WO2021047054A1 - 一种强化丙烯聚合的系统和工艺 - Google Patents

一种强化丙烯聚合的系统和工艺 Download PDF

Info

Publication number
WO2021047054A1
WO2021047054A1 PCT/CN2019/120193 CN2019120193W WO2021047054A1 WO 2021047054 A1 WO2021047054 A1 WO 2021047054A1 CN 2019120193 W CN2019120193 W CN 2019120193W WO 2021047054 A1 WO2021047054 A1 WO 2021047054A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polymerization reactor
micro
gas
polymerization
Prior art date
Application number
PCT/CN2019/120193
Other languages
English (en)
French (fr)
Inventor
张志炳
李磊
周政
张锋
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047054A1 publication Critical patent/WO2021047054A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the invention relates to the technical field of propylene polymerization to prepare polypropylene production technology, in particular to a system and process for strengthening propylene polymerization.
  • Polypropylene is a thermoplastic synthetic resin with excellent performance.
  • Polypropylene has low density, non-toxicity, strong processability, and strong impact resistance, coupled with its strong anti-bending ability and good insulation, making it widely used In injection molding products, pipe making, blown film products, coating, drawing products, modified engineering plastics and other industrial and civil plastic products. Because of its perfect combination of thermal and mechanical properties and its low price advantage, it is one of the four general-purpose thermoplastic resins (polyethylene, polyvinyl chloride, polypropylene, polystyrene). With the rapid development of China’s economy and the rapid development of packaging, electronics, medical, building materials, automotive and other industries, the demand for various chemical raw materials has continued to increase, resulting in the consumption of polypropylene reaching the highest level ever. Therefore, my country will become the world's largest consumer of polypropylene, which has greatly promoted the development of my country's industry. my country's annual production capacity and consumption of polypropylene continue to rise, and the performance range and market of resin products continue to expand
  • the process methods used in the production of polypropylene in the world are divided into the following categories according to categories: solvent method, solution method, liquid phase bulk method (including liquid phase and gas phase combination) and gas phase method.
  • the process characteristics of the solution polymerization method are as follows: (1) Use high-boiling linear hydrocarbons as solvents, and operate at a temperature higher than the melting point of polypropylene, and the resulting polymers are all dissolved in the solvent in a homogeneous distribution; (2) High-temperature gas stripping Methods Evaporate and remove the solvent to obtain molten polypropylene, and then extrude and granulate to obtain pellets.
  • Chinese Patent Publication Number: CN101942051A discloses a continuous polymerization process of liquid phase propylene bulk polymerization reaction.
  • the said liquid phase propylene bulk reaction continuous polymerization process uses a catalyst containing the reaction product of the following components: (A) Magnesium chloride is used as a carrier, Contain at least one solid component of titanium chloride compound; (B) organoaluminum compound; (C) external electron donor compound; the liquid phase propylene bulk polymerization reaction is one or more liquid phase tube reactions in series And one or more gas-phase reactors; the catalyst component (A) catalyzes the polymerization of propylene and its isotacticity is greater than 95%, and the catalyst component (C) is a silane containing at least one Si-OR , Where R is a hydrocarbyl group. It can be seen that the method has the following problems: (A) Magnesium chloride is used as a carrier, Contain at least one solid component of titanium chloride compound; (B
  • liquid-phase propylene or gas-phase propylene is polymerized under the action of a catalyst.
  • the liquid phase is connected to the gas to increase the equipment construction cost, and the gas-phase component propylene enters the reactor to form large bubbles.
  • the bubble volume is too large to fully contact the catalyst, which reduces the reaction efficiency of the system.
  • the propylene polymerization reaction rate is reduced, which leads to a decrease in the utilization rate of propylene, which largely causes a waste of raw materials, increases the production cost of polypropylene, and does not meet the requirements of the existing circular economy.
  • the present invention provides a system and process for strengthening propylene polymerization to overcome the problem of low system reaction efficiency caused by uneven mixing of materials in the prior art and resulting by-products.
  • the present invention provides a system for enhancing propylene polymerization, including:
  • a gas-phase feed unit connected to the polymerization reactor, for pretreatment of propylene, and quantitatively pass it into the polymerization reactor;
  • a liquid-phase feeding unit connected to the polymerization reactor, used for pretreatment of the solvent, and quantitatively pass it into the polymerization reactor;
  • the polymerization molecular weight adjusting unit is connected to the polymerization reactor to adjust the molecular weight of the propylene polymer
  • the reflux unit is connected to the polymerization reactor and is used to exchange heat for the output materials from the polymerization reactor and flow back into the polymerization reactor;
  • a cooling unit connected to the reflux unit, for cooling and cooling part of the reflux liquid
  • micro-interface generators both of which are set in the polymerization reactor to convert the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transfer it to the gas phase component propylene, so that The gas phase gas is crushed to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the mass transfer area of the gas component propylene and the liquid component, reduce the thickness of the liquid film, and reduce the mass transfer resistance. After the crushing, the liquid phase is combined It is mixed with micron-sized bubbles to form a gas-liquid emulsion to enhance the mass transfer efficiency and reaction efficiency of the gas-liquid components within the preset operating conditions.
  • micro-interface generator includes:
  • the first micro-interface generator is arranged in the reaction zone of the polymerization reactor, is used to crush propylene to form micro-scale micro-scale bubbles and output the micro-scale bubbles to Form a gas-liquid emulsion with the liquid phase components in the reaction zone;
  • a second micro-interface generator the second micro-interface generator is arranged in the reaction zone of the polymerization reactor and located on the upper part of the first micro-interface generator, and is used to receive the reflux material and use the material to entrain the
  • the unreacted propylene at the top of the polymerization reactor breaks the propylene into micron-sized micro-sized bubbles, and the micro-sized bubbles are mixed with the liquid material to form a gas-liquid emulsion and output the gas-liquid emulsion to the reaction zone of the polymerization reactor.
  • the gas-liquid emulsion output by the first micro-interface generator is offset, thereby prolonging the residence time of the micron-sized bubbles in the reaction zone and causing the gas-liquid two-phase to undergo a secondary reaction.
  • the polymerization reactor is provided with a catalyst feed port and a tail gas output pipeline;
  • the catalyst feed port is arranged on the upper part of the side wall of the polymerization reactor to transport the catalyst into the polymerization reactor;
  • the tail gas output pipeline is arranged on the top of the polymerization reactor and is used to output the tail gas in the polymerization reactor.
  • gas phase feed unit includes:
  • a propylene feed pipe is arranged on the side wall of the polymerization reactor and connected to the micro-interface generator, and is used to transport propylene into the micro-interface generator and cause the micro-interface generator to break the propylene;
  • the first heat exchanger is arranged on the propylene feed pipe and is used to control the temperature of the propylene in an oil bath so that the propylene is maintained within a preset temperature range;
  • a propylene compressor is arranged on the propylene feed pipe for low-pressure compression of propylene.
  • liquid phase feeding unit includes:
  • a solvent feed pipe which is arranged on the side wall of the polymerization reactor and above the propylene feed pipe, and is used to transport the solvent into the polymerization reactor;
  • a second heat exchanger which is arranged on the solvent feed pipe for controlling the temperature of the solvent in an oil bath, so that the solvent is maintained within a preset temperature range;
  • a metering pump is arranged on the solvent feed pipe for quantitatively pumping the solvent into the polymerization reactor.
  • the polymerization molecular weight adjusting unit includes:
  • a hydrogen feed pipeline which is arranged on the side wall of the polymerization reactor and is located below the solvent feed pipeline, and is used to transport hydrogen into the polymerization reactor;
  • the third heat exchanger which is arranged on the hydrogen feed pipe, is used to control the temperature of the hydrogen in an oil bath, so that the hydrogen is maintained within a preset temperature range;
  • a mass flow meter is arranged on the hydrogen feed pipeline to detect the mass flow of hydrogen.
  • the reflow unit includes:
  • Liquid phase discharge pipeline the feed end of the liquid phase discharge pipeline is connected to the polymerization reactor, and the discharge end of the liquid phase discharge pipeline is connected to the first heat exchanger.
  • the liquid phase material in the polymerization reactor is the liquid phase material in the polymerization reactor
  • Liquid phase reflux pipeline the feed end of the liquid phase reflux pipeline is connected to the second heat exchanger, and the discharge end of the liquid phase reflux pipeline extends into the polymerization reactor and interacts with the micro interface ⁇ ; Connect;
  • the reflux pump is arranged on the liquid phase reflux pipeline to pump the reflux liquid phase into the polymerization reactor.
  • the cooling unit includes:
  • a cooling feed pipeline which is connected to the reflux unit, and is used to transport the liquid phase material output from the polymerization reactor;
  • An intermediate tank which is connected to the cooling feed pipeline, is used to load the polymerization reactor to output liquid phase materials and to condense the materials;
  • the cooling jacket is arranged on the outer side wall of the intermediate tank and is used for circulating cooling of the materials in the intermediate tank.
  • a process for enhancing the polymerization of propylene includes:
  • Step 1 Transport a catalyst into the polymerization reactor through the catalyst feed port
  • Step 2 Transport the solvent into the polymerization reactor through the solvent feed pipe, wherein the second heat exchanger controls the temperature of the solvent in an oil bath so that the solvent is maintained within a preset temperature range and passes through the The metering pump quantitatively pumps the solvent within the preset temperature range into the polymerization reactor;
  • Step 3 Transport propylene into the polymerization reactor through the propylene feed pipe, wherein the first heat exchanger performs oil bath temperature control on the propylene so that the propylene is maintained within a preset temperature range and passes through the The propylene compressor performs low-pressure compression on propylene, so that propylene is pumped into the polymerization reactor;
  • Step 4 Transport hydrogen into the polymerization reactor through the hydrogen feed pipeline, adjust the molecular weight of the propylene polymer by hydrogen, wherein the third heat exchanger controls the temperature of the hydrogen in an oil bath to maintain the hydrogen at a preset value Within a temperature range, and pump hydrogen within a preset temperature range into the polymerization reactor through the mass flow meter;
  • Step 5 Propylene is passed into the first micro-interface generator, and the first micro-interface generator crushes the propylene to form micro-scale bubbles. After the crushing is completed, the first micro-interface generator will The micron-sized bubbles are output into the polymerization reactor and mixed with the solvent to form a gas-liquid emulsion, and the gas-liquid emulsion undergoes a polymerization reaction under the action of a catalyst to form a polypropylene mixture;
  • Step 6 After the reaction is completed, the polypropylene mixture flows upwards into the upper part of the polymerization reactor, wherein the liquid phase components enter the first heat exchanger along the liquid phase discharge pipe, and exchange heat with propylene. Part of the exchanged liquid phase components flows back into the second micro-interface generator in the polymerization reactor through the reflux pump along the liquid phase reflux pipeline, and the other part enters the second micro-interface generator in the polymerization reactor along the cooling feed pipeline.
  • the intermediate tank is cyclically cooled through the cooling jacket;
  • Step 7 wherein the second micro-interface generator uses the high pressure generated by the spray mixture to entrain the unreacted gas phase components at the top of the polymerization reactor into the second micro-interface generator, and crush the gas-phase components to form Micron-sized bubbles on the micron scale;
  • Step 8 The second micro-interface generator mixes the micron-sized bubbles and the reflux liquid phase to form a gas-liquid emulsion after the crushing is completed, and outputs the gas-liquid emulsion to the reaction zone of the polymerization reactor.
  • the gas-liquid emulsion output by a micro-interface generator is hedged, thereby prolonging the residence time of micron-sized bubbles in the reaction zone so that the material can fully react;
  • Step 9 wherein part of the unreacted gas phase components in the polymerization reactor enter the second heat exchanger and the third heat exchanger along the tail gas output pipeline to exchange heat with the solvent and hydrogen.
  • the catalyst is composed of a main catalyst, an activator and a third component, wherein the main catalyst is preferably a titanium compound, the activator is preferably an organoaluminum compound, and the third component is preferably an oxygen-containing, An organic compound with four atoms of nitrogen, sulfur, and phosphorus.
  • the beneficial effect of the present invention is that a polymerization reactor, a gas phase feed unit, a liquid phase feed unit, a polymerization molecular weight adjustment unit, a reflux unit, a cooling unit and a micro-interface generator constitute the main components of the system of the present invention.
  • the main structure by breaking propylene to form micron-sized bubbles, and mixing the micron-sized bubbles with the solvent to form a gas-liquid emulsion, to increase the area of the gas-liquid phase boundary, improve the synthesis efficiency of polypropylene, and improve the propylene reaction Efficiency and cost saving;
  • a polymerization reactor is used to provide a reaction place for the polymerization of propylene;
  • a gas-passing phase feed unit is used to pretreat propylene and pass it quantitatively into the polymerization reactor;
  • the feed unit is used to pretreat the solvent and pass it quantitatively into the polymerization reactor; through the polymerization molecular weight adjusting unit, it is used to adjust the molecular weight of the propylene polymer; through the reflux unit, it is used to output the material to the polymerization reactor.
  • propylene can be flexibly adjusted in the range of preset operating conditions to ensure the full and effective reaction, thereby ensuring the reaction rate, and achieving the purpose of strengthening the reaction.
  • the second heat exchanger and the third heat exchanger enable heat exchange between raw materials and generated materials to save energy.
  • the second micro-interface generator causes the material to entrain the unreacted propylene on the top of the polymerization reactor and break the propylene into micro-sized micro-sized bubbles, Micron-sized bubbles are mixed with liquid materials to form gas-liquid emulsions and output to the reaction zone of the polymerization reactor to counteract the gas-liquid emulsions output by the first micro-interface generator, thereby prolonging the micron-sized bubbles in the reaction zone.
  • the residence time in the reaction zone allows the gas-liquid two-phase to undergo a secondary reaction, which improves the utilization rate of propylene, improves the reaction efficiency, reduces the production cost of polypropylene, and meets the requirements of the existing circular economy.
  • Figure 1 is a schematic diagram of the structure of the system for intensifying propylene polymerization according to the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • Figure 1 is a schematic structural diagram of the system for intensifying propylene polymerization according to the present invention, including a polymerization reactor 1, a gas phase feed unit 2, a liquid phase feed unit 3, a polymerization molecular weight adjustment unit 4, and a reflux unit 5. Cooling unit 6 and micro-interface generator 7.
  • the polymerization reactor 1 is used to provide a reaction place for the polymerization of propylene;
  • the gas phase feed unit 2 is connected to the polymerization reactor 1 to perform pretreatment of propylene and quantitatively pass it into the polymerization reactor;
  • the liquid phase feeding unit 3 is connected to the polymerization reactor 1 for pretreating the solvent and quantitatively passing it into the polymerization reactor;
  • the polymerization molecular weight adjusting unit 4 is connected to the polymerization reactor 1 1 is connected to adjust the molecular weight of the propylene polymer;
  • the reflux unit 5 is connected to the polymerization reactor 1 to exchange heat for the output material from the polymerization reactor and flow back into the polymerization reactor; the cooling unit 6.
  • the micro-interface generator 7 Connected to the reflux unit 5 for cooling and cooling part of the reflux liquid; the micro-interface generator 7 has two sets of them, both of which are set in the polymerization reactor 1 for cooling
  • the pressure energy of the gas and/or the kinetic energy of the liquid is converted into the surface energy of the bubbles and transferred to the gas phase component propylene, so that the gas phase gas is broken to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the gas component propylene and the liquid component
  • the mass transfer area The pressure energy of the gas and/or the kinetic energy of the liquid is converted into the surface energy of the bubbles and transferred to the gas phase component propylene, so that the gas phase gas is broken to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the gas component propylene and the liquid component The mass transfer area.
  • micro-interface generator 7 When the system is running, the gas-phase components of the micro-interface generator 7 are broken to form micro-sized micro-sized bubbles and the mixture of micro-sized bubbles and liquid-phase components is mixed to form a gas-liquid emulsion.
  • the micro-interface generator 7 of the present invention can also be used in other multi-phase reactions, such as through micro-interface, micro-nano interface, ultra-micro interface, micro-bubble biochemical reactor or micro-bubble biological reaction.
  • micro-mixing using micro-mixing, micro-fluidization, ultra-micro-fluidization, micro-bubble fermentation, micro-bubble bubbling, micro-bubble mass transfer, micro-bubble transfer, micro-bubble reaction, micro-bubble absorption, micro-bubble oxygenation, micro-bubble Bubble contact and other processes or methods to make materials form multi-phase micro-mixed flow, multi-phase micro-nano flow, multi-phase emulsified flow, multi-phase micro-structured flow, gas-liquid-solid micro-mixed flow, gas-liquid-solid micro-nano flow, gas-liquid-solid emulsification Flow, gas-liquid-solid microstructure flow, micro-bubble, micro-bubble flow, micro-foam, micro-foam flow, micro-gas-liquid flow, gas-liquid micro-nano emulsion flow, ultra-micro flow, micro-dispersion flow, two micro-mixed flows, Micro-turbulent flow, micro-bubble flow, micro-turbul
  • the micro-interface generator 7 includes: a first micro-interface generator 71 and a second micro-interface generator 72;
  • the first micro-interface generator 71 is arranged in the reaction zone of the polymerization reactor 1, for breaking propylene into micron-scale micron-scale bubbles and after the crushing is completed Export micron-sized bubbles to the reaction zone to form a gas-liquid emulsion with the liquid phase components;
  • the second micro-interface generator 72 is arranged in the reaction zone of the polymerization reactor 1 and located on the upper part of the first micro-interface generator 71, and is used to receive the reflux material, Use materials to entrain the unreacted propylene on the top of the polymerization reactor and break the propylene into micron-sized micro-sized bubbles, mix the micro-sized bubbles with the liquid phase material to form a gas-liquid emulsion and output the gas-liquid emulsion
  • the reaction zone to the polymerization reactor 1 is opposed to the gas-liquid emulsion output from the first micro-interface generator 71, thereby prolonging the residence time of micron-sized bubbles in the reaction zone and allowing the gas-liquid two-phase to undergo a secondary reaction.
  • the polymerization reactor 1 is provided with a catalyst feed port 8 and a tail gas output pipe 9;
  • the catalyst feed port 8 is arranged on the upper part of the side wall of the polymerization reactor 1 to transport the catalyst into the polymerization reactor;
  • the tail gas output pipeline 9 is arranged at the top of the polymerization reactor 1 for outputting tail gas in the polymerization reactor.
  • the catalyst When the system is running, the catalyst is fed into the polymerization reactor 1 through the catalyst feed port 8, wherein part of the unreacted gas phase components in the polymerization reactor 1 enters the polymerization reactor along the tail gas output pipeline 9
  • the second heat exchanger 32 and the third heat exchanger 42 exchange heat with the solvent and hydrogen. It can be understood that the material and size of the tail gas output pipeline 9 are not specifically limited in this embodiment, as long as It is sufficient that the tail gas output pipeline 9 can transport a specified volume of material within a specified time.
  • the gas phase feed unit 2 includes: a propylene feed pipe 21, a first heat exchanger 22, and a propylene compressor 23;
  • the propylene feed pipe 21 is arranged on the side wall of the polymerization reactor 1 and is connected to the micro-interface generator 7 to transport propylene into the micro-interface generator and make the micro-interface generator Crush the propylene;
  • the first heat exchanger 22 is arranged on the propylene feed pipe 21 to control the temperature of the propylene in an oil bath so that the propylene is maintained within a preset temperature range;
  • the propylene compressor 23 is arranged on the propylene feed pipe 21 for low-pressure compression of propylene.
  • propylene is fed into the polymerization reactor 1 through the propylene feed pipe 21, wherein the first heat exchanger 22 performs oil bath temperature control on the propylene to maintain the propylene within a preset temperature range Propylene is compressed by the propylene compressor 23 at low pressure, so that propylene is pumped into the polymerization reactor 1.
  • the material and size of the propylene feed pipe 21 are not specified in this embodiment. The restriction is as long as it is satisfied that the propylene feed pipe 21 can transport a specified volume of material within a specified time.
  • the liquid phase feeding unit 3 includes: a solvent feeding pipe 31, a second heat exchanger 32, and a metering pump 33;
  • the solvent feed pipe 31 is arranged on the side wall of the polymerization reactor 1 and above the propylene feed pipe to transport the solvent into the polymerization reactor;
  • the second heat exchanger 32 is arranged on the solvent feed pipe 31 to control the temperature of the solvent in an oil bath so that the solvent is maintained within a preset temperature range;
  • the metering pump 33 is arranged on the solvent feed pipe 31 for quantitatively pumping the solvent into the polymerization reactor.
  • the solvent is fed into the polymerization reactor 1 through the solvent feed pipe 31, and the second heat exchanger 32 controls the temperature of the solvent in an oil bath to maintain the solvent within a preset temperature range , And quantitatively pump the solvent within the preset temperature range into the polymerization reactor 1 through the metering pump 33.
  • the polymerization molecular weight adjusting unit 4 includes: a hydrogen feed pipe 41, a third heat exchanger 42 and a mass flow meter 43;
  • the hydrogen feed pipe 41 is arranged on the side wall of the polymerization reactor 1 and is located below the solvent feed pipe, so as to transport hydrogen into the polymerization reactor;
  • the third heat exchanger 42 is arranged on the hydrogen feed pipe 41 to control the temperature of the hydrogen in an oil bath so that the hydrogen is maintained within a preset temperature range;
  • the mass flow meter 43 is arranged on the hydrogen feed pipe 41 to detect the mass flow of hydrogen.
  • the third heat exchanger 42 controls the temperature of the hydrogen in an oil bath so that The hydrogen is maintained within a preset temperature range, and the hydrogen within the preset temperature range is pumped into the polymerization reactor 1 through the mass flow meter 43. It can be understood that the model of the third heat exchanger 42 is The power and power are not specifically limited in this embodiment, as long as the third heat exchanger 42 can reach its designated working state.
  • the reflux unit 5 includes: a liquid phase discharge pipe 51, a liquid phase reflux pipe 52, and a reflux pump 53;
  • liquid phase discharge pipeline 51 the feed end of the liquid phase discharge pipeline 51 is connected to the polymerization reactor 1, and the discharge end of the liquid phase discharge pipeline 51
  • the end is connected to the first heat exchanger 22 for outputting liquid phase materials in the polymerization reactor;
  • liquid phase return line 52, the feed end of the liquid phase return line 52 and the second heat exchanger 32, and the discharge end of the liquid phase return line 52 extends into the polymerization reactor 1 and connected to the micro-interface generator 7;
  • the reflux pump 53 is arranged on the liquid phase reflux pipeline 52 to pump the reflux liquid phase into the polymerization reactor.
  • the liquid phase component When the system is running, the liquid phase component enters the first heat exchanger 22 along the liquid phase discharge pipe 51 and exchanges heat with propylene.
  • the liquid phase component after heat exchange passes through the reflux pump 53 along the line.
  • the liquid phase reflux line 52 flows back into the second micro-interface generator 72 in the polymerization reactor 1.
  • the cooling unit 6 includes: a cooling feed pipe 61, an intermediate tank 62 and a cooling jacket 63;
  • cooling feed pipeline 61 is connected to the reflux unit 5, and is used to transport the liquid phase material output from the polymerization reactor;
  • the intermediate tank 62 is connected to the cooling feed pipeline 61, and is used to load the polymerization reactor to output liquid phase materials and to condense the materials;
  • the cooling jacket 63 is arranged on the outer side wall of the intermediate tank 62 for circulating cooling of the materials in the intermediate tank.
  • a process for strengthening the polymerization of propylene including:
  • Step 1 Transport a catalyst into the polymerization reactor through the catalyst feed port
  • Step 2 Transport the solvent into the polymerization reactor through the solvent feed pipe, wherein the second heat exchanger controls the temperature of the solvent in an oil bath so that the solvent is maintained within a preset temperature range and passes through the The metering pump quantitatively pumps the solvent within the preset temperature range into the polymerization reactor;
  • Step 3 Transport propylene into the polymerization reactor through the propylene feed pipe, wherein the first heat exchanger performs oil bath temperature control on the propylene so that the propylene is maintained within a preset temperature range and passes through the The propylene compressor performs low-pressure compression on propylene, so that propylene is pumped into the polymerization reactor;
  • Step 4 Transport hydrogen into the polymerization reactor through the hydrogen feed pipeline, adjust the molecular weight of the propylene polymer by hydrogen, wherein the third heat exchanger controls the temperature of the hydrogen in an oil bath to maintain the hydrogen at a preset value Within a temperature range, and pump hydrogen within a preset temperature range into the polymerization reactor through the mass flow meter;
  • Step 5 Propylene is passed into the first micro-interface generator, and the first micro-interface generator crushes the propylene to form micro-scale bubbles. After the crushing is completed, the first micro-interface generator will The micron-sized bubbles are output into the polymerization reactor and mixed with the solvent to form a gas-liquid emulsion, and the gas-liquid emulsion undergoes a polymerization reaction under the action of a catalyst to form a polypropylene mixture;
  • Step 6 After the reaction is completed, the polypropylene mixture flows upwards into the upper part of the polymerization reactor, wherein the liquid phase components enter the first heat exchanger along the liquid phase discharge pipe, and exchange heat with propylene. Part of the exchanged liquid phase components flows back into the second micro-interface generator in the polymerization reactor through the reflux pump along the liquid phase reflux pipeline, and the other part enters the second micro-interface generator in the polymerization reactor along the cooling feed pipeline.
  • the intermediate tank is cyclically cooled through the cooling jacket;
  • Step 7 wherein the second micro-interface generator uses the high pressure generated by the spray mixture to entrain the unreacted gas phase components at the top of the polymerization reactor into the second micro-interface generator, and crush the gas-phase components to form Micron-sized bubbles on the micron scale;
  • Step 8 The second micro-interface generator mixes the micron-sized bubbles with the reflux liquid phase to form a gas-liquid emulsion after the crushing is completed, and outputs the gas-liquid emulsion to the reaction zone of the polymerization reactor, and the second micro-interface generator The gas-liquid emulsion output by a micro-interface generator is hedged, thereby prolonging the residence time of micron-sized bubbles in the reaction zone so that the material can fully react;
  • Step 9 wherein part of the unreacted gas phase components in the polymerization reactor enter the second heat exchanger and the third heat exchanger along the tail gas output pipeline to exchange heat with the solvent and hydrogen.
  • the solvent is a high-boiling linear hydrocarbon as the solvent. It is understandable that the range of preset operating conditions can be adjusted flexibly according to different product requirements or different solvents to ensure the full and effective progress of the reaction, thereby ensuring The reaction rate achieves the purpose of strengthening the reaction. At the same time, the type of solvent is not specifically limited in this example, as long as it can ensure the smooth progress of the strengthening reaction.
  • the reaction temperature in the polymerization reactor in the process is 168°C;
  • the reaction pressure is 0.2MPa
  • the gas-liquid ratio in the first micro-interface generator is 800:1;
  • the gas-liquid ratio in the first micro-interface generator is 650:1.
  • the product quality homopolymerization; isotacticity: 96.9 wt%; the synthesis efficiency of the process is increased by 2.4%.
  • the reaction temperature in the polymerization reactor in the process is 170°C;
  • the reaction pressure is 0.3MPa
  • the gas-liquid ratio in the first micro-interface generator is 830:1;
  • the gas-liquid ratio in the first micro-interface generator is 670:1.
  • the product quality homopolymerization; isotacticity: 97.1 wt%; the synthesis efficiency of the process is increased by 2.4%.
  • the reaction temperature in the polymerization reactor in the process is 172°C;
  • the reaction pressure is 0.4MPa
  • the gas-liquid ratio in the first micro-interface generator is 870:1;
  • the gas-liquid ratio in the first micro-interface generator is 690:1.
  • the product quality homopolymerization; isotacticity: 97.0 wt%; the synthesis efficiency of the process is increased by 2.3%.
  • the reaction temperature in the polymerization reactor in the process is 174°C;
  • the reaction pressure is 0.6MPa
  • the gas-liquid ratio in the first micro-interface generator is 890:1;
  • the gas-liquid ratio in the first micro-interface generator is 720:1.
  • the product quality homopolymerization; isotacticity: 97.2 wt%; the synthesis efficiency of the process is increased by 2.5%.
  • the reaction temperature in the polymerization reactor in the process is 178°C;
  • the reaction pressure is 0.7MPa
  • the gas-liquid ratio in the first micro-interface generator is 900:1;
  • the gas-liquid ratio in the first micro-interface generator is 750:1.
  • the product quality homopolymerization; isotacticity: 97.1 wt%; the synthesis efficiency of the process is increased by 2.5%.
  • the existing technology is used to polymerize propylene to prepare polypropylene, wherein the process parameters selected in this embodiment are the same as the process parameters in the fifth embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种强化丙烯聚合的系统和工艺,包括:聚合反应器、气相进料单元、液相进料单元、聚合分子量调节单元、回流单元、冷却单元和微界面发生器。通过破碎丙烯使其形成微米尺度的微米级气泡,使微米级气泡与溶剂混合形成气液乳化物,以增大气液两相的相界面积,提高聚丙烯的合成效率,提高丙烯反应效率,节约成本;通过第一换热器、第二换热器和第三换热器,使原料与生成物料进行热交换,节约能源,并通过第一微界面发生器和第二微界面发生器的联合使用,延长微米级气泡在反应区内的停留时间并使气液两相进行二次反应,提高丙烯利用率,提高反应效率,降低聚丙烯生产成本,符合现有的循环经济的要求。

Description

一种强化丙烯聚合的系统和工艺 技术领域
本发明涉及丙烯聚合制备聚丙烯生产工艺技术领域,尤其涉及一种强化丙烯聚合的系统和工艺。
背景技术
聚丙稀是一种性能优良的热塑性合成树脂,聚丙稀的密度很低、没有毒、加工性强、而且抗冲能力很强、加上其抗晓曲能力强和绝缘性好,使其广泛应用在注塑产品、制管方面、吹膜产品、涂覆、拉丝产品、改性工程塑料等各种工业和民用塑料制品领域。因其热性能和机械性能的完美结合,加上其价格低廉的优势,是四大通用型热塑性树脂(聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯)之一。随着中国经济快速发展,包装业、电子业、医疗业、建材业、汽车业等行业的快速发展,对各种化工原料的需求不断增加,导致了对聚丙烯的消耗量达到有史以来最高水平,因此我国将成为世界上聚丙烯最大消费国家,极大地促进了我国工业的发展,我国聚丙稀的年生产能力和消费量不断攀升,树脂产品的性能范围及市场也持续拓展。
世界上用于生产聚丙烯的工艺方法按类别划分主要有以下几大类:溶剂法、溶液法,液相本体法(含液相气相组合式)和气相法。其中溶液聚合法的工艺特点:(1)使用高沸点直链烃作溶剂,在高于聚丙烯熔点的温度下操作,所得聚合物全部溶解在溶剂中呈均相分布;(2)高温气提方法蒸发脱除溶剂得熔融聚丙烯,再挤出造粒得粒料产品。
中国专利公开号:CN101942051A公开了一种液相丙烯本体聚合反应连续聚合工艺,所述的液相丙烯本体反应连续聚合工艺使用含有下列组分的反应产物的催化剂:(A)以氯化镁为载体,含有至少一种氯化钛化合物固体组分;(B)有机铝化合物;(C)外给电子体化合物;所述的液相丙烯本体聚合反应是在串联的一个或多个液相管式反应器以及一个或多个气相反应器中进行的;所述的催化剂组分(A)催化丙烯聚合其全同立体规整度大于95%,催化剂组分(C)为含有至少一个Si-OR的硅烷,其中R是烃基。由此可见,所述方法存在以下问题:
第一,所述方法中仅通过液相丙烯或气相丙烯在催化剂作用下下发生聚合反 应,液相与气相连用增大设备建设成本,且气相组分丙烯进入反应器形成大气泡,然而由于气泡体积过大,无法与催化剂充分接触,降低了系统的反应效率。
第二,所述方法中丙烯聚合反应速率降低,导致丙烯利用率降低,很大程度上造成原料的浪费,增加了聚丙烯的生产成本,不符合现有的循环经济的要求。
发明内容
为此,本发明提供一种强化丙烯聚合的系统和工艺,用以克服现有技术中物料间混合不均匀产生副产物导致的系统反应效率低的问题。
一方面,本发明提供一种强化丙烯聚合的系统,包括:
聚合反应器,用以为丙烯聚合提供反应场所;
气相进料单元,与所述聚合反应器相连,用以为丙烯进行预处理,并将其定量通入聚合反应器内;
液相进料单元,与所述聚合反应器相连,用以为溶剂进行预处理,并将其定量通入聚合反应器内;
聚合分子量调节单元,与所述聚合反应器相连,用以为丙烯聚合物的分子量进行调节;
回流单元,与所述聚合反应器相连,用以为将聚合反应器输出物料换热并回流入聚合反应器内;
冷却单元,与所述回流单元相连,用以为部分回流液进行冷却降温处理;
微界面发生器,其设置个数为两个,均设置在所述聚合反应器内,用以将气体的压力能和/或液体的动能转变为气泡表面能并传递给气相组分丙烯,使气相气破碎形成直径≥1μm、且<1mm的微米级气泡以提高气相组分丙烯与液相组分的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将液相组分与微米级气泡混合形成气液乳化物,以在预设操作条件范围内强化气液组分的传质效率和反应效率。
进一步地,所述微界面发生器包括:
第一微界面发生器,所述第一微界面发生器设置在所述聚合反应器的反应区内,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应区内与液相组分形成气液乳化物;
第二微界面发生器,所述第二微界面发生器设置在所述聚合反应器的反应区内且位于所述第一微界面发生器上部,用以接收回流物料,使用物料卷吸所述聚合反应器顶部未反应的丙烯并将丙烯破碎形成微米尺度的微米级气泡,将微米级气泡与液相物料混合,形成气液乳化物并将气液乳化物输出至聚合反应器的反应区与所述第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间并使气液两相进行二次反应。
进一步地,所述聚合反应器上设置有催化剂进料口和尾气输出管道;
其中所述催化剂进料口,其设置在所述聚合反应器的侧壁上部,用以将催化剂输送至聚合反应器内;
所述尾气输出管道,其设置在所述聚合反应器的顶部,用于输出聚合反应器内尾气。
进一步地,所述气相进料单元包括:
丙烯进料管道,其设置在所述聚合反应器的侧壁并与所述微界面发生器相连,用以将丙烯输送至微界面发生器内,并使微界面发生器对丙烯进行破碎;
第一换热器,其设置在所述丙烯进料管道上,用以对丙烯进行油浴控温,以使丙烯维持在预设温度范围内;
丙烯压缩机,其设置在所述丙烯进料管道上,用以对丙烯进行低压压缩。
进一步地,所述液相进料单元包括:
溶剂进料管道,其设置在所述聚合反应器的侧壁并位于所述丙烯进料管道上方,用以将溶剂输送至聚合反应器内;
第二换热器,其设置在所述溶剂进料管道上,用以对溶剂进行油浴控温,以使溶剂维持在预设温度范围内;
计量泵,其设置在所述溶剂进料管道上,用以为将溶剂定量泵入聚合反应器内。
进一步地,所述聚合分子量调节单元包括:
氢气进料管道,其设置在所述聚合反应器的侧壁并位于所述溶剂进料管道下方,用以将氢气输送至聚合反应器内;
第三换热器,其设置在所述氢气进料管道上,用以对氢气进行油浴控温,以使氢气维持在预设温度范围内;
质量流量计,其设置在所述氢气进料管道上,用以对氢气进行质量流量检测。
进一步地,所述回流单元包括:
液相出料管路,所述液相出料管路的进料端与所述聚合反应器相连,所述液相出料管路的出料端与所述第一换热器相连,用于输出聚合反应器内液相物料;
液相回流管路,所述液相回流管路的进料端与所述第二换热器相连,所述液相回流管路的出料端延伸入所述聚合反应器并与微界面发生器相连;
回流泵,其设置在所述液相回流管路上,用以将回流液相泵入聚合反应器内。
进一步地,所述冷却单元包括:
冷却输料管路,其与所述回流单元相连,用以对聚合反应器输出液相物料进行传输;
中间罐,其与所述冷却输料管路相连,用以装载聚合反应器输出液相物料并对物料进行冷凝;
冷却夹套,其设置在所述中间罐的外侧壁上,用以对中间罐内物料进行循环冷却。
另一方面,一种强化丙烯聚合的工艺,包括:
步骤1:通过所述催化剂进料口向所述聚合反应器内输送催化剂;
步骤2:通过所述溶剂进料管道向所述聚合反应器内输送溶剂,其中所述第二换热器对溶剂进行油浴控温,使溶剂维持在预设温度范围内,并通过所述计量泵将预设温度范围内的溶剂定量泵入所述聚合反应器内;
步骤3:通过所述丙烯进料管道向所述聚合反应器内输送丙烯,其中所述第一换热器对丙烯进行油浴控温,使丙烯维持在预设温度范围内,并通过所述丙烯压缩机对丙烯进行低压压缩,使丙烯泵入所述聚合反应器内;
步骤4:通过所述氢气进料管道向所述聚合反应器内输送氢气,通过氢气调节丙烯聚合物分子量,其中所述第三换热器对氢气进行油浴控温,使氢气维持在预设温度范围内,并通过所述质量流量计将预设温度范围内的氢气泵入所述聚合反应器内;
步骤5:丙烯通入至所述第一微界面发生器,所述第一微界面发生器对丙烯进行破碎,形成微米尺度的微米级气泡,破碎完成后,所述第一微界面发生器将微米级气泡输出至所述聚合反应器内并与溶剂混合形成气液乳化物,气液乳化物 在催化剂的作用下进行聚合反应,生成聚丙烯混合物;
