WO2021189637A1 - 一种丙烯水合制备异丙醇的固定床强化反应系统及工艺 - Google Patents
一种丙烯水合制备异丙醇的固定床强化反应系统及工艺 Download PDFInfo
- Publication number
- WO2021189637A1 WO2021189637A1 PCT/CN2020/092751 CN2020092751W WO2021189637A1 WO 2021189637 A1 WO2021189637 A1 WO 2021189637A1 CN 2020092751 W CN2020092751 W CN 2020092751W WO 2021189637 A1 WO2021189637 A1 WO 2021189637A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reactor
- propylene
- micro
- gas
- pump body
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/008—Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
Definitions
- the invention relates to the technical field of isopropanol preparation, in particular to a fixed bed intensified reaction system and process for preparing isopropanol by hydration of propylene.
- Isopropanol is an important chemical product and chemical raw material, which is widely used in the fields of pharmaceuticals, organic raw materials, solvents, fragrances, cosmetics, plastics and coatings. Since isopropanol can replace trichloroethane, CFC-113 and other chlorofluorocarbons and their derivatives that are harmful to the atmosphere in the refrigeration industry, the demand for isopropanol in the Chinese market began to grow rapidly from 1990 to 2010. By the end of the year, my country’s annual production capacity of isopropanol has reached 250,000 tons. However, due to the demand exceeding 300,000 tons, my country has become the largest importer of isopropanol in Asia. It is necessary to continuously import isopropanol from abroad for market demand. .
- the gas-phase direct hydration method was first developed by the German Viba Company.
- the existing gas-phase direct hydration method to produce isopropanol involves passing liquid propylene, deionized water and circulating propylene gas into the reactor together.
- the reaction temperature is 180-260°C.
- propylene gas reacts with deionized water to generate isopropanol under the action of a catalyst, and then the reaction product can be refined by processes such as water washing and rectification.
- the present invention provides a fixed bed intensified reaction system and process for preparing isopropanol by hydration of propylene, so as to improve the efficiency of preparing isopropanol in the prior art.
- the present invention provides a fixed bed intensified reaction system for preparing isopropanol by hydrating propylene, including:
- the reactor is used to provide a reaction place for deionized water and propylene to prepare isopropanol.
- a plurality of fixed catalyst beds are arranged in the vertical direction in the reactor, and a catalyst is arranged on the fixed catalyst bed.
- a water circulation area is provided at the upper and lower ends, and the water circulation area is used to provide a circulation space for the up water path or the down water path;
- the micro-interface generator converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas reactant, and breaks the gas reactant propylene to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to improve The mass transfer area between the gas reactant and the liquid reactant, reduces the thickness of the liquid film, and reduces the mass transfer resistance;
- the condenser is communicated with the reactor for condensing the product.
- a micro-interface generator is provided above or below the plurality of fixed catalyst beds, and the micro-interface generator is a pneumatic micro-interface generator for crushing propylene into micro-scale bubbles of micron scale and completing the crushing process. Then, the micron-sized bubbles are output to the reaction zone and mixed with the deionized water in the reaction zone to form a gas-liquid emulsion.
- a plurality of said micro-interface generators are connected with propylene inlet pipes, and a plurality of said propylene inlet pipes are all connected with a main pipe, and a first pump body is installed on the main pipe, and the first pump body is used for So as to transmit propylene to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes.
- an upper water pipe is arranged in the water circulation area, the upper water pipe is located at the upper end of the reactor, and a second pump body is installed on the upper water pipe, and the second pump body is used to Deionized water is transported into the reactor along the upper water pipe, and the whole reaction mixture flows from top to bottom in the reactor.
- a lower water pipe is arranged in the water circulation area, the lower water pipe is located at the lower end of the reactor, and a second pump body is installed on the lower water pipe, and the second pump body is used to The deionized water is transferred into the reactor along the lower water pipe, and the whole reaction mixture flows from bottom to top in the reactor.
- the reactor and the condenser are connected by a material transfer pipe, and a third pump body is installed on the material transfer pipe. The material is transferred to the condenser.
- the outlet of the reactor is located at the lower end of the reactor, and the height of the inlet of the condenser is equal to the height of the upper end surface of the reactor, so that the reactor is filled with the reaction mixture.
- the outlet of the reactor is located at the upper end of the reactor, and the height of the inlet of the condenser is equal to the height of the outlet of the reactor, so that the reactor is filled with the reaction mixture.
- the present invention provides a fixed bed intensified reaction process for preparing isopropanol by hydrating propylene, which includes:
- Step 1 Working by the second pump body, transfer deionized water to the reactor along the upper water pipe or the lower water pipe;
- Step 2 Through the work of the first pump body, propylene is transported to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes;
- Step 3 The micro-interface generator breaks propylene into micron-sized micro-sized bubbles, and after the crushing is completed, outputs the micro-sized bubbles to the reactor and mixes with the deionized water in the reactor to form a gas-liquid emulsification At the same time, it contacts and reacts with a plurality of fixed catalyst beds arranged in a vertical direction to generate isopropanol;
- Step 4 In step 3, the product in the reactor is transferred to the condenser through the third pump body and along the material transfer pipe;
- Step 5 After the product is condensed in the condenser, the liquid phase part is discharged for post-treatment, and the gas phase part participates in the recycling of propylene gas.
