WO2021046960A1 - 散热装置及具有该装置的试剂仓 - Google Patents

散热装置及具有该装置的试剂仓 Download PDF

Info

Publication number
WO2021046960A1
WO2021046960A1 PCT/CN2019/111370 CN2019111370W WO2021046960A1 WO 2021046960 A1 WO2021046960 A1 WO 2021046960A1 CN 2019111370 W CN2019111370 W CN 2019111370W WO 2021046960 A1 WO2021046960 A1 WO 2021046960A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
air
cooling fin
heat dissipation
radiator
Prior art date
Application number
PCT/CN2019/111370
Other languages
English (en)
French (fr)
Inventor
吴国银
Original Assignee
苏州长光华医生物医学工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州长光华医生物医学工程有限公司 filed Critical 苏州长光华医生物医学工程有限公司
Publication of WO2021046960A1 publication Critical patent/WO2021046960A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • F25D23/066Liners
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing

Definitions

  • the invention relates to a heat dissipation device, in particular to a heat dissipation device used for dissipating heat from a reagent bin in a medical chemiluminescence equipment and a reagent bin provided with the heat dissipation device.
  • the chemiluminescence equipment needs to draw a certain amount of reagent from the reagent bottle in the reagent compartment when sampling and analyzing.
  • the reagent compartment needs to reach and maintain at 2 ⁇ 8°C within 30 minutes of starting to maintain the reagent temperature. And it is required that the noise level of the whole machine is lower than 79dB when cooling and dissipating heat.
  • the existing method generally adopts a method of fixing a refrigeration module at the bottom of the reagent compartment for refrigeration, and the heat is discharged through an axial fan.
  • the axial flow fan is generally noisy and the direction of the airflow for heat dissipation is turbulent, the heat dissipation efficiency is low, and the user experience of the entire refrigeration module is poor.
  • a heat dissipating device comprising: a refrigeration module, a radiator correspondingly arranged and in contact with the refrigeration module, a cover provided on the radiator and forming an air duct, an air supply device and an air suction device arranged corresponding to the air duct opening
  • a plurality of radiators are arranged in sequence to form a U-shaped or horseshoe-shaped structure with a tightened opening, or a triangular structure with a sealed or unsealed inner cavity
  • the casings are arranged continuously or spliced in sequence along the radiators arranged in sequence to form an opening Tightened U-shaped or horseshoe-shaped continuous air duct
  • the air supply device is arranged at one end of the air duct and an air inlet is formed at the port
  • the air exhaust device is arranged at the other end of the air duct and is at the port Form a suction vent.
  • a plurality of radiators are connected end-to-end or partly connected end-to-end or arranged next to each other in turn; the air supply direction of the air supply device or the suction direction of the air exhaust device is parallel or nearly parallel to the heat dissipation fins of the radiator .
  • the distance between the inner wall of the casing and the radiating fins of the heat sink is 4-6 mm.
  • the inner wall of the casing is arranged at a distance of 5 mm from the radiating fins of the radiator, and the air supply device or the air suction device is a snail fan with a blower structure or a blower working mode.
  • the refrigeration module includes: a refrigeration fin, and the hot end of the refrigeration fin is attached to the radiator.
  • the cooling fin is a semiconductor cooling fin
  • the surface of the radiator is provided with a cooling fin groove that accommodates and contacts the cooling fin
  • the cooling fin groove is arranged corresponding to the cooling fin and has a different depth. Higher than the thickness or height of the cooling fins.
  • the refrigeration module further includes: a heat insulation component arranged corresponding to the refrigeration fin and isolating the heat of the hot end or the hot end of the refrigeration fin, and a heat insulation component in contact with the heat insulation component and passing through the insulation
  • the thermal component is in contact with the cold end of the refrigeration fin to conduct a conductive pressure block, and the heat insulation component is provided with a hollow cavity through which the conductive pressure block passes to contact the refrigeration fin.
  • the heat insulation assembly includes: a heat insulation mounting part correspondingly arranged and connected to the radiator, and a heat insulation body disposed in the middle relative to the heat insulation mounting part, and the hollow cavity is provided In the heat-insulating body, the periphery of the heat-insulating body protrudes from the side in contact with the conductive pressure block, and the periphery of the side of the heat-insulating body in contact with the cooling sheet is provided with an edge contacting the edge of the cooling sheet. Step surface or inner concave surface.
  • the conductive pressure block includes: a conductive body and a protruding contact part protruding on the conductive body and corresponding to the hollow cavity and passing through the hollow cavity to contact the cold end of the cooling fin.
  • a reagent compartment includes: a reagent compartment body and a heat dissipation device arranged at the bottom of the reagent compartment body, a heat preservation layer is arranged on the side of the reagent compartment body, and the heat dissipation device is the aforementioned heat dissipation device.