步骤6:其中反应完成后,聚丙烯混合物向上流动进入所述聚合反应器上部,其中液相组分沿液相出料管路进入所述第一换热器,并与丙烯进行热交换,热交换后的液相组分部分通过所述回流泵沿所述液相回流管路回流入所述聚合反应器内的所述第二微界面发生器,另一部分沿所述冷却输料管路进入所述中间罐,并通过所述冷却夹套对其进行循环冷却;
步骤7:其中所述第二微界面发生器使用喷射混合物产生的高压将所述聚合反应器顶部未反应的气相组分卷吸至第二微界面发生器内,并将气相组分进行破碎形成微米尺度的微米级气泡;
步骤8:所述第二微界面发生器在破碎完成后将微米级气泡与回流液相混合形成气液乳化物并将气液乳化物输出至所述聚合反应器的反应区,与所述第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间使物料充分反应;
步骤9:其中所述聚合反应器内部分未反应气相组分沿所述尾气输出管路进入所述第二换热器和所述第三换热器与溶剂和氢气进行热交换。
进一步地,所述催化剂由主催化剂、活化剂和第三组分组成,其中所述主催化剂优选自钛化合物,所述活化剂优选自有机铝化合物,所述第三组分优选自含氧、氮、硫、磷四种原子的有机化合物。
与现有技术相比,本发明的有益效果在于,通过聚合反应器、气相进料单元、液相进料单元、聚合分子量调节单元、回流单元、冷却单元和微界面发生器构成本发明系统的主体结构,通过破碎丙烯使其形成微米尺度的微米级气泡,使微米级气泡与溶剂混合形成气液乳化物,以增大气液两相的相界面积,提高聚丙烯的合成效率,提高丙烯反应效率,节约成本;本发明系统中通过聚合反应器,用以为丙烯聚合提供反应场所;气通过相进料单元,用以为丙烯进行预处理,并将其定量通入聚合反应器内;通过液相进料单元,用以为溶剂进行预处理,并将其定量通入聚合反应器内;通过聚合分子量调节单元,用以为丙烯聚合物的分子量进行调节;通过回流单元,用以为将聚合反应器输出物料换热并回流入聚合反应器内;通过冷却单元,用以为部分回流液进行冷却降温处理。可以根据不同的产品要求,而灵活地对丙烯进行预设操作条件的范围调整,以确保反应的充分有效进 行,进而保证反应速率,达到了强化反应的目的,此外,通过第一换热器、第二换热器和第三换热器,使原料与生成物料进行热交换,节约能源。
通过第一微界面发生器和第二微界面发生器的联合使用,其中第二微界面发生器使物料卷吸聚合反应器顶部未反应的丙烯并将丙烯破碎形成微米尺度的微米级气泡,将微米级气泡与液相物料混合,形成气液乳化物并将气液乳化物输出至聚合反应器的反应区与第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间并使气液两相进行二次反应,提高丙烯利用率,提高反应效率,降低聚丙烯生产成本,符合现有的循环经济的要求。
附图说明
图1为本发明所述的强化丙烯聚合的系统的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明所述的强化丙烯聚合的系统的结构示意图,包括聚合反应器1、气相进料单元2、液相进料单元3、聚合分子量调节单元4、回流单元5、冷却单元6和微界面发生器7。所述聚合反应器1,用以为丙烯聚合提供反应场所;所述气相进料单元2,与所述聚合反应器1相连,用以为丙烯进 行预处理,并将其定量通入聚合反应器内;所述液相进料单元3,与所述聚合反应器1相连,用以为溶剂进行预处理,并将其定量通入聚合反应器内;所述聚合分子量调节单元4,与所述聚合反应器1相连,用以为丙烯聚合物的分子量进行调节;所述回流单元5,与所述聚合反应器1相连,用以为将聚合反应器输出物料换热并回流入聚合反应器内;所述冷却单元6,与所述回流单元5相连,用以为部分回流液进行冷却降温处理;所述微界面发生器7,其设置个数为两个,均设置在所述聚合反应器1内,用以将气体的压力能和/或液体的动能转变为气泡表面能并传递给气相组分丙烯,使气相气破碎形成直径≥1μm、且<1mm的微米级气泡以提高气相组分丙烯与液相组分的传质面积。
当所述系统运行时,微界面发生器7气相组分破碎形成微米尺度的微米级气泡并使微米级气泡与液相组分的混合物混合形成气液乳化物。本领域的技术人员可以理解的是,本发明所述微界面发生器7还可用于其它多相反应中,如通过微界面、微纳界面、超微界面、微泡生化反应器或微泡生物反应器等设备,使用微混合、微流化、超微流化、微泡发酵、微泡鼓泡、微泡传质、微泡传递、微泡反应、微泡吸收、微泡增氧、微泡接触等工艺或方法,以使物料形成多相微混流、多相微纳流、多相乳化流、多相微结构流、气液固微混流、气液固微纳流、气液固乳化流、气液固微结构流、微米级气泡、微米级气泡流、微泡沫、微泡沫流、微气液流、气液微纳乳化流、超微流、微分散流、两项微混流、微湍流、微泡流、微鼓泡、微鼓泡流、微纳鼓泡以及微纳鼓泡流等由微米尺度颗粒形成的多相流体、或由微纳尺度颗粒形成的多相流体(简称微界面流体),从而有效地增大了反应过程中所述气相和/或液相与液相和/或固相之间的相界传质面积。
请继续参阅图1所示,所述微界面发生器7包括:第一微界面发生器71和第二微界面发生器72;
其中所述第一微界面发生器71,所述第一微界面发生器71设置在所述聚合反应器1的反应区内,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应区内与液相组分形成气液乳化物;
所述第二微界面发生器72,所述第二微界面发生器72设置在所述聚合反应器1的反应区内且位于所述第一微界面发生器71上部,用以接收回流物料,使用物料卷吸所述聚合反应器顶1部未反应的丙烯并将丙烯破碎形成微米尺度的 微米级气泡,将微米级气泡与液相物料混合,形成气液乳化物并将气液乳化物输出至聚合反应器1的反应区与所述第一微界面发生器71输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间并使气液两相进行二次反应。
请继续参阅图1所示,所述聚合反应器1上设置有催化剂进料口8和尾气输出管道9;
其中所述催化剂进料口8,其设置在所述聚合反应器1的侧壁上部,用以将催化剂输送至聚合反应器内;
所述尾气输出管道9,其设置在所述聚合反应器1的顶部,用于输出聚合反应器内尾气。
当所述系统运行时,通过所述催化剂进料口8向所述聚合反应器1内输送催化剂,其中所述聚合反应器1内部分未反应气相组分沿所述尾气输出管路9进入所述第二换热器32和所述第三换热器42与溶剂和氢气进行热交换,可以理解的是,所述尾气输出管路9的材质和尺寸本实施例均不做具体限制,只要满足尾气输出管路9能够在指定时间内输送指定体积的物料即可。
请继续参阅图1所示,所述气相进料单元2包括:丙烯进料管道21、第一换热器22和丙烯压缩机23;
其中所述丙烯进料管道21,其设置在所述聚合反应器1的侧壁并与所述微界面发生器7相连,用以将丙烯输送至微界面发生器内,并使微界面发生器对丙烯进行破碎;
所述第一换热器22,其设置在所述丙烯进料管道21上,用以对丙烯进行油浴控温,以使丙烯维持在预设温度范围内;
所述丙烯压缩机23,其设置在所述丙烯进料管道21上,用以对丙烯进行低压压缩。
当系统运行时,通过所述丙烯进料管道21向所述聚合反应器1内输送丙烯,其中所述第一换热器22对丙烯进行油浴控温,使丙烯维持在预设温度范围内,并通过所述丙烯压缩机23对丙烯进行低压压缩,使丙烯泵入所述聚合反应器1内,可以理解的是,所述丙烯进料管道21的材质和尺寸本实施例均不做具体限制,只要满足丙烯进料管道21能够在指定时间内输送指定体积的物料即可。
请继续参阅图1所示,所述液相进料单元3包括:溶剂进料管道31、第二 换热器32和计量泵33;
其中所述溶剂进料管道31,其设置在所述聚合反应器1的侧壁并位于所述丙烯进料管道上方,用以将溶剂输送至聚合反应器内;
所述第二换热器32,其设置在所述溶剂进料管道31上,用以对溶剂进行油浴控温,以使溶剂维持在预设温度范围内;
所述计量泵33,其设置在所述溶剂进料管道31上,用以为将溶剂定量泵入聚合反应器内。
