transmission mechanism, and receives the steering provided by the steering drive system assembly.
  • Driving force; the steering drive steering gear plate assembly is fixed on the upper part of the wheel train drive shaft support assembly in the wheel train assembly, and transmits the steering drive force to the wheel train assembly;
  • the traveling drive rotating disc system includes a traveling drive steering gear plate assembly, a plane thrust needle roller bearing assembly, a deep groove ball bearing assembly, a traveling drive output gear assembly, and a traveling drive steering gear plate fixing bracket assembly;
  • the gear wheel of the travel drive steering gear assembly meshes with the travel drive gear transmission mechanism to receive the travel drive force provided by the travel drive system assembly;
  • the travel drive steering gear assembly is fixedly connected to the travel drive output gear assembly
  • the driving output gear assembly is meshed with the driving gear of the gear train assembly;
  • the inner side of the driving disc in the driving driving steering gear assembly is designed with a groove feature, and the deep groove ball bearing assembly is installed in the groove ,
  • the lower part is supported and fixed by the travel drive steering gear wheel fixing bracket assembly;
  • the lower part of the gear wheel in the travel drive steering gear wheel assembly is designed with a sliding groove, and the plane thrust needle roller bearing assembly is installed in the sliding groove.
  • the driving steering gear assembly plays a role of horizontal support;
  • the gear train assembly includes a train drive shaft support assembly, a train drive shaft support bearing I, a train drive shaft, a drive gear, a train drive shaft support bearing II, a drive wheel, and a drive wheel support seat; There are multiple key grooves on the drive shaft.
  • the drive gear and the drive wheel are both fixed to the key groove of the wheel drive shaft by keys.
  • the drive gear receives the driving driving force transmitted by the driving drive rotating disc system and transmits it to the drive through the wheel system drive shaft.
  • the wheel train drive shaft support assembly is provided with bearing fixing holes on both sides, the wheel train drive shaft support bearing I and the wheel train drive shaft support bearing II through the bearing fixing hole to support the wheel train drive shaft and the wheel drive shaft
  • the steering drive force received by the drive shaft support assembly of the wheel train is transmitted to the drive wheels to complete the steering.
  • the center of the car handling robot is equipped with a core control unit, a battery power unit, and a navigation and motion control module.
  • the core control unit completes the interaction with the parking lot control system, and can complete the pairing with other robots according to the scheduling instructions, and complete the coordination. Car handling tasks.
  • a control method of a car handling robot includes: using two car handling robots to work together, the robot recognizes the center line of the car, and the two machines are aligned at the center to enter the bottom of the car; by changing the distance and front and back posture of the two car handling robots, To realize the clamping of cars with different wheelbases, the clamping arms are symmetrically stopped with the tire as the center, and the mechanical arms are opened at the same time to complete the clamping and lifting of the automobile tires.
  • the car handling robot of the present invention has an independently designed ultra-thin and heavy-duty universal drive system and a heavy-duty modular gripping arm unit, so that the height of the whole machine can be controlled at about 100mm, and it can sneak into the bottom of the car for tire clamping without the aid of external equipment. Lifting to realize vehicle handling greatly improves the commercial value of the product and reduces the civil construction cost of the parking lot operator.
  • the robot Due to the application of the ultra-thin universal drive system, the robot can move in multiple directions such as straight, horizontal, rotation, arc, etc., and the multi-directional motion mode greatly improves the utilization rate of the parking lot space, making the robot Vehicles can be parked flexibly and at multiple angles, instead of sticking to the traditional horizontal and vertical arrangement.
  • trackless intelligent parking robots enhances the utilization of parking space and greatly improves the objective problem of insufficient parking spaces; no need to resort to the design of external equipment, allowing operators to reduce operating costs , Income rises.
  • Figure 1 is a schematic top view of the overall structure of the car handling robot of the present invention (ultra-thin universal drive wheel drive and mechanical arm closed);
  • Figure 2 is a schematic bottom view of the overall structure of the car handling robot of the present invention (the ultra-thin universal drive wheel drives the mechanical arm to close);
  • Figure 3 is a schematic axonometric view of the overall structure of the car handling robot of the present invention (ultra-thin universal drive wheel drive and mechanical arm closed);
  • Fig. 4 is a schematic axonometric view of the overall structure of the car handling robot of the present invention (ultra-thin universal drive wheel drive and mechanical arm open);
  • Figure 5 is a top view of the gripping arm of the present invention (the mechanical arm is closed);
  • Figure 6 is a top view of the gripping arm of the present invention (the mechanical arm is open);
  • Figure 7 is an assembly diagram of the robotic arm body
  • Figure 8 is an assembly diagram of the rotating shaft mechanism of the mechanical arm
  • Figure 9 is an assembly diagram of the mechanical arm linkage mechanism
  • Figure 10 is a partial view A (the robotic arm is closed);
  • Figure 11 is a partial view B (the robotic arm is closed);
  • Figure 12 is the overall axonometric view of the ultra-thin universal drive wheel (without the cover plate);
  • Figure 13 is a diagram of the functional module assembly
  • Figure 14 is a schematic diagram of the transmission
  • Figure 15 is an assembly diagram of the driving system
  • Figure 16 is an exploded view of the driving system assembly
  • Figure 17 is a diagram of the steering drive system assembly
  • Figure 18 is an exploded view of the steering drive system assembly
  • Figure 19 is an exploded view of the steering drive rotating disc system
  • Figure 20 is an exploded view of the traveling drive rotating disc system
  • Figure 21 is an exploded view of the gear train assembly
  • Figure 22 is an exploded view of the ultra-thin universal drive wheel
  • Figure 23 is a schematic bottom view of the overall structure of the car handling robot of the present invention (Mecanum wheel drive and mechanical arm closed);
  • Figure 24 is a schematic bottom view of the overall structure of the car handling robot of the present invention (differential wheel drive and mechanical arm closed).
  • the present invention provides a submersible vehicle handling robot, which includes a main frame 1, and clamping arms are symmetrically arranged on both sides of the main frame 1.
  • Each clamping arm includes two mechanical arm bodies, and the two mechanical arm bodies are directly installed on the main frame.
  • On the frame 1, or two robot arm bodies are installed together on the robot arm module frame to form a module, and then the robot arm module frame is installed on the main frame 1 to realize the modular installation of the entire gripping arm;
  • two The manipulator bodies are connected by a linkage mechanism, and one of the manipulator bodies is driven to rotate through the power unit, thereby driving the other manipulator body to rotate synchronously, so as to realize the simultaneous rotation of the two manipulator bodies relative to the main frame 1 to open or close;
  • each group The two mechanical arm bodies of the gripping arm complete the gripping and lifting of a tire; when the gripping arm adopts an independent modular design, it can be directly assembled to the robot body, which is convenient for disassembly and assembly, high integration, and small space occupation.
  • the car handling robot has four manipulator bodies: a first manipulator body 211, a second manipulator body 221, a third manipulator body 231, and a fourth manipulator body 241.
  • each The rotation center of the two mechanical arm bodies of a group is close to the center of the side.
  • a first lidar sensor 31 and a second lidar sensor 32 are respectively arranged at the front and rear intermediate positions of the car handling robot to sense the surrounding environment, people, cars, etc., and provide data for the control system. Assist in the completion of multiple tasks such as obstacle avoidance, navigation planning, and car tire position recognition.
  • the front end and the rear end of the car handling robot are respectively arranged with a first contact and non-contact obstacle detection sensor 41 and a second contact and non-contact obstacle detection sensor 42, which can be encountered suddenly in special circumstances When an obstacle is reached, the robot can quickly make an emergency stop or avoid obstacles.
  • a buffer and energy-absorbing structure can be designed on the front and back of the main frame 1, which protects the robot and the objects it touches to a certain extent. .
  • the car handling robot can be equipped with an ultra-thin universal drive wheel drive system as the power system; as shown in Figure 2-4, the ultra-thin universal drive wheel drive system uses four ultra-thin universal drive wheel drive units: The first ultra-thin universal drive wheel drive unit 61, the second ultra-thin universal drive wheel drive unit 62, the third ultra-thin universal drive wheel drive unit 63, and the fourth ultra-thin universal drive wheel drive unit 64, preferably ,
  • the four ultra-thin universal drive wheel drive units have the same structure, two of which are installed at the front of the main frame 1, and the other two are installed at the rear of the main frame 1.
  • the car handling robot can also be equipped with an ultra-thin differential wheel drive system as the power system. As shown in Figure 24, the layout position is the same as that of the ultra-thin universal drive wheel drive system. Two options can be selected according to different load requirements. One group or four groups of ultra-thin differential wheels as the power unit.
  • the car handling robot can also use a Mecanum wheel drive system, as shown in Figure 23.
  • the central part of the car handling robot is equipped with a core control unit 7, which completes the interaction with the parking lot control system and completes the matching movement with other robots; through the core control unit , It can complete the intelligent control of the robot body, and can also complete the pairing with other robots according to the scheduling instructions, and cooperate to complete the car handling task.
  • the middle part of the car handling robot is equipped with a battery power unit 8. Due to the application of the modular gripping arm and the ultra-thin drive system, the middle part saves sufficient space to arrange the battery power unit.
  • the power unit can make the robot work uninterrupted for a long time, improve the utilization rate of the robot, and reduce the operating cost.
  • the car handling robot is equipped with a navigation and motion control module 9 in the middle.
  • This module makes the robot need not follow a fixed route, and can flexibly run in the field under the coordination of scheduling, which improves Utilization of the venue.
  • the car handling robot also includes a sensing unit, a computing system, and an electrical control system.
  • the sensing unit is distributed around the entire machine, including an ultrasonic module, a vision module, a laser module, TOF, IMU, UWB, GPS, etc.
  • the computing system is used to process the data acquired by the sensing unit, obtain the surrounding environment information and its own location information, identify the content of the sensed object, do path planning and navigation, and send control instructions to the electrical control system;
  • the electrical control system includes motor control System and power management system; the motor control system drives the gripping arm and the whole machine to move according to the control instructions sent by the computing system.
  • a control method of the submersible car handling robot of the present invention is as follows, but not limited to this: two car handling robots are used to work together, the robot recognizes the center line of the car through the lidar sensor installed on the head, and the two machines are aligned to the center position. Enter the bottom of the car; by changing the distance and front-to-back posture of the two car handling robots, the car with different wheelbases can be clamped.
  • the clamping arms are symmetrically stopped with the tire as the center, and the mechanical arms are opened simultaneously to complete the clamping of the car tires Lift tightly.
  • the gripping arm of the car handling robot is implemented in a modular manner, but it is not limited to this.
  • the components installed on the frame of the robot arm module can be directly installed on the main frame 1 of the robot, or Realize the corresponding function.
  • this embodiment provides a gripping arm that is modularly installed on one side of the robot.
  • the gripping arm includes a robot arm module frame 200, a first robot arm body 211, and a second robot arm.
  • the arm can be quickly assembled to the robot body.
  • the first mechanical arm body 211 and the second mechanical arm body 221 adopt a completely symmetrical design, which is convenient for processing and assembling parts and reducing costs.
  • the first robot arm body 211 Take the first robot arm body 211 as an example. As shown in FIG. 7, the first robot arm body 211 consists of a heavy-duty universal wheel 2111 at the arm end, a fixing nut 2112, and a heavy-duty universal wheel mounting block 2113 at the arm end. , Manipulator axis 2114, tire support roller 2115, manipulator structure support block 2116, manipulator structure support upper plate 2117, manipulator structure support lower plate 2118, manipulator arm end connecting block 2119 and so on.
  • tire support rollers 2115 are connected in series with the arm structure support block 2116 through the robot arm shaft 2114, and then one end is fixed to the arm end connecting block 2119 of the robot arm with tire support rollers 2115, and the other end is fixed to the arm end heavy-duty universal wheel.
  • the mounting block 2113 is fixed, and one end of the robot arm shaft 2114 is locked by the robot arm shaft fixing nut 2112; the robot arm structure support upper plate 2117, the robot arm structure support block 2116, the robot arm end connecting block 2119 and the robot arm structure support
  • the lower plate 2118 is fixed as a whole by bolts, and finally the arm end heavy-duty universal wheel 2111 is fixed on the arm end heavy-duty universal wheel mounting block 2113 to complete the assembly of the mechanical arm body 211.
  • first manipulator body 211 and the second manipulator body 221 are both installed with an arm-end heavy-duty universal wheel 2111.
  • the design of the heavy-duty universal wheel at one end can share part of the weight of the car.
  • Frame 1 is flexibly connected to only transfer a certain load to the driving wheels of the robot, ensuring that the driving wheels have enough pressure to provide driving force, without overloading, thereby extending the life of the driving wheels; this load-bearing design greatly reduces the robot body configuration It is heavy, so that the robot body can be lightweight, thereby reducing the energy consumption of the robot.
  • the load requires sufficient pressure to ensure the driving force, the pressure transferred by the car is used to meet the demand.
  • the first mechanical arm body 211 is designed with a number of mechanical arm structure support blocks 2116, which can connect several small-sized tire support rollers 2115 in series through the robot arm central shaft 2114 to transfer the load from the tire support rollers 2115. It is shared on the robot body.
  • This design makes the robot arm structure support lower plate 2118 and the robot arm structure support upper plate 2117 have a simple appearance.
  • the sheet-perforated design improves the overall strength through the central support of several mechanical arm structure support blocks 2116. Low cost and high structural strength.
  • the overall height of the gripping arm can be controlled below 100mm through the combination of the various parts of the robotic arm body, fulfilling the requirement of heavy load at low height.
  • the first mechanical arm rotating shaft mechanism 212 is equipped with a bolt 2121 on the top of the mechanical arm rotating shaft mechanism.
  • Arm rotating lever mechanism 2123, mechanical arm rotating pin 2124, mechanical arm rotating mechanism fixing seat mechanism 2125, mechanical arm connecting pin 2126, mechanical arm fixed connecting block mechanism 2127, mechanical arm rotating shaft mechanism bottom mounting plate 2128, mechanical arm rotating shaft mechanism The bottom is composed of 2129 bolts.
  • the robot arm rotating rod mechanism 2123 includes the robot arm rotating rod 21231, the robot arm rotating rod hole bearing I 21232, and the robot arm rotating rod hole bearing II 21233;
  • the robot arm rotating mechanism fixing seat mechanism 2125 includes the robot arm rotating mechanism fixing seat bearing I21251, Robot arm rotating mechanism fixed seat 21252, Robotic arm rotating mechanism fixed seat bearing II21253, Robotic arm rotating mechanism fixed seat bearing III 21254, Robotic arm rotating mechanism fixed seat bottom seal I21255, Robotic arm rotating mechanism fixed seat bottom seal II21256;
  • the mechanical arm fixed connection block mechanism 2127 includes the mechanical arm fixed connection block 21271, the tire support roller support shaft 21272, and the mechanical arm rotation shaft mechanism tire support roller 21273.
  • the first mechanical arm rotation axis mechanism 212 and the second mechanical arm rotation axis mechanism 222 adopt a symmetrical design, which facilitates the processing and assembly of parts and reduces costs; among them, the mechanical arm rotation lever mechanism 2223 of the second mechanical arm rotation axis mechanism 222 is the same
  • the robot arm rotating lever mechanism 2123 of the first robot arm rotating shaft mechanism 212 adopts a partially symmetrical design. Since the robot arm rotating lever mechanism 2223 does not need to be connected to the robot arm linkage mechanism 214, some features are removed.
  • the mechanical arm linkage mechanism 213 includes a mechanical arm linkage linkage fixing cover mechanism 2131, a first mechanical arm linkage mechanism 2132, a second mechanical arm linkage mechanism 2133, and a mechanical arm linkage Mechanism gear box cover bolt 2134, mechanical arm linkage mechanism gear box cover plate 2135, first mechanical arm linkage transmission gear 2136, second mechanical arm linkage transmission gear 2137, and mechanical arm linkage mechanism gear box 2138.
  • the mechanical arm linkage connecting rod fixing cover mechanism 2131 includes the mechanical arm linkage linkage fixing cover plate 21311, the mechanical arm linkage rod fixing bearing I 21312, and the mechanical arm linkage rod fixing bearing II 21313.
  • the first robot arm linkage lever mechanism 2132 includes a robot arm linkage rod 21321, a robot arm linkage handle fixing bolt 21322, a robot arm linkage handle 21324, and a robot arm linkage Rod mechanism seal 21325, mechanical arm linkage rod shaft 21326, mechanical arm linkage rod shaft with flat key I 21327, mechanical arm linkage rod shaft with flat key II 21328; first mechanical arm linkage rod mechanism 2132 and second mechanical arm
  • the linkage lever mechanism 2133 may adopt a symmetrical structure.
  • Robotic arm linkage mechanism 2133 Put the first mechanical arm linkage transmission gear 2136 and the second mechanical arm linkage transmission gear 2137 into the mechanical arm linkage mechanism gear box 2138, and cover the mechanical arm linkage mechanism gear box cover 2135 and use the gear box cover bolt 2134 of the robot arm linkage mechanism to lock; insert the first robot arm linkage lever mechanism 2132 into the gear shaft hole in the first robot arm linkage transmission gear 2136; link the second robot arm The lever mechanism 2133 is inserted into the gear shaft hole in the second mechanical arm linkage transmission gear 2137; the bearing hole corresponding to the mechanical arm linkage linkage fixing cover mechanism 2131 is inserted into the first mechanical arm linkage linkage mechanism 2132 and the second mechanical arm linkage rod mechanism 2132. In the linkage rod shaft of the mechanical arm linkage lever mechanism 2133, it is locked with the mechanical arm linkage mechanism gear box 2138 to form the mechanical arm linkage mechanism 213.
  • the first robot arm rotation axis mechanism 212, the robot arm linkage mechanism 213, and the second robot arm rotation axis mechanism 222 are designed with connecting holes, which are bolted to each other, and then are integrally installed on the robot arm module frame 200 , Using the strength of the functional mechanism to strengthen the frame structure.
  • the power unit 206 may be a motor reducer power unit, which is installed on the robot arm module frame 200 to provide the robot arm push-pull block mechanism 215 with power to move along the robot arm module frame 200.
  • the driving motor in the power unit of the motor reducer brakes and locks to complete the locking of the manipulator body.
  • the robot arm rotating lever mechanism 2123 of the first robot arm rotating shaft mechanism 212 and the robot arm rotating lever mechanism 2223 of the second robot arm rotating shaft mechanism 222, these two mechanisms are transmitted through the first robot arm link transmission gear 2136 and the second robot arm.
  • the meshing of the transmission gears 2137 of the linkage of the two robotic arms synchronously transmits the rotational power of the first robotic arm body 211 to the second robotic arm body 221, completing the power unit 216 of the motor reducer.
  • One power unit controls the two robotic arms at the same time.
  • the hardware cost of the power unit is reduced and the space size of the overall module is greatly reduced.
  • the gripping state changes from closed to open.
  • the specific working process is as follows:
  • the robot control system issues a clamping command and transmits it to the clamping arm.
  • the power unit of the motor reducer starts to input power and drags the mechanical arm linkage mechanism 214 through the mechanical arm push-pull block mechanism 215; the mechanical arm linkage mechanism 214 drives the first machine
  • the mechanical arm rotation lever mechanism 2123 in the arm rotation axis mechanism 212 rotates, while driving the first mechanical arm body 211 to open, while pulling the mechanical arm linkage lever 21321 to move; the movement of the mechanical arm linkage lever 21321 drives the mechanical arm linkage lever mechanism 2132 rotates with the robot arm linkage shaft 21326 as the center, the robot arm linkage rod shaft 21326 and the first robot arm linkage transmission gear 2136 are connected by a key, the first mechanical arm linkage transmission gear 2136 and the second mechanical arm linkage
  • the transmission gear 2137 meshes to further drive the second mechanical arm linkage mechanism 2133 to rotate; the same as the movement of the first mechanical arm body 211, the second mechanical arm linkage mechanism 2133 drives the second mechanical
  • the robot equipped with the gripping arm of this embodiment can control the opening angle of the manipulator body according to the size of the car tires when transporting the car, so as to ensure that the car tires have sufficient ground clearance.
  • the following is an example of the vehicle handling robot adopting an ultra-thin universal drive wheel drive system as the power system.
  • Ultra-thin universal drive wheel drive system adopts four ultra-thin universal drive wheel drive units
  • each ultra-thin universal drive wheel drive unit includes a housing assembly 601, a travel drive system assembly 602, a steering drive system assembly 603, a travel drive rotating disc system 604, and a steering drive rotating disc system 605 and wheel train assembly 606;
  • the housing assembly 601 is used to fix the system components of the ultra-thin universal drive wheel drive unit and play an overall protective role;
  • the travel drive system assembly 602 mainly includes the travel drive motor and the travel drive deceleration
  • the drive unit and the driving gear transmission mechanism provide driving force for the ultra-thin universal drive wheel drive unit;
  • the steering drive system assembly 603 mainly includes the steering drive motor, the steering drive reducer and the steering drive gear transmission mechanism, which is an ultra-thin universal drive wheel drive unit.
  • the ultra-thin universal drive wheel drive unit is specially equipped with a traveling drive rotating disc system 604.
  • the traveling drive rotating disc system 604 is installed inside the housing assembly 601 to effectively isolate it from the outside. , With good airtightness, the travel drive rotating disc system 604 can effectively transmit the travel drive force provided by the travel drive system assembly 602 to the wheel train assembly 606;
  • the ultra-thin universal drive wheel drive unit is specially equipped with a steering drive rotating disc system 605.
  • the steering drive rotating disc system 605 is installed under the travel drive rotating disc system 604.
  • the compact arrangement effectively reduces The height of the product and the system can smoothly receive the steering drive force provided by the steering drive system assembly 603 to reverse the wheel train assembly 606.
  • the bottom of the ultra-thin universal drive wheel drive unit is provided with a gear train assembly 606, which receives the driving force of the traveling drive rotating disc system 604 through the drive gear 625.
  • the steering drive force transmitted by the steering drive rotating disc system 605 is received through the wheel drive shaft support assembly 610, so as to perform a universal drive movement.
  • the travel drive motor 2110 and travel drive reducer 2210 in the travel drive system assembly 602 are installed horizontally, which not only provides sufficient driving force but also better The overall height of the ultra-thin universal drive wheel drive unit is reduced; the travel drive reducer 2210 is fixed on the housing assembly 601 and fixed with bolts, and the output shaft of the travel drive reducer 2210 is inserted into the housing assembly 601.
  • the travel drive system assembly 602 is designed with a travel drive gear transmission mechanism, which can effectively transmit the travel drive force to the travel drive rotating disc system 604;
  • the travel drive gear transmission mechanism includes a housing assembly fixed 601 internal driving drive system output cylindrical gear assembly 230, first driving system idler cylindrical gear assembly 240, driving driving system input cylindrical gear assembly 250, driving driving system input bevel gear assembly 260, second driving system Drive system idler cylindrical gear assembly 270, the housing assembly 601 plays a good role in fixing and sealing it;
  • the cylindrical gear in the driving system output cylindrical gear assembly 230 is designed with a keyway and the driving drive reducer output shaft In cooperation, the driving force is received and transmitted to the driving rotating disk system 604 through the gear train.
  • the travel drive system output cylindrical gear assembly 230 includes a travel drive system output cylindrical gear 2310 and a travel drive system reducer shaft fixed bearing 2320.
  • the travel drive system output cylindrical gear 2310 is set in the travel drive On the output shaft of the reducer 2210, the drive drive system reducer shaft fixed bearing 2320 is installed on the outside to be fixed;
  • the first traveling drive system idler cylindrical gear assembly 240 includes the first traveling drive system idler cylindrical gear 2410, the circlip 242, the first traveling drive system idler cylindrical gear shaft 243, and the first traveling drive system idler cylindrical gear shaft Fixed bearing I 244, bearing retaining ring 245, fixed bearing II 246 of the idler cylindrical gear shaft of the first traveling drive system; one end of the idler cylindrical gear shaft 243 of the first traveling drive system is sequentially installed with the first traveling drive system idler cylindrical gear shaft
  • the fixed bearing I244, the bearing baffle ring 245 and the fixed bearing II246 of the idler gear shaft of the first traveling drive system are fixedly connected to the idler cylindrical gear 2410 of the first traveling drive system through the circlip 242; the first traveling drive system is idle
  • the wheel cylindrical gear 2410 meshes with the driving system output cylindrical gear 2310;
  • the driving system input cylindrical gear assembly 250 includes driving input cylindrical gear 251, driving system input cylindrical gear shaft fixed bearing I252, circlip 253, driving system input cylindrical gear shaft fixed bearing ⁇ 254, driving system output bevel gear 255, Driving system input cylindrical gear shaft 256;
  • the driving system input cylindrical gear shaft 256 is sequentially installed with driving system output bevel gear 255, driving system input cylindrical gear shaft fixed bearing ⁇ 254, circlip 253 and driving input cylindrical gear 251 ,
  • the outermost installation travel drive system input cylindrical gear shaft fixed bearing I252 is fixed; the travel input cylindrical gear 251 meshes with the first travel drive system idler cylindrical gear 2410;
  • Travel drive system input bevel gear assembly 260 includes travel drive system input bevel gear 261, travel drive system output cylindrical gear 262, travel drive system input bevel gear shaft fixed bearing I263, travel drive system input bevel gear shaft fixed bearing II264, travel drive System input bevel gear shaft fixed shaft 265, travel drive system input bevel gear shaft fixed bearing III 266, circlip 267; one end of the travel drive system input bevel gear shaft fixed shaft 265 is installed with travel drive system input bevel gear shaft fixed bearing III 266, It is fixed by a circlip 267, and the other end is installed in sequence with the driving system input bevel gear shaft fixed bearing II264, the driving system input bevel gear shaft fixed bearing I263, the driving system output cylindrical gear 262 and the driving system input bevel gear 261; The travel drive system input bevel gear 261 meshes with the travel drive system output bevel gear 255;
  • the second travel drive system idler cylindrical gear assembly 270 includes a second travel drive system idler cylindrical gear 271, a circlip 272, a second travel drive system idler cylindrical gear shaft fixed bearing 273, and a second travel drive system idler cylinder Gear shaft 274; the second traveling drive system idler cylindrical gear shaft 274 is sequentially installed with a second traveling drive system idler cylindrical gear shaft fixed bearing 273, a circlip 272, and a second traveling drive system idler cylindrical gear 271; The second travel drive system idler cylindrical gear 271 meshes with the travel drive system output cylindrical gear 262.
  • the steering drive motor 311 and the steering drive reducer 321 in the steering drive system assembly 603 are installed horizontally, which can not only provide sufficient steering drive force but also better reduce ultra-thin
  • the overall height of the universal drive wheel drive unit; the steering drive reducer 321 is fixed on the housing assembly 601 and fixed with bolts, and the output shaft of the steering drive reducer is inserted into the housing assembly 601.
  • the steering drive system assembly 603 is designed with a steering drive gear transmission mechanism, which can effectively transmit the steering drive force to the steering drive rotating disc system 605;
  • the steering drive gear transmission mechanism includes a fixed Inside the housing assembly 601, the first steering drive system output cylindrical gear assembly 330, the second steering drive system output cylindrical gear assembly 340, the steering drive system input bevel gear assembly 350, and the steering drive system transmission idler gear assembly 360, the housing assembly 601 plays a good role in fixing, sealing and protecting it;
  • the cylindrical gear in the output cylindrical gear assembly 330 of the first steering drive system is designed with a keyway to cooperate with the output shaft of the steering drive reducer to receive the steering drive force And it is transmitted to the steering drive rotating disc system 605 through the gear train.
  • the first steering drive system output cylindrical gear assembly 330 includes a first steering drive system output cylindrical gear 331 and a steering drive reducer shaft fixed bearing 332; the first steering drive system output cylindrical gear 331 is set on the output shaft of the steering drive reducer 321, and the steering drive reducer shaft fixed bearing 332 is installed on the outside to fix it;
  • the second steering drive system output cylindrical gear assembly 340 includes the second steering drive system output cylindrical gear 341, the circlip 342, the steering drive system input cylindrical gear shaft fixed bearing I 343, the circlip 344, and the steering drive system input cylindrical gear shaft fixed bearing I345, steering drive system output bevel gear 346, steering drive system input cylindrical gear shaft 347; the steering drive system input cylindrical gear shaft 347 is sequentially installed with the steering drive system output bevel gear 346, and the steering drive system input cylindrical gear shaft is fixed Bearing I345, circlip 344, second steering drive system output cylindrical gear 341, steering drive system input cylindrical gear shaft fixed bearing I343 and circlip 342; the second steering drive system output cylindrical gear 341 and the first steering drive system output The cylindrical gear 331 meshes;
  • Steering drive system input bevel gear assembly 350 includes steering drive system input bevel gear 351, steering drive system output cylindrical gear 352, circlip 353, steering drive system input bevel gear shaft fixed bearing I354, steering drive system input bevel gear Gear shaft fixed bearing II355, steering drive system input bevel gear shaft fixed shaft III356, steering drive system input bevel gear shaft 357; the steering drive system input bevel gear shaft 357 is sequentially installed with steering drive system input bevel gear shaft Fixed shaft III356, steering drive system input bevel gear shaft fixed bearing II355, steering drive system input bevel gear shaft 351, steering drive system output cylindrical gear 352, steering drive system input bevel gear shaft fixed bearing I354 and circlip 353; The steering drive system input bevel gear 351 meshes with the steering drive system output bevel gear 346;
  • Steering drive system transmission idler gear assembly 360 includes steering drive system transmission idler gear 361, circlip 362, steering drive system transmission idler gear shaft support bearing I363, steering drive system transmission idler gear shaft support bearing II364, steering drive system transmission idler gear Shaft 365;
  • the steering drive system transmission idler gear shaft 365 is sequentially installed with steering drive system transmission idler gear shaft support bearing II 364, steering drive system transmission idler gear 361, steering drive system transmission idler gear shaft support bearing I 363 and circlip 362;
  • the steering drive system transmission idler gear 361 meshes with the steering drive system output cylindrical gear 352.
  • the traveling drive rotating disc system 604 is designed with a traveling drive steering gear plate assembly 410, a traveling drive steering gear plate fixing bolt assembly 420, and a plane thrust needle roller bearing assembly 430 , Deep groove ball bearing assembly 440, travel drive output gear assembly 450 and travel drive steering gear wheel fixing bracket assembly 460; wherein the gear wheel of travel drive steering gear wheel assembly 410 and travel drive system assembly 602
  • the second travel drive system idler cylindrical gear assembly 270 meshes and receives the travel drive force provided by the travel drive system assembly 602; the travel drive steering gear wheel assembly 410 and the travel drive output gear assembly 450 drive the steering gear wheel through travel
  • the fixing bolt assembly 420 is fixedly connected to transmit driving force; the inner side of the driving disc in the driving steering gear disc assembly 410 is designed with a countersink feature, and the deep groove ball bearing assembly 440 is installed in the countersink, and the lower part passes through the driving
  • the drive steering gear wheel fixing bracket assembly 460 is supported and fixed; the lower part of the gear wheel in the driving
  • the steering drive rotating disc system 605 is designed with a steering drive steering gear plate assembly 510, a steering drive steering gear plate fixing bolt assembly 520, and a bottom guard plate assembly.
  • the gear train assembly 606 is mainly designed with a gear train drive shaft support assembly 610, a gear train drive shaft support bearing I621, a gear train drive shaft 622, and a drive gear limit shaft.
  • the drive shaft supports the bearing IV643 and the sealing strip 650; the drive shaft 622 is designed with multiple key slots.
  • the drive gear 625 and the drive wheel 631 are fixed to the key slot of the drive shaft 622 by keys.
  • the drive gear 625 is connected to the driving drive.
  • the driving output gear assembly 450 in the rotating disc system 604 meshes, receives the driving driving force transmitted by the driving rotating disc system 604, and transmits it to the driving wheels 631 through the gear train drive shaft 622; the gear train drive shaft support assembly 610 Bearing fixing holes are designed on both sides.
  • the gear train drive shaft support bearing I621 and the gear train drive shaft support bearing II626 fix the gear train drive shaft 622 and the gear drive shaft support assembly 610 through the bearing fixing holes, thereby fixing the gear train drive shaft.
  • the steering driving force received by the support assembly 610 is transmitted to the driving wheel 631 to complete the steering;
  • the upper part of the driving wheel support seat 641 is designed with an annular end surface, the sealing strip 650 is clamped on the annular end surface, and the upper part of the sealing strip 650 is driven to drive the steering gear wheel
  • the fixed bracket assembly 460 is pressed tightly to ensure the tightness of the upper part.
  • the housing assembly 601 includes a universal drive wheel mounting base 110, a universal drive wheel upper cover 120, a universal drive wheel upper cover mounting bolt 130, a universal drive wheel bottom retaining ring 140, and a universal drive wheel Drive wheel bottom retaining ring mounting bolt 150, travel drive system transmission gear cover 160, travel drive system transmission gear cover mounting bolt 170, steering drive system transmission gear cover 180, steering drive system transmission gear cover mounting bolt 190;
  • the driving system transmission gear cover 160 is installed on the universal drive wheel mounting base 110 through the driving drive system transmission gear cover mounting bolt 170;
  • the steering drive system transmission gear cover 180 is installed through the steering drive system transmission gear cover
  • the bolt 190 is installed on the universal drive wheel mounting base 110;
  • the universal drive wheel upper cover 120 is mounted on the top of the universal drive wheel mounting base 110 through the universal drive wheel upper cover mounting bolt 130, and the universal drive
  • the wheel bottom retaining ring 140 is installed on the bottom of the universal driving wheel mounting base 110 through the universal driving wheel bottom retaining ring mounting bolt 150.
  • the housing assembly 601 is used
  • the driving driving motor 2110 provides the power required for driving, and the torque of the driving driving reducer 2210 is increased, and the driving driving reducer 2210 is matched with the keyway of the inner circular hole of the driving system output cylindrical gear 2310 through the key, and the power is sequentially transmitted through the driving driving system output cylindrical gear 2310 to the first driving driving system idler cylindrical gear 2410, driving input cylindrical gear 251, and driving driving system input cylindrical gear.
  • the steering drive motor 311 provides the power required for steering
  • the steering drive reducer 321 increases the torque
  • the drive reducer 321 is matched with the keyway of the inner ring hole of the first steering drive system output cylindrical gear 331 through a key, and the power passes through the first steering drive system output cylindrical gear 331, the second steering drive system output cylindrical gear 341, and the steering drive system input cylindrical gear Shaft 347, steering drive system output bevel gear 346, steering drive system input bevel gear 351, steering drive system input bevel gear shaft 357, steering drive system output cylindrical gear 352, steering drive system transmission idler gear 361, steering drive steering
  • the gear wheel assembly 510 and other gear trains, the steering drive steering gear wheel assembly 510 is fixed to the wheel train drive shaft support assembly 610 through the steering drive steering gear wheel fixing bolt assembly 520, of which the two sides of the wheel train drive shaft support assembly 610 Designed with bearing fixing holes, the gear train drive shaft support bearing I621
  • the present invention is not limited to the above-mentioned specific embodiments.
  • a person skilled in the art can adopt various other specific embodiments to implement the present invention based on the disclosure of the present invention. Therefore, any design that adopts the design structure and ideas of the present invention and makes some simple changes or modifications falls into the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