  • the heat dissipation device and the reagent compartment with the heat dissipation structure dissipate heat from the reagent compartment body or the parts to be dissipated through a plurality of radiators arranged in sequence, and the radiators are spliced or connected in sequence to set the largest heat dissipation area to the reagent compartment body or the waiting parts.
  • the heat dissipating element dissipates heat
  • a plurality of radiators are arranged in sequence to form a U-shaped or horseshoe-shaped structure with an opening and tightening, or a triangular structure with a sealed or unsealed inner cavity, which is suitable for a circular or nearly circular structure of the reagent chamber body or
  • the parts to be dissipated use the largest possible heat dissipation area to dissipate the reagent compartment body or parts to be dissipated.
  • the casings are arranged continuously or spliced in sequence along the radiators arranged in sequence to form a continuous air duct with a U-shaped or horseshoe-shaped structure with a tight opening ,
  • the air supply device delivers air from one end of the air duct, and the air exhaust device extracts air from the other end of the air duct.
  • An orderly air flow is formed through the air duct.
  • the heat is taken away from the radiator after the air is delivered through one end of the air duct.
  • the other end is drawn out by an exhaust fan, which can quickly take away the heat on the surface of the radiator and radiating fins, improve the cooling efficiency, and at the same time form an orderly and effective heat dissipation air flow through the air duct for effective heat dissipation.
  • FIG. 1 is a schematic diagram of a part of the structure of a reagent compartment according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a partial structure of a reagent compartment according to an embodiment of the present invention from another perspective;
  • FIG. 3 is a schematic diagram of a part of the structure of the reagent compartment with the cover removed according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a part of the structure of a radiator and an air supply device according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a part of the structure of a heat dissipation device according to an embodiment of the present invention.
  • the heat dissipation device 100 includes: a refrigeration module 20, a radiator 40 corresponding to the refrigeration module 20, and a casing covering the radiator 40 and forming an air duct 60.
  • the air supply device 80 and the air exhaust device 90 are arranged corresponding to the air duct opening.
  • a plurality of heat sinks 40 are arranged in sequence to form a U-shaped or horseshoe-shaped structure with a tightened opening, or a triangular structure with a sealed or unsealed inner cavity.
  • the heat dissipation device 100 of this embodiment is mainly suitable for installation on a circular, nearly circular, or elliptical device or heat dissipation surface that requires heat dissipation.
  • the casing 60 of the present embodiment is continuously arranged or spliced and arranged along the radiators 40 arranged in sequence to form a continuous air duct with a U-shaped or horseshoe-shaped structure with a tight opening.
  • the air blowing device 80 of this embodiment is arranged at one end of the air duct and forms an air inlet at the port.
  • the exhaust device 90 is arranged at the other end of the air duct and forms an exhaust port at the port.
  • the heat sink 40 of this embodiment includes a heat dissipation contact portion 42 and a heat dissipation fin 44 provided on the heat dissipation contact portion 42.
  • the multiple radiators 40 in this embodiment are connected end-to-end, partially connected end-to-end, or arranged next to each other end-to-end, and are connected in series through the air duct formed by the cover 60.
  • blowing direction of the blowing device 80 or the blowing direction of the blowing device 90 of this embodiment is parallel or nearly parallel to the heat dissipation fins 44 of the radiator 40.
  • the heat sink 100 of this embodiment is provided with three radiators 40 and three refrigeration modules 20 respectively corresponding to the three radiators 40.
  • the corners of the splicing are connected by the cover 60 to form a continuous wind. Tao.
  • the air supply device 80 and the air exhaust device 90 of this embodiment adopt a snail-shaped snail fan, and the air supply or exhaust is realized by the different turning of the fan.
  • the inner wall of the casing 60 of this embodiment is arranged at a distance of 4-6 mm from the heat dissipation fins of the heat sink 40.
  • the inner wall of the casing 60 of this embodiment is arranged at a distance of 5 mm from the radiating fins of the radiator 40.
  • the refrigeration module 20 of this embodiment includes: refrigeration fins 22.
  • the hot end of the cooling fin 22 in this embodiment is attached to the radiator 40.
  • the hot end of the cooling fin 22 of this embodiment is attached to the heat dissipation contact portion 42 of the radiator 40.
  • the surface of the radiator 40 of this embodiment is provided with a cooling fin groove 422 that accommodates and contacts the cooling fin 22.
  • the size and depth of the cooling fin groove 422 in this embodiment are set corresponding to the cooling fin 22, and are not higher than the thickness or height of the cooling fin 22.
  • the groove 422 of this embodiment is provided on the upper surface of the heat dissipation contact portion 42 of the heat sink 40 or a surface close to the part to be dissipated.
  • the refrigeration fin of this embodiment is a semiconductor refrigeration fin.