当系统运行时,通过所述溶剂进料管道31向所述聚合反应器1内输送溶剂,其中所述第二换热器32对溶剂进行油浴控温,使溶剂维持在预设温度范围内,并通过所述计量泵33将预设温度范围内的溶剂定量泵入所述聚合反应器1内。
请继续参阅图1所示,所述聚合分子量调节单元4包括:氢气进料管道41、第三换热器42和质量流量计43;
其中所述氢气进料管道41,其设置在所述聚合反应器1的侧壁并位于所述溶剂进料管道下方,用以将氢气输送至聚合反应器内;
所述第三换热器42,其设置在所述氢气进料管道41上,用以对氢气进行油浴控温,以使氢气维持在预设温度范围内;
所述质量流量计43,其设置在所述氢气进料管道41上,用以对氢气进行质量流量检测。
当系统运行时,通过所述氢气进料管道41向所述聚合反应器1内输送氢气,通过氢气调节丙烯聚合物分子量,其中所述第三换热器42对氢气进行油浴控温,使氢气维持在预设温度范围内,并通过所述质量流量计43将预设温度范围内的氢气泵入所述聚合反应器1内,可以理解的是,所述第三换热器42的型号及功率本实施例均不作具体限制,只要满足第三换热器42能够达到其指定的工作状态即可。
请继续参阅图1所示,所述回流单元5包括:液相出料管路51、液相回流管路52和回流泵53;
其中所述液相出料管路51,所述液相出料管路51的进料端与所述聚合反应器1相连,所述液相出料管路51的出料
端与所述第一换热器22相连,用于输出聚合反应器内液相物料;
所述液相回流管路52,所述液相回流管路52的进料端与所述第二换热器32,所述液相回流管路52的出料端延伸入所述聚合反应器1并与微界面发生器7相连;
所述回流泵53,其设置在所述液相回流管路52上,用以将回流液相泵入聚合反应器内。
当系统运行时,液相组分沿液相出料管路51进入所述第一换热器22,并与丙烯进行热交换,热交换后的液相组分部分通过所述回流泵53沿所述液相回流管路52回流入所述聚合反应器1内的所述第二微界面发生器72。
请继续参阅图1所示,所述冷却单元6包括:冷却输料管路61、中间罐62和冷却夹套63;
其中所述冷却输料管路61,其与所述回流单元5相连,用以对聚合反应器输出液相物料进行传输;
所述中间罐62,其与所述冷却输料管路61相连,用以装载聚合反应器输出液相物料并对物料进行冷凝;
所述冷却夹套63,其设置在所述中间罐62的外侧壁上,用以对中间罐内物料进行循环冷却。
当系统运行时,热交换后的液相组分另一部分沿所述冷却输料管路61进入所述中间罐62,并通过所述冷却夹套63对其进行循环冷却。
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
一种强化丙烯聚合的工艺,包括:
步骤1:通过所述催化剂进料口向所述聚合反应器内输送催化剂;
步骤2:通过所述溶剂进料管道向所述聚合反应器内输送溶剂,其中所述第二换热器对溶剂进行油浴控温,使溶剂维持在预设温度范围内,并通过所述计量泵将预设温度范围内的溶剂定量泵入所述聚合反应器内;
步骤3:通过所述丙烯进料管道向所述聚合反应器内输送丙烯,其中所述第一换热器对丙烯进行油浴控温,使丙烯维持在预设温度范围内,并通过所述丙烯压缩机对丙烯进行低压压缩,使丙烯泵入所述聚合反应器内;
步骤4:通过所述氢气进料管道向所述聚合反应器内输送氢气,通过氢气调节丙烯聚合物分子量,其中所述第三换热器对氢气进行油浴控温,使氢气维持在预设温度范围内,并通过所述质量流量计将预设温度范围内的氢气泵入所述聚合反应器内;
步骤5:丙烯通入至所述第一微界面发生器,所述第一微界面发生器对丙烯进行破碎,形成微米尺度的微米级气泡,破碎完成后,所述第一微界面发生器将微米级气泡输出至所述聚合反应器内并与溶剂混合形成气液乳化物,气液乳化物在催化剂的作用下进行聚合反应,生成聚丙烯混合物;
步骤6:其中反应完成后,聚丙烯混合物向上流动进入所述聚合反应器上部,其中液相组分沿液相出料管路进入所述第一换热器,并与丙烯进行热交换,热交换后的液相组分部分通过所述回流泵沿所述液相回流管路回流入所述聚合反应器内的所述第二微界面发生器,另一部分沿所述冷却输料管路进入所述中间罐,并通过所述冷却夹套对其进行循环冷却;
步骤7:其中所述第二微界面发生器使用喷射混合物产生的高压将所述聚合反应器顶部未反应的气相组分卷吸至第二微界面发生器内,并将气相组分进行破碎形成微米尺度的微米级气泡;
步骤8:所述第二微界面发生器在破碎完成后将微米级气泡与回流液相混合形成气液乳化物并将气液乳化物输出至所述聚合反应器的反应区,与所述第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间使物料充分反应;
步骤9:其中所述聚合反应器内部分未反应气相组分沿所述尾气输出管路进入所述第二换热器和所述第三换热器与溶剂和氢气进行热交换。
其中,溶剂为高沸点直链烃作溶剂,可以理解的是,可以根据不同的产品要求或不同的溶剂,而灵活地进行预设操作条件的范围调整,以确保反应的充分有效进行,进而保证反应速率,达到了强化反应的目的。同时,本实施例中不具体限定溶剂的种类,只要能够确保强化反应顺利进行即可
实施例1
使用上述系统及工艺进行丙烯聚合制备聚丙烯,其中:
所述工艺中聚合反应器内反应温度为168℃;
反应压力为0.2MPa;
所述第一微界面发生器内的气液比为800:1;
所述第一微界面发生器内的气液比为650:1。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:96.9wt%;工艺的合成效率提升2.4%。
实施例2
使用上述系统及工艺进行丙烯聚合制备聚丙烯,其中:
所述工艺中聚合反应器内反应温度为170℃;
反应压力为0.3MPa;
所述第一微界面发生器内的气液比为830:1;
所述第一微界面发生器内的气液比为670:1。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:97.1wt%;工艺的合成效率提升2.4%。
实施例3
使用上述系统及工艺进行丙烯聚合制备聚丙烯,其中:
所述工艺中聚合反应器内反应温度为172℃;
反应压力为0.4MPa;
所述第一微界面发生器内的气液比为870:1;
所述第一微界面发生器内的气液比为690:1。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:97.0wt%;工艺的合成效率提升2.3%。
实施例4
使用上述系统及工艺进行丙烯聚合制备聚丙烯,其中:
所述工艺中聚合反应器内反应温度为174℃;
反应压力为0.6MPa;
所述第一微界面发生器内的气液比为890:1;
所述第一微界面发生器内的气液比为720:1。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:97.2wt%;工艺的合成效率提升2.5%。
实施例5
使用上述系统及工艺进行丙烯聚合制备聚丙烯,其中:
所述工艺中聚合反应器内反应温度为178℃;
反应压力为0.7MPa;
所述第一微界面发生器内的气液比为900:1;
所述第一微界面发生器内的气液比为750:1。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:97.1wt%;工艺的合成效率提升2.5%。
对比例
使用现有技术进行丙烯聚合制备聚丙烯,其中,本实施例选用的工艺参数与所述实施例5中的工艺参数相同。
经检测,使用所述系统及工艺后,产品质量:均聚共聚;等规度:95.3wt%。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种强化丙烯聚合的系统,其特征在于,包括:
    聚合反应器,用以为丙烯聚合提供反应场所;
    气相进料单元,与所述聚合反应器相连,用以为丙烯进行预处理,并将其定量通入聚合反应器内;