一种潜入式汽车搬运机器人及其控制方法,该汽车搬运机器人包括主机架(1),主机架(1)的两侧对称布置夹取臂;每个夹取臂包括两个机械臂本体(211,221;231,241),两个机械臂本体(211,221;231,241)之间通过联动机构(213)连接,通过动力单元(216)驱动其中一个机械臂本体(211;231)旋转,从而带动另一个机械臂本体(221;241)同步旋转,实现两个机械臂本体(211,221;231,241)相对于主机架(1)同时旋转打开或闭合;每个夹取臂的两个机械臂本体(211,221;231,241)完成一个轮胎的夹取举升。

Description

一种潜入式汽车搬运机器人及其控制方法 技术领域
本发明属于机器人技术领域,尤其涉及一种潜入式汽车搬运机器人及其控制方法。
背景技术
随时经济的发展,大中城市停车难得问题越来越凸显。为了解决这一重大问题,各种新型技术随之应运而是,新的技术一定程度上起到了缓解作用,但由于技术方向的局限性带来了不同的新生问题。随着人工智能技术的发展,智能停车也随之发展起来,主要针对解决的问题就是停车效率低,空间不足,人工体验差等等痛点问题。
当前智能机器人大致分为两种,无轨道机器人与有轨道机器人。
其中无轨道机器人主要有带载车板和梳齿型两种,载车板式机器人要一直顶着载车板,在空间使用率和运输效率上是最低的。梳齿式机器人需要建造特殊的停车平台,将车抬起,再进行举升托运,停车位上仍需建造特殊平台用于停车,由此造成空间利用率不太经济。而且场地建造成本也让该产品的商用价值大大降低。
其中有轨道机器人主要是机械臂夹取式机器人,该机器人的优点是可以直接从汽车底部进入,进行轮胎夹取举升,无需建造特殊平台,但由于该机器人驱动系统为定向驱动,且只能使用轨到进行导引。一方面增加了轨到的施工成本,另一方面造成了线路规划的固定,空间利用率和经济性都不是很理想。由于夹取臂设计集成化不高,在整体机器人上占用的空间过多,造成无法布置大容量电池及控制系统,也是无法脱离固定轨道以及提升智能化的瓶颈问题。
发明内容
本发明的目的在于针对现有技术的不足,提供一种潜入式汽车搬运机器人及其控制方法,取消建造特殊停车平台,机器人可直接进入车辆底部进行车辆搬运。两台机器人协同配合完成搬运任务,双机可进行直行,横移,旋转,弧线等多方向的灵活运动,空间利用率高,空间形状、通道宽度等局限性小。
本发明的目的是通过以下技术方案来实现的:一种潜入式汽车搬运机器人,包括主机架,主机架的两侧对称布置夹取臂;每个夹取臂包括两个机械臂本体,两个机械臂本体直接安装在主机架上,或者两个机械臂本体共同安装在机械臂模组框架上构成一个模组,再将机械臂模组框架安装在主机架上;每组的两个机械臂本体之间通过联动机构连接,通过动力单元驱动其中一个机械臂本体旋转,从而带动另一个机械臂本体同步旋转,实现两个机械臂本体相 对于主机架同时旋转打开或闭合;每组夹取臂的两个机械臂本体完成一个轮胎的夹取举升。
进一步地,该汽车搬运机器人的两端中间位置分别布置有激光雷达传感器,进行周围情况的感知,从而辅助完成避障、导航规划、汽车轮胎位置识别等多项任务;该汽车搬运机器人的两端分别布置有接触式及非接触式障碍物检测传感器,可在突然遇到障碍物时,使机器人迅速进行紧急停止或避障。
进一步地,所述机械臂本体包括重载万向轮、重载万向轮安装块、机械臂中轴、轮胎支撑滚轮、机械臂结构支撑块和机械臂臂端连接块;所述机械臂中轴将若干轮胎支撑滚轮与机械臂结构支撑块串联后,一端与机械臂臂端连接块固定,另一端与重载万向轮安装块固定;所述重载万向轮安装在重载万向轮安装块上。
进一步地,所述夹取臂还包括两个机械臂转动轴机构、机械臂联动机构、机械臂连杆机构和机械臂推拉块机构;两个机械臂转动轴机构分别安装有机械臂本体;所述机械臂推拉块机构连接动力单元,通过动力单元驱动其运动;所述机械臂连杆机构一端连接机械臂推拉块机构,另一端连接一个机械臂转动轴机构;所述机械臂转动轴机构具有机械臂旋转拉杆机构;所述机械臂联动机构具有两个机械臂连动杆机构,两个机械臂连动杆机构分别与两个机械臂旋转拉杆机构连接,两个机械臂连动杆机构通过两个相互啮合的机械臂连杆传动齿轮连接。
进一步地,所述机械臂转动轴机构包括机械臂转动轴机构顶部安装板、机械臂旋转拉杆机构、机械臂旋转销、机械臂旋转机构固定座机构、机械臂连接销、机械臂固定连接块机构、机械臂转动轴机构底部安装板;所述机械臂旋转销压入机械臂旋转机构固定座机构;所述机械臂转动轴机构顶部安装板、机械臂旋转拉杆机构、机械臂固定连接块机构、机械臂转动轴机构底部安装板通过螺栓固定为一体;所述机械臂转动轴机构通过机械臂连接销与机械臂本体连接;
所述机械臂联动机构包括机械臂连动连杆固定盖板、两个机械臂连动杆机构、两个机械臂连杆传动齿轮、机械臂连动机构齿轮箱;所述机械臂连动杆机构包括机械臂连动杆、机械臂连动柄、机械臂连动杆轴、机械臂连动杆轴用平键;所述机械臂连动杆轴用平键压入机械臂连动杆轴;所述机械臂连动杆轴穿入机械臂连动柄,两者固定连接;所述机械臂连动杆插入机械臂连动柄对应的连接孔中;两个机械臂连杆传动齿轮安装在机械臂连动机构齿轮箱中,彼此啮合;两个机械臂连动杆轴分别插入两个机械臂连杆传动齿轮中的齿轮轴孔中;所述机械臂连动连杆固定盖板具有两个轴承孔,轴承孔穿入机械臂连动杆轴,将机械臂连动连杆固定盖板与机械臂连动机构齿轮箱固定连接。
进一步地,该汽车搬运机器人采用超薄万向驱动轮驱动系统作为动力系统,所述超薄万向驱动轮驱动系统采用四个超薄万向驱动轮驱动单元;所述超薄万向驱动轮驱动单元包含外 壳总成、行驶驱动系统总成、转向驱动系统总成、行驶驱动转动盘系统、转向驱动转动盘系统和轮系总成;所述外壳总成固定在主机架上;所述行驶驱动系统总成包括行驶驱动电机、行驶驱动减速机以及行驶驱动齿轮传动机构,为超薄万向驱动轮提供行驶驱动力;所述转向驱动系统总成包括转向驱动电机、转向驱动减速机以及转向驱动齿轮传动机构,为超薄万向驱动轮提供转向驱动力;所述行驶驱动转动盘系统安装于外壳总成内部,将行驶驱动系统总成提供的行驶驱动力传递到轮系总成;所述转向驱动转动盘系统安装于行驶驱动转动盘系统下方,将转向驱动系统总成提供的转向驱动力传递到轮系总成,对轮系总成进行换向;所述轮系总成通过驱动齿轮接收到行驶驱动转动盘系统的行驶驱动力,通过轮系驱动轴支撑总成接收到转向驱动转动盘系统传递的转向驱动力,从而进行万向驱动运动。
进一步地,所述行驶驱动齿轮传动机构包括固定在外壳总成内部且依次连接的行驶驱动系统输出圆柱齿轮总成、第一行驶驱动系统惰轮圆柱齿轮总成、行驶驱动系统输入圆柱齿轮总成、行驶驱动系统输入锥齿轮总成、第二行驶驱动系统惰轮圆柱齿轮总成;行驶驱动系统输出圆柱齿轮总成中的圆柱齿轮设计有键槽与行驶驱动减速机输出轴相配合,接收行驶驱动力并通过齿轮系传动到行驶驱动转动盘系统;所述转向驱动齿轮传动机构包括固定在外壳总成内部且依次连接的第一转向驱动系统输出圆柱齿轮总成、第二转向驱动系统输出圆柱齿轮总成、转向驱动系统输入锥齿齿轮总成、转向驱动系统传动惰齿轮总成;第一转向驱动系统输出圆柱齿轮总成中的圆柱齿轮设计有键槽与转向驱动减速机输出轴相配合,接收转向驱动力并通过齿轮系传动到转向驱动转动盘系统。
进一步地,所述转向驱动转动盘系统包括转向驱动转向齿轮盘总成;所述转向驱动转向齿轮盘总成中的齿轮盘与转向驱动齿轮传动机构啮合,接收来自转向驱动系统总成提供的转向驱动力;所述转向驱动转向齿轮盘总成固定在轮系总成中的轮系驱动轴支撑总成上部,将转向驱动力传递到轮系总成;
所述行驶驱动转动盘系统包括行驶驱动转向齿轮盘总成、平面推力滚针轴承总成、深沟球轴承总成、行驶驱动输出齿轮总成和行驶驱动转向齿轮盘固定托架总成;所述行驶驱动转向齿轮盘总成的齿盘与行驶驱动齿轮传动机构啮合,接收由行驶驱动系统总成提供的行驶驱动力;所述行驶驱动转向齿轮盘总成与行驶驱动输出齿轮总成固定连接;所述行驶驱动输出齿轮总成与轮系总成的驱动齿轮啮合;所述行驶驱动转向齿轮盘总成中的驱动盘内侧设计有沉槽特征,深沟球轴承总成安装于沉槽内,下部通过行驶驱动转向齿轮盘固定托架总成进行支撑固定;所述行驶驱动转向齿轮盘总成中的齿盘下部设计有滑槽,平面推力滚针轴承总成安装于滑槽内,对行驶驱动转向齿轮盘总成起到水平支撑作用;
所述轮系总成包括轮系驱动轴支撑总成、轮系驱动轴支撑轴承Ⅰ、轮系驱动轴、驱动齿 轮、轮系驱动轴支撑轴承Ⅱ、驱动轮、驱动轮支撑座;所述轮系驱动轴上设有多处键槽,驱动齿轮与驱动轮均通过键固定在轮系驱动轴键槽处,驱动齿轮接收由行驶驱动转动盘系统传递的行驶驱动力,通过轮系驱动轴传递到驱动轮;所述轮系驱动轴支撑总成两侧设有轴承固定孔,轮系驱动轴支撑轴承Ⅰ和轮系驱动轴支撑轴承Ⅱ通过轴承固定孔将轮系驱动轴和轮系驱动轴支撑总成固定,从而将轮系驱动轴支撑总成接收到的转向驱动力传递到驱动轮完成转向。
进一步地,该汽车搬运机器人中部装有核心控制单元、电池动力单元和导航及运动控制模块,所述核心控制单元完成与停车场控制系统的交互,可根据调度指令和其他机器人完成配对,协同完成汽车搬运任务。
一种汽车搬运机器人的控制方法,包括:采用两台汽车搬运机器人协同工作,机器人识别出汽车的中线,双机对准中心位置进入汽车底部;通过改变两个汽车搬运机器人的距离和前后姿态,实现夹取不同轴距的汽车,夹取臂以轮胎为中心左右对称停稳,各机械臂同时打开,完成汽车轮胎的夹紧举升。
本发明的有益效果是:
1.本发明汽车搬运机器人具有独立设计的超薄重载万向驱动系统和重载模块化的夹取臂单元,使得整机高度可以控制在100mm左右,无需借助外部设备便可潜入汽车底部进行轮胎夹取举升,实现车辆搬运,极大的提高了该产品的商用价值,降低了停车场运营方的土建成本。
2.由于超薄万向驱动系统的应用,机器人可进行直行,横移,旋转,弧线等多方向的运动,多向的运动方式,极高的提升了停车场空间的利用率,使得机器人可以灵活的、多角度的进行车辆的停放,不在拘泥于传统横平竖直的排布。
3.由于重载模块化夹取臂的应用,使得在机器人整体尺寸如此精巧的情况下,依然有足够的空间搭载足够容量的锂电池组等动力单元以及核心控制单元;使得机器人可以高度智能化及长时间的工作;顺利完成高峰期在内的车辆存取任务。
4.智能化机器人的应用提升了存取车客户的体验感,客户无需浪费时间在停车场内寻找空余车位,或是在大型停车场寻找自己的车辆。
5.基于上述技术的应用,无轨道智能停车机器人的使用,增强了停车场空间的利用率,极大的改善了停车位不足的客观问题;无需借助外部设备的设计,让运营方运行成本降低,收益上升。
附图说明
图1为本发明汽车搬运机器人整体结构俯视示意图(超薄万向驱动轮驱动且械臂臂闭合);
图2为本发明汽车搬运机器人整体结构仰视示意图(超薄万向驱动轮驱动机械臂闭合);
图3为本发明汽车搬运机器人整体结构轴测示意图(超薄万向驱动轮驱动且机械臂闭合);
图4为本发明汽车搬运机器人整体结构轴测示意图(超薄万向驱动轮驱动且机械臂打开);
图5为本发明夹取臂俯视图(机械臂闭合);
图6为本发明夹取臂俯视图(机械臂打开);
图7为机械臂本体装配图;
图8为机械臂转动轴机构装配图;
图9为机械臂联动机构装配图;
图10为局部视图A(机械臂闭合);
图11为局部视图B(机械臂闭合);
图12为超薄万向驱动轮整体轴测图(未装上盖板);
图13为功能模块总成图;
图14为传动示意图;
图15为行驶驱动系统总成图;
图16为行驶驱动系统总成分解图;
图17为转向驱动系统总成图;
图18为转向驱动系统总成分解图;
图19为转向驱动转动盘系统分解图;
图20为行驶驱动转动盘系统分解图;
图21为轮系总成分解图;
图22为超薄万向驱动轮分解图;
图23为本发明汽车搬运机器人整体结构仰视示意图(麦克纳姆轮驱动且机械臂闭合);
图24为本发明汽车搬运机器人整体结构仰视示意图(差速轮驱动且机械臂闭合)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
本发明提供了一种潜入式汽车搬运机器人,包括主机架1,主机架1的两侧对称布置夹取臂;每个夹取臂包括两个机械臂本体,两个机械臂本体直接安装在主机架1上,或者两个机械臂本体共同安装在机械臂模组框架上构成一个模组,再将机械臂模组框架安装在主机架1上,实现整个夹取臂的模块化安装;两个机械臂本体之间通过联动机构连接,通过动力单元驱动其中一个机械臂本体旋转,从而带动另一个机械臂本体同步旋转,实现两个机械臂本体相对于主机架1同时旋转打开或闭合;每组夹取臂的两个机械臂本体完成一个轮胎的夹取 举升;夹取臂采用独立的模块化设计时,可以直接装配到机器人本体上,拆装便捷,集成度高,占用空间小,为动力电池组等提供了较为充裕的空间。
如图1-4所示,汽车搬运机器人共有四个机械臂本体:第一机械臂本体211、第二机械臂本体221、第三机械臂本体231、第四机械臂本体241,优选地,每一组的两个机械臂本体的旋转中心靠近该侧边的中心。
进一步地,该汽车搬运机器人的前端和后端中间位置分别布置有第一激光雷达传感器31和第二激光雷达传感器32,进行环境、人、汽车等周围情况的感知,为控制系统提供数据,从而辅助完成避障、导航规划、汽车轮胎位置识别等多项任务。
进一步地,该汽车搬运机器人的前端和后端分别布置有第一接触式及非接触式障碍物检测传感器41和第二接触式及非接触式障碍物检测传感器42,可在特殊情况下突然遭遇到障碍物时,使机器人迅速进行紧急停止或避障,此外,还可以在主机架1的前端和后端设计缓冲吸能结构,在一定程度上起到了对机器人以及接触到的物体的保护作用。
进一步地,该汽车搬运机器人可以选配超薄万向驱动轮驱动系统作为动力系统;如图2-4所示,超薄万向驱动轮驱动系统采用四个超薄万向驱动轮驱动单元:第一超薄万向驱动轮驱动单元61、第二超薄万向驱动轮驱动单元62、第三超薄万向驱动轮驱动单元63、第四超薄万向驱动轮驱动单元64,优选地,四个超薄万向驱动轮驱动单元结构相同,其中两个安装在主机架1的前部,另外两个安装在主机架1的后部。
进一步地,该汽车搬运机器人还可以选配超薄差速轮驱动系统作为动力系统,如图24所示,布置位置与超薄万向驱动轮驱动系统相同,可根据载重需求的不同选配两组或四组超薄差速轮作为动力单元。此外,该汽车搬运机器人还可以采用麦克纳姆轮驱动系统,如图23所示。
进一步地,如图3、4所示,该汽车搬运机器人中部装有核心控制单元7,该核心控制单元完成与停车场控制系统的交互,并完成与其他机器人的匹配运动;通过该核心控制单元,可完成机器人本体的各项智能控制,也可根据调度指令,和其他机器人完成配对,协同完成汽车搬运任务。
进一步地,如图3、4所示,该汽车搬运机器人中部装有电池动力单元8,由于模块化夹取臂以及超薄驱动系统的应用,中部节省出充足的空间布置电池动力单元,该电池动力单元可使得机器人长时间不间断的工作,提供机器人的利用率,降低运行成本。
进一步地,如图3、4所示,该汽车搬运机器人中间装有导航及运动控制模块9,该模块使得机器人无需按照固定路线,可在调度的协调下,灵活的在场地中运行,提升了场地的利用率。
进一步地,该汽车搬运机器人还包括感知单元、计算系统和电器控制系统,所述感知单元分布在整机周围,包括超声模块、视觉模块、激光模块、TOF、IMU、UWB、GPS等,所述计算系统用于处理感知单元获取的数据,得到周边环境信息及自身的位置信息,识别感知到的物体内容,做路径规划和导航,向电器控制系统发送控制指令;所述电器控制系统包括电机控制系统和电源管理系统;所述电机控制系统根据计算系统发送的控制指令,驱动夹取臂和整机运动。
本发明潜入式汽车搬运机器人的一种控制方法如下,但不限于此:采用两台汽车搬运机器人协同工作,机器人通过头部安装的激光雷达传感器识别出汽车的中线,双机对准中心位置,进入汽车底部;通过改变两个汽车搬运机器人的距离和前后姿态,实现夹取不同轴距的汽车,夹取臂以轮胎为中心左右对称停稳,各机械臂同时打开,完成汽车轮胎的夹紧举升。
以下给出该汽车搬运机器人的夹取臂通过模块化方式实现的实施例,但不限于此,例如可以将安装在机械臂模组框架的部件,直接安装在机器人的主机架1上,也可以实现相应功能。
如图5、6所示,本实施例给出机器人其中一侧通过模块化方式安装的夹取臂,该夹取臂包括机械臂模组框架200、第一机械臂本体211、第二机械臂本体221、第一机械臂转动轴机构212、第二机械臂转动轴机构222、机械臂联动机构213、机械臂连杆机构214、机械臂推拉块机构215和动力单元216;模块化的夹取臂可快速装配到机器人本体上。
其中,第一机械臂本体211和第二机械臂本体221采用完全对称式的设计,便于零部件的加工组装降低成本。
以下给出一种机械臂本体的具体形式,但不限于此:
以第一机械臂本体211为例,如图7所示,第一机械臂本体211由臂端重载万向轮2111、机械臂中轴固定螺母2112、臂端重载万向轮安装块2113、机械臂中轴2114、轮胎支撑滚轮2115、机械臂结构支撑块2116、机械臂结构支撑上板2117、机械臂结构支撑下板2118、机械臂臂端连接块2119等组成。
通过机械臂中轴2114将若干轮胎支撑滚轮2115与机械臂结构支撑块2116串联,之后一端与带有轮胎支撑滚轮2115的机械臂臂端连接块2119固定,另一端与臂端重载万向轮安装块2113固定,通过机械臂中轴固定螺母2112将机械臂中轴2114一端锁死;机械臂结构支撑上板2117、机械臂结构支撑块2116、机械臂臂端连接块2119和机械臂结构支撑下板2118通过螺栓固定为一体,最后将臂端重载万向轮2111固定在臂端重载万向轮安装块2113上,完成机械臂本体211的组装。
其中,第一机械臂本体211和第二机械臂本体221的一端均安装有臂端重载万向轮2111, 通过一端设计重载万向轮的设计可以分担一部分汽车的重量,机械臂与主机架1柔性连接,仅将一定的载荷传递给机器人的驱动轮,确保驱动轮有足够的压力从而提供驱动力,又不至于过载从而延长驱动轮寿命;这样的承载式设计大幅降低了机器人本体配重,使得机器人本体可以实现轻量化,从而降低了机器人的能源消耗,在负载需要足够压力保证驱动力时,借用汽车转移的压力来满足需求。
其中,第一机械臂本体211上设计有若干个机械臂结构支撑块2116,该支撑块可通过机械臂中轴2114将若干个小尺寸的轮胎支撑滚轮2115串联起来,将载重从轮胎支撑滚轮2115分担到机械臂本体上,这样的设计使得机械臂结构支撑下板2118与机械臂结构支撑上板2117外形简洁,板材打孔式设计通过若干个机械臂结构支撑块2116中部支撑提升整体强度,加工成本低,结构强度高。
通过机械臂本体各零部件的组合可将夹取臂整体高度控制在100mm以下,完成低高度下重载的需求。
以下给出一种械臂转动轴机构的具体形式,但不限于此:
以第一机械臂转动轴机构212为例,如图8、10所示,第一机械臂转动轴机构212由机械臂转动轴机构顶部安装螺栓2121、机械臂转动轴机构顶部安装板2122、机械臂旋转拉杆机构2123、机械臂旋转销2124、机械臂旋转机构固定座机构2125、机械臂连接销2126、机械臂固定连接块机构2127、机械臂转动轴机构底部安装板2128、机械臂转动轴机构底部安装螺栓2129等组成。
其中,机械臂旋转拉杆机构2123包括机械臂旋转拉杆21231、机械臂旋转拉杆孔用轴承Ⅰ21232、机械臂旋转拉杆孔用轴承Ⅱ21233;机械臂旋转机构固定座机构2125包括机械臂旋转机构固定座用轴承Ⅰ21251、机械臂旋转机构固定座21252、机械臂旋转机构固定座用轴承Ⅱ21253、机械臂旋转机构固定座用轴承Ⅲ21254、机械臂旋转机构固定座底部密封圈Ⅰ21255、机械臂旋转机构固定座底部密封圈Ⅱ21256;机械臂固定连接块机构2127包括机械臂固定连接块21271、轮胎支撑滚轮支撑轴21272、机械臂转动轴机构轮胎支撑滚轮21273。
把机械臂旋转拉杆孔用轴承Ⅰ21232与机械臂旋转拉杆孔用轴承Ⅱ21233压入机械臂旋转拉杆21231组成机械臂旋转拉杆机构2123;机械臂旋转机构固定座21252上部压入机械臂旋转机构固定座用轴承Ⅰ21251,下部压入机械臂旋转机构固定座用轴承Ⅱ21253与机械臂旋转机构固定座用轴承Ⅲ21254,并将底部固定机械臂旋转机构固定座底部密封圈Ⅰ21255与机械臂旋转机构固定座底部密封圈Ⅱ21256组成机械臂旋转机构固定座机构2125;通过轮胎支撑滚轮支撑轴21272将机械臂转动轴机构轮胎支撑滚轮21273固定在机械臂固定连接块21271上组成机械臂固定连接块机构2127;将机械臂旋转销2124压入机械臂旋转机构固定座机构 2125;将机械臂转动轴机构顶部安装板2122、机械臂旋转拉杆机构2123、机械臂固定连接块机构2127、机械臂转动轴机构底部安装板2128通过机械臂转动轴机构顶部安装螺栓2121与机械臂转动轴机构底部安装螺栓2129固定组成第一机械臂转动轴机构212;将第一机械臂转动轴机构212通过机械臂连接销2126与第一机械臂本体211连接。
第一机械臂转动轴机构212和第二机械臂转动轴机构222采用对称式的设计,便于零部件的加工组装降低成本;其中,第二机械臂转动轴机构222的机械臂旋转拉杆机构2223与第一机械臂转动轴机构212的机械臂旋转拉杆机构2123采用局部对称设计,由于机械臂旋转拉杆机构2223无需与机械臂连杆机构214连接,故去除部分特征。
以下给出一种机械臂联动机构的具体形式,但不限于此:
如图9、11所示,机械臂联动机构213包括机械臂连动连杆固定盖板机构2131、第一机械臂连动杆机构2132、第二机械臂连动杆机构2133、机械臂连动机构齿轮箱盖板螺栓2134、机械臂连动机构齿轮箱盖板2135、第一机械臂连杆传动齿轮2136、第二机械臂连杆传动齿轮2137和机械臂连动机构齿轮箱2138。
其中,机械臂连动连杆固定盖板机构2131包括机械臂连动连杆固定盖板21311、机械臂连动杆固定轴承Ⅰ21312、机械臂连动杆固定轴承Ⅱ21313。
以第一机械臂连动杆机构2132为例,第一机械臂连动杆机构2132包括机械臂连动杆21321、机械臂连动柄固定螺栓21322、机械臂连动柄21324、机械臂连动杆机构密封圈21325、机械臂连动杆轴21326、机械臂连动杆轴用平键Ⅰ21327、机械臂连动杆轴用平键Ⅱ21328;第一机械臂连动杆机构2132和第二机械臂连动杆机构2133可以采用对称结构。
将机械臂连动杆固定轴承Ⅰ21312与机械臂连动杆固定轴承Ⅱ21313压入机械臂连动连杆固定盖板21311组成机械臂连动连杆固定盖板机构2131;将机械臂连动杆轴用平键Ⅰ21327、机械臂连动杆轴用平键Ⅱ21328压入机械臂连动杆轴21326;将机械臂连动杆轴21326依次穿入机械臂连动杆机构密封圈21325、机械臂连动柄21324通过机械臂连动柄固定螺栓21322锁紧,再将机械臂连动杆21321插入机械臂连动柄21324对应的连接孔中组成第一机械臂连动杆机构2132,同理组装第二机械臂连动杆机构2133;将第一机械臂连杆传动齿轮2136、第二机械臂连杆传动齿轮2137装入机械臂连动机构齿轮箱2138,盖上机械臂连动机构齿轮箱盖板2135并用机械臂连动机构齿轮箱盖板螺栓2134锁紧;将第一机械臂连动杆机构2132插入第一机械臂连杆传动齿轮2136中的齿轮轴孔中;将第二机械臂连动杆机构2133插入第二机械臂连杆传动齿轮2137中的齿轮轴孔中;将机械臂连动连杆固定盖板机构2131对应的轴承孔穿入第一机械臂连动杆机构2132与第二机械臂连动杆机构2133的连动杆轴中,并与机械臂连动机构齿轮箱2138锁定组成机械臂联动机构213。
将第一机械臂转动轴机构212、机械臂联动机构213、第二机械臂转动轴机构222装配到机械臂模组框架200上,再将机械臂连杆机构214与第一机械臂转动轴机构212、机械臂推拉块机构215对应的轴孔进行装配,最后将第一机械臂本体211、第二机械臂本体221与对应的机械臂转动轴机构连接,完成该夹取臂的装配。
其中,第一机械臂转动轴机构212、机械臂联动机构213、第二机械臂转动轴机构222之间设计有连接孔,相互之间进行螺栓连接,之后整体安装在机械臂模组框架200上,利用功能机构的强度为框架结构进行了结构补强。
其中,动力单元206可以采用电机减速机动力单元,电机减速机动力单元安装在机械臂模组框架200上,提供机械臂推拉块机构215沿机械臂模组框架200运动的动力。第一机械臂本体211和第二机械臂本体221展开到设定角度后,电机减速机动力单元中的驱动电机刹车抱死,完成机械臂本体的锁定。
其中,第一机械臂转动轴机构212的机械臂旋转拉杆机构2123与第二机械臂转动轴机构222的机械臂旋转拉杆机构2223,这两个机构通过第一机械臂连杆传动齿轮2136与第二机械臂连杆传动齿轮2137的啮合,将第一机械臂本体211的旋转动力同步传输给第二机械臂本体221,完成了电机减速机动力单元216一个动力单元同时控制两支机械臂,不但降低了动力单元的硬件成本并且极大地降低了整体模块的空间尺寸。
本实施例夹取臂在使用过程中,状态从闭合到打开夹取,具体工作过程如下:
机器人控制系统发出夹取指令,传输到夹取臂,其中电机减速机动力单元开始输入动力通过机械臂推拉块机构215拖动机械臂连杆机构214运动;机械臂连杆机构214带动第一机械臂转动轴机构212中的机械臂旋转拉杆机构2123旋转,一边带动第一机械臂本体211打开,一边拉动机械臂连动杆21321运动;机械臂连动杆21321的运动带动机械臂连动杆机构2132以机械臂连动杆轴21326为中心旋转,机械臂连动杆轴21326与第一机械臂连杆传动齿轮2136通过键连接,第一机械臂连杆传动齿轮2136与第二机械臂连杆传动齿轮2137啮合,进一步带动第二机械臂连动杆机构2133转动;与第一机械臂本体211运动同理,第二械臂连动杆机构2133通过第二机械臂转动轴机构222带动第二机械臂本体221旋转打开。
安装有本实施例夹取臂的机器人在搬运汽车时,可根据汽车轮胎的大小控制机械臂本体的打开角度,从而保证汽车轮胎有足够的离地间隙。
以下给出该汽车搬运机器人采用超薄万向驱动轮驱动系统的作为动力系统的实施例。
超薄万向驱动轮驱动系统采用四个超薄万向驱动轮驱动单元;
如图12-14所示,每个超薄万向驱动轮驱动单元包含外壳总成601、行驶驱动系统总成602、转向驱动系统总成603、行驶驱动转动盘系统604、转向驱动转动盘系统605和轮系总 成606;外壳总成601用于固定超薄万向驱动轮驱动单元各系统零部件并起到整体防护作用;行驶驱动系统总成602中主要包含行驶驱动电机、行驶驱动减速机以及行驶驱动齿轮传动机构,为超薄万向驱动轮驱动单元提供行驶驱动力;转向驱动系统总成603中主要包含转向驱动电机、转向驱动减速机以及转向驱动齿轮传动机构,为超薄万向驱动轮驱动单元提供转向驱动力;其中外壳总成601安装在主机架1上。
如图12、图13、图20所示,超薄万向驱动轮驱动单元特别设有行驶驱动转动盘系统604,行驶驱动转动盘系统604安装于外壳总成601内部,能够有效的与外部隔绝,具有良好的密闭性,行驶驱动转动盘系统604可以有效的将行驶驱动系统总成602提供的行驶驱动力传递到轮系总成606;