  • the refrigeration module 20 of this embodiment further includes: a heat insulation component 24 arranged corresponding to the cooling fin 22 and isolating the heat at the hot end or the hot end of the cooling fin 22, and contacting the heat insulation component 24 and passing through the heat insulation component 24 and The cold end of the cooling fin 22 contacts the conductive conductive pressure block 26.
  • the heat insulation assembly 24 is provided with a hollow cavity 246 through which the conductive pressure block 26 passes to contact the cooling fin 22.
  • the heat insulation assembly 24 of this embodiment includes: a heat insulation mounting part 242 correspondingly provided and connected to the radiator 40, and a heat insulation main body 244 disposed in the middle relative to the heat insulation mounting part 242.
  • the hollow cavity 246 of this embodiment is provided in the heat insulation main body 244.
  • the peripheral edge portion of the thermal insulation body 244 of this embodiment protrudes from the side contacting the conductive pressure block 26.
  • the peripheral edge of the side of the heat insulating body 244 in contact with the cooling fin 22 is provided with a stepped surface or an inner concave surface in contact with the edge of the cooling fin 22 in this embodiment.
  • the conductive pressure block 26 of this embodiment includes: a conductive body 262, and a convex contact portion 264 protrudingly provided on the conductive body 262 and corresponding to the hollow cavity 246 and passing through the hollow cavity 246 to contact and conduct the cold end of the cooling fin 22 .
  • the reagent compartment 102 of an embodiment of the present invention includes: a reagent compartment body 70 and a heat dissipation device 100 provided at the bottom of the reagent compartment body 70.
  • the side surface of the reagent compartment body 70 of this embodiment is provided with a heat preservation layer.
  • the thermal insulation layer of the reagent chamber body 70 of this embodiment is formed by wrapping thermal insulation cotton.
  • the thermal insulation layer on the side of the reagent chamber body 70 is formed by winding two layers of thermal insulation cotton.
  • the heat dissipating device 100 of this embodiment is the aforementioned heat dissipating device, which will not be repeated here.
  • the heat sink 100 is arranged at the bottom of the reagent chamber body 70, and the three radiators 40 of the heat sink 100 are connected in series through the air duct.
  • a snail fan is arranged at the end of the first radiator 40 as an air blowing device 80 to blow air against the radiating fins 44 of the radiator 40, and the blowing direction is parallel to the radiating fins 44.
  • Another snail fan is arranged at the tail of the third radiator 40 as the air extraction device 90 for air extraction, and the direction of air extraction is parallel or nearly parallel to the heat dissipation fins 44. In this way, the airflow quickly removes the heat on the surface of the heat dissipation fins 44 .
  • the near-parallel state in this embodiment refers to the parallel arrangement, and the deviation does not exceed 30°. Preferably, the parallel deviation does not exceed 15°.
  • the space between the serially spliced casing 60 forming the air duct and the radiator fin 44 is 4-6 mm, and the preferred distance is about 5 mm, which improves the laminar flow level of the airflow and thereby improves the heat dissipation efficiency of the radiator fin 44.
  • the side surface of the reagent chamber body 70 is insulated by winding and wrapping two layers of insulation cotton to form an insulation layer.
  • the snail fan is turned on first, and then the refrigerating fins are turned on, so that the heat of the hot end of the refrigerating fins 22 can be led away for the first time when the refrigerating fins 22 start working, and the refrigeration speed of the reagent chamber is increased.
  • the hot end of the cooling fin 22 is attached to the upper surface of the radiator 40, that is, the heat dissipation contact portion 42.
  • a cold fin groove 422 is provided on the upper surface of the radiator 40, that is, the heat dissipation contact portion 42. The depth of the cold fin groove 422 is not higher than that of the cooling fin 22.
  • a deep groove with a thickness or height of about 0.5 mm has the cooling fins 22 embedded therein.
  • the outer ring of the reagent chamber body 70 of the reagent chamber 102 of the present invention is wrapped by two layers of 10 mm thermal insulation cotton to keep the chamber body warm.
  • Three refrigeration modules 20 are arranged at the bottom of the reagent compartment body 70.
  • the hot ends of the refrigeration fins 22 of the refrigeration module 20 are directly attached to the fin-type radiator 40.
  • the three radiators 40 are connected in turn through the casing to form a wind that is connected end to end in turn.
  • a snail fan as an air blowing device 80 is arranged at the end of the first radiator 40 to blow air against the radiator 40, and the blowing direction is parallel to the direction of the radiating fins 44.
  • a snail fan as an exhaust device 90 is arranged at the rear of the third radiator 40 for exhausting air.
  • the cover 60 forming the air duct and the heat dissipation fins 44 maintain a gap of about 5 mm, and the airflow direction is parallel to the direction of the heat dissipation fins, which can quickly remove heat from the surface of the heat dissipation fins and improve the cooling efficiency.
  • the invention uses only two snail fans. Under the same negative pressure, the noