WO2021047039A1 - 一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺说明书 - Google Patents

一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺说明书 Download PDF

Info

Publication number
WO2021047039A1
WO2021047039A1 PCT/CN2019/120121 CN2019120121W WO2021047039A1 WO 2021047039 A1 WO2021047039 A1 WO 2021047039A1 CN 2019120121 W CN2019120121 W CN 2019120121W WO 2021047039 A1 WO2021047039 A1 WO 2021047039A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ethylene
ethylene glycol
dilute
micro
Prior art date
Application number
PCT/CN2019/120121
Other languages
English (en)
French (fr)
Inventor
张志炳
孟为民
周政
王宝荣
杨高东
罗华勋
张锋
李磊
杨国强
田洪舟
曹宇
Original Assignee
南京延长反应技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京延长反应技术研究院有限公司 filed Critical 南京延长反应技术研究院有限公司
Publication of WO2021047039A1 publication Critical patent/WO2021047039A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols

Definitions

  • the invention relates to the technical field of ethylene glycol preparation, in particular to a micro-interface strengthening reaction system and process for preparing ethylene glycol based on ethylene hydration.
  • Ethylene glycol is an important chemical raw material. Since it was discovered to react with terephthalic acid to produce polyethylene terephthalate, it can be used as a raw material for polyester fibers and polyester plastics. increase.
  • ethylene glycol is mainly used to make polyester fibers, and its amount accounts for more than 40% of the total amount of ethylene glycol; secondly, as the main raw material of antifreeze, the amount accounts for 35% of the total amount; other aspects, such as chemical reagents, Ethylene glycol is mainly used as a stationary liquid for gas chromatography to analyze low-boiling oxygen compounds, amine compounds, oxygen and nitrogen heterocyclic compounds, etc.
  • ethylene glycol is used in fuels, coatings, adhesives, Solvents, lubricants, softeners, thickeners and explosives are also widely used, and the production technology of ethylene glycol has been continuously improved.
  • ethylene direct hydration method ethylene direct hydration method
  • formaldehyde synthesis method ethylene carbonate method
  • synthesis gas synthesis method oxidative coupling method, etc.
  • ethylene hydration method is also called cyclic
  • the oxyethane hydration method is the main method currently used for the production of ethylene glycol. Its principles include
  • oxygen is used to convert ethylene to ethylene oxide through vapor phase catalytic oxidation.
  • the gas containing ethylene oxide is in contact with a large amount of water, and the reaction conditions are 150-200°C, the pressure is 1.5-2.5Mpa, and the gas containing ethylene oxide is in contact with a large amount of water to produce a dilute solution of ethylene glycol;
  • the dilute glycol solution is passed through the heat exchanger, cooled after passing through the heat exchanger, and then entered into the expander, where volatile components such as acetaldehyde and crotonaldehyde are blown out, and then the dilute glycol solution flows into the storage Slot
  • the ethylene glycol dilute solution in the storage tank is injected into the evaporator through the pump body for concentration, and the ethylene glycol dilute solution after multiple evaporations finally enters the dehydration tower to remove water and obtain pure ethylene glycol.
  • the present invention provides a micro-interface strengthening reaction system and process for preparing ethylene glycol based on the ethylene hydration method, so as to improve the conversion rate and efficiency of preparing ethylene glycol in the prior art.
  • the present invention provides a micro-interface strengthening reaction system based on ethylene hydration to prepare ethylene glycol, including:
  • the reactor is used to provide a reaction place for gas containing ethylene oxide and deionized water to prepare dilute glycol solution;
  • An ethylene oxide generator is arranged on one side of the reactor to provide a reaction place for ethylene gas and oxygen to prepare ethylene oxide, and an ethylene oxide generator is arranged between the ethylene oxide generator and the reactor Heat exchanger to reduce the temperature of gas containing ethylene oxide;
  • a micro-interface generator which is arranged in the reactor, converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas containing ethylene oxide to break the gas containing ethylene oxide Form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the mass transfer area between the deionized water and the gas containing ethylene oxide, reduce the thickness of the liquid film, reduce the mass transfer resistance, and remove the deionized water after crushing It is mixed with gas micron-sized bubbles containing ethylene oxide to form a gas-liquid mixture to enhance the mass transfer efficiency and reaction efficiency between the deionized water and the gas containing ethylene oxide within the preset operating conditions;
  • the impurity removal unit is arranged on one side of the reactor to remove the volatile components in the dilute ethylene glycol solution;
  • the concentration unit is arranged on one side of the impurity removal unit and is used for concentrating the ethylene glycol dilute solution.
  • the micro-interface generator is a pneumatic micro-interface generator, and the micro-interface generator is arranged in the reactor to break the gas containing ethylene oxide into micro-sized micro-sized bubbles and in the After the crushing is completed, the micron-sized bubbles are output into the reactor and mixed with the deionized water in the reactor to form a gas-liquid mixture.
  • a first liquid inlet pipe is connected to the upper part of the side wall of the reactor, and the first liquid inlet pipe is used to transport deionized water into the reactor.
  • an ethylene gas inlet pipe and an oxygen gas inlet pipe are connected on the side wall of the ethylene oxide generator, and the ethylene gas inlet pipe and the oxygen gas inlet pipe are respectively used for feeding into the ethylene oxide generator.
  • a silver catalyst is arranged inside the ethylene oxide generator, and the silver catalyst is used to catalyze the ethylene gas and oxygen.
  • the impurity removal unit includes:
  • a first cooler which is in communication with the reactor, and the first cooler is used to cool the dilute ethylene glycol solution
  • the expander is connected to the first cooler.
  • the expander is used to remove the volatile components in the dilute glycol solution after cooling.
  • the upper end of the expander is provided with a gas outlet for discharging easy
  • the lower end of the expander is connected to the reactor to transfer the dilute ethylene glycol solution inside the expander back to the reactor for repeated reactions;
  • the ethylene glycol dilute solution storage tank is connected to the expander, and the ethylene glycol dilute solution storage tank is used to receive the dilute glycol solution from the expander after removing volatile components.
  • the concentration unit includes:
  • the evaporator is connected to the impurity removal unit, and the evaporator is used to evaporate and concentrate the dilute glycol solution.
  • the middle part of the side wall of the evaporator is connected with a second liquid inlet pipe, and the second inlet
  • the liquid pipe is used to receive the ethylene glycol dilute solution transferred from the impurity removal unit and transmit the ethylene glycol dilute solution to the evaporator.
  • the upper end of the evaporator is connected with a gas discharge pipe, and the gas is discharged
  • the tube is used to discharge the boil-off gas, the lower end of the evaporator is connected with a liquid discharge pipe, and the liquid discharge pipe is used to discharge the concentrated dilute glycol solution;
  • a second cooler which is in communication with the evaporator, and the second cooler is used to cool the evaporated gas discharged from the evaporator into a liquid and transfer it back to the evaporator for re-evaporation;
  • the dehydration tower is connected to the evaporator, and the dehydration tower is used for dehydrating the concentrated ethylene glycol solution.
  • the evaporator is a central circulation tube evaporator.
  • the present invention provides a micro-interface strengthening reaction process for preparing ethylene glycol based on ethylene hydration, including:
  • Step 1 Transmit ethylene gas and oxygen into the ethylene oxide generator through the ethylene gas inlet pipe and the oxygen gas inlet pipe, and the ethylene gas and oxygen are catalyzed by the silver catalyst to generate ethylene oxide gas;
  • Step 2 Add deionized water into the reactor through the first liquid inlet pipe, and transfer the cooled ethylene oxide-containing gas generated in step 1 to the micro-interface generator through the pump body,
  • the micro-interface generator breaks the gas containing ethylene oxide to form micron-sized micro-sized bubbles, and after the crushing is completed, outputs the micro-sized bubbles to the reactor and mixes with the deionized water in the reactor to form Gas-liquid mixture, the ethylene oxide in the gas reacts with deionized water to produce a dilute solution of ethylene glycol;
  • Step 3 Transfer the ethylene glycol dilute solution in step 2 to the impurity removal unit through the pump body.
  • the ethylene glycol dilute solution first enters the first cooler. After the first cooler cools down the dilute glycol solution, the dilute glycol solution continues to enter the expander, and the dilute glycol solution is further decompressed and cooled in the expander to make the dilute glycol solution
  • the volatile components in the solution are discharged through the gas outlet, and a part of the dilute glycol solution after removal of impurities enters the dilute glycol solution storage tank, and the other part is transferred back to the reactor through the pump body for processing.
  • Step 4 In step 3, the ethylene glycol dilute solution that enters the ethylene glycol dilute solution storage tank is transferred to the concentration unit by the pump body.
  • the concentration unit the ethylene glycol dilute solution first passes through the The second liquid inlet pipe enters into the evaporator, and the evaporation gas is discharged through the gas discharge pipe through the evaporation effect of the evaporator, and enters the second cooler along the second liquid inlet pipe, The evaporation gas is cooled into liquid by the cooling effect of the second cooler, and the cooled liquid is transported back to the evaporator through the pump body for re-evaporation.
  • the dilute glycol solution is evaporated by the evaporator. concentrate;
