WO2021047050A1 - 一种强化羰基化反应系统及工艺 - Google Patents

一种强化羰基化反应系统及工艺 Download PDF

Info

Publication number
WO2021047050A1
WO2021047050A1 PCT/CN2019/120189 CN2019120189W WO2021047050A1 WO 2021047050 A1 WO2021047050 A1 WO 2021047050A1 CN 2019120189 W CN2019120189 W CN 2019120189W WO 2021047050 A1 WO2021047050 A1 WO 2021047050A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbonylation reaction
micro
phase
liquid
Prior art date
Application number
PCT/CN2019/120189
Other languages
English (en)
French (fr)
Inventor
张志炳
周政
张锋
李磊
孟为民
王宝荣
杨高东
罗华勋
杨国强
田洪舟
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047050A1 publication Critical patent/WO2021047050A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/01Preparation of esters of carbonic or haloformic acids from carbon monoxide and oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids

Definitions

  • the invention relates to the technical field of carbonylation to prepare carbonyl compounds such as aldehydes and ketones, and in particular to an enhanced carbonylation reaction system and process.
  • the carbonylation reaction is a type of reaction that introduces carbon monoxide and other groups into the molecule of an organic compound to synthesize the target product. It mainly includes hydroformylation, hydrocarboxylation, and hydroesterification.
  • the hydroformylation reaction has been extensively studied and has become one of the most active fields in the current catalytic synthesis research. Relatively speaking, the research on the hydroesterification reaction started relatively late, starting in the 1980s, and was gradually unfolding based on the development of the hydrocarboxylation reaction.
  • the carbonylation reaction was first discovered by German scientists in 1938. Since then, research results on this type of reaction have been emerging in endlessly. After continuous development, the reaction substrate has been expanded from the initial hydrocarbon compounds to alcohols, hydrocarbons, epoxides, nitro compounds, amine compounds, organic halides and aldehyde compounds, in addition to the synthesis of aldehydes, alcohols, and acids. In addition to esters, other oxygen-containing compounds such as acid anhydrides, amides, ketones, lactones and quinones can also be synthesized.
  • the reactants are added to the inside of the carbonylation reactor at the same time, and it is carried out at the specified temperature and pressure. After the carbonylation reaction, the carbonylation product is transported to the rectification unit, separation unit and other devices for corresponding treatment of the carbonylation product, and the target product has been obtained.
  • the reactants are gas phase reactants and liquid phase reactants
  • the gas phase reactants and liquid phase reactants cannot be sufficiently mixed inside the carbonylation reactor, resulting in a decrease in the reaction efficiency of the system.
  • the present invention provides an enhanced carbonylation reaction system and process to solve the problem that the gas phase reactant and the liquid phase reactant in the prior art cannot be fully mixed inside the carbonylation reactor, resulting in the reduction of the system reaction efficiency. .
  • An enhanced carbonylation reaction system and process including:
  • Feeding unit to store and transport gas phase materials and liquid phase materials
  • a reaction kettle which is connected to the feeding unit, is used to receive liquid phase materials and serves as a place for the carbonylation reaction;
  • the micro-interface generator is arranged inside the reactor and connected with the feeding unit for receiving the gas-phase material, and before the carbonylation reaction, crushing the gas-phase material into micron-sized micrometers in diameter. Bubbles to increase the mass transfer area of the phase boundary between the gas phase material and the liquid phase material during the carbonylation reaction process to enhance the efficiency of the carbonylation reaction;
  • a flashing tower which is connected to the reactor and used for flashing the carbonylation reaction product
  • a rectification device which is connected to the flash tower and is used to rectify the flash product
  • the separation device is respectively connected with the rectification device and the reactor to separate the rectification product to obtain the corresponding product, and transport the recyclable product in the corresponding product to the inside of the reactor to perform the carbonylation reaction again.
  • the micro-interface generator converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the hydrogen bubble, so that the hydrogen is broken into micron-level diameters. Of microbubbles.
  • the micro-interface generator is selected from one or more of a pneumatic micro-interface generator, a hydraulic micro-interface generator, and a gas-liquid linkage micro-interface generator.
  • the micron-level microbubbles are microbubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm.
  • the feed unit includes:
  • a gas-phase feed pipe connected to the micro-interface generator and connected to an external gas source for receiving corresponding gas-phase materials and transporting the gas-phase materials to the micro-interface generator;
  • the liquid-phase storage tank is connected with the reaction kettle and is used for storing liquid-phase materials and transporting the liquid-phase materials to the reaction kettle.
  • the rectification device includes:
  • a light component rectification tower which is connected to the flash tower and is used for rectifying and separating the gas phase components obtained from the flashing product;
  • the heavy component rectifying tower is connected with the light component rectifying tower and is used for rectifying and separating the heavy component products separated from the light component rectifying tower to finally obtain acetic acid.
  • An enhanced carbonylation reaction process which is characterized in that it comprises:
  • liquid phase material and catalyst into the liquid phase storage tank, connect the gas phase feed pipe to the gas source of the corresponding gas phase material, start the system, transport the liquid phase material and catalyst to the inside of the reactor, and at the same time, feed the gas phase material through the gas phase.
  • the material pipeline is transported to the inside of the micro-interface generator;
  • the micro-interface generator breaks the gas-phase material into micro-scale micro-bubbles, and releases the micro-bubbles into the reactor to increase the gap between the gas-phase material and the liquid-phase material in the carbonylation reaction process.
  • the mass transfer area of the phase boundary makes the gas phase material fully contact with the liquid phase material in the state of microbubbles, and carry out the carbonylation reaction;
  • the carbonylation reaction product is delivered to the flash tower, rectification device and separation device in sequence, and the corresponding treatment is performed to finally obtain the target product.