- the temperature in the reactor is 160-190°C, and the pressure is 1.7-2.2Mpa.
- the beneficial effect of the present invention is that the present invention breaks the propylene gas to form micro-scale micro-sized bubbles, which have physical and chemical properties that conventional bubbles do not have.
- the volume and surface area of the sphere are calculated The formula shows that when the total volume is constant, the total surface area of the bubbles is inversely proportional to the diameter of a single bubble. It can be seen that the total surface area of the micron-sized bubbles is huge, and the micron-sized bubbles are mixed with deionized water to form a gas-liquid emulsion. Enlarge the contact area of the gas-liquid two-phase, while ensuring full contact with the catalyst, and achieve the effect of enhancing mass transfer within the lower preset operating condition range, effectively improving the efficiency of preparing isopropanol.
- a reactor is used to provide a reaction place for deionized water and propylene to prepare isopropanol.
- a plurality of fixed catalyst beds are arranged in the vertical direction in the reactor, and a catalyst is arranged on the fixed catalyst bed.
- the upper and lower ends of the device are provided with a water circulation area, and the water circulation area is used to provide a circulation space for the up water path or the down water path.
- a micro-interface generator which converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas reactant, and breaks the gas reactant into micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to improve the gas reaction
- the mass transfer area between the substance and the liquid reactant reduces the thickness of the liquid film and reduces the mass transfer resistance;
- the condenser is communicated with the reactor for condensing the product.
- a micro-interface generator is provided above or below the plurality of fixed catalyst beds, and the micro-interface generator is a pneumatic micro-interface generator for crushing propylene into micro-scale bubbles of micron scale and completing the crushing process. Then, the micron-sized bubbles are output to the reaction zone and mixed with the deionized water in the reaction zone to form a gas-liquid emulsion.
- a plurality of said micro-interface generators are connected with propylene inlet pipes, and a plurality of said propylene inlet pipes are all connected with a main pipe, and a first pump body is installed on the main pipe, and the first pump body is used for So as to transmit propylene to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes.
- an upper water pipe is arranged in the water circulation area, the upper water pipe is located at the upper end of the reactor, and a second pump body is installed on the upper water pipe, and the second pump body is used to Deionized water is transported into the reactor along the upper water pipe, and the whole reaction mixture flows from top to bottom in the reactor.
- a lower water pipe is arranged in the water circulation area, the lower water pipe is located at the lower end of the reactor, and a second pump body is installed on the lower water pipe, and the second pump body is used to The deionized water is transferred into the reactor along the lower water pipe, and the whole reaction mixture flows from bottom to top in the reactor.
- the reactor and the condenser are connected by a material transfer pipe, and a third pump body is installed on the material transfer pipe. The material is transferred to the condenser.
- the outlet of the reactor is located at the lower end of the reactor, and the height of the inlet of the condenser is equal to the height of the upper end surface of the reactor, so that the reactor is filled with the reaction mixture, the space utilization rate of the reactor is high, and the reaction efficiency is improved.
- the outlet of the reactor is located at the upper end of the reactor, and the height of the inlet of the condenser is equal to the height of the outlet of the reactor, so that the reactor is filled with the reaction mixture, the space utilization rate of the reactor is high, and the reaction efficiency is improved.
- Figure 1 is a structural schematic diagram of a fixed bed intensified reaction system for preparing isopropanol by hydration of propylene according to the present invention (downstream formula);
- Fig. 2 is a structural schematic diagram of a fixed bed intensified reaction system for preparing isopropanol by hydrating propylene according to the present invention (uplink).
- the terms “installed”, “connected”, and “connected” should be understood in a broad sense. For example, they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- installed e.g., they can be fixed or fixed. It is a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
- the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
- Fig. 1 is a fixed bed intensified reaction system (upper water pipe) for preparing isopropanol based on the hydration of propylene according to the present invention, including:
- the reactor 1 is used to provide a reaction place for deionized water and propylene to prepare isopropanol.
- a plurality of fixed catalyst beds 2 are arranged in the vertical direction in the reactor, and a catalyst is arranged on the fixed catalyst bed.
- the upper and lower ends of the inside are provided with a water circulation area, and the water circulation area is used to provide a circulation space for the downstream waterway;
- the micro-interface generator 4 converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transfers it to the gas reactant, and breaks the gas reactant propylene to form micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm. Increase the mass transfer area between the gas reactant and the liquid reactant, reduce the thickness of the liquid film, and reduce the mass transfer resistance;
- Condenser 5 the condenser is communicated with the reactor for condensing the product.
- a micro-interface generator is provided above or below the plurality of fixed catalyst beds.
- the micro-interface generator is a pneumatic micro-interface generator, which is used to break propylene into micro-scale micro-sized bubbles, After the crushing is completed, the micron-sized bubbles are output to the reaction zone and mixed with the deionized water in the reaction zone to form a gas-liquid emulsion.
- a plurality of the micro-interface generators are connected with a propylene inlet pipe 6, and a plurality of the propylene inlet pipes are connected with the main pipe 7, and the main pipe is provided with a first pump body 8, so The first pump body is used to transport propylene to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes.
- an upper water pipe 9 is provided in the water circulation area, the upper water pipe is located at the upper end of the reactor, and a second pump body 12 is installed on the upper water pipe.
- the pump body is used for transporting deionized water into the reactor along the upper water pipe, and the whole reaction mixture flows from top to bottom in the reactor.
- the reactor and the condenser are connected by a material transfer pipe 11, the material transfer pipe is installed with a third pump body 13, the third pump body is used to The product in the reactor is transferred to the condenser.
- the outlet of the reactor is located at the lower end of the reactor, and the height of the inlet of the condenser is equal to the height of the upper end of the reactor, so that the reactor is filled with the reaction mixture.
- the present invention provides a fixed bed intensified reaction process for preparing isopropanol by hydrating propylene, including:
- Step 1 Working by the second pump body, transfer deionized water along the upper water pipe to the reactor;
- Step 2 Through the work of the first pump body, propylene is transported to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes;
- Step 3 The micro-interface generator breaks propylene into micron-sized micro-sized bubbles, and after the crushing is completed, outputs the micro-sized bubbles to the reactor and mixes with the deionized water in the reactor to form a gas-liquid emulsification At the same time, it contacts and reacts with a plurality of fixed catalyst beds arranged in a vertical direction to generate isopropanol;
- Step 4 In step 3, the product in the reactor is transferred to the condenser through the third pump body and along the material transfer pipe;
- Step 5 After the product is condensed in the condenser, the liquid phase part is discharged for post-treatment, and the gas phase part participates in the recycling of propylene gas.
- Fig. 2 is a fixed bed intensified reaction system (lower water pipe) based on the hydration of propylene to prepare isopropanol according to the present invention, including:
- the reactor 1 is used to provide a reaction place for deionized water and propylene to prepare isopropanol.
- a plurality of fixed catalyst beds 2 are arranged in the vertical direction in the reactor, and a catalyst is arranged on the fixed catalyst bed.
- the upper and lower ends of the inside are provided with a water circulation area, and the water circulation area is used to provide a circulation space for the downstream waterway;
- the micro-interface generator 4 which converts the pressure energy of the gas and/or the kinetic energy of the liquid into the surface energy of the bubble and transmits it to the gas reactant, and breaks the gas reactant into micron-sized bubbles with a diameter of ⁇ 1 ⁇ m and ⁇ 1mm to increase the gas
- the mass transfer area between the reactant and the liquid reactant reduces the thickness of the liquid film and reduces the mass transfer resistance;
- Condenser 5 the condenser is communicated with the reactor for condensing the product.
- a micro-interface generator is provided above or below the plurality of fixed catalyst beds.
- the micro-interface generator is a pneumatic micro-interface generator, which is used to break propylene into micro-sized micro-sized bubbles and After the crushing is completed, the micron-sized bubbles are output to the reaction zone and mixed with the deionized water in the reaction zone to form a gas-liquid emulsion.
- a plurality of the micro-interface generators are connected with a propylene inlet pipe 6, and a plurality of the propylene inlet pipes are all connected with the main pipe 7, and the first pump body 8 is installed on the main pipe.
- the first pump body is used to transport propylene to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes.
- the water circulation area is provided with a lower water pipe 10
- the lower water pipe is located at the lower end of the reactor
- the lower water pipe is installed with a second pump body 12
- the second The pump body is used for transporting deionized water into the reactor along the lower water pipe, and the whole reaction mixture flows in the reactor from bottom to top.
- the reactor and the condenser are connected by a material transfer pipe 11, and a third pump body 13 is installed on the material transfer pipe.
- the third pump body is used to transfer the The product in the reactor is transferred to the condenser.
- the outlet of the reactor is located at the lower end of the reactor, and the height of the inlet of the condenser is equal to the height of the outlet of the reactor, so that the reactor is filled with the reaction mixture.
- the present invention provides a fixed bed intensified reaction process for preparing isopropanol by hydration of propylene, including:
- Step 1 Working by the second pump body, transfer deionized water to the reactor along the lower water pipe;
- Step 2 Through the work of the first pump body, propylene is transported to the corresponding micro-interface generator along the main pipe and a plurality of the propylene inlet pipes;
- Step 3 The micro-interface generator breaks propylene into micron-sized micro-sized bubbles, and after the crushing is completed, outputs the micro-sized bubbles to the reactor and mixes with the deionized water in the reactor to form a gas-liquid emulsification At the same time, it contacts and reacts with a plurality of fixed catalyst beds arranged in a vertical direction to generate isopropanol;
- Step 4 In step 3, the product in the reactor is transferred to the condenser through the third pump body and along the material transfer pipe;
- Step 5 After the product is condensed in the condenser, the liquid phase part is discharged for post-treatment, and the gas phase part participates in the recycling of propylene gas.
- the temperature of the reactor is 160°C, and the pressure inside the reactor is 1.7Mpa;
- the gas-liquid ratio in the micro-interface generator is 800:1;
- the single-pass conversion rate of propylene is 25% after using the system and process.
- the temperature of the reactor is 170°C, and the pressure inside the reactor is 1.8Mpa;
- the gas-liquid ratio in the micro-interface generator is 800:1;
- the single-pass conversion rate of propylene is 26% after using the system and process.
- the temperature of the reactor is 180°C, and the pressure inside the reactor is 1.9Mpa;
- the gas-liquid ratio in the micro-interface generator is 800:1;
- the single-pass conversion rate of propylene is 26% after using the system and process.