  • Step 5 The ethylene glycol dilute solution concentrated in Step 4 enters the dehydration tower, and undergoes dehydration treatment to become ethylene glycol with higher purity and is discharged through the dehydration tower.
  • the temperature in the reactor is 60-90° C.
  • the pressure is normal pressure 1-1.2 atm.
  • the dehydration tower is a plate tower.
  • the beneficial effect of the present invention is that the present invention breaks the gas containing ethylene oxide to form micro-sized micro-sized bubbles.
  • the micro-sized bubbles have physical and chemical properties that conventional bubbles do not have.
  • the calculation formula of volume and surface area shows that under the condition that the total volume is constant, the total surface area of bubbles is inversely proportional to the diameter of a single bubble. It can be seen that the total surface area of micron-sized bubbles is huge, so that micron-sized bubbles are mixed with deionized water to form gas. Liquid mixture to increase the contact area of the gas-liquid two-phase, and achieve the effect of enhancing mass transfer within the lower preset operating condition range, and effectively improve the conversion rate and efficiency of preparing ethylene glycol.
  • the micro-interface generator is a pneumatic micro-interface generator, and the micro-interface generator is arranged in the reactor to break the gas containing ethylene oxide into micro-sized micro-sized bubbles and in the After the crushing is completed, the micron-sized bubbles are output into the reactor and mixed with the deionized water in the reactor to form a gas-liquid mixture, which effectively improves the conversion rate and efficiency of preparing ethylene glycol.
  • the upper part of the side wall of the reactor is connected with a first liquid inlet pipe, and the first liquid inlet pipe is used to transport deionized water into the reactor, and the first liquid inlet pipe flows to the reactor through the first liquid inlet pipe.
  • Deionized water is added, and the ethylene oxide-containing gas generated in the ethylene oxide generator is transmitted to the micro-interface generator through the pump body, and the micro-interface generator will contain ethylene oxide.
  • the alkane gas is crushed to form micron-scale micron-scale bubbles, and after the crushing is completed, the micron-scale bubbles are output into the reactor and mixed with the deionized water in the reactor to form a gas-liquid mixture.
  • the ethylene oxide in the gas It reacts with deionized water to produce dilute glycol solution.
  • an ethylene gas inlet pipe and an oxygen gas inlet pipe are connected on the side wall of the ethylene oxide generator, and the ethylene gas inlet pipe and the oxygen gas inlet pipe are respectively used for feeding into the ethylene oxide generator. It transmits ethylene gas and oxygen.
  • the ethylene oxide generator is provided with a silver catalyst inside. The silver catalyst is used to catalyze the ethylene gas and oxygen. Ethylene gas and oxygen are transmitted in the ethylene oxide generator, and the ethylene gas and oxygen are catalyzed by the silver catalyst to generate ethylene oxide gas.
  • the impurity removal unit includes:
  • a first cooler which is in communication with the reactor, and the first cooler is used to cool the dilute ethylene glycol solution
  • the expander is connected to the first cooler.
  • the expander is used to remove the volatile components in the dilute glycol solution after cooling.
  • the upper end of the expander is provided with a gas outlet for discharging easy
  • the lower end of the expander is connected to the reactor to transfer the dilute ethylene glycol solution inside the expander back to the reactor for repeated reactions;
  • the ethylene glycol dilute solution storage tank is connected to the expander, and the ethylene glycol dilute solution storage tank is used to receive the dilute glycol solution from the expander after removing volatile components.
  • the ethylene glycol dilute solution in the reactor is transferred to the impurity removal unit through the pump body.
  • the impurity removal unit the ethylene glycol dilute solution first enters the first cooler, and the second After a cooler cools down the dilute glycol solution, the dilute glycol solution continues to enter the expander, and the dilute glycol solution is further decompressed and cooled in the expander to make the dilute glycol solution.
  • the volatile components in the ethylene glycol are discharged through the gas outlet, a part of the ethylene glycol dilute solution after removal of impurities enters the ethylene glycol dilute solution storage tank, and the other part is transferred back to the reactor through the pump body for repeating
  • the ethylene glycol dilute solution is repeatedly removed in a repeated cycle, which effectively improves the removal effect.
  • the concentration unit includes:
  • the evaporator is connected to the impurity removal unit, and the evaporator is used to evaporate and concentrate the dilute glycol solution.
  • the middle part of the side wall of the evaporator is connected with a second liquid inlet pipe, and the second inlet
  • the liquid pipe is used to receive the ethylene glycol dilute solution transferred from the impurity removal unit and transmit the ethylene glycol dilute solution to the evaporator.
  • the upper end of the evaporator is connected with a gas discharge pipe, and the gas is discharged
  • the tube is used to discharge the boil-off gas, the lower end of the evaporator is connected with a liquid discharge pipe, and the liquid discharge pipe is used to discharge the concentrated dilute glycol solution;
  • a second cooler which is in communication with the evaporator, and the second cooler is used to cool the evaporated gas discharged from the evaporator into a liquid and transfer it back to the evaporator for re-evaporation;
  • the dehydration tower is connected to the evaporator, and the dehydration tower is used for dehydrating the concentrated ethylene glycol solution.
  • the ethylene glycol dilute solution entering the ethylene glycol dilute solution storage tank is transferred to the concentration unit by the pump body, and in the concentration unit, the dilute glycol solution first enters through the second liquid inlet pipe
  • the evaporating gas is discharged through the gas discharge pipe, enters the second cooler along the second liquid inlet pipe, and is cooled by the second cooling pipe.
  • the cooling effect of the evaporator cools the evaporating gas into a liquid, and the cooled liquid is transferred back to the evaporator through the pump body for re-evaporation.
  • the dilute glycol solution is evaporated by the evaporator and then concentrated; the evaporator
  • the water in the ethylene glycol dilute solution is evaporated for multiple times to effectively remove the water in the ethylene glycol dilute solution, that is, the effect of fully concentrating the ethylene glycol is achieved.
  • the concentrated ethylene glycol dilute solution enters the dehydration tower, and undergoes dehydration treatment to become higher purity ethylene glycol and is discharged through the dehydration tower
  • the evaporator is a central circulation tube evaporator.
  • the central circulation tube evaporator is developed from evaporators such as a horizontal heating chamber and a serpentine heating chamber, which is different from an old heater such as a horizontal heating chamber and a serpentine heating chamber.
  • the central circulation tube heater has the advantages of good solution circulation, high heat transfer efficiency, compact structure and reliable operation. When used in the concentration unit, the concentration effect of the dilute glycol solution is better.
  • the temperature in the reactor is 60-90°C, and the pressure is normal pressure 1-1.2 atm.
  • the reaction conditions are reduced to a greater extent, and the reaction conditions are lower.
  • Ethylene glycol is prepared within the preset operating conditions to save energy.
  • the dehydration tower is a plate tower, which is a type of equipment used for the separation of vapor-liquid or liquid-liquid systems. It consists of a cylindrical tower body and horizontal trays at a certain interval.
  • the movement process in the dehydration tower is that it enters the dehydration tower and flows through the pedals from top to bottom to the bottom of the dehydration tower and is discharged.
  • the water therein is evaporated from bottom to top.
  • the top of the dehydration tower is discharged, thereby achieving the purpose of preparing high-purity ethylene glycol.
  • Fig. 1 is a schematic structural diagram of a micro-interface strengthening reaction system based on ethylene hydration to prepare ethylene glycol according to the present invention.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • FIG. 1 is a schematic structural diagram of a micro-interface strengthening reaction system based on the preparation of ethylene glycol based on ethylene hydration method according to the present invention, including:
  • Reactor 1 is used to provide a reaction place for gas containing ethylene oxide and deionized water to prepare dilute ethylene glycol solution;
  • the ethylene oxide generator 2 is arranged on one side of the reactor to provide a reaction place for ethylene gas and oxygen to prepare ethylene oxide, and is arranged between the ethylene oxide generator and the reactor There is a heat exchanger 6 to reduce the temperature of the gas containing ethylene oxide;
  • the micro-interface generator 3 which is arranged in the reactor, converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas containing ethylene oxide, so that the gas containing ethylene oxide Crush to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the mass transfer area between the deionized water and the gas containing ethylene oxide, reduce the thickness of the liquid film, reduce the mass transfer resistance, and deionize after crushing Water is mixed with gas micron-sized bubbles containing ethylene oxide to form a gas-liquid mixture to enhance the mass transfer efficiency and reaction efficiency between deionized water and gas containing ethylene oxide within the preset operating conditions;
  • the impurity removal unit 4 which is arranged on one side of the reactor, is used to remove the volatile components in the ethylene glycol dilute solution;
  • the concentration unit 5 is arranged on one side of the impurity removal unit and is used for concentrating the ethylene glycol dilute solution.