  • the carbonylation reaction temperature is 80-160°C.
  • the carbonylation reaction pressure is 2-4 MPa.
  • the temperature of the flash evaporation is 100-150°C.
  • the beneficial effect of the present invention is that the enhanced carbonylation reaction system and process provided by the present invention provide a micro-interface generator connected to the gas-phase feed pipe in the carbonylation reactor, and the gas-phase materials are in contact with the gas-phase feed pipe.
  • the micro-interface generator breaks the gas phase material into micro bubbles with a diameter greater than or equal to 1 ⁇ m and less than 1 mm, so that the gas phase material is in contact with the liquid material in the state of micro bubbles to increase the carbonylation reaction process
  • the mass transfer area of the phase boundary between the middle gas phase material and the liquid phase material is fully mixed and then the carbonylation reaction is carried out, thereby solving the problem that the gas phase reactant and the liquid phase reactant cannot be fully obtained in the carbonylation reactor in the prior art. Mixing leads to the problem of reduced system reaction efficiency.
  • the present invention is provided with a flashing tower, a rectification device and a separation device in the product processing unit, so that the carbonylation product can obtain the target product by controlling the temperature and pressure according to the needs of the user, so that the purity of the target product is higher.
  • the carbonylation reaction system of the present invention can reduce the carbonylation reaction temperature to 80-160°C and the reaction pressure to 2-4 MPa, thereby greatly saving production resources and reducing production costs.
  • FIG. 1 is a schematic structural diagram of an enhanced carbonylation reaction system and process provided by an embodiment of the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the enhanced carbonylation reaction system includes: a carbonylation reactor 3, a micro-interface generator 2 is arranged below the inside of the reactor, the inlet end of which is connected with the feed unit, and the outlet end It is connected to the product processing unit and used as a place for carbonylation reaction.
  • the micro-interface generator converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the bubble, so that the bubble is broken into micro-sized micro-bubbles with a diameter of 1 ⁇ m or more and less than 1 mm.
  • the input method or gas-liquid ratio is divided into pneumatic micro-interface generator, hydraulic micro-interface generator and gas-liquid linkage micro-interface generator.
  • the pneumatic micro-interface generator is driven by gas, and the input gas volume is much larger than the liquid volume; hydraulic micro-interface generator Using liquid drive, the input gas volume is generally less than the liquid volume; the gas-liquid linkage micro-interface generator is driven by gas and liquid simultaneously, and the input gas volume is close to the liquid volume.
  • the micro-interface generator 2 is a pneumatic micro-interface generator.
  • the feeding unit includes: a gas-phase feeding pipe 11, which is in the shape of a slender round tube, one end is externally connected to a gas source, and the other end is connected to the micro-interface generator 2 for receiving corresponding gas-phase materials , And transport the gas-phase materials to the micro-interface generator 2; the liquid-phase storage tank 12, which is in the shape of a short, thick round tank, is connected to the reactor 3, and is used to store the liquid-phase materials and transport the liquid-phase materials to the reactor 3.
  • a gas-phase feeding pipe 11 which is in the shape of a slender round tube, one end is externally connected to a gas source, and the other end is connected to the micro-interface generator 2 for receiving corresponding gas-phase materials , And transport the gas-phase materials to the micro-interface generator 2
  • the liquid-phase storage tank 12 which is in the shape of a short, thick round tank, is connected to the reactor 3, and is used to store the liquid-phase materials and transport the liquid-phase materials to the reactor 3.
  • the liquid phase material and the corresponding catalyst are filled into the liquid phase storage tank 12, the gas phase feed pipe 11 is connected with the gas source of the corresponding gas phase material, the system is started, and the liquid phase material and catalyst are transported to the inside of the reactor 3 At the same time, the gas-phase material is transported to the inside of the micro-interface generator 2 through the gas-phase feed pipe 11, and the micro-interface generator 2 breaks the gas-phase material into micro-scale micro-bubbles, and releases the micro-bubbles into the reactor 3 Inside, to increase the mass transfer area of the phase boundary between the gas phase material and the liquid phase material in the carbonylation reaction process, so that the gas phase material fully contacts the liquid phase material in the state of microbubbles, and the carbonylation reaction is carried out. , The waste gas generated by the carbonylation reaction is removed from the system at the top of the reactor 3, and the carbonylation reaction product is transported to the product processing unit.
  • the product processing unit includes: a flash distillation tower 4, the inlet end of which is connected to the reactor 3, the outlet end is connected to one end of the first circulating pump 91, and the other end of the first circulating pump 91 is connected to the heat exchange
  • the inlet end of the device 7 is connected, and the outlet end of the heat exchanger 7 is connected to the reactor 3.
  • the reactor 3 transports the carbonylation reaction product to the flash tower 4 for flash evaporation, and the liquid phase component containing the catalyst obtained by the flash distillation passes through the bottom of the flash tower 4 through the first
  • the circulating pump 91 is sent to the heat exchanger 7 for heat exchange and cooling, so as to remove the reaction heat.
  • the liquid phase components whose temperature has been reduced after heat exchange by the heat exchanger 7 are refluxed to the reactor 3 to help control the constant temperature of the carbonylation reaction in the reactor 3; a rectification device, which is connected to the flash tower 4, is used In the rectification of the flashed product; a separation device, which is respectively connected with the rectification device and the reaction vessel 3, is used to separate the rectification product to obtain the corresponding product, and transport the recyclable product in the corresponding product to the reaction Inside the tank 3, the carbonylation reaction is carried out again.
  • the rectification device includes: a light component rectification tower 52 for rectifying the gas phase components obtained by flash evaporation, the inlet end of which is respectively connected with the flash distillation tower 4 and the separation device, and the outlet end Connected to the first condenser 81, the other end of the first condenser 81 is connected to the separation device; the heavy component rectification tower 51, the inlet end of which is connected to the light component rectification tower 52, for the light component rectification tower 52 , The separated heavy component product is subjected to rectification treatment.
  • the gaseous components obtained by the flash vaporization are sent from the top of the flash distillation tower 4 to the light component rectification tower 52 for rectification separation, and the light component and the heavy component are separated, and the light component is removed from the top of the light component rectification tower 52.
  • the discharge is condensed by the first condenser 81 and then sent to the separation device.
  • the heavy components are discharged from the bottom of the light component rectification tower 52 into the heavy component rectification tower 51, and the heavy components are rectified and separated in the heavy component rectification tower 51. product.
  • the separation device includes: a liquid-liquid separator 6 for separating the light component rectification tower 52, the inlet end of which is connected with the first condenser 81, and the outlet end is respectively connected with the second circulation pump and the second condenser.
  • Device and light fraction rectification tower 52 The light component separated by the light component rectification tower 52 is discharged from the top, is condensed by the first condenser 81, and then sent to the liquid-liquid separator 6, where the heavy phase, light phase, and light phase are further separated in the liquid-liquid separator 6.
  • Non-condensable gas tail gas the heavy phase components separated by the liquid-liquid separator 6 are refluxed to the reactor 3 through the second circulating pump 92, the light phase components are refluxed to the light component rectification tower 52, and the non-condensable gas tail gas is returned from
  • the top discharge of the liquid-liquid separator 6 is condensed by the second condenser 82 and then discharged from the system, and corresponding treatment is performed.
  • the micro-interface generator 2 connected to the gas-phase feed pipe 11 is arranged inside the carbonylation reactor 3, and before the gas-phase material and the liquid-phase material carbonylation reaction, micro-interface generator 2 is installed inside the carbonylation reactor 3.
  • the interface generator 2 breaks the gas phase material into microbubbles so that the gas phase material contacts the liquid phase material in the state of microbubbles to increase the mass transfer area between the gas phase material and the liquid phase material during the carbonylation reaction.
  • the carbonylation reaction is performed after thorough mixing, so as to solve the problem that the gas phase reactant and the liquid phase reactant in the prior art cannot be fully mixed inside the carbonylation reactor 3, resulting in a decrease in the reaction efficiency of the system.
  • An enhanced carbonylation reaction process including:
  • liquid phase material and catalyst into the liquid phase storage tank 12, connect the gas phase feed pipe 11 to the gas source of the corresponding gas phase material, start the system, and transport the liquid phase material and catalyst into the reactor 3, and at the same time, the gas phase material Transported to the inside of the micro-interface generator 2 through the gas-phase feed pipe 11;
  • the micro-interface generator 2 breaks the gas-phase material into micro-sized micro-bubbles and releases the micro-bubbles into the reactor 3 to increase the gas-phase material and the liquid-phase material in the carbonylation reaction process.
  • the mass transfer area between the phase boundaries makes the gas phase material fully contact with the liquid phase material in the state of microbubbles, and carry out the carbonylation reaction;
  • the carbonylation reaction product is sequentially transported to the flash tower 4, the rectification device and the separation device, and the corresponding treatment is performed to finally obtain the target product.
  • the carbonylation reaction temperature is 80-160°C
  • the carbonylation reaction pressure is 2-4 MPa
  • the flashing temperature is 100-150°C.
  • the micro-interface generator 2 breaks the carbon monoxide into micro-sized micro-bubbles, and releases the micro-bubbles into the reactor 3, so that the carbon monoxide fully contacts with methanol in the state of micro-bubbles, and performs a carbonylation reaction;
  • the carbonylation reaction product is sequentially delivered to the flash distillation tower 4, the rectification device and the separation device, and finally acetic acid is obtained at the outlet of the heavy component rectification tower 51.
  • the output of acetic acid was detected, and the conversion rate of carbon monoxide was calculated to be 97%.
  • the carbonylation reaction product is sequentially delivered to the flash distillation tower 4, the rectification device and the separation device, and finally acetic acid is obtained at the outlet of the heavy component rectification tower 51.
  • the output of acetic acid was detected, and the conversion rate of carbon monoxide was calculated to be 87%.
  • the micro-interface generator 2 breaks the mixed gas of carbon monoxide and oxygen into micro-sized micro-bubbles, and releases the micro-bubbles into the reactor 3, so that the mixed gas of carbon monoxide and oxygen is combined with methanol in the state of micro-bubbles. Fully contact and carry out carbonylation reaction;
  • the carbonylation reaction product is sequentially delivered to the flash tower 4, the rectification device and the separation device, and finally dimethyl carbonate is obtained at the outlet of the separation tower.
  • the output of dimethyl carbonate was detected, and the conversion rate of the mixed gas of carbon monoxide and oxygen was calculated to be 94%.
  • the carbonylation reaction product is sequentially delivered to the flash tower 4, the rectification device and the separation device, and finally dimethyl carbonate is obtained at the outlet of the separation tower.
  • the output of dimethyl carbonate was detected, and the conversion rate of the mixed gas of carbon monoxide and oxygen was calculated to be 82%.
  • the enhanced carbonylation reaction system and process provided by the present invention solves the problem that the gas phase reactant and the liquid phase reactant in the prior art cannot be fully mixed inside the carbonylation reactor, resulting in a decrease in the reaction efficiency of the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种强化羰基化反应系统及工艺,属于羰基化制备醛、酮等羰基化合物的技术领域,包括:进料单元,反应釜,其与所述进料单元连接,微界面发生器,设置在所述反应釜内部,且与所述进料单元连接,用于接收所述气相物料,并在羰基化反应之前,将所述气相物料破碎成直径为微米级别的微气泡,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,强化羰基化反应效率,将羰基化反应产物依次输送至闪蒸塔、精馏装置和分离装置,最终得到目标产物。本发明提供的强化羰基化反应系统及工艺,达到解决现有技术中气相反应物和液相反应物在羰基化反应釜内部无法得到充分混合,导致系统反应效率降低的问题。