- the temperature of the reactor is 190°C, and the pressure inside the reactor is 2.0Mpa;
- the gas-liquid ratio in the micro-interface generator is 800:1;
- the temperature of the reactor is 190°C, and the pressure inside the reactor is 2.2Mpa;
- the gas-liquid ratio in the micro-interface generator is 800:1;
- the single-pass conversion rate of propylene is 26% after using the system and process.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明涉及一种丙烯水合制备异丙醇的固定床强化反应系统及工艺,包括:反应器、微界面发生器和催化剂固定床等。本发明通过微界面发生器破碎丙烯气体使其形成微米尺度的微米级气泡与液态反应物去离子水混合形成气液乳化物,以增大气液两相的相界面积,并达到在较低预设操作条件范围内强化传质的效果;同时,微米级气泡能够与去离子水充分混合形成气液乳化物,通过将气液两相充分混合,能够保证系统中的去离子水与丙烯充分接触,同时保证与催化剂充分接触,有效提高丙稀的单程转化率。
Description
本发明涉及异丙醇制备技术领域,尤其涉及一种丙烯水合制备异丙醇的固定床强化反应系统及工艺。
异丙醇是一种重要的化学产品和化工原料,被广泛的应用于制药、有机原料、溶剂、香料、化妆品、塑料和涂料等领域。由于异丙醇可以替代三氯乙烷与CFC-113等危害大气环境的氟氯烃及其衍生物在制冷工业中的使用,从1990年起我国市场的异丙醇需求开始迅速增长,到2010年为止,我国异丙醇的年产能已达25万吨,但是由于需求量超过30万吨,致使我国成为亚洲地区最大的异丙醇进口国,需要不断从国外进口异丙醇以供市场需求。
近年来煤化工发展迅速,煤制合成气转制甲醇再生产烯烃技术成熟,丙烯下游产品需求量跟不上丙烯产能的扩充速度,导致丙烯产量过剩,而市场异丙醇紧缺,因此由丙烯为原料直接水合生产异丙醇可以同时缓解丙烯与异丙醇的市场压力。目前,我国异丙醇生产方法主要是丙烯气相直接水合法,最大的生产装置坐落于国内石化公司,因此针对于丙烯气相直接水合制备异丙醇工艺的改进具有十分重要的意义。
气相直接水合法最早由德国维巴公司所开发,现有气相直接水合法生产异丙醇工艺过程为液态丙烯、去离子水和循环丙烯气体一起通入反应器,反应温度180~260℃,反应压力2~2.5Mpa,丙烯气体在催化剂作用下与去离子水反应生成异丙醇,后反应产物经水洗精馏等流程进行精制即可。
该工艺对环境污染小,相对于间接水合法工艺流程更为简单而被广泛应用,但该方法在使用过程中存在明显缺点与不足:
在丙烯气体和去离子水接触过程中,气液两项混合,产生较大较多气泡,由于气泡较多较大,致使气液两项无法充分混合,并且影响与催化剂的接触,降低异丙醇制备效率,丙烯单程转化率只有6%~7%,同时系统反应效率较低,虽然丙烯可循环重复使用,但相对应的也会使能耗增加。
发明内容
为此,本发明提供一种丙烯水合制备异丙醇的固定床强化反应系统及工艺,用以提高现有技术中制备异丙醇的效率。
一方面,本发明提供一种丙烯水合制备异丙醇的固定床强化反应系统,包括:
反应器,用以为去离子水和丙烯提供反应场所制备异丙醇,所述反应器内沿竖直方向设置有多个催化剂固定床,所述催化剂固定床上设置有催化剂,所述反应器内的上下端设置有水路循环区,所述水路循环区用以为上行水路或下行水路提供循环空间;
微界面发生器,其将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物丙烯破碎形成直径≥1μm、且<1mm的微米级气泡,以提高气体反应物与液体反应物之间的传质面积、减小液膜厚度、降低传质阻力;
冷凝器,所述冷凝器与所述反应器相连通,用以对生成物进行冷凝处理。
进一步的,多个所述催化剂固定床上方或下方均设置有微界面发生器,所述微界面发生器为气动式微界面发生器,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应区内与所述反应区内的去离子水混合形成气液乳化物。
进一步的,多个所述微界面发生器上连通设置有丙烯进入管,多个所述丙烯进入管均与总管相连通,所述总管上安装有第一泵体,所述第一泵体用以将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器。
进一步的,所述水路循环区内设置有上置水管,所述上置水管位于所述反应器的上端,所述上置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述上置水管传输至所述反应器内,反应混合物整体在所述反应器内由上至下流动。
进一步的,所述水路循环区内设置有下置水管,所述下置水管位于所述反应器的下端,所述下置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述下置水管传输至所述反应器内,反应混合物整体在所述反应器内由下至上流动。
进一步的,所述反应器和所述冷凝器之间通过物料传输管相连通,所述物料传输管上安装有第三泵体,所述第三泵体用以将所述反应器内的生成物传输至所述冷凝器内。
进一步的,所述反应器出口位于反应器下端,所述冷凝器进口高度与所述反应器上端面高度相等,使得所述反应器内充满反应混合物。
进一步的,所述反应器出口位于反应器上端,所述冷凝器进口高度与所述反应器出口高度相等,使得所述反应器内充满反应混合物。
另一方面,本发明提供一种丙烯水合制备异丙醇的固定床强化反应工艺,包括:
步骤1:通过所述第二泵体工作,将去离子水沿所述上置水管或所述下置水管传输至所述反应器内;
步骤2:通过所述第一泵体工作,将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器;
步骤3:所述微界面发生器将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液乳化物,同时与沿竖直方向设置的多个所述催化剂固定床接触反应生成异丙醇;
步骤4:步骤3中所述反应器内生成物通过所述第三泵体工作沿所述物料传输管被传输至所述冷凝器内;
步骤5:生成物在所述冷凝器内被冷凝后,液相部分排出进行后处理,气相部分参与丙烯气体循环使用。
进一步的,所述反应器内的温度为160~190℃,压力为1.7~2.2Mpa。
与现有技术相比,本发明的有益效果在于,本发明通过破碎丙烯气体使其形成微米尺度的微米级气泡,微米级气泡具备常规气泡所不具备的理化性质,由球体体积及表面积的计算公式可知,在总体积不变的情况下,气泡的总表面积与单个气泡直径成反比,由此可知微米级气泡的总表面积巨大,使微米级气泡与去离子水混合形成气液乳化物,以增大气液两相的接触面积,同时保证与催化剂充分接触,并达到在较低预设操作条件范围内强化传质的效果,有效提高制备异丙醇的效率。
进一步的,反应器,用以为去离子水和丙烯提供反应场所制备异丙醇,所述反应器内沿竖直方向设置有多个催化剂固定床,所述催化剂固定床上设置有催化剂,所述反应器内的上下端设置有水路循环区,所述水路循环区用以为上行水路 或下行水路提供循环空间。
微界面发生器,其将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物破碎形成直径≥1μm、且<1mm的微米级气泡以提高气体反应物与液体反应物之间的传质面积、减小液膜厚度,降低传质阻力;
冷凝器,所述冷凝器与所述反应器相连通,用以对生成物进行冷凝处理。
进一步的,多个所述催化剂固定床上方或下方均设置有微界面发生器,所述微界面发生器为气动式微界面发生器,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应区内与所述反应区内的去离子水混合形成气液乳化物。
进一步的,多个所述微界面发生器上连通设置有丙烯进入管,多个所述丙烯进入管均与总管相连通,所述总管上安装有第一泵体,所述第一泵体用以将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器。
进一步的,所述水路循环区内设置有上置水管,所述上置水管位于所述反应器的上端,所述上置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述上置水管传输至所述反应器内,反应混合物整体在所述反应器内由上至下流动。
进一步的,所述水路循环区内设置有下置水管,所述下置水管位于所述反应器的下端,所述下置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述下置水管传输至所述反应器内,反应混合物整体在所述反应器内由下至上流动。
进一步的,所述反应器和所述冷凝器之间通过物料传输管相连通,所述物料传输管上安装有第三泵体,所述第三泵体用以将所述反应器内的生成物传输至所述冷凝器内。
进一步的,所述反应器出口位于反应器下端,所述冷凝器进口高度与所述反应器上端面高度相等,使得所述反应器内充满反应混合物,反应器空间利用率高,提高反应效率。
进一步的,所述反应器出口位于反应器上端,所述冷凝器进口高度与所述反应器出口高度相等,使得所述反应器内充满反应混合物,反应器空间利用率高,提高反应效率。
图1为本发明所述一种丙烯水合制备异丙醇的固定床强化反应系统的结构示意图(下行式);
图2为本发明所述一种丙烯水合制备异丙醇的固定床强化反应系统的结构示意图(上行式)。
1-反应器、2-催化剂固定床、4-微界面发生器、5-冷凝器、6-丙烯进入管、7-总管、8-第一泵体、9-上置水管、10-下置水管、11-物料传输管、12-第二泵体、13-第三泵体。
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
请参阅图1,其为本发明所述基于一种丙烯水合制备异丙醇的固定床强化反应系统(上置水管),包括:
反应器1,用以为去离子水和丙烯提供反应场所制备异丙醇,所述反应器内沿竖直方向设置有多个催化剂固定床2,所述催化剂固定床上设置有催化剂,所述反应器内的上下端设置有水路循环区,所述水路循环区用以为下行水路提供循环空间;
微界面发生器4,其将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物丙烯破碎形成直径≥1μm、且<1mm的微米级气泡,以提高气体反应物与液体反应物之间的传质面积、减小液膜厚度、降低传 质阻力;
冷凝器5,所述冷凝器与所述反应器相连通,用以对生成物进行冷凝处理。
请继续参阅图1,多个所述催化剂固定床上方或下方均设置有微界面发生器,所述微界面发生器为气动式微界面发生器,用以将丙烯破碎形成微米尺度的微米级气泡、并在破碎完成后将微米级气泡输出至所述反应区内与所述反应区内的去离子水混合形成气液乳化物。
请继续参阅图1,多个所述微界面发生器上连通设置有丙烯进入管6,多个所述丙烯进入管均与总管7相连通,所述总管上安装有第一泵体8,所述第一泵体用以将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器。
请继续参阅图1,所述水路循环区内设置有上置水管9,所述上置水管位于所述反应器的上端,所述上置水管上安装有第二泵体12,所述第二泵体用以将去离子水沿所述上置水管传输至所述反应器内,反应混合物整体在所述反应器内由上至下流动。
请继续参阅图1,所述反应器和所述冷凝器之间通过物料传输管11相连通,所述物料传输管上安装有第三泵体13,所述第三泵体用以将所述反应器内的生成物传输至所述冷凝器内。
请继续参阅图1,所述反应器出口位于反应器下端,所述冷凝器进口高度与所述反应器上端面高度相等,使得所述反应器内充满反应混合物。
请继续参阅图1,本发明提供一种丙烯水合制备异丙醇的固定床强化反应工艺,包括:
步骤1:通过所述第二泵体工作,将去离子水沿所述上置水管传输至所述反应器内;
步骤2:通过所述第一泵体工作,将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器;
步骤3:所述微界面发生器将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液乳化物,同时与沿竖直方向设置的多个所述催化剂固定床接触反应生成异丙醇;