  • the upper part of the side wall of the reactor is connected with a first inlet pipe 101, the first inlet pipe is used to transport deionized water into the reactor, through the first inlet pipe Deionized water is added to the reactor, and the ethylene oxide-containing gas generated in the ethylene oxide generator is transmitted to the micro-interface generator through the pump body, and the micro-interface generator will The gas containing ethylene oxide is broken to form micron-scale micron-scale bubbles, and after the crushing is completed, the micron-scale bubbles are output into the reactor and mixed with the deionized water in the reactor to form a gas-liquid mixture. Ethylene oxide reacts with deionized water to form a dilute solution of ethylene glycol.
  • an ethylene gas inlet pipe 201 and an oxygen gas inlet pipe 202 are connected on the side wall of the ethylene oxide generator, and the ethylene gas inlet pipe and the oxygen gas inlet pipe are respectively used to feed the epoxy resin
  • the ethane generator transmits ethylene gas and oxygen
  • the ethylene oxide generator is provided with a silver catalyst 203 inside.
  • the silver catalyst is used to catalyze the ethylene gas and oxygen, and passes through the ethylene gas inlet pipe and the
  • the oxygen gas inlet pipe transmits ethylene gas and oxygen into the ethylene oxide generator, and the ethylene gas and oxygen are catalyzed by the silver catalyst to generate ethylene oxide gas.
  • the impurity removal unit includes:
  • a first cooler 401 which is in communication with the reactor, and the first cooler is used to cool the dilute ethylene glycol solution;
  • the expander 402 is connected to the first cooler, the expander is used to remove the volatile components in the cooled glycol dilute solution, and the upper end of the expander is provided with a gas outlet for exhausting For volatile components, the lower end of the expander is connected to the reactor to transfer the dilute ethylene glycol solution inside the expander back to the reactor for repeated reactions;
  • the ethylene glycol dilute solution storage tank 403 is connected to the expander, and the ethylene glycol dilute solution storage tank is used to receive the dilute glycol solution from the expander after volatile components have been removed.
  • the ethylene glycol dilute solution in the reactor is transferred to the impurity removal unit through the pump body.
  • the impurity removal unit the ethylene glycol dilute solution first enters the first cooler, and the second After a cooler cools down the dilute glycol solution, the dilute glycol solution continues to enter the expander, and the dilute glycol solution is further decompressed and cooled in the expander to make the dilute glycol solution.
  • the volatile components in the ethylene glycol are discharged through the gas outlet, a part of the ethylene glycol dilute solution after removal of impurities enters the ethylene glycol dilute solution storage tank, and the other part is transferred back to the reactor through the pump body for repeating
  • the ethylene glycol dilute solution is repeatedly removed in a repeated cycle, which effectively improves the removal effect.
  • the enrichment unit includes:
  • the evaporator 501 is connected to the impurity removal unit.
  • the evaporator is used to evaporate and concentrate the dilute glycol solution.
  • the middle of the side wall of the evaporator is connected with a second liquid inlet pipe 5011.
  • the second liquid inlet pipe is used to receive the ethylene glycol dilute solution transferred from the impurity removal unit and transfer the ethylene glycol dilute solution to the evaporator.
  • the upper end of the evaporator is connected with a gas discharge pipe 5012, so The gas discharge pipe is used to discharge boil-off gas, and the lower end of the evaporator is connected with a liquid discharge pipe 5013, and the liquid discharge pipe is used to discharge the concentrated glycol dilute solution;
  • the second cooler 502 is connected to the evaporator, and the second cooler is used to cool the evaporated gas discharged from the evaporator into a liquid and transfer it back to the evaporator for re-evaporation;
  • the dehydration tower 503 is connected to the evaporator, and the dehydration tower is used for dehydrating the concentrated ethylene glycol solution.
  • the ethylene glycol dilute solution entering the ethylene glycol dilute solution storage tank is transferred to the concentration unit by the pump body, and in the concentration unit, the dilute glycol solution first enters through the second liquid inlet pipe
  • the evaporating gas is discharged through the gas discharge pipe, enters the second cooler along the second liquid inlet pipe, and is cooled by the second cooling pipe.
  • the cooling effect of the evaporator cools the evaporating gas into a liquid, and the cooled liquid is transferred back to the evaporator through the pump body for re-evaporation.
  • the dilute glycol solution is evaporated by the evaporator and then concentrated; the evaporator
  • the water in the ethylene glycol dilute solution is evaporated for multiple times to effectively remove the water in the ethylene glycol dilute solution, that is, the effect of fully concentrating the ethylene glycol is achieved.
  • the concentrated ethylene glycol dilute solution enters the dehydration tower, and undergoes dehydration treatment to become higher purity ethylene glycol and is discharged through the dehydration tower
  • the evaporator is a central circulation tube evaporator
  • the central circulation tube evaporator is developed from the horizontal heating chamber, the coil heating chamber and other evaporators, as opposed to the horizontal heating chamber, the coil heating chamber and other old-fashioned
  • the central circulation tube heater has the advantages of good solution circulation, high heat transfer efficiency, compact structure and reliable operation.
  • the concentration effect of the ethylene glycol dilute solution is better.
  • the temperature in the reactor is 60-90°C, and the pressure is 1-1.2 atm. Compared with the existing reaction process for preparing ethylene glycol, the reaction conditions are reduced to a greater extent. Ethylene glycol is prepared in a lower preset operating condition range, saving energy.
  • the dehydration tower is a plate tower.
  • the plate tower is a type of equipment used for the separation of vapor-liquid or liquid-liquid systems. It consists of a cylindrical tower body and horizontal trays at a certain interval.
  • the movement process of the solution in the dehydration tower is that it enters the dehydration tower and flows through the pedals from top to bottom to the bottom of the dehydration tower and is discharged.
  • the water in it is evaporated from bottom to top. It is discharged at the top of the dehydration tower, thereby achieving the purpose of preparing high-purity ethylene glycol.
  • the present invention provides a micro-interface strengthening reaction process for preparing ethylene glycol based on ethylene hydration, including:
  • Step 1 Transmit ethylene gas and oxygen into the ethylene oxide generator through the ethylene gas inlet pipe and the oxygen gas inlet pipe, and the ethylene gas and oxygen are catalyzed by the silver catalyst to generate ethylene oxide gas;
  • Step 2 Add deionized water into the reactor through the first liquid inlet pipe, and transmit the cooled ethylene oxide-containing gas generated in step 1 to the micro-interface generator through the pump body,
  • the micro-interface generator breaks the gas containing ethylene oxide to form micron-sized micro-sized bubbles, and after the crushing is completed, outputs the micro-sized bubbles to the reactor and mixes with the deionized water in the reactor to form Gas-liquid mixture, the ethylene oxide in the gas reacts with deionized water to form a dilute glycol solution;
  • Step 3 Transfer the ethylene glycol dilute solution in step 2 to the impurity removal unit through the pump body.
  • the impurity removal unit the ethylene glycol dilute solution first enters the first cooler, and the After the first cooler cools down the dilute glycol solution, the dilute glycol solution continues to enter the expander, and the dilute glycol solution is further reduced in pressure and temperature in the expander, so that the dilute glycol solution is further reduced in pressure and temperature.
  • the volatile components in the solution are discharged through the gas outlet, a part of the dilute glycol solution after removal of impurities enters the dilute glycol solution storage tank, and the other part is transferred back to the reactor through the pump body for processing Repeat reaction
  • Step 4 the ethylene glycol dilute solution that enters the ethylene glycol dilute solution storage tank is transferred to the concentration unit by the pump body.
  • the concentration unit the ethylene glycol dilute solution first passes through the The second liquid inlet pipe enters into the evaporator, and the evaporation gas is discharged through the gas discharge pipe through the evaporation effect of the evaporator, and enters the second cooler along the second liquid inlet pipe, The evaporation gas is cooled into liquid by the cooling effect of the second cooler, and the cooled liquid is transferred back to the evaporator through the pump body for re-evaporation.
  • the dilute glycol solution is evaporated by the evaporator. concentrate;
  • Step 5 The ethylene glycol dilute solution concentrated in Step 4 enters the dehydration tower, and undergoes dehydration treatment to become ethylene glycol with higher purity and is discharged through the dehydration tower.
  • the temperature of the reactor is 60°C, and the pressure inside the reactor is 1 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 13h.
  • the temperature of the reactor is 70°C, and the pressure inside the reactor is 1.1 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 13h.
  • the temperature of the reactor is 80°C, and the pressure inside the reactor is 1.2 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 12.5h.
  • the temperature of the reactor is 85°C, and the pressure inside the reactor is 1.1 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 13h.
  • the temperature of the reactor is 90°C, and the pressure inside the reactor is 1.2 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 13h.
  • the temperature of the reactor is 90°C, and the pressure inside the reactor is 1 atm;
  • the feed temperature of ethylene gas and oxygen is 168°C;
  • the gas-liquid ratio in the micro-interface generator is 700:1.
  • the reaction time is 13h.
  • the reaction time is 34h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺,包括:反应器、环氧乙烷发生器和微界面发生器等。本发明通过微界面发生器破碎含有环氧乙烷的气体使其形成微米尺度的微米级气泡,使微米级气泡与去离子水混合形成气液混合物,以增大气液两相的相界面积,并达到在较低预设操作条件范围内强化传质的效果;同时,微米级气泡能够与去离子水充分混合形成气液混合物,通过将气液两相充分混合,能够保证系统中的去离子水能够与含有环氧乙烷的气体充分接触,有效提高了系统的反应效率同时提高乙二醇转化率。