Description

一种强化羰基化反应系统及工艺 技术领域
本发明涉及羰基化制备醛、酮等羰基化合物的技术领域,特别涉及一种强化羰基化反应系统及工艺。
背景技术
羰基化反应是一类在有机化合物分子内引入一氧化碳和其他基团而合成目标产物的反应,主要包括氢甲酰化、氢羧基化和氢酯基化等类型。氢甲酰化反应已经得到了广泛的研究,成为当前催化合成研究中最活跃的领域之一。相对而言,氢酯化反应的研究起步较晚,开始于上世纪80年代,是借鉴与氢羧基化反应的发展逐渐展开的。
羰基化反应时由德国科学家于1938年首次发现的,自此以来有关该类反应的研究成果一直层出不穷。进过不断的发展,反应底物已由最初的烃类化合物拓展到醇、分、环氧化物、硝基化合物、胺类化合物、有机卤化物和醛类化合物等,除了合成醛、醇、酸、酯外,也可合成酸酐、酰胺、酮、内酯和醌等其它含氧化合物,现有羰基化反应系统中采用将反应物同时加入至羰基化反应釜内部,在指定温度和压力下进行羰基化反应,然后将羰基化产物输送至精馏装置和分离装置等装置中对羰基化产物进行相应处理,已得到目标产物。
但是当反应物为气相反应物和液相反应物时,使用现有羰基化反应系统,气相反应物和液相反应物在羰基化反应釜内部无法得到充分混合,从而导致系统反应效率降低。
发明内容
鉴于此,本发明提供了一种强化羰基化反应系统及工艺,以达到解决现有 技术中气相反应物和液相反应物在羰基化反应釜内部无法得到充分混合,导致系统反应效率降低的问题。
本发明的上述技术目的是通过以下技术方案得以实现的:
一种强化羰基化反应系统及工艺,包括:
进料单元,用以储存和输送气相物料和液相物料;
反应釜,其与所述进料单元连接,用于接收液相物料,并做为羰基化反应的场所;
微界面发生器,设置在所述反应釜内部,且与所述进料单元连接,用于接收所述气相物料,并在羰基化反应之前,将所述气相物料破碎成直径为微米级别的微气泡,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,强化羰基化反应效率;
闪蒸塔,其与所述反应釜连接,用于对羰基化反应产物进行闪蒸;
精馏装置,其与所述闪蒸塔连接,用于对闪蒸产物进行精馏;
分离装置,其分别与所述精馏装置和反应釜连接,用于对精馏产物进行分离,得到相应产物,并将相应产物中可循环产物输送至反应釜内部再次进行羰基化反应。
进一步地,上述强化羰基化反应系统及工艺中,所述微界面发生器通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给氢气气泡,使氢气破碎成直径为微米级别的微气泡。
进一步地,上述强化羰基化反应系统及工艺中,所述微界面发生器选自气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或几种。
进一步地,上述强化羰基化反应系统及工艺中,所述微米级别的微气泡为直径大于等于1μm、小于1mm的微气泡。
进一步地,上述强化羰基化反应系统及工艺中,所述进料单元包括:
气相进料管道,其与所述微界面发生器连接,且外接气源,用于接收相应 的气相物料,并将气相物料输送至微界面发生器;
液相存储罐,其与所述反应釜连接,用于存储液相物料并将液相物料输送至反应釜。
进一步地,上述强化羰基化反应系统及工艺中,所述精馏装置包括:
轻组分精馏塔,其与所述闪蒸塔连接,用于对闪蒸产物得到的气相组分进行精馏分离;
重组分精馏塔,其与所述轻组分精馏塔连接,用于对轻组分精馏塔分离出来的重组分产物进行精馏分离,最终得到乙酸。
一种强化羰基化反应工艺,其特征在于,包括:
将液相物料和催化剂填入液相存储罐内部,气相进料管道与相应气相物料的气源连接,启动系统,将液相物料和催化剂输送至反应釜内部,同时,将气相物料通过气相进料管道输送至微界面发生器内部;
所述微界面发生器将气相物料打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜内部,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,使得气相物料以微气泡的状态与液相物料充分接触,并进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔、精馏装置和分离装置,进行相应处理最终得到目标产物。
进一步地,上述强化羰基化反应系统及工艺中,所述羰基化反应温度为80-160℃。
进一步地,上述强化羰基化反应系统及工艺中,所述羰基化反应压力为2-4MPa。
进一步地,上述强化羰基化反应系统及工艺中,所述闪蒸的温度为100-150℃。