步骤4:步骤3中所述反应器内生成物通过所述第三泵体工作沿所述物料传输管被传输至所述冷凝器内;
步骤5:生成物在所述冷凝器内被冷凝后,液相部分排出进行后处理,气相部分参与丙烯气体循环使用。
实施例2:
请参阅图2,其为本发明所述基于一种丙烯水合制备异丙醇的固定床强化反应系统(下置水管),包括:
反应器1,用以为去离子水和丙烯提供反应场所制备异丙醇,所述反应器内沿竖直方向设置有多个催化剂固定床2,所述催化剂固定床上设置有催化剂,所述反应器内的上下端设置有水路循环区,所述水路循环区用以为下行水路提供循环空间;
微界面发生器4,其将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物破碎形成直径≥1μm、且<1mm的微米级气泡以提高气体反应物与液体反应物之间的传质面积、减小液膜厚度,降低传质阻力;
冷凝器5,所述冷凝器与所述反应器相连通,用以对生成物进行冷凝处理。
请继续参阅图2,多个所述催化剂固定床上方或下方均设置有微界面发生器,所述微界面发生器为气动式微界面发生器,用以将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应区内与所述反应区内的去离子水混合形成气液乳化物。
请继续参阅图2,多个所述微界面发生器上连通设置有丙烯进入管6,多个所述丙烯进入管均与总管7相连通,所述总管上安装有第一泵体8,所述第一泵体用以将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器。
请继续参阅图2,所述水路循环区内设置有下置水管10,所述下置水管位于所述反应器的下端,所述下置水管上安装有第二泵体12,所述第二泵体用以将去离子水沿所述下置水管传输至所述反应器内,反应混合物整体在所述反应器内由下至上流动。
请继续参阅图2,所述反应器和所述冷凝器之间通过物料传输管11相连通,所述物料传输管上安装有第三泵体13,所述第三泵体用以将所述反应器内的生 成物传输至所述冷凝器内。
请继续参阅图2,所述反应器出口位于反应器下端,所述冷凝器进口高度与所述反应器出口高度相等,使得所述反应器内充满反应混合物。
请继续参阅图2,本发明提供一种丙烯水合制备异丙醇的固定床强化反应工艺,包括:
步骤1:通过所述第二泵体工作,将去离子水沿所述下置水管传输至所述反应器内;
步骤2:通过所述第一泵体工作,将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器;
步骤3:所述微界面发生器将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液乳化物,同时与沿竖直方向设置的多个所述催化剂固定床接触反应生成异丙醇;
步骤4:步骤3中所述反应器内生成物通过所述第三泵体工作沿所述物料传输管被传输至所述冷凝器内;
步骤5:生成物在所述冷凝器内被冷凝后,液相部分排出进行后处理,气相部分参与丙烯气体循环使用。
实施例1
使用上述系统及工艺进行异丙醇制备,其中:
所述反应器温度为160℃,所述反应器内压强为1.7Mpa;
所述微界面发生器内的气液比为800:1;
经检测,使用所述系统及工艺后,丙烯单程转化率为25%。
实施例2
使用上述系统及工艺进行异丙醇制备,其中:
所述反应器温度为170℃,所述反应器内压强为1.8Mpa;
所述微界面发生器内的气液比为800:1;
经检测,使用所述系统及工艺后,丙烯单程转化率为26%。
实施例3
使用上述系统及工艺进行异丙醇制备,其中:
所述反应器温度为180℃,所述反应器内压强为1.9Mpa;
所述微界面发生器内的气液比为800:1;
经检测,使用所述系统及工艺后,丙烯单程转化率为26%。
实施例4
使用上述系统及工艺进行异丙醇制备,其中:
所述反应器温度为190℃,所述反应器内压强为2.0Mpa;
所述微界面发生器内的气液比为800:1;
经检测,使用所述系统及工艺后,丙烯单程转化率为28%。
实施例5
使用上述系统及工艺进行异丙醇制备,其中:
所述反应器温度为190℃,所述反应器内压强为2.2Mpa;
所述微界面发生器内的气液比为800:1;
经检测,使用所述系统及工艺后,丙烯单程转化率为26%。
对比例
使用现有技术丙烯直接水合法进行异丙醇制备,其中,本对比例选用的工艺参数与所述实施例5中的工艺参数相同。
经检测,丙烯单程转化率为6%。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。
以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技 术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,包括:反应器,用以为去离子水和丙烯提供反应场所制备异丙醇,所述反应器内沿竖直方向设置有多个催化剂固定床,所述催化剂固定床上设置有催化剂,所述反应器内的上下端设置有水路循环区,所述水路循环区用以为上行水路或下行水路提供循环空间;微界面发生器,其将气体的压力能和/或液体的动能转变为气泡表面能并传递给气体反应物,将气体反应物丙烯破碎形成直径≥1μm、且<1mm的微米级气泡,以提高气体反应物与液体反应物之间的传质面积、减小液膜厚度、降低传质阻力;冷凝器,所述冷凝器与所述反应器相连通,用以对生成物进行冷凝处理。
- 根据权利要求1所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,多个所述催化剂固定床上方或下方均设置有微界面发生器,所述微界面发生器为气动式微界面发生器,用以将丙烯破碎形成微米尺度的微米级气泡、并在破碎完成后将微米级气泡输出至所述反应区内与所述反应区内的去离子水混合形成气液乳化物。
- 根据权利要求2所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,多个所述微界面发生器上连通设置有丙烯进入管,多个所述丙烯进入管均与总管相连通,所述总管上安装有第一泵体,所述第一泵体用以将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器。