Description

一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺 技术领域
本发明涉及乙二醇制备技术领域,尤其涉及一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺。
背景技术
乙二醇,是一种重要的化工原料,自被发现与对苯二甲酸反应生成聚对苯二甲酸二甲酯,可作为聚酯纤维和聚酯塑料的原料后,乙二醇的用量大大增加。
目前乙二醇主要用于制造聚酯纤维,其用量占乙二醇总用量的40%以上;其次是作为防冻剂的主要原料,用量占总用量的35%;其他方面,如作为化学试剂,乙二醇主要用于气相色谱的固定液,用于分析低沸点含氧化合物、胺类化合物、氧和氮杂环化合物等,除上述用途外,乙二醇在燃料、涂料、粘合剂、溶剂、润滑剂、软化剂、增稠剂和炸药等方面应用也非常广泛,乙二醇的生产技术也不断被改进。
据文献报道,合成乙二醇的工艺大致可分为乙烯直接水合法、乙烯水合法、甲醛合成法、碳酸乙烯酯法、合成气合成法、氧化偶联法等,其中乙烯水合法又称环氧乙烷水合法,为当前生产乙二醇所用的主要方法,其原理包括
首先,在银催化剂存在下使用氧通过蒸汽相催化氧化作用将乙烯转化成环氧乙烷。含有环氧乙烷的气体与大量水接触,在反应条件为150-200℃、压强为1.5-2.5Mpa,含有环氧乙烷的气体与大量水接触生成乙二醇稀溶液;
其次,将乙二醇稀溶液通过热交换器,经热交换器后被冷却,进入至膨胀器,在膨胀器中吹出乙醛、巴豆醛等易挥发组分,然后乙二醇稀溶液流入储存槽内;
最后,通过泵体将储存槽内的乙二醇稀溶液注入蒸发器提浓,经多次蒸发后的乙二醇稀溶液最后进入脱水塔脱除水分,制得纯乙二醇。
在上述现有生产乙二醇的方法中,含有环氧乙烷的气体与水接触过程中,常通过加压和升高温度来实现乙二醇的转化率。
基于上述乙烯水合法制备乙二醇的工艺原理,现有乙烯水合法制备乙二醇系统及工艺存在下述问题:
第一,含有环氧乙烷的气体与水接触过程中,气液两项混合,产生较大较多气泡,由于气泡较多较大,致使气液两项无法充分混合,降低乙二醇转化率同时整个气液系统的反应速率降低。
第二,含有环氧乙烷的气体与水接触过程中,需在高温高压条件下进行,对能源造成浪费。
发明内容
为此,本发明提供一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺,用以提高现有技术中制备乙二醇的转化率和效率。
一方面,本发明提供一种基于乙烯水合法制备乙二醇的微界面强化反应系统,包括:
反应器,用以为含有环氧乙烷的气体和去离子水提供反应场所制备乙二醇稀溶液;
环氧乙烷发生器,其设置在所述反应器的一侧,用以为乙烯气体和氧气提供反应场所制备环氧乙烷,所述环氧乙烷发生器和所述反应器之间设置有热交换器,用以降低含有环氧乙烷气体的温度;
微界面发生器,其设置在所述反应器内,将气体的压力能和/或液体的动能转变为气泡表面能并传递给含有环氧乙烷的气体,使含有环氧乙烷的气体破碎形成直径≥1μm、且<1mm的微米级气泡以提高去离子水与含有环氧乙烷的气体间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将去离子水与含有环氧乙烷的气体微米级气泡混合形成气液混合物,以在预设操作条件范围内强化去离子水与含有环氧乙烷的气体间的传质效率和反应效率;
除杂单元,其设置在所述反应器的一侧,用以去除乙二醇稀溶液中的易挥发组分;
浓缩单元,其设置在所述除杂单元的一侧,用以对乙二醇稀溶液进行浓缩处理。
进一步的,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述反应器内,用以将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水 混合形成气液混合物。
进一步的,所述反应器的侧壁上部连通设置有第一进液管,所述第一进液管用以向所述反应器内传输去离子水。
进一步的,所述环氧乙烷发生器的侧壁上连通设置有乙烯进气管和氧气进气管,所述乙烯进气管和所述氧气进气管分别用于向所述环氧乙烷发生器内传输乙烯气体和氧气,所述环氧乙烷发生器的内部设置有银触媒,所述银触媒用以对乙烯气体和氧气进行催化。
进一步的,所述除杂单元包括:
第一冷却器,其与所述反应器相连通,所述第一冷却器用以冷却乙二醇稀溶液;
膨胀器,其与所述第一冷却器相连通,所述膨胀器用以去除冷却后的乙二醇稀溶液中的易挥发组分,所述膨胀器的上端设置有气体出口,用以排出易挥发组分,所述膨胀器的下端与所述反应器相连通,用以将所述其内部部分乙二醇稀溶液传输回所述反应器进行重复反应;
乙二醇稀溶液储存罐,其与所述膨胀器相连通,所述乙二醇稀溶液储存罐用以接收所述膨胀器内除去易挥发组分后的乙二醇稀溶液。
进一步的,所述浓缩单元包括:
蒸发器,其与所述除杂单元相连通,所述蒸发器用以将乙二醇稀溶液进行蒸发浓缩,所述蒸发器的侧壁中部连通设置有第二进液管,所述第二进液管用以接收所述除杂单元传输来的乙二醇稀溶液,并将乙二醇稀溶液传输至所述蒸发器内,所述蒸发器的上端连通设置有气体排出管,所述气体排出管用以将蒸发气体排出,所述蒸发器的下端连通设置有液体排出管,所述液体排出管用以将浓缩的乙二醇稀溶液排出;
第二冷却器,其与所述蒸发器相连通,所述第二冷却器用以将所述蒸发器内排出的蒸发气体进行冷却成液体并传输回所述蒸发器进行再蒸发;
脱水塔,其与所述蒸发器相连通,所述脱水塔用以将浓缩的乙二醇溶液进行脱水处理。
进一步的,所述蒸发器为中央循环管蒸发器。
另一方面,本发明提供一种基于乙烯水合法制备乙二醇的微界面强化反应工 艺,包括:
步骤1:通过所述乙烯进气管和所述氧气进气管向所述环氧乙烷发生器内传输乙烯气体和氧气,乙烯气体和氧气通过所述银触媒被催化,生成环氧乙烷气体;
步骤2:通过第一进液管向所述反应器内加入去离子水,通过泵体将步骤1中生成的经冷却的含有环氧乙烷的气体通过传输至所述微界面发生器内,所述微界面发生器将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,气体中的环氧乙烷与去离子水发生反应,生成乙二醇稀溶液;
步骤3:通过泵体将步骤2中的乙二醇稀溶液传输至所述除杂单元,在所述除杂单元中,乙二醇稀溶液首先进入至所述第一冷却器内,所述第一冷却器对乙二醇稀溶液进行降温处理后乙二醇稀溶液继续进入所述膨胀器内,乙二醇稀溶液在所述膨胀器内进一步被减压和降温,使得乙二醇稀溶液中的易挥发组分通过所述气体出口排出,经除杂的乙二醇稀溶液一部分进入到所述乙二醇稀溶液储存罐内,另一部分通过泵体传输回所述反应器内进行重复反应;
步骤4:步骤3中进入至所述乙二醇稀溶液储存罐内的乙二醇稀溶液由泵体传输至所述浓缩单元,在所述浓缩单元中,乙二醇稀溶液首先通过所述第二进液管进入至所述蒸发器内,经所述蒸发器的蒸发作用,蒸发气体经所述气体排出管排出,沿所述第二进液管进入至所述第二冷却器内,经所述第二冷却器的冷却作用将蒸发气体冷却为液体,被冷却的液体经泵体被传输回所述蒸发器内,进行再次蒸发,乙二醇稀溶液经所述蒸发器蒸发后被浓缩;
步骤5:步骤4中被浓缩的乙二醇稀溶液进入至所述脱水塔内,进行脱水处理变为纯度较高的乙二醇经所述脱水塔排出。
进一步的,所述反应器内的温度为60-90℃,压力为常压1-1.2atm。
进一步的,所述脱水塔为板式塔。
与现有技术相比,本发明的有益效果在于,本发明通过破碎含有环氧乙烷的气体使其形成微米尺度的微米级气泡,微米级气泡具备常规气泡所不具备的理化性质,由球体体积及表面积的计算公式可知,在总体积不变的情况下,气泡的总表面积与单个气泡直径成反比,由此可知微米级气泡的总表面积巨大,使微米级气泡与去离子水混合形成气液混合物,以增大气液两相的接触面积,并达到在较 低预设操作条件范围内强化传质的效果,有效提高制备乙二醇的转化率和效率。
进一步的,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述反应器内,用以将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,有效提高制备乙二醇的转化率和效率。
进一步的,所述反应器的侧壁上部连通设置有第一进液管,所述第一进液管用以向所述反应器内传输去离子水,通过第一进液管向所述反应器内加入去离子水,通过泵体将所述环氧乙烷发生器中生成的含有环氧乙烷的气体通过传输至所述微界面发生器内,所述微界面发生器将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,气体中的环氧乙烷与去离子水发生反应,生成乙二醇稀溶液。
进一步的,所述环氧乙烷发生器的侧壁上连通设置有乙烯进气管和氧气进气管,所述乙烯进气管和所述氧气进气管分别用于向所述环氧乙烷发生器内传输乙烯气体和氧气,所述环氧乙烷发生器的内部设置有银触媒,所述银触媒用以对乙烯气体和氧气进行催化,通过所述乙烯进气管和所述氧气进气管向所述环氧乙烷发生器内传输乙烯气体和氧气,乙烯气体和氧气通过所述银触媒被催化,生成环氧乙烷气体。
进一步的,所述除杂单元包括:
第一冷却器,其与所述反应器相连通,所述第一冷却器用以冷却乙二醇稀溶液;
膨胀器,其与所述第一冷却器相连通,所述膨胀器用以去除冷却后的乙二醇稀溶液中的易挥发组分,所述膨胀器的上端设置有气体出口,用以排出易挥发组分,所述膨胀器的下端与所述反应器相连通,用以将所述其内部部分乙二醇稀溶液传输回所述反应器进行重复反应;
乙二醇稀溶液储存罐,其与所述膨胀器相连通,所述乙二醇稀溶液储存罐用以接收所述膨胀器内除去易挥发组分后的乙二醇稀溶液。
通过泵体将所述反应器中的乙二醇稀溶液传输至所述除杂单元,在所述除杂单元中,乙二醇稀溶液首先进入至所述第一冷却器内,所述第一冷却器对乙二醇 稀溶液进行降温处理后乙二醇稀溶液继续进入所述膨胀器内,乙二醇稀溶液在所述膨胀器内进一步被减压和降温,使得乙二醇稀溶液中的易挥发组分通过所述气体出口排出,经除杂的乙二醇稀溶液一部分进入到所述乙二醇稀溶液储存罐内,另一部分通过泵体传输回所述反应器内进行重复反应,此处重复循环将乙二醇稀溶液进行重复除杂,有效提升除杂效果。
进一步的,所述浓缩单元包括:
蒸发器,其与所述除杂单元相连通,所述蒸发器用以将乙二醇稀溶液进行蒸发浓缩,所述蒸发器的侧壁中部连通设置有第二进液管,所述第二进液管用以接收所述除杂单元传输来的乙二醇稀溶液,并将乙二醇稀溶液传输至所述蒸发器内,所述蒸发器的上端连通设置有气体排出管,所述气体排出管用以将蒸发气体排出,所述蒸发器的下端连通设置有液体排出管,所述液体排出管用以将浓缩的乙二醇稀溶液排出;
第二冷却器,其与所述蒸发器相连通,所述第二冷却器用以将所述蒸发器内排出的蒸发气体进行冷却成液体并传输回所述蒸发器进行再蒸发;
脱水塔,其与所述蒸发器相连通,所述脱水塔用以将浓缩的乙二醇溶液进行脱水处理。
进入至所述乙二醇稀溶液储存罐内的乙二醇稀溶液由泵体传输至所述浓缩单元,在所述浓缩单元中,乙二醇稀溶液首先通过所述第二进液管进入至所述蒸发器内,经所述蒸发器的蒸发作用,蒸发气体经所述气体排出管排出,沿所述第二进液管进入至所述第二冷却器内,经所述第二冷却器的冷却作用将蒸发气体冷却为液体,被冷却的液体经泵体被传输回所述蒸发器内,进行再次蒸发,乙二醇稀溶液经所述蒸发器蒸发后被浓缩;所述蒸发器将乙二醇稀溶液中水分进行多次蒸发,有效去除乙二醇稀溶液中的水分,即达到对乙二醇充分浓缩的效果。
被浓缩的乙二醇稀溶液进入至所述脱水塔内,进行脱水处理变为纯度更高的乙二醇经所述脱水塔排出
进一步的,所述蒸发器为中央循环管蒸发器,中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来,相对于从水平加热室、蛇管加热室等老式加热器而言,中央循环管加热器具有溶液循环好、传热效率高、结构紧凑及操作可靠等优点,在所述浓缩单元中使用,使乙二醇稀溶液浓缩效果更好。
进一步的,所述反应器内的温度为60-90℃,压力为常压1-1.2atm,对比于现有制备乙二醇的反应工艺,在较大程度上降低了反应条件,在较低预设操作条件范围内制备乙二醇,节约能源。
进一步的,所述脱水塔为板式塔,板式塔是一类用于汽液或液液系统分离的设备,其由圆筒形塔体和按一定间距水平塔板组成,乙二醇溶液在所述脱水塔内运动过程为,其进入至所述脱水塔中由上至下依次流过各个踏板至所述脱水塔底部排出,同时在高温作用下,其中的水分被蒸发由下至上在所述脱水塔顶部排出,由此而达到制备高纯度乙二醇的目的。
附图说明
图1为本发明所述一种基于乙烯水合法制备乙二醇的微界面强化反应系统的结构示意图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1所示,其为本发明所述基于一种基于乙烯水合法制备乙二醇的微界面强化反应系统的结构示意图,包括:
反应器1,用以为含有环氧乙烷的气体和去离子水提供反应场所制备乙二醇 稀溶液;
环氧乙烷发生器2,其设置在所述反应器的一侧,用以为乙烯气体和氧气提供反应场所制备环氧乙烷,所述环氧乙烷发生器和所述反应器之间设置有热交换器6,用以降低含有环氧乙烷气体的温度;
微界面发生器3,其设置在所述反应器内,将气体的压力能和/或液体的动能转变为气泡表面能并传递给含有环氧乙烷的气体,使含有环氧乙烷的气体破碎形成直径≥1μm、且<1mm的微米级气泡以提高去离子水与含有环氧乙烷的气体间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将去离子水与含有环氧乙烷的气体微米级气泡混合形成气液混合物,以在预设操作条件范围内强化去离子水与含有环氧乙烷的气体间的传质效率和反应效率;
除杂单元4,其设置在所述反应器的一侧,用以去除乙二醇稀溶液中的易挥发组分;
浓缩单元5,其设置在所述除杂单元的一侧,用以对乙二醇稀溶液进行浓缩处理。
请继续参阅图1,所述反应器的侧壁上部连通设置有第一进液管101,所述第一进液管用以向所述反应器内传输去离子水,通过第一进液管向所述反应器内加入去离子水,通过泵体将所述环氧乙烷发生器中生成的含有环氧乙烷的气体通过传输至所述微界面发生器内,所述微界面发生器将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,气体中的环氧乙烷与去离子水发生反应,生成乙二醇稀溶液。
请继续参阅图1,所述环氧乙烷发生器的侧壁上连通设置有乙烯进气管201和氧气进气管202,所述乙烯进气管和所述氧气进气管分别用于向所述环氧乙烷发生器内传输乙烯气体和氧气,所述环氧乙烷发生器的内部设置有银触媒203,所述银触媒用以对乙烯气体和氧气进行催化,通过所述乙烯进气管和所述氧气进气管向所述环氧乙烷发生器内传输乙烯气体和氧气,乙烯气体和氧气通过所述银触媒被催化,生成环氧乙烷气体。
请继续参阅图1,所述除杂单元包括:
第一冷却器401,其与所述反应器相连通,所述第一冷却器用以冷却乙二醇 稀溶液;
膨胀器402,其与所述第一冷却器相连通,所述膨胀器用以去除冷却后的乙二醇稀溶液中的易挥发组分,所述膨胀器的上端设置有气体出口,用以排出易挥发组分,所述膨胀器的下端与所述反应器相连通,用以将所述其内部部分乙二醇稀溶液传输回所述反应器进行重复反应;
乙二醇稀溶液储存罐403,其与所述膨胀器相连通,所述乙二醇稀溶液储存罐用以接收所述膨胀器内除去易挥发组分后的乙二醇稀溶液。
通过泵体将所述反应器中的乙二醇稀溶液传输至所述除杂单元,在所述除杂单元中,乙二醇稀溶液首先进入至所述第一冷却器内,所述第一冷却器对乙二醇稀溶液进行降温处理后乙二醇稀溶液继续进入所述膨胀器内,乙二醇稀溶液在所述膨胀器内进一步被减压和降温,使得乙二醇稀溶液中的易挥发组分通过所述气体出口排出,经除杂的乙二醇稀溶液一部分进入到所述乙二醇稀溶液储存罐内,另一部分通过泵体传输回所述反应器内进行重复反应,此处重复循环将乙二醇稀溶液进行重复除杂,有效提升除杂效果。
请继续参阅图1,所述浓缩单元包括:
蒸发器501,其与所述除杂单元相连通,所述蒸发器用以将乙二醇稀溶液进行蒸发浓缩,所述蒸发器的侧壁中部连通设置有第二进液管5011,所述第二进液管用以接收所述除杂单元传输来的乙二醇稀溶液,并将乙二醇稀溶液传输至所述蒸发器内,所述蒸发器的上端连通设置有气体排出管5012,所述气体排出管用以将蒸发气体排出,所述蒸发器的下端连通设置有液体排出管5013,所述液体排出管用以将浓缩的乙二醇稀溶液排出;
第二冷却器502,其与所述蒸发器相连通,所述第二冷却器用以将所述蒸发器内排出的蒸发气体进行冷却成液体并传输回所述蒸发器进行再蒸发;
脱水塔503,其与所述蒸发器相连通,所述脱水塔用以将浓缩的乙二醇溶液进行脱水处理。
进入至所述乙二醇稀溶液储存罐内的乙二醇稀溶液由泵体传输至所述浓缩单元,在所述浓缩单元中,乙二醇稀溶液首先通过所述第二进液管进入至所述蒸发器内,经所述蒸发器的蒸发作用,蒸发气体经所述气体排出管排出,沿所述第二进液管进入至所述第二冷却器内,经所述第二冷却器的冷却作用将蒸发气体冷 却为液体,被冷却的液体经泵体被传输回所述蒸发器内,进行再次蒸发,乙二醇稀溶液经所述蒸发器蒸发后被浓缩;所述蒸发器将乙二醇稀溶液中水分进行多次蒸发,有效去除乙二醇稀溶液中的水分,即达到对乙二醇充分浓缩的效果。
被浓缩的乙二醇稀溶液进入至所述脱水塔内,进行脱水处理变为纯度更高的乙二醇经所述脱水塔排出
请继续参阅图1,所述蒸发器为中央循环管蒸发器,中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来,相对于从水平加热室、蛇管加热室等老式加热器而言,中央循环管加热器具有溶液循环好、传热效率高、结构紧凑及操作可靠等优点,在所述浓缩单元中使用,使乙二醇稀溶液浓缩效果更好。
请继续参阅图1,所述反应器内的温度为60-90℃,压力为常压1-1.2atm,对比于现有制备乙二醇的反应工艺,在较大程度上降低了反应条件,在较低预设操作条件范围内制备乙二醇,节约能源。
请继续参阅图1,所述脱水塔为板式塔,板式塔是一类用于汽液或液液系统分离的设备,其由圆筒形塔体和按一定间距水平塔板组成,乙二醇溶液在所述脱水塔内运动过程为,其进入至所述脱水塔中由上至下依次流过各个踏板至所述脱水塔底部排出,同时在高温作用下,其中的水分被蒸发由下至上在所述脱水塔顶部排出,由此而达到制备高纯度乙二醇的目的。
请继续参阅图1,本发明提供一种基于乙烯水合法制备乙二醇的微界面强化反应工艺,包括:
步骤1:通过所述乙烯进气管和所述氧气进气管向所述环氧乙烷发生器内传输乙烯气体和氧气,乙烯气体和氧气通过所述银触媒被催化,生成环氧乙烷气体;
步骤2:通过第一进液管向所述反应器内加入去离子水,通过泵体将步骤1中生成的经冷却的含有环氧乙烷的气体通过传输至所述微界面发生器内,所述微界面发生器将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,气体中的环氧乙烷与去离子水发生反应,生成乙二醇稀溶液;
步骤3:通过泵体将步骤2中的乙二醇稀溶液传输至所述除杂单元,在所述除杂单元中,乙二醇稀溶液首先进入至所述第一冷却器内,所述第一冷却器对乙二醇稀溶液进行降温处理后乙二醇稀溶液继续进入所述膨胀器内,乙二醇稀溶液 在所述膨胀器内进一步被减压和降温,使得乙二醇稀溶液中的易挥发组分通过所述气体出口排出,经除杂的乙二醇稀溶液一部分进入到所述乙二醇稀溶液储存罐内,另一部分通过泵体传输回所述反应器内进行重复反应;
步骤4:步骤3中进入至所述乙二醇稀溶液储存罐内的乙二醇稀溶液由泵体传输至所述浓缩单元,在所述浓缩单元中,乙二醇稀溶液首先通过所述第二进液管进入至所述蒸发器内,经所述蒸发器的蒸发作用,蒸发气体经所述气体排出管排出,沿所述第二进液管进入至所述第二冷却器内,经所述第二冷却器的冷却作用将蒸发气体冷却为液体,被冷却的液体经泵体被传输回所述蒸发器内,进行再次蒸发,乙二醇稀溶液经所述蒸发器蒸发后被浓缩;
步骤5:步骤4中被浓缩的乙二醇稀溶液进入至所述脱水塔内,进行脱水处理变为纯度较高的乙二醇经所述脱水塔排出。
实施例1
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为60℃,所述反应器内压强为1atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为92%。
反应时间为13h。
实施例2
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为70℃,所述反应器内压强为1.1atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为93%。
反应时间为13h。
实施例3
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为80℃,所述反应器内压强为1.2atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为92%。
反应时间为12.5h。
实施例4
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为85℃,所述反应器内压强为1.1atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为93%。
反应时间为13h。
实施例5
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为90℃,所述反应器内压强为1.2atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为92%。
反应时间为13h。
实施例6
使用上述系统及工艺进行乙二醇制备,其中:
所述反应器温度为90℃,所述反应器内压强为1atm;