综上所述,本发明的有益效果在于,本发明提供的强化羰基化反应系统及工艺,通过在羰基化反应釜内部设置与气相进料管道相连的微界面发生器,在 气相物料与所述液相物料羰基化反应之前,微界面发生器将气相物料破碎成直径为大于等于1μm、小于1mm的微气泡,使得气相物料以微气泡的状态与液相物料接触,以增大羰基化反应程中气相物料与液相物料之间的相界传质面积,并进行充分混合再进行羰基化反应,从而解决了现有技术中气相反应物和液相反应物在羰基化反应釜内部无法得到充分混合,导致系统反应效率降低的问题。
尤其,本发明在产物处理单元设置有闪蒸塔、精馏装置和分离装置,使得羰基化产物可以根据使用者的需求,经过控制温度压力等条件得到目标产物,使得目标产物的纯度更高。
尤其,本发明的羰基化反应系统,可以将羰基化反应温度降低至80-160℃,反应压力降低至2-4MPa,从而较大程度的节约了生产资源,降低了生产成本。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明实施例提供的一种强化羰基化反应系统及工艺的结构示意图。
具体实施方式
为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置 关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
参阅图1所示,为本发明实施例提供的强化羰基化反应系统,包括:羰基化反应釜3,其内部下方设置有微界面发生器2,其入口端与进料单元连接,其出口端与产物处理单元连接,用于作为羰基化反映的场所。
优选的,微界面发生器通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给气泡,使气泡破碎成直径为大于等于1μm、小于1mm的微米级别的微气泡,根据能量输入方式或气液比分为气动式微界面发生器、液动式微界面发生器和气液联动式微界面发生器,其中气动式微界面发生器采用气体驱动,输入气量远大于液体量;液动式微界面发生器采用液体驱动,输入气量一般小于液体量;气液联动式微界面发生器采用气液同时驱动,输入气量接近于液体量。所述微界面发生器2选用气动式微界面发生器。
参阅图1所示,所述进料单元,包括:气相进料管道11,呈细长圆管型,一端外接气源,另一端与所述微界面发生器2连接,用于接收相应的气相物料,并将气相物料输送至微界面发生器2;液相存储罐12,呈矮粗圆罐状,其与所述反应釜3连接,用于存储液相物料并将液相物料输送至反应釜3。使用本系统时,将液相物料和相应催化剂填入液相存储罐12内部,气相进料管道11与相应气相物料的气源连接,启动系统,将液相物料和催化剂输送至反应釜3内部,同时,将气相物料通过气相进料管道11输送至微界面发生器2内部,所述微界面发生器2将气相物料打碎成微米尺度的微气泡,并将微气泡释放到所 述反应釜3内部,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,使得气相物料以微气泡的状态与液相物料充分接触,并进行羰基化反应,羰基化反应产生的废气从反应釜3顶端排除系统,羰基化反应产物输送至产物处理单元。
参阅图1所示,所述产物处理单元包括:闪蒸塔4,其入口端所述反应釜3连接,出口端与第一循环泵91的一端连接,第一循环泵91另一端与换热器7入口端连接,换热器7出口端与反应釜3连接。当反应釜3内羰基化反应完成后,反应釜3将羰基化反应产物输送至闪蒸塔4进行闪蒸,闪蒸得到的含有催化剂的液相组分从闪蒸塔4的底部通过第一循环泵91送入换热器7进行换热降温,以移出反应热。将经换热器7换热后温度降低的液相组分回流至反应釜3帮助控制反应釜3内的羰基化反应温度的恒定;精馏装置,其与所述闪蒸塔4连接,用于对闪蒸产物进行精馏;分离装置,其分别与所述精馏装置和反应釜3连接,用于对精馏产物进行分离,得到相应产物,并将相应产物中可循环产物输送至反应釜3内部再次进行羰基化反应。
所述精馏装置,包括:用于对闪蒸得到的气相组分进行精馏的轻组分精馏塔52,其入口端分别与所述闪蒸塔4和所述分离装置连接,出口端连接有第一冷凝器81,第一冷凝器81另一端连接至分离装置;重组分精馏塔51,其入口端与轻组分精馏塔52连接,用于对轻组分精馏塔52,分离得到的重组分产物进行精馏处理。闪蒸得到的气相组分从闪蒸塔4的顶部送入轻组分精馏塔52进行精馏分离,分离得到轻组分和重组分,轻组分从轻组分精馏塔52的顶部排出经第一冷凝器81冷凝后送入分离装置,重组分从轻组分精馏塔52的塔底排出进入重组分精馏塔51中,在重组分精馏塔51中精馏分离出相应产物。
所述分离装置,包括:用于对轻组分精馏塔52进行分离的液液分离器6,其入口端与第一冷凝器81连接,出口端分别连接有二第循环泵和第二凝器以及轻组分精馏塔52。轻组分精馏塔52分离出来的轻组分从顶部排出,经第一冷凝器81冷凝后送入液液分离器6,在液液分离器6中又进一步分离出重相、 轻相和不凝性气体尾气,液液分离器6分离得到的重相组分通过第二循环泵92回流至反应釜3,轻相组分回流至轻组分精馏塔52,不凝性气体尾气从液液分离器6的顶部排出经第二冷凝器82冷凝后排除系统,并进行相应处理。
本发明提供的强化羰基化反应系统及工艺,通过在羰基化反应釜3内部设置与气相进料管道11相连的微界面发生器2,在气相物料与所述液相物料羰基化反应之前,微界面发生器2将气相物料破碎成微气泡,使得气相物料以微气泡的状态与液相物料接触,以增大羰基化反应过程中气相物料与液相物料之间的相界传质面积,并进行充分混合再进行羰基化反应,从而解决了现有技术中气相反应物和液相反应物在羰基化反应釜3内部无法得到充分混合,导致系统反应效率降低的问题。
下面结合图1进一步说明本发明所述系统的具体方法与效果。
一种强化羰基化反应工艺,包括:
将液相物料和催化剂填入液相存储罐12内部,气相进料管道11与相应气相物料的气源连接,启动系统,将液相物料和催化剂输送至反应釜3内部,同时,将气相物料通过气相进料管道11输送至微界面发生器2内部;
所述微界面发生器2将气相物料打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜3内部,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,使得气相物料以微气泡的状态与液相物料充分接触,并进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔4、精馏装置和分离装置,进行相应处理最终得到目标产物。
优选的,羰基化反应温度为80-160℃,羰基化反应压力为2-4MPa,闪蒸的温度为100-150℃。
为了进一步验证本发明所提供的加工方法,结合实施例和对比例进一步说明本发明的有益效果。
甲醇羰基化制醋酸的生产方法
实施例1
将足量的甲醇和相应比例的催化剂填入液相存储罐12内部,将气相进料管道11与盛有200L一氧化碳的气源连接,启动系统,系统温度设置为160℃,压力设置为4MPa,闪蒸塔4温度设置为100℃,将甲醇和催化剂输送至反应釜3内部,同时,将一氧化碳通过气相进料管道11输送至微界面发生器2内部;
所述微界面发生器2将一氧化碳打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜3内部,使得一氧化碳以微气泡的状态与甲醇充分接触,并进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔4、精馏装置和分离装置,最终在重组分精馏塔51出口处得到醋酸。检测醋酸产量,计算一氧化碳转化率为97%。
对比例1
将足量的甲醇和相应比例的催化剂填入液相存储罐12内部,将气相进料管道11与盛有200L一氧化碳的气源连接,启动系统,系统温度设置为160℃,压力设置为4MPa,闪蒸塔4温度设置为100℃,将甲醇和催化剂输送至反应釜3内部,同时,将一氧化碳通入反应釜3内部,进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔4、精馏装置和分离装置,最终在重组分精馏塔51出口处得到醋酸。检测醋酸产量,计算一氧化碳转化率为87%。
甲醇羰基化制备碳酸二甲酯的生产方法
实施例2
将碳酸二甲酯催化剂和甲醇添加入液相存储罐12内部,将气相进料管道11与盛有200L一氧化碳和氧气的混合气源连接,启动系统,系统温度设置为80℃,压力设置为2MPa,闪蒸塔4温度设置为150℃,将碳酸二甲酯催化剂和甲醇混合溶液输送至反应釜3内部,同时,将一氧化碳和氧气的混合气通过气相进料管道11输送至微界面发生器2内部;
所述微界面发生器2将一氧化碳和氧气的混合气打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜3内部,使得一氧化碳和氧气的混合气以微 气泡的状态与甲醇充分接触,并进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔4、精馏装置和分离装置,最终在分离塔出口处得到碳酸二甲酯。检测碳酸二甲酯产量,计算一氧化碳和氧气的混合气转化率为94%。
对比例2
将碳酸二甲酯催化剂和甲醇添加入液相存储罐12内部,将气相进料管道11与盛有200L一氧化碳和氧气的混合气源连接,启动系统,系统温度设置为80℃,压力设置为2MPa,闪蒸塔4温度设置为150℃,将碳酸二甲酯催化剂和甲醇输送至反应釜3内部,同时,将一氧化碳和氧气通入反应釜3内部,进行羰基化反应;
将羰基化反应产物依次输送至闪蒸塔4、精馏装置和分离装置,最终在分离塔出口处得到碳酸二甲酯。检测碳酸二甲酯产量,计算一氧化碳和氧气的混合气转化率为82%。
鉴于此,本发明提供的强化羰基化反应系统及工艺,解决了现有技术中气相反应物和液相反应物在羰基化反应釜内部无法得到充分混合,导致系统反应效率降低的问题。
上述具体实施例仅仅是对本发明的解释,其并不是对本发明的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本发明的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种强化羰基化反应系统,其特征在于,包括:
    进料单元,用以储存和输送气相物料和液相物料;
    反应釜,其与所述进料单元连接,用于接收液相物料,并做为羰基化反应的场所;
    微界面发生器,设置在所述反应釜内部,且与所述进料单元连接,用于接收所述气相物料,并在羰基化反应之前,将所述气相物料破碎成直径为微米级别的微气泡,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,强化羰基化反应效率;
    闪蒸塔,其与所述反应釜连接,用于对羰基化反应产物进行闪蒸;
    精馏装置,其与所述闪蒸塔连接,用于对闪蒸产物进行精馏;
    分离装置,其分别与所述精馏装置和反应釜连接,用于对精馏产物进行分离,得到相应产物,并将相应产物中可循环产物输送至反应釜内部再次进行羰基化反应。
  2. 根据权利要求1所述的强化羰基化反应系统,其特征在于,所述微界面发生器通过将气体的压力能和/或液体的动能转变为气泡表面能并传递给氢气气泡,使氢气破碎成直径为微米级别的微气泡。
  3. 根据权利要求1所述的强化羰基化反应系统,其特征在于,所述微界面发生器选自气动式微界面发生器、液动式微界面发生器以及气液联动式微界面发生器中的一种或几种。
  4. 根据权利要求1所述的强化羰基化反应系统,其特征在于,所述微米级别的微气泡为直径大于等于1μm、小于1mm的微气泡。
  5. 根据权利要求1所述的强化羰基化反应系统,其特征在于,所述进料单元包括:
    气相进料管道,其与所述微界面发生器连接,且外接气源,用于接收相应的气相物料,并将气相物料输送至微界面发生器;
    液相存储罐,其与所述反应釜连接,用于存储液相物料并将液相物料输送至反应釜。
  6. 根据权利要求1所述的强化羰基化反应系统,其特征在于,所述精馏装置包括:
    轻组分精馏塔,其与所述闪蒸塔连接,用于对闪蒸产物得到的气相组分进行精馏分离;
    重组分精馏塔,其与所述轻组分精馏塔连接,用于对轻组分精馏塔分离出来的重组分产物进行精馏分离,最终得到乙酸。
  7. 一种强化羰基化反应工艺,其特征在于,包括:
    将液相物料和催化剂填入液相存储罐内部,气相进料管道与相应气相物料的气源连接,启动系统,将液相物料和催化剂输送至反应釜内部,同时,将气相物料通过气相进料管道输送至微界面发生器内部;
    所述微界面发生器将气相物料打碎成微米尺度的微气泡,并将微气泡释放到所述反应釜内部,以增大羰基化反应程中所述气相物料与所述液相物料之间的相界传质面积,使得气相物料以微气泡的状态与液相物料充分接触,并进行羰基化反应;
    将羰基化反应产物依次输送至闪蒸塔、精馏装置和分离装置,进行相应处理最终得到目标产物。
  8. 根据权利要求7所述的强化羰基化反应系统及工艺,其特征在于,所述羰基化反应温度为80-160℃。
  9. 根据权利要求7所述的强化羰基化反应系统及工艺,其特征在于,所述羰基化反应压力为2-4MPa。
  10. 根据权利要求7所述的强化羰基化反应系统及工艺,其特征在于,所述闪蒸的温度为100-150℃。
PCT/CN2019/120189 2019-09-12 2019-11-22 一种强化羰基化反应系统及工艺 WO2021047050A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910866966.6A CN112574021A (zh) 2019-09-12 2019-09-12 一种强化羰基化反应系统及工艺
CN201910866966.6 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021047050A1 true WO2021047050A1 (zh) 2021-03-18