如图13、图19所示,超薄万向驱动轮驱动单元特别设有转向驱动转动盘系统605,转向驱动转动盘系统605安装于行驶驱动转动盘系统604下方,紧密布置安装方式有效的降低了产品的高度尺寸并且该系统能够顺利的接收到转向驱动系统总成603提供的转向驱动力,将轮系总成606进行换向。
如图12、图19、图21所示,超薄万向驱动轮驱动单元底部设有轮系总成606,轮系总成606通过驱动齿轮625接收到行驶驱动转动盘系统604的行驶驱动力,通过轮系驱动轴支撑总成610接收到转向驱动转动盘系统605传递的转向驱动力,从而进行万向驱动运动。
如图12、图15、图16所示,行驶驱动系统总成602中的行驶驱动电机2110和行驶驱动减速机2210采用卧式安装的方式,不仅能提供足够的行驶驱动力且能更好的降低超薄万向驱动轮驱动单元的整体高度;行驶驱动减速机2210固定在外壳总成601上,通过螺栓与之固定,行驶驱动减速机2210输出轴插入外壳总成601内部。
如图15、图16所示,行驶驱动系统总成602中设计有行驶驱动齿轮传动机构,可有效的将行驶驱动力传递给行驶驱动转动盘系统604;行驶驱动齿轮传动机构包含固定在外壳总成601内部的行驶驱动系统输出圆柱齿轮总成230、第一行驶驱动系统惰轮圆柱齿轮总成240、行驶驱动系统输入圆柱齿轮总成250、行驶驱动系统输入锥齿轮总成260、第二行驶驱动系统惰轮圆柱齿轮总成270,外壳总成601对其起到了良好的固定、密封保护作用;行驶驱动系统输出圆柱齿轮总成230中的圆柱齿轮设计有键槽与行驶驱动减速机输出轴相配合,接收行驶驱动力并通过齿轮系传动到行驶驱动转动盘系统604。
进一步地,如图16所示,行驶驱动系统输出圆柱齿轮总成230包括行驶驱动系统输出圆柱齿轮2310和行驶驱动系统减速机轴固定轴承2320,所述行驶驱动系统输出圆柱齿轮2310套在行驶驱动减速机2210的输出轴上,外侧安装行驶驱动系统减速机轴固定轴承2320固定;
第一行驶驱动系统惰轮圆柱齿轮总成240包括第一行驶驱动系统惰轮圆柱齿轮2410、卡 簧242、第一行驶驱动系统惰轮圆柱齿轮轴243、第一行驶驱动系统惰轮圆柱齿轮轴固定轴承Ⅰ244、轴承挡环245、第一行驶驱动系统惰轮圆柱齿轮轴固定轴承Ⅱ246;所述第一行驶驱动系统惰轮圆柱齿轮轴243的一端依次安装第一行驶驱动系统惰轮圆柱齿轮轴固定轴承Ⅰ244、轴承挡环245和第一行驶驱动系统惰轮齿轮轴固定轴承Ⅱ246,另一端通过卡簧242与第一行驶驱动系统惰轮圆柱齿轮2410固定连接;所述第一行驶驱动系统惰轮圆柱齿轮2410与行驶驱动系统输出圆柱齿轮2310啮合;
行驶驱动系统输入圆柱齿轮总成250包括行驶输入圆柱齿轮251、行驶驱动系统输入圆柱齿轮轴固定轴承Ⅰ252、卡簧253、行驶驱动系统输入圆柱齿轮轴固定轴承Π254、行驶驱动系统输出锥齿轮255、行驶驱动系统输入圆柱齿轮轴256;所述行驶驱动系统输入圆柱齿轮轴256上依次安装行驶驱动系统输出锥齿轮255、行驶驱动系统输入圆柱齿轮轴固定轴承Π254、卡簧253和行驶输入圆柱齿轮251,最外侧安装行驶驱动系统输入圆柱齿轮轴固定轴承Ⅰ252固定;所述行驶输入圆柱齿轮251与第一行驶驱动系统惰轮圆柱齿轮2410啮合;
行驶驱动系统输入锥齿轮总成260包括行驶驱动系统输入锥齿轮261、行驶驱动系统输出圆柱齿轮262、行驶驱动系统输入锥齿轮轴固定轴承Ⅰ263、行驶驱动系统输入锥齿轮轴固定轴承Ⅱ264、行驶驱动系统输入锥齿轮轴固定轴265、行驶驱动系统输入锥齿轮轴固定轴承Ⅲ266、卡簧267;所述行驶驱动系统输入锥齿轮轴固定轴265的一端安装行驶驱动系统输入锥齿轮轴固定轴承Ⅲ266,并通过卡簧267固定,另一端依次安装行驶驱动系统输入锥齿轮轴固定轴承Ⅱ264、行驶驱动系统输入锥齿轮轴固定轴承Ⅰ263、行驶驱动系统输出圆柱齿轮262和行驶驱动系统输入锥齿轮261;所述行驶驱动系统输入锥齿轮261与行驶驱动系统输出锥齿轮255啮合;
第二行驶驱动系统惰轮圆柱齿轮总成270包括第二行驶驱动系统惰轮圆柱齿轮271、卡簧272、第二行驶驱动系统惰轮圆柱齿轮轴固定轴承273、第二行驶驱动系统惰轮圆柱齿轮轴274;所述第二行驶驱动系统惰轮圆柱齿轮轴274上依次安装第二行驶驱动系统惰轮圆柱齿轮轴固定轴承273、卡簧272和第二行驶驱动系统惰轮圆柱齿轮271;所述第二行驶驱动系统惰轮圆柱齿轮271与行驶驱动系统输出圆柱齿轮262啮合。
如图12、图13所示,转向驱动系统总成603中的转向驱动电机311及转向驱动减速机321采用卧式安装的方式,不仅能提供足够的转向驱动力且能更好的降低超薄万向驱动轮驱动单元的整体高度;转向驱动减速机321固定在外壳总成601上,通过螺栓与之固定,转向驱动减速机输出轴插入外壳总成601内部。
如图13、图17、图18所示,转向驱动系统总成603中设计有转向驱动齿轮传动机构,可有效的将转向驱动力传递给转向驱动转动盘系统605;转向驱动齿轮传动机构包括固定在 外壳总成601内部的第一转向驱动系统输出圆柱齿轮总成330、第二转向驱动系统输出圆柱齿轮总成340、转向驱动系统输入锥齿齿轮总成350和转向驱动系统传动惰齿轮总成360,外壳总成601对其起到了良好的固定、密封保护作用;第一转向驱动系统输出圆柱齿轮总成330中的圆柱齿轮设计有键槽与转向驱动减速机输出轴相配合,接收转向驱动力并通过齿轮系传动到转向驱动转动盘系统605。
进一步地,如图18所示,第一转向驱动系统输出圆柱齿轮总成330包括第一转向驱动系统输出圆柱齿轮331和转向驱动减速机轴固定轴承332;所述第一转向驱动系统输出圆柱齿轮331套在转向驱动减速机321的输出轴上,外侧安装转向驱动减速机轴固定轴承332固定;
第二转向驱动系统输出圆柱齿轮总成340包括第二转向驱动系统输出圆柱齿轮341、卡簧342、转向驱动系统输入圆柱齿轮轴固定轴承Ⅰ343、卡簧344、转向驱动系统输入圆柱齿轮轴固定轴承Ⅰ345、转向驱动系统输出锥齿齿轮346、转向驱动系统输入圆柱齿轮轴347;所述转向驱动系统输入圆柱齿轮轴347上依次安装转向驱动系统输出锥齿齿轮346、转向驱动系统输入圆柱齿轮轴固定轴承Ⅰ345、卡簧344、第二转向驱动系统输出圆柱齿轮341、转向驱动系统输入圆柱齿轮轴固定轴承Ⅰ343和卡簧342;所述第二转向驱动系统输出圆柱齿轮341与第一转向驱动系统输出圆柱齿轮331啮合;
转向驱动系统输入锥齿齿轮总成350包括转向驱动系统输入锥齿齿轮351、转向驱动系统输出圆柱齿轮352、卡簧353、转向驱动系统输入锥齿齿轮轴固定轴承Ⅰ354、转向驱动系统输入锥齿齿轮轴固定轴承Ⅱ355、转向驱动系统输入锥齿齿轮轴固定轴Ⅲ356、转向驱动系统输入锥齿齿轮轴357;所述转向驱动系统输入锥齿齿轮轴357上依次安装转向驱动系统输入锥齿齿轮轴固定轴Ⅲ356、转向驱动系统输入锥齿齿轮轴固定轴承Ⅱ355、转向驱动系统输入锥齿齿轮351、转向驱动系统输出圆柱齿轮352、转向驱动系统输入锥齿齿轮轴固定轴承Ⅰ354和卡簧353;所述转向驱动系统输入锥齿齿轮351与转向驱动系统输出锥齿齿轮346啮合;
转向驱动系统传动惰齿轮总成360包括转向驱动系统传动惰齿轮361、卡簧362、转向驱动系统传动惰齿轮轴支撑轴承Ⅰ363、转向驱动系统传动惰齿轮轴支撑轴承Ⅱ364、转向驱动系统传动惰齿轮轴365;所述转向驱动系统传动惰齿轮轴365上依次安装转向驱动系统传动惰齿轮轴支撑轴承Ⅱ364、转向驱动系统传动惰齿轮361、转向驱动系统传动惰齿轮轴支撑轴承Ⅰ363和卡簧362;所述转向驱动系统传动惰齿轮361与转向驱动系统输出圆柱齿轮352啮合。
图13、图14、图20、图22所示,行驶驱动转动盘系统604设计有行驶驱动转向齿轮盘总成410、行驶驱动转向齿轮盘固定螺栓总成420、平面推力滚针轴承总成430、深沟球轴承 总成440、行驶驱动输出齿轮总成450和行驶驱动转向齿轮盘固定托架总成460;其中行驶驱动转向齿轮盘总成410的齿盘与行驶驱动系统总成602中的第二行驶驱动系统惰轮圆柱齿轮总成270啮合,接收由行驶驱动系统总成602提供的行驶驱动力;行驶驱动转向齿轮盘总成410与行驶驱动输出齿轮总成450通过行驶驱动转向齿轮盘固定螺栓总成420固定连接,从而传递行驶驱动力;其中行驶驱动转向齿轮盘总成410中的驱动盘内侧设计有沉槽特征,深沟球轴承总成440安装于沉槽内,下部通过行驶驱动转向齿轮盘固定托架总成460进行支撑固定;其中行驶驱动转向齿轮盘总成410中的齿盘下部设计有圆形滑槽,平面推力滚针轴承总成430安装于滑槽内,对行驶驱动转向齿轮盘总成410起到水平支撑作用。
图13、图15、图19、图21、图22所示,转向驱动转动盘系统605中设计有转向驱动转向齿轮盘总成510、转向驱动转向齿轮盘固定螺栓总成520、底部护板总成530和底部护板固定螺栓总成540;其中转向驱动转向齿轮盘总成510中的齿轮盘与转向驱动系统总成603中的转向驱动系统传动惰齿轮总成360啮合,从而接收来自转向驱动系统总成603提供的转向驱动力;其中转向驱动转向齿轮盘总成510通过转向驱动转向齿轮盘固定螺栓总成520固定在轮系总成606中的轮系驱动轴支撑总成610上部,从而将转向驱动力传递到轮系总成606;其中底部护板总成530通过底部护板固定螺栓总成540固定在轮系总成606中的轮系驱动轴支撑总成610底部,从而达到底部密封防护。
图13、图20、图21、图22所示,轮系总成606主要设计有轮系驱动轴支撑总成610、轮系驱动轴支撑轴承Ⅰ621、轮系驱动轴622、驱动齿轮限位轴套623、驱动齿轮限位卡簧624、驱动齿轮625、轮系驱动轴支撑轴承Ⅱ626、驱动轮631、驱动轮限位卡簧632、驱动轮支撑座641、轮系驱动轴支撑轴承Ⅲ642、轮系驱动轴支撑轴承Ⅳ643和密封条650;其中轮系驱动轴622上设计有多处键槽,驱动齿轮625与驱动轮631均通过键固定在轮系驱动轴622键槽处,驱动齿轮625与行驶驱动转动盘系统604中的行驶驱动输出齿轮总成450啮合,接收由行驶驱动转动盘系统604传递的行驶驱动力,通过轮系驱动轴622传递到驱动轮631;其中轮系驱动轴支撑总成610两侧设计有轴承固定孔,轮系驱动轴支撑轴承Ⅰ621和轮系驱动轴支撑轴承Ⅱ626通过轴承固定孔将轮系驱动轴622和轮系驱动轴支撑总成610固定,从而将轮系驱动轴支撑总成610接收到的转向驱动力传递到驱动轮631完成转向;其中驱动轮支撑座641上部设计有环形端面,密封条650卡装在环形端面处,密封条650上部被行驶驱动转向齿轮盘固定托架总成460压紧,从而保证上部的密封性。
如图22所示,外壳总成601包括万向驱动轮安装底座110、万向驱动轮上盖板120、万向驱动轮上盖板安装螺栓130、万向驱动轮底部挡圈140、万向驱动轮底部挡圈安装螺栓150、行驶驱动系统传动齿轮挡盖160、行驶驱动系传动齿轮挡盖安装螺栓170、转向驱动系统传动 齿轮挡盖180、转向驱动系统传动齿轮挡盖安装螺栓190;所述行驶驱动系统传动齿轮挡盖160通过行驶驱动系传动齿轮挡盖安装螺栓170安装在万向驱动轮安装底座110上;所述转向驱动系统传动齿轮挡盖180通过转向驱动系统传动齿轮挡盖安装螺栓190安装在万向驱动轮安装底座110上;所述万向驱动轮上盖板120通过万向驱动轮上盖板安装螺栓130安装在万向驱动轮安装底座110顶部,所述万向驱动轮底部挡圈140通过万向驱动轮底部挡圈安装螺栓150安装在万向驱动轮安装底座110底部。外壳总成601用于固定超薄万向驱动轮驱动单元各系统零部件并起到整体防护作用;使得超薄万向驱动轮驱动单元具备良好的密封性及防溅水性能,增强驱动设备的使用寿命。
如图14、图15、图16所示,超薄万向驱动轮驱动单元的行驶驱动原理简述:行驶驱动电机2110提供行驶所需动力,经过行驶驱动减速机2210扭力提升,行驶驱动减速机2210通过键与行驶驱动系统输出圆柱齿轮2310内圆孔键槽配合,动力经过行驶驱动系统输出圆柱齿轮2310依次传递第一行驶驱动系统惰轮圆柱齿轮2410、行驶输入圆柱齿轮251、行驶驱动系统输入圆柱齿轮轴256、行驶驱动系统输出锥齿轮255、行驶驱动系统输入锥齿轮261、行驶驱动系统输入锥齿轮轴固定轴265、行驶驱动系统输出圆柱齿轮262、第二行驶驱动系统惰轮圆柱齿轮271、行驶驱动转向齿轮盘总成410、行驶驱动输出齿轮总成450等齿轮系,将行驶动力通过轮系驱动轴622最终传递到驱动轮631。
如图14、图17、图19、图21所示,超薄万向驱动轮驱动单元的转向驱动原理简述:转向驱动电机311提供转向所需动力,经过转向驱动减速机321提升扭矩,转向驱动减速机321通过键与第一转向驱动系统输出圆柱齿轮331内圈孔键槽配合,动力经过第一转向驱动系统输出圆柱齿轮331、第二转向驱动系统输出圆柱齿轮341、转向驱动系统输入圆柱齿轮轴347、转向驱动系统输出锥齿齿轮346、转向驱动系统输入锥齿齿轮351、转向驱动系统输入锥齿齿轮轴357、转向驱动系统输出圆柱齿轮352、转向驱动系统传动惰齿轮361、转向驱动转向齿轮盘总成510等齿轮系,转向驱动转向齿轮盘总成510通过转向驱动转向齿轮盘固定螺栓总成520与轮系驱动轴支撑总成610固定,其中轮系驱动轴支撑总成610两侧设计有轴承固定孔,轮系驱动轴支撑轴承Ⅰ621和轮系驱动轴支撑轴承Ⅱ626通过固定孔将轮系驱动轴622与轮系驱动轴支撑总成610固定,从而将轮系驱动轴支撑总成610接收到的转向驱动力传递到驱动轮631完成转向。
本发明不仅局限于上述具体实施方式,本领域一般技术人员根据本发明公开的内容,可以采用其它多种具体实施方案实施本发明。因此,凡是采用本发明的设计结构和思路,做一些简单的变化或更改的设计,都落入本发明保护范围。

Claims (10)

  1. 一种潜入式汽车搬运机器人,其特征在于,包括主机架,主机架的两侧对称布置夹取臂;每个夹取臂包括两个机械臂本体,两个机械臂本体直接安装在主机架上,或者两个机械臂本体共同安装在机械臂模组框架上构成一个模组,再将机械臂模组框架安装在主机架上;每组的两个机械臂本体之间通过联动机构连接,通过动力单元驱动其中一个机械臂本体旋转,从而带动另一个机械臂本体同步旋转,实现两个机械臂本体相对于主机架同时旋转打开或闭合;每组夹取臂的两个机械臂本体完成一个轮胎的夹取举升。
  2. 根据权利要求1所述的一种潜入式汽车搬运机器人,其特征在于,该汽车搬运机器人的两端中间位置分别布置有激光雷达传感器,进行周围情况的感知,从而辅助完成避障、导航规划、汽车轮胎位置识别等多项任务;该汽车搬运机器人的两端分别布置有接触式及非接触式障碍物检测传感器,可在突然遇到障碍物时,使机器人迅速进行紧急停止或避障。
  3. 根据权利要求1所述的一种潜入式汽车搬运机器人,其特征在于,所述机械臂本体包括重载万向轮、重载万向轮安装块、机械臂中轴、轮胎支撑滚轮、机械臂结构支撑块和机械臂臂端连接块;所述机械臂中轴将若干轮胎支撑滚轮与机械臂结构支撑块串联后,一端与机械臂臂端连接块固定,另一端与重载万向轮安装块固定;所述重载万向轮安装在重载万向轮安装块上。
  4. 根据权利要求1所述的一种潜入式汽车搬运机器人,其特征在于,所述夹取臂还包括两个机械臂转动轴机构、机械臂联动机构、机械臂连杆机构和机械臂推拉块机构;两个机械臂转动轴机构分别安装有机械臂本体;所述机械臂推拉块机构连接动力单元,通过动力单元驱动其运动;所述机械臂连杆机构一端连接机械臂推拉块机构,另一端连接一个机械臂转动轴机构;所述机械臂转动轴机构具有机械臂旋转拉杆机构;所述机械臂联动机构具有两个机械臂连动杆机构,两个机械臂连动杆机构分别与两个机械臂旋转拉杆机构连接,两个机械臂连动杆机构通过两个相互啮合的机械臂连杆传动齿轮连接。
  5. 根据权利要求4所述的一种潜入式汽车搬运机器人,其特征在于,所述机械臂转动轴机构包括机械臂转动轴机构顶部安装板、机械臂旋转拉杆机构、机械臂旋转销、机械臂旋转机构固定座机构、机械臂连接销、机械臂固定连接块机构、机械臂转动轴机构底部安装板;所述机械臂旋转销压入机械臂旋转机构固定座机构;所述机械臂转动轴机构顶部安装板、机械臂旋转拉杆机构、机械臂固定连接块机构、机械臂转动轴机构底部安装板通过螺栓固定为一体;所述机械臂转动轴机构通过机械臂连接销与机械臂本体连接;
    所述机械臂联动机构包括机械臂连动连杆固定盖板、两个机械臂连动杆机构、两个机械 臂连杆传动齿轮、机械臂连动机构齿轮箱;所述机械臂连动杆机构包括机械臂连动杆、机械臂连动柄、机械臂连动杆轴、机械臂连动杆轴用平键;所述机械臂连动杆轴用平键压入机械臂连动杆轴;所述机械臂连动杆轴穿入机械臂连动柄,两者固定连接;所述机械臂连动杆插入机械臂连动柄对应的连接孔中;两个机械臂连杆传动齿轮安装在机械臂连动机构齿轮箱中,彼此啮合;两个机械臂连动杆轴分别插入两个机械臂连杆传动齿轮中的齿轮轴孔中;所述机械臂连动连杆固定盖板具有两个轴承孔,轴承孔穿入机械臂连动杆轴,将机械臂连动连杆固定盖板与机械臂连动机构齿轮箱固定连接。
  6. 根据权利要求1所述的一种潜入式汽车搬运机器人,其特征在于,该汽车搬运机器人采用超薄万向驱动轮驱动系统作为动力系统,所述超薄万向驱动轮驱动系统采用四个超薄万向驱动轮驱动单元;所述超薄万向驱动轮驱动单元包含外壳总成、行驶驱动系统总成、转向驱动系统总成、行驶驱动转动盘系统、转向驱动转动盘系统和轮系总成;所述外壳总成固定在主机架上;所述行驶驱动系统总成包括行驶驱动电机、行驶驱动减速机以及行驶驱动齿轮传动机构,为超薄万向驱动轮提供行驶驱动力;所述转向驱动系统总成包括转向驱动电机、转向驱动减速机以及转向驱动齿轮传动机构,为超薄万向驱动轮提供转向驱动力;所述行驶驱动转动盘系统安装于外壳总成内部,将行驶驱动系统总成提供的行驶驱动力传递到轮系总成;所述转向驱动转动盘系统安装于行驶驱动转动盘系统下方,将转向驱动系统总成提供的转向驱动力传递到轮系总成,对轮系总成进行换向;所述轮系总成通过驱动齿轮接收到行驶驱动转动盘系统的行驶驱动力,通过轮系驱动轴支撑总成接收到转向驱动转动盘系统传递的转向驱动力,从而进行万向驱动运动。
  7. 根据权利要求6所述的一种潜入式汽车搬运机器人,其特征在于,所述行驶驱动齿轮传动机构包括固定在外壳总成内部且依次连接的行驶驱动系统输出圆柱齿轮总成、第一行驶驱动系统惰轮圆柱齿轮总成、行驶驱动系统输入圆柱齿轮总成、行驶驱动系统输入锥齿轮总成、第二行驶驱动系统惰轮圆柱齿轮总成;行驶驱动系统输出圆柱齿轮总成中的圆柱齿轮设计有键槽与行驶驱动减速机输出轴相配合,接收行驶驱动力并通过齿轮系传动到行驶驱动转动盘系统;所述转向驱动齿轮传动机构包括固定在外壳总成内部且依次连接的第一转向驱动系统输出圆柱齿轮总成、第二转向驱动系统输出圆柱齿轮总成、转向驱动系统输入锥齿齿轮总成、转向驱动系统传动惰齿轮总成;第一转向驱动系统输出圆柱齿轮总成中的圆柱齿轮设计有键槽与转向驱动减速机输出轴相配合,接收转向驱动力并通过齿轮系传动到转向驱动转动盘系统。
  8. 根据权利要求6所述的一种潜入式汽车搬运机器人,其特征在于,所述转向驱动转动盘系统包括转向驱动转向齿轮盘总成;所述转向驱动转向齿轮盘总成中的齿轮盘与转向驱动 齿轮传动机构啮合,接收来自转向驱动系统总成提供的转向驱动力;所述转向驱动转向齿轮盘总成固定在轮系总成中的轮系驱动轴支撑总成上部,将转向驱动力传递到轮系总成;
    所述行驶驱动转动盘系统包括行驶驱动转向齿轮盘总成、平面推力滚针轴承总成、深沟球轴承总成、行驶驱动输出齿轮总成和行驶驱动转向齿轮盘固定托架总成;所述行驶驱动转向齿轮盘总成的齿盘与行驶驱动齿轮传动机构啮合,接收由行驶驱动系统总成提供的行驶驱动力;所述行驶驱动转向齿轮盘总成与行驶驱动输出齿轮总成固定连接;所述行驶驱动输出齿轮总成与轮系总成的驱动齿轮啮合;所述行驶驱动转向齿轮盘总成中的驱动盘内侧设计有沉槽特征,深沟球轴承总成安装于沉槽内,下部通过行驶驱动转向齿轮盘固定托架总成进行支撑固定;所述行驶驱动转向齿轮盘总成中的齿盘下部设计有滑槽,平面推力滚针轴承总成安装于滑槽内,对行驶驱动转向齿轮盘总成起到水平支撑作用;
    所述轮系总成包括轮系驱动轴支撑总成、轮系驱动轴支撑轴承Ⅰ、轮系驱动轴、驱动齿轮、轮系驱动轴支撑轴承Ⅱ、驱动轮、驱动轮支撑座;所述轮系驱动轴上设有多处键槽,驱动齿轮与驱动轮均通过键固定在轮系驱动轴键槽处,驱动齿轮接收由行驶驱动转动盘系统传递的行驶驱动力,通过轮系驱动轴传递到驱动轮;所述轮系驱动轴支撑总成两侧设有轴承固定孔,轮系驱动轴支撑轴承Ⅰ和轮系驱动轴支撑轴承Ⅱ通过轴承固定孔将轮系驱动轴和轮系驱动轴支撑总成固定,从而将轮系驱动轴支撑总成接收到的转向驱动力传递到驱动轮完成转向。
  9. 根据权利要求1所述的一种潜入式汽车搬运机器人,其特征在于,该汽车搬运机器人中部装有核心控制单元、电池动力单元和导航及运动控制模块,所述核心控制单元完成与停车场控制系统的交互,可根据调度指令和其他机器人完成配对,协同完成汽车搬运任务。
  10. 一种权利要求1-9任一项所述汽车搬运机器人的控制方法,其特征在于,包括:采用两台汽车搬运机器人协同工作,机器人识别出汽车的中线,双机对准中心位置进入汽车底部;通过改变两个汽车搬运机器人的距离和前后姿态,实现夹取不同轴距的汽车,夹取臂以轮胎为中心左右对称停稳,各机械臂同时打开,完成汽车轮胎的夹紧举升。
PCT/CN2020/086306 2019-09-12 2020-04-23 一种潜入式汽车搬运机器人及其控制方法 WO2021047176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910866863.X 2019-09-12
CN201910866863.XA CN110497892B (zh) 2019-09-12 2019-09-12 一种潜入式汽车搬运机器人及其控制方法

Publications (1)

Publication Number Publication Date
WO2021047176A1 true WO2021047176A1 (zh) 2021-03-18

Family

ID=68591905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086306 WO2021047176A1 (zh) 2019-09-12 2020-04-23 一种潜入式汽车搬运机器人及其控制方法

Country Status (2)

Country Link
CN (1) CN110497892B (zh)
WO (1) WO2021047176A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110497892B (zh) * 2019-09-12 2024-02-02 杭州极木科技有限公司 一种潜入式汽车搬运机器人及其控制方法
CN111399509B (zh) * 2020-03-24 2021-04-20 华中科技大学 一种多移动机器人协同转运控制方法及系统
CN113146601B (zh) * 2021-03-05 2023-05-12 南京信息工程大学 一种可爬杆的模块化机器人
CN114179092B (zh) * 2021-12-30 2023-12-26 杭州海康机器人股份有限公司 一种车辆搬运控制方法、装置、设备及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107288390A (zh) * 2016-04-13 2017-10-24 深圳市鸿程科技有限公司 搬车系统及整体升降的搬车机器人
CN108422978A (zh) * 2018-05-04 2018-08-21 北京泊宝机器人科技有限公司 一种车辆搬运agv
CN109339541A (zh) * 2018-11-22 2019-02-15 杭州极木科技有限公司 一种全向运动的汽车搬运机器人及其控制方法
KR20190048193A (ko) * 2017-10-30 2019-05-09 남택무 자동 견인 주차장치
CN110497892A (zh) * 2019-09-12 2019-11-26 杭州极木科技有限公司 一种潜入式汽车搬运机器人及其控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2782046B2 (ja) * 1995-02-27 1998-07-30 東急車輛製造株式会社 機械式駐車装置用走行台車
JP6178667B2 (ja) * 2013-08-21 2017-08-09 新明和工業株式会社 タイヤ挟持装置とそれを備えた自動車搬送装置
CN107878420A (zh) * 2017-10-31 2018-04-06 杭州极木科技有限公司 一种搬运机及其搬运方法
CN210554718U (zh) * 2019-09-12 2020-05-19 杭州极木科技有限公司 一种潜入式汽车搬运机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107288390A (zh) * 2016-04-13 2017-10-24 深圳市鸿程科技有限公司 搬车系统及整体升降的搬车机器人
KR20190048193A (ko) * 2017-10-30 2019-05-09 남택무 자동 견인 주차장치
CN108422978A (zh) * 2018-05-04 2018-08-21 北京泊宝机器人科技有限公司 一种车辆搬运agv
CN109339541A (zh) * 2018-11-22 2019-02-15 杭州极木科技有限公司 一种全向运动的汽车搬运机器人及其控制方法
CN110497892A (zh) * 2019-09-12 2019-11-26 杭州极木科技有限公司 一种潜入式汽车搬运机器人及其控制方法

Also Published As

Publication number Publication date
CN110497892A (zh) 2019-11-26
CN110497892B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
WO2021047176A1 (zh) 一种潜入式汽车搬运机器人及其控制方法
WO2022001759A1 (zh) 一种多体协同全向移动智能机器人系统
CN105565211A (zh) 一种自动识别货物的智能搬运小车
CN109339541A (zh) 一种全向运动的汽车搬运机器人及其控制方法
CN107605207A (zh) 一种智能停车机器人及其控制方法
CN110497375B (zh) 一种夹取臂及夹取方法
CN101892756A (zh) 一种全自动平面移动类机械式立体停车库
US20220289405A1 (en) Multi-purpose planet rover
CN109025439A (zh) 一种搬运汽车的智能机器人
CN112093467A (zh) 一种移动式搬运机器人系统及其控制方法
CN108749920B (zh) 一种重型电驱动全轮转向全轮驱动无人框架运输车
CN201670290U (zh) 模块化的机器人底盘结构
CN210554718U (zh) 一种潜入式汽车搬运机器人
CN211362245U (zh) 一种夹取臂及智能停车机器人
CN111319698B (zh) 一种智能物流分拣平台车
CN210149148U (zh) 一种超薄万向驱动轮
CN213384509U (zh) 基于视觉导航的农用agv运输车
CN208149481U (zh) 一种agv汽车搬运机器人的行走转向系统
CN208830804U (zh) 一种搬运汽车的智能机器人
CN209277652U (zh) 一种全向运动的汽车搬运机器人
CN112659825B (zh) 一种履带式装备公铁一体化快速投送平台
CN201136558Y (zh) 一种全地形移动机器人
CN210212575U (zh) 一种可摆动的差分立式舵轮
CN205891049U (zh) 一种运输车底盘及agv运输车
CN218641748U (zh) 一种双向潜伏牵引式agv物流车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863584

Country of ref document: EP

Kind code of ref document: A1