- 根据权利要求2所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,所述水路循环区内设置有上置水管,所述上置水管位于所述反应器的上端,所述上置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述上置水管传输至所述反应器内,反应混合物整体在所述反应器内由上至下流动。
- 根据权利要求2所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,所述水路循环区内设置有下置水管,所述下置水管位于所述反应器的下端,所述下置水管上安装有第二泵体,所述第二泵体用以将去离子水沿所述下置水管传输至所述反应器内,反应混合物整体在所述反应器内由下至上流动。
- 根据权利要求2所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,所述反应器和所述冷凝器之间通过物料传输管相连通,所述物料传 输管上安装有第三泵体,所述第三泵体用以将所述反应器内的生成物传输至所述冷凝器内。
- 根据权利要求4所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,所述反应器出口位于反应器下端,所述冷凝器进口高度与所述反应器上端面高度相等,使得所述反应器内充满反应混合物。
- 根据权利要求5所述的一种丙烯水合制备异丙醇的固定床强化反应系统,其特征在于,所述反应器出口位于反应器上端,所述冷凝器进口高度与所述反应器出口高度相等,使得所述反应器内充满反应混合物。
- 一种丙烯水合制备异丙醇的固定床强化反应工艺,其特征在于,包括:步骤1:通过所述第二泵体工作,将去离子水沿所述上置水管或所述下置水管传输至所述反应器内;步骤2:通过所述第一泵体工作,将丙烯沿所述总管和多个所述丙烯进入管传输至对应的所述微界面发生器;步骤3:所述微界面发生器将丙烯破碎形成微米尺度的微米级气泡并在破碎完成后将微米级气泡输出至所述反应器内与所述反应器内的去离子水混合形成气液乳化物,同时与沿竖直方向设置的多个所述催化剂固定床接触反应生成异丙醇;步骤4:步骤3中所述反应器内生成物通过所述第三泵体工作沿所述物料传输管被传输至所述冷凝器内;步骤5:生成物在所述冷凝器内被冷凝后,液相部分排出进行后处理,气相部分参与丙烯气体循环使用。
- 根据权利要求9所述的一种丙烯水合制备异丙醇的固定床强化反应工艺,其特征在于,所述反应器内的温度为160~190℃,压力为1.7~2.2Mpa。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010217599.X | 2020-03-25 | ||
CN202010217599.XA CN111569786A (zh) | 2020-03-25 | 2020-03-25 | 一种丙烯水合制备异丙醇的固定床强化反应系统及工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021189637A1 true WO2021189637A1 (zh) | 2021-09-30 |
Family
ID=72122536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/092751 WO2021189637A1 (zh) | 2020-03-25 | 2020-05-28 | 一种丙烯水合制备异丙醇的固定床强化反应系统及工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111569786A (zh) |
WO (1) | WO2021189637A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114478185B (zh) * | 2020-10-28 | 2024-02-09 | 中国石油化工股份有限公司 | 一种烯烃水合工艺 |
CN114507116B (zh) * | 2020-10-28 | 2024-03-08 | 中国石油化工股份有限公司 | 一种烯烃水合反应方法 |
CN114471378A (zh) * | 2020-10-28 | 2022-05-13 | 中国石油化工股份有限公司 | 一种烯烃水合反应器及烯烃水合方法 |
CN112774579B (zh) * | 2020-12-28 | 2023-05-30 | 南京延长反应技术研究院有限公司 | 一种粗对苯二甲酸加氢精制的智能微界面反应系统及方法 |
CN112774592B (zh) * | 2020-12-28 | 2023-05-12 | 南京延长反应技术研究院有限公司 | 一种粗对苯二甲酸加氢精制的微界面反应系统及方法 |
CN113522178B (zh) * | 2021-06-30 | 2022-06-17 | 江苏新化化工有限公司 | 丙烯水合反应制备异丙醇的系统 |
CN113522177B (zh) * | 2021-06-30 | 2022-08-16 | 江苏新化化工有限公司 | 提高丙烯水合反应效果的反应器 |
CN114507133A (zh) * | 2022-03-03 | 2022-05-17 | 南京延长反应技术研究院有限公司 | 一种制备顺丁烯二酸二甲酯的强化微界面系统及方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134410A (zh) * | 1994-12-15 | 1996-10-30 | 三井东压化学株式会社 | 异丙醇的制备方法 |
CN106673955A (zh) * | 2015-11-05 | 2017-05-17 | 中国石油化工股份有限公司大连石油化工研究院 | 一种制备异丙醇的方法 |
CN210176767U (zh) * | 2019-07-04 | 2020-03-24 | 南京延长反应技术研究院有限公司 | 一种过氧化氢对孟烷的制备的强化系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49126609A (zh) * | 1973-03-28 | 1974-12-04 | ||
US4967020A (en) * | 1987-12-30 | 1990-10-30 | Mobil Oil Corporation | Process for the hydration olefins |
US7482497B2 (en) * | 2007-06-27 | 2009-01-27 | H R D Corporation | Method of making alcohols |
CN102757309B (zh) * | 2011-04-26 | 2014-09-17 | 中国石油化工股份有限公司 | 一种烯烃水合的方法 |
CN203417661U (zh) * | 2013-08-23 | 2014-02-05 | 东营市海科新源化工有限责任公司 | 新型丙烯直接水合法生产异丙醇反应器 |
CN105647577B (zh) * | 2014-11-13 | 2017-10-17 | 中国石油天然气股份有限公司 | 一种烃类连续液相加氢工艺方法及其装置 |
CN106925259A (zh) * | 2015-12-31 | 2017-07-07 | 中国石油天然气股份有限公司 | 气液相法丙烯水合制备异丙醇的催化剂及其制备方法和应用 |
CN210045220U (zh) * | 2019-01-30 | 2020-02-11 | 南京延长反应技术研究院有限公司 | 用于渣油加氢反应的侧置式微界面强化反应装置 |
CN210079476U (zh) * | 2019-03-15 | 2020-02-18 | 南京延长反应技术研究院有限公司 | 一种微界面强化沸腾床加氢反应系统 |
CN210176754U (zh) * | 2019-07-04 | 2020-03-24 | 南京延长反应技术研究院有限公司 | 一种环戊烷无催化剂氧化的强化系统 |
-
2020
- 2020-03-25 CN CN202010217599.XA patent/CN111569786A/zh active Pending
- 2020-05-28 WO PCT/CN2020/092751 patent/WO2021189637A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1134410A (zh) * | 1994-12-15 | 1996-10-30 | 三井东压化学株式会社 | 异丙醇的制备方法 |
CN106673955A (zh) * | 2015-11-05 | 2017-05-17 | 中国石油化工股份有限公司大连石油化工研究院 | 一种制备异丙醇的方法 |
CN210176767U (zh) * | 2019-07-04 | 2020-03-24 | 南京延长反应技术研究院有限公司 | 一种过氧化氢对孟烷的制备的强化系统 |
Also Published As
Publication number | Publication date |
---|---|
CN111569786A (zh) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021189637A1 (zh) | 一种丙烯水合制备异丙醇的固定床强化反应系统及工艺 | |
CN102701923B (zh) | 一种制备聚甲氧基二甲醚的系统装置及工艺 | |
WO2022011871A1 (zh) | 一种煤制乙醇的微界面反应系统及方法 | |
WO2022011870A1 (zh) | 一种煤制乙醇的反应系统及方法 | |
CN103980246A (zh) | 二氧化碳与环氧丙(乙)烷管式反应制取碳酸丙(乙)烯酯生产方法 | |
CN109748804B (zh) | 异丙醇胺的生产方法 | |
WO2021003974A1 (zh) | 基于二氧化碳原料的碳酸丙烯酯制备方法 | |
CN102151525B (zh) | 一种加氢反应装置 | |
CN213596185U (zh) | 丁烯-1分离的节能装置 | |
CN211814210U (zh) | 一种基于乙烯水合法制备乙二醇的微界面强化反应系统 | |
CN211123731U (zh) | 一种基于乙烯水合法制备乙二醇的智能控制反应系统 | |
CN102911043B (zh) | 一种乙酸和丁烯制备乙酸仲丁酯的方法 | |
CN205235931U (zh) | 一种连续化生产大分子不饱和聚醚反应装置 | |
CN1317249C (zh) | 氮肥厂或甲醇厂联产二甲醚的生产方法 | |
CN102786425A (zh) | 生产β-羟乙基乙二胺的方法 | |
WO2020155506A1 (zh) | 下置式气液强化乳化固定床反应装置及方法 | |
CN111569784A (zh) | 一种分段式丙烯水合制备异丙醇的强化反应系统及工艺 | |
CN101880218B (zh) | 一种甲醇脱水制备二甲醚的工艺及其专用设备 | |
WO2021189639A1 (zh) | 一种离子液体催化丙烯水合的强化反应系统及工艺 | |
CN215627704U (zh) | 一种碳四、芳烃装置凝液余热的联合利用系统 | |
CN104829435A (zh) | 一种利用新型催化精馏规整填料生产mtbe的装置和方法 | |
CN201358217Y (zh) | 甲醇在加压条件下气相脱水生成二甲醚的反应器 | |
WO2021189638A1 (zh) | 一种浸没式丙烯水合微界面强化反应系统及工艺 | |
CN106554274A (zh) | 催化蒸馏合成水杨酸异丙酯的工艺 | |
CN104672065A (zh) | 高浓度异丁烯采用混相床反应器生产mtbe的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20927006 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20927006 Country of ref document: EP Kind code of ref document: A1 |