Family

ID=74866917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120189 WO2021047050A1 (zh) 2019-09-12 2019-11-22 一种强化羰基化反应系统及工艺

Country Status (2)

Country Link
CN (1) CN112574021A (zh)
WO (1) WO2021047050A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115650833B (zh) * 2022-11-01 2024-04-16 中国石油化工股份有限公司 一种微气泡流强化烯烃氢甲酰化的工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072330A (zh) * 2013-03-28 2014-10-01 中国石油化工股份有限公司 一种制备碘甲烷的方法和醋酸生产方法
CN104250208A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种甲醇羰基化制醋酸的生产方法
CN106237966A (zh) * 2016-08-23 2016-12-21 南京大学 用于甲苯类物质氧化生产芳香醛的反应器
JP2017039688A (ja) * 2015-07-01 2017-02-23 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法
CN109134233A (zh) * 2018-10-19 2019-01-04 兖矿鲁南化工有限公司 一种甲醇低压羰基化合成醋酸的生产装置及生产方法
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826960B1 (fr) * 2001-07-03 2005-10-21 Acetex Chimie Procede de controle d'une production d'acide acetique et/ou d'acetate de methyle en continu
CN104250209B (zh) * 2013-06-28 2016-12-28 中国石油化工股份有限公司 一种甲醇羰基化制醋酸的生产方法
CN107335390B (zh) * 2017-08-30 2020-02-11 南京大学 微界面强化反应器相界面积构效调控模型建模方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072330A (zh) * 2013-03-28 2014-10-01 中国石油化工股份有限公司 一种制备碘甲烷的方法和醋酸生产方法
CN104250208A (zh) * 2013-06-28 2014-12-31 中国石油化工股份有限公司 一种甲醇羰基化制醋酸的生产方法
JP2017039688A (ja) * 2015-07-01 2017-02-23 セラニーズ・インターナショナル・コーポレーション 酢酸の製造方法
CN106237966A (zh) * 2016-08-23 2016-12-21 南京大学 用于甲苯类物质氧化生产芳香醛的反应器
CN109134233A (zh) * 2018-10-19 2019-01-04 兖矿鲁南化工有限公司 一种甲醇低压羰基化合成醋酸的生产装置及生产方法
CN110002993A (zh) * 2019-04-19 2019-07-12 南京大学 一种间氰甲基苯甲酸甲酯的合成系统及方法

Also Published As

Publication number Publication date
CN112574021A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2021047056A1 (zh) 一种甲醇羰基化制备乙酸的强化反应系统及工艺
US6838061B1 (en) Reactor for carrying out gas-liquid, liquid, liquid-liquid or gas-liquid-solid chemical reactions
CN101462961B (zh) 一种生产乙二醇并联产碳酸二甲酯的工艺流程
EP1073621B1 (en) Preparation of organic acids
CN88100904A (zh) 制备苯羧酸或苯二羧酸酯的方法和设备
WO2021078239A1 (zh) 气液鼓泡床反应器、反应系统以及合成碳酸酯的方法
WO2022041425A1 (zh) 一种环状碳酸酯的强化微界面制备系统及方法
WO2021047392A1 (zh) 反应器与精馏塔热耦合的甲醇羰基化制醋酸的工艺方法
CN101314569A (zh) 亚硝酸烷基酯的反应系统及制备方法
CN205188178U (zh) 一种合成气制乙二醇工艺中亚硝酸甲酯的再生装置系统
CN103201247A (zh) 用于乙酸生产的泵唧循环反应器
WO2021047050A1 (zh) 一种强化羰基化反应系统及工艺
CN205188177U (zh) 一种合成气制乙二醇工艺中亚硝酸甲酯的再生装置系统
CN106928021A (zh) 一种草酸二甲酯加氢制乙二醇的方法
CN213506652U (zh) 一种强化羰基化反应系统
CN211123731U (zh) 一种基于乙烯水合法制备乙二醇的智能控制反应系统
CN103221375A (zh) 利用由反应热任选产生的蒸汽生产和纯化乙酸
CN109400480B (zh) 一种制备亚硝酸甲酯的方法和设备
CN112546973A (zh) 一种强化二甲苯氧化生产苯二甲酸的系统及工艺
CN216419325U (zh) 一种氯代邻二甲苯连续氧化装置、系统及鼓泡反应器
CN112479882A (zh) 一种甲醇液相氧化羰基化合成碳酸二甲酯的反应系统及工艺
CN110078603A (zh) 甲基丙烯醛的制备提纯方法及装置
CN203212506U (zh) 乙酸乙酯高效反应精馏装置
WO2007098638A1 (fr) Réacteur d'estérification à circulation de puissance externe
CN114230453A (zh) 一种一步加氢合成丙酸的生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945249

Country of ref document: EP

Kind code of ref document: A1