乙烯气体和氧气的进料温度为168℃;
所述微界面发生器内的气液比为700:1。
经检测,使用所述系统及工艺后,乙二醇的转化率为93%。
反应时间为13h。
对比例
使用现有技术进行硝酸制备,其中,本对比例选用的工艺参数与所述实施例6中的工艺参数相同。
经检测,乙二醇的转化率为61%。
反应时间为34h。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,包括:
    反应器,用以为含有环氧乙烷的气体和去离子水提供反应场所制备乙二醇稀溶液;
    环氧乙烷发生器,其设置在所述反应器的一侧,用以为乙烯气体和氧气提供反应场所制备环氧乙烷,所述环氧乙烷发生器和所述反应器之间设置有热交换器,用以降低含有环氧乙烷气体的温度;
    微界面发生器,其设置在所述反应器内,将气体的压力能和/或液体的动能转变为气泡表面能并传递给含有环氧乙烷的气体,使含有环氧乙烷的气体破碎形成直径≥1μm、且<1mm的微米级气泡以提高去离子水与含有环氧乙烷的气体间的传质面积,减小液膜厚度,降低传质阻力,并在破碎后将去离子水与含有环氧乙烷的气体微米级气泡混合形成气液混合物,以在预设操作条件范围内强化去离子水与含有环氧乙烷的气体间的传质效率和反应效率;
    除杂单元,其设置在所述反应器的一侧,用以去除乙二醇稀溶液中的易挥发组分;
    浓缩单元,其设置在所述除杂单元的一侧,用以对乙二醇稀溶液进行浓缩处理。
  2. 根据权利要求1所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述微界面发生器为气动式微界面发生器,所述微界面发生器设置在所述反应器内,用以将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物。
  3. 根据权利要求1所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述反应器的侧壁上部连通设置有第一进液管,所述第一进液管用以向所述反应器内传输去离子水。
  4. 根据权利要求1所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述环氧乙烷发生器的侧壁上连通设置有乙烯进气管和氧气进气管,所述乙烯进气管和所述氧气进气管分别用于向所述环氧乙烷发生器内传输乙烯气体和氧气,所述环氧乙烷发生器的内部设置有银触媒,所述银触媒用 以对乙烯气体和氧气进行催化。
  5. 根据权利要求1所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述除杂单元包括:
    第一冷却器,其与所述反应器相连通,所述第一冷却器用以冷却乙二醇稀溶液;
    膨胀器,其与所述第一冷却器相连通,所述膨胀器用以去除冷却后的乙二醇稀溶液中的易挥发组分,所述膨胀器的上端设置有气体出口,用以排出易挥发组分,所述膨胀器的下端与所述反应器相连通,用以将所述其内部部分乙二醇稀溶液传输回所述反应器进行重复反应;
    乙二醇稀溶液储存罐,其与所述膨胀器相连通,所述乙二醇稀溶液储存罐用以接收所述膨胀器内除去易挥发组分后的乙二醇稀溶液。
  6. 根据权利要求1所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述浓缩元包括:
    蒸发器,其与所述除杂单元相连通,所述蒸发器用以将乙二醇稀溶液进行蒸发浓缩,所述蒸发器的侧壁中部连通设置有第二进液管,所述第二进液管用以接收所述除杂单元传输来的乙二醇稀溶液,并将乙二醇稀溶液传输至所述蒸发器内,所述蒸发器的上端连通设置有气体排出管,所述气体排出管用以将蒸发气体排出,所述蒸发器的下端连通设置有液体排出管,所述液体排出管用以将浓缩的乙二醇稀溶液排出;
    第二冷却器,其与所述蒸发器相连通,所述第二冷却器用以将所述蒸发器内排出的蒸发气体进行冷却成液体并传输回所述蒸发器进行再蒸发;
    脱水塔,其与所述蒸发器相连通,所述脱水塔用以将浓缩的乙二醇溶液进行脱水处理。
  7. 根据权利要求6所述的一种基于乙烯水合法制备乙二醇的微界面强化反应系统,其特征在于,所述蒸发器为中央循环管蒸发器。
  8. 一种基于乙烯水合法制备乙二醇的微界面强化反应工艺,其特征在于,包括:
    步骤1:通过所述乙烯进气管和所述氧气进气管向所述环氧乙烷发生器内传输乙烯气体和氧气,乙烯气体和氧气通过所述银触媒被催化,生成环氧乙烷气体;
    步骤2:通过第一进液管向所述反应器内加入去离子水,通过泵体将步骤1中生成的经冷却的含有环氧乙烷的气体通过传输至所述微界面发生器内,所述微界面发生器将含有环氧乙烷的气体破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液混合物,气体中的环氧乙烷与去离子水发生反应,生成乙二醇稀溶液;
    步骤3:通过泵体将步骤2中的乙二醇稀溶液传输至所述除杂单元,在所述除杂单元中,乙二醇稀溶液首先进入至所述第一冷却器内,所述第一冷却器对乙二醇稀溶液进行降温处理后乙二醇稀溶液继续进入所述膨胀器内,乙二醇稀溶液在所述膨胀器内进一步被减压和降温,使得乙二醇稀溶液中的易挥发组分通过所述气体出口排出,经除杂的乙二醇稀溶液一部分进入到所述乙二醇稀溶液储存罐内,另一部分通过泵体传输回所述反应器内进行重复反应;
    步骤4:步骤3中进入至所述乙二醇稀溶液储存罐内的乙二醇稀溶液由泵体传输至所述浓缩单元,在所述浓缩单元中,乙二醇稀溶液首先通过所述第二进液管进入至所述蒸发器内,经所述蒸发器的蒸发作用,蒸发气体经所述气体排出管排出,沿所述第二进液管进入至所述第二冷却器内,经所述第二冷却器的冷却作用将蒸发气体冷却为液体,被冷却的液体经泵体被传输回所述蒸发器内,进行再次蒸发,乙二醇稀溶液经所述蒸发器蒸发后被浓缩;
    步骤5:步骤4中被浓缩的乙二醇稀溶液进入至所述脱水塔内,进行脱水处理变为纯度较高的乙二醇经所述脱水塔排出。
  9. 根据权利要求8所述的一种基于乙烯水合法制备乙二醇的微界面强化反应工艺,其特征在于,所述反应器内的温度为60-90℃,压力为常压1-1.2atm。
  10. 根据权利要求8所述的一种基于乙烯水合法制备乙二醇的微界面强化反应工艺,其特征在于,所述脱水塔为板式塔。
PCT/CN2019/120121 2019-09-12 2019-11-22 一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺说明书 WO2021047039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910862884.4A CN112479810A (zh) 2019-09-12 2019-09-12 一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺
CN201910862884.4 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021047039A1 true WO2021047039A1 (zh) 2021-03-18

Family

ID=74866892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120121 WO2021047039A1 (zh) 2019-09-12 2019-11-22 一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺说明书

Country Status (2)

Country Link
CN (1) CN112479810A (zh)
WO (1) WO2021047039A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679165A (zh) * 2007-06-27 2010-03-24 Hrd有限公司 生产亚烷基二醇的方法
CN102099346A (zh) * 2008-07-14 2011-06-15 巴斯夫欧洲公司 制备环氧乙烷的方法
CN102791663A (zh) * 2010-03-12 2012-11-21 Hrd有限公司 制备亚烷基二醇的方法
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5763691A (en) * 1995-11-30 1998-06-09 Mitsubishi Chemical Corporation Ethylene glycol process
CN100413833C (zh) * 2004-04-16 2008-08-27 中国石油化工股份有限公司上海石油化工研究院 环氧乙烷水合制乙二醇的方法
CN100357239C (zh) * 2005-01-20 2007-12-26 中国寰球工程公司 一种乙二醇生产中脱水处理的方法
CN100334052C (zh) * 2005-01-20 2007-08-29 中国寰球工程公司 一种由乙烯经环氧乙烷制备乙二醇的系统
CN103708999B (zh) * 2012-10-08 2016-05-11 中国石油化工股份有限公司 催化水合生产乙二醇的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101679165A (zh) * 2007-06-27 2010-03-24 Hrd有限公司 生产亚烷基二醇的方法
CN102099346A (zh) * 2008-07-14 2011-06-15 巴斯夫欧洲公司 制备环氧乙烷的方法
CN102791663A (zh) * 2010-03-12 2012-11-21 Hrd有限公司 制备亚烷基二醇的方法
CN106268544A (zh) * 2016-08-05 2017-01-04 南京大学 塔式超细气泡反应器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG ZHIBING; TIAN HONGZHOU; ZHANG FENG; ZHOU ZHENG: "Overview of Microinterface Intensification in Multiphase Reaction Systems", JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING, HUAXUE GONGYE CHUBANSHE, CN, vol. 69, no. 1, 6 November 2007 (2007-11-06), CN, pages 44 - 49, XP009526633, ISSN: 0438-1157, DOI: 10.11949/j.issn.0438-1157.20171400 *

Also Published As

Publication number Publication date
CN112479810A (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2021189637A1 (zh) 一种丙烯水合制备异丙醇的固定床强化反应系统及工艺
US11141676B2 (en) System for energy regeneration using mechanical vapor recompression in combined chemical process
CN102775274B (zh) 一种草酸酯加氢制乙二醇的系统及方法
CN101920937B (zh) 五氟化碘的制备方法与反应设备
CN103553004B (zh) 一种连续制备叠氮化钠的方法
CN211814210U (zh) 一种基于乙烯水合法制备乙二醇的微界面强化反应系统
CN112374991B (zh) 一种连续狭缝涡旋硝化生产异丙基硝基苯的方法
CN207786544U (zh) 一种锂盐生产装置
CN104692992A (zh) 氘代乙烯制备方法
CN211123731U (zh) 一种基于乙烯水合法制备乙二醇的智能控制反应系统
WO2021047039A1 (zh) 一种基于乙烯水合法制备乙二醇的微界面强化反应系统及工艺说明书
CN209508088U (zh) 一种甲基芳烃氧化反应系统
CN111995489B (zh) 一种乙苯氧化反应尾气的处理系统及方法
CN211871381U (zh) 一种高纯硫酸生产系统
CN111569784B (zh) 一种分段式丙烯水合制备异丙醇的强化反应系统及工艺
WO2023040411A1 (zh) 一种碳-14同位素的分离装置及分离方法
KR20140117474A (ko) 니트로벤젠을 제조하기 위한 방법 및 시스템
WO2021189639A1 (zh) 一种离子液体催化丙烯水合的强化反应系统及工艺
CN111978269B (zh) 一种靛红酸酐连续化生产工艺及装置
CN209415811U (zh) 一种烷基化反应流出物自冷却及压缩系统
CN114014743A (zh) 一种连续生产六氟丁二烯的方法
CN112479809A (zh) 一种基于乙烯水合法制备乙二醇的智能控制反应系统及工艺
CN105566054A (zh) 一种芳烃氯化生产过程中副产物氯化氢循环利用方法和系统
WO2021103461A1 (zh) 一种由烯烃羰基化制备异构醛的强化反应系统及工艺
CN115400714B (zh) 一种三氟甲磺酸的生产装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944741

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944741

Country of ref document: EP

Kind code of ref document: A1