    液相进料单元,与所述聚合反应器相连,用以为溶剂进行预处理,并将其定量通入聚合反应器内;
    聚合分子量调节单元,与所述聚合反应器相连,用以为丙烯聚合物的分子量进行调节;
    回流单元,与所述聚合反应器相连,用以为将聚合反应器输出物料换热并回流入聚合反应器内;
    冷却单元,与所述回流单元相连,用以为部分回流液进行冷却降温处理;
    微界面发生器,其设置个数为两个,均设置在所述聚合反应器内,用以将气体的压力能和/或液体的动能转变为气泡表面能并传递给气相组分丙烯,使气相气破碎形成直径≥1μm、且<1mm的微米级气泡以提高气相组分丙烯与液相组分的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将液相组分与微米级气泡混合形成气液乳化物,以在预设操作条件范围内强化气液组分的传质效率和反应效率。
  2. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述微界面发生器包括:
    第一微界面发生器,所述第一微界面发生器设置在所述聚合反应器的反应区内,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至反应区内与液相组分形成气液乳化物;
    第二微界面发生器,所述第二微界面发生器设置在所述聚合反应器的反应区内且位于所述第一微界面发生器上部,用以接收回流物料,使用物料卷吸所述聚合反应器顶部未反应的丙烯并将丙烯破碎形成微米尺度的微米级气泡,将微米级气泡与液相物料混合,形成气液乳化物并将气液乳化物输出至聚合反应器的反应区与所述第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间并使气液两相进行二次反应。
  3. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述聚合反 应器上设置有催化剂进料口和尾气输出管道;
    其中所述催化剂进料口,其设置在所述聚合反应器的侧壁上部,用以将催化剂输送至聚合反应器内;
    所述尾气输出管道,其设置在所述聚合反应器的顶部,用于输出聚合反应器内尾气。
  4. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述气相进料单元包括:
    丙烯进料管道,其设置在所述聚合反应器的侧壁并与所述微界面发生器相连,用以将丙烯输送至微界面发生器内,并使微界面发生器对丙烯进行破碎;
    第一换热器,其设置在所述丙烯进料管道上,用以对丙烯进行油浴控温,以使丙烯维持在预设温度范围内;
    丙烯压缩机,其设置在所述丙烯进料管道上,用以对丙烯进行低压压缩。
  5. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述液相进料单元包括:
    溶剂进料管道,其设置在所述聚合反应器的侧壁并位于所述丙烯进料管道上方,用以将溶剂输送至聚合反应器内;
    第二换热器,其设置在所述溶剂进料管道上,用以对溶剂进行油浴控温,以使溶剂维持在预设温度范围内;
    计量泵,其设置在所述溶剂进料管道上,用以为将溶剂定量泵入聚合反应器内。
  6. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述聚合分子量调节单元包括:
    氢气进料管道,其设置在所述聚合反应器的侧壁并位于所述溶剂进料管道下方,用以将氢气输送至聚合反应器内;
    第三换热器,其设置在所述氢气进料管道上,用以对氢气进行油浴控温,以使氢气维持在预设温度范围内;
    质量流量计,其设置在所述氢气进料管道上,用以对氢气进行质量流量检测。
  7. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述回流单元包括:
    液相出料管路,所述液相出料管路的进料端与所述聚合反应器相连,所述液相出料管路的出料端与所述第一换热器相连,用于输出聚合反应器内液相物料;
    液相回流管路,所述液相回流管路的进料端与所述第二换热器相连,所述液相回流管路的出料端延伸入所述聚合反应器并与微界面发生器相连;
    回流泵,其设置在所述液相回流管路上,用以将回流液相泵入聚合反应器内。
  8. 根据权利要求1所述的强化丙烯聚合的系统,其特征在于,所述冷却单元包括:
    冷却输料管路,其与所述回流单元相连,用以对聚合反应器输出液相物料进行传输;
    中间罐,其与所述冷却输料管路相连,用以装载聚合反应器输出液相物料并对物料进行冷凝;
    冷却夹套,其设置在所述中间罐的外侧壁上,用以对中间罐内物料进行循环冷却。
  9. 一种强化丙烯聚合的工艺,其特征在于,包括:
    步骤1:通过所述催化剂进料口向所述聚合反应器内输送催化剂;
    步骤2:通过所述溶剂进料管道向所述聚合反应器内输送溶剂,其中所述第二换热器对溶剂进行油浴控温,使溶剂维持在预设温度范围内,并通过所述计量泵将预设温度范围内的溶剂定量泵入所述聚合反应器内;
    步骤3:通过所述丙烯进料管道向所述聚合反应器内输送丙烯,其中所述第一换热器对丙烯进行油浴控温,使丙烯维持在预设温度范围内,并通过所述丙烯压缩机对丙烯进行低压压缩,使丙烯泵入所述聚合反应器内;
    步骤4:通过所述氢气进料管道向所述聚合反应器内输送氢气,通过氢气调节丙烯聚合物分子量,其中所述第三换热器对氢气进行油浴控温,使氢气维持在预设温度范围内,并通过所述质量流量计将预设温度范围内的氢气泵入所述聚合反应器内;
    步骤5:丙烯通入至所述第一微界面发生器,所述第一微界面发生器对丙烯进行破碎,形成微米尺度的微米级气泡,破碎完成后,所述第一微界面发生器将微米级气泡输出至所述聚合反应器内并与溶剂混合形成气液乳化物,气液乳化物在催化剂的作用下进行聚合反应,生成聚丙烯混合物;
    步骤6:其中反应完成后,聚丙烯混合物向上流动进入所述聚合反应器上部,其中液相组分沿液相出料管路进入所述第一换热器,并与丙烯进行热交换,热交换后的液相组分部分通过所述回流泵沿所述液相回流管路回流入所述聚合反应器内的所述第二微界面发生器,另一部分沿所述冷却输料管路进入所述中间罐,并通过所述冷却夹套对其进行循环冷却;
    步骤7:其中所述第二微界面发生器使用喷射混合物产生的高压将所述聚合反应器顶部未反应的气相组分卷吸至第二微界面发生器内,并将气相组分进行破碎形成微米尺度的微米级气泡;
    步骤8:所述第二微界面发生器在破碎完成后将微米级气泡与回流液相混合形成气液乳化物并将气液乳化物输出至所述聚合反应器的反应区,与所述第一微界面发生器输出的气液乳化物进行对冲,从而延长微米级气泡在反应区内的停留时间使物料充分反应;
    步骤9:其中所述聚合反应器内部分未反应气相组分沿所述尾气输出管路进入所述第二换热器和所述第三换热器与溶剂和氢气进行热交换。
  10. 根据权利要求9所述的强化丙烯聚合的工艺,其特征在于,所述催化剂由主催化剂、活化剂和第三组分组成,其中所述主催化剂优选自钛化合物,所述活化剂优选自有机铝化合物,所述第三组分优选自含氧、氮、硫、磷四种原子的有机化合物。
PCT/CN2019/120193 2019-09-14 2019-11-22 一种强化丙烯聚合的系统和工艺 WO2021047054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910867787.4 2019-09-14
CN201910867787.4A CN112495310B (zh) 2019-09-14 2019-09-14 一种强化丙烯聚合的系统和工艺

Publications (1)

Publication Number Publication Date
WO2021047054A1 true WO2021047054A1 (zh) 2021-03-18

Family

ID=74866896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120193 WO2021047054A1 (zh) 2019-09-14 2019-11-22 一种强化丙烯聚合的系统和工艺

Country Status (2)

Country Link
CN (1) CN112495310B (zh)
WO (1) WO2021047054A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417432A (zh) * 2022-10-14 2022-12-02 天津渤化工程有限公司 一种重灰生产工艺系统及其生产工艺
CN117942863A (zh) * 2024-03-27 2024-04-30 天津市集散聚合科技有限公司 一种聚丙烯生产用催化剂混合加注设备及其工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942051A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司 一种液相丙烯本体聚合反应连续聚合工艺
WO2017025327A1 (en) * 2015-08-07 2017-02-16 Sabic Global Technologies B.V. Process for the polymerization of olefins
WO2017032683A1 (en) * 2015-08-27 2017-03-02 Sabic Global Technologies B.V. Process for continuous polymerization of olefin monomers in a reactor
CN109422831A (zh) * 2017-08-29 2019-03-05 住友化学株式会社 用于生产聚烯烃的方法和聚烯烃生产系统
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19752719A1 (de) * 1997-11-28 1999-07-01 Damann Franz Josef Dipl Ing Katalytischer Reaktor
DE10031392A1 (de) * 2000-07-03 2002-01-17 Basell Polyolefine Gmbh Verfahren zur Herstellung von Homopolymerisaten oder Copolymerisaten des Propylens
US7109290B2 (en) * 2004-06-07 2006-09-19 Chevron Phillips Chemical Company Lp Polymer transfer within a polymerization system
US8022153B2 (en) * 2007-06-27 2011-09-20 H R D Corporation System and process for production of polyethylene and polypropylene
CN102453129B (zh) * 2010-10-19 2013-05-01 中国石油化工股份有限公司 一种烯烃聚合催化剂组分浆液的制备方法
KR20120078350A (ko) * 2010-12-31 2012-07-10 주식회사 효성 기상중합장치용 전향판
CN103387624B (zh) * 2012-05-07 2015-06-17 中国石油化工股份有限公司 一种烯烃聚合物的制备方法
CN104174339B (zh) * 2013-05-22 2016-08-10 中石化洛阳工程有限公司 一种用于浆态床反应器的气体分布器
EP3057701A2 (en) * 2013-10-14 2016-08-24 Coldharbour Marine Limited Apparatus and method
WO2015078815A1 (en) * 2013-11-29 2015-06-04 Saudi Basic Industries Corporation Process for continuous polymerization of olefin monomers in a reactor
CN206064397U (zh) * 2016-08-08 2017-04-05 晋祥忠 自回流冷凝聚合釜及小本体法聚丙烯聚合釜
CN110088142B (zh) * 2016-12-22 2020-06-12 巴塞尔聚烯烃股份有限公司 多区循环反应器的启动方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101942051A (zh) * 2009-07-09 2011-01-12 中国石油化工股份有限公司 一种液相丙烯本体聚合反应连续聚合工艺
WO2017025327A1 (en) * 2015-08-07 2017-02-16 Sabic Global Technologies B.V. Process for the polymerization of olefins
WO2017032683A1 (en) * 2015-08-27 2017-03-02 Sabic Global Technologies B.V. Process for continuous polymerization of olefin monomers in a reactor
CN109422831A (zh) * 2017-08-29 2019-03-05 住友化学株式会社 用于生产聚烯烃的方法和聚烯烃生产系统
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417432A (zh) * 2022-10-14 2022-12-02 天津渤化工程有限公司 一种重灰生产工艺系统及其生产工艺
CN117942863A (zh) * 2024-03-27 2024-04-30 天津市集散聚合科技有限公司 一种聚丙烯生产用催化剂混合加注设备及其工艺

Also Published As

Publication number Publication date
CN112495310A (zh) 2021-03-16
CN112495310B (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
EP2160418B1 (en) System and process for production of polyethylene and polypropylene
WO2021047054A1 (zh) 一种强化丙烯聚合的系统和工艺
JPH0925304A (ja) 重合体の連続的製造方法およびこのための装置
JP2752458B2 (ja) メタクリル系ポリマーの製造方法
CN102702399A (zh) 连续聚合设备和用于生产聚合物组合物的方法
CN101230114B (zh) 一种聚合反应器及使用其生产聚丙烯的方法
CN216473003U (zh) 一种5万吨级产能规模以上高抗冲聚苯乙烯的生产设备
Minsker et al. Plug-flow tubular turbulent reactors: A new type of industrial apparatus
CN102101898B (zh) 一种连续制备聚合物的方法及其装置
US11219877B2 (en) Reactor for a metallocene catalyst-based solution polymerization process for preparing polyolefin polymers
CN103450404A (zh) 一种以本体聚合的方法制造abs树脂的生产工艺
WO2021047049A1 (zh) 一种强化乙烯聚合的系统和工艺
CN212128043U (zh) 一种强化丙烯聚合的系统
CN115253954A (zh) 一种连续反应装置及应用
JPS62101608A (ja) イソブチレン重合体を製造する方法および装置
CN212128041U (zh) 基于溶液法制备聚乙烯的智能强化系统
CN213506694U (zh) 一种基于本体法制备聚乙烯的智能强化系统
CN208776630U (zh) 一种丙烯连续变温预聚合装置
CN102443110B (zh) 一种abs树脂的本体聚合生产工艺以及静态混合器的用途
CN213506692U (zh) 一种强化乙烯聚合的系统
CN112500512A (zh) 一种基于本体法制备聚乙烯的强化系统及工艺
CN219663649U (zh) 一种弹性体poe进料反应器
WO2021047035A1 (zh) 基于溶液法制备聚乙烯的强化系统及工艺
EP0072165A1 (en) Improved process for preparing ethylene polymers
CN219615514U (zh) 一种聚烯烃弹性体的聚合反应装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945048

Country of ref document: EP

Kind code of ref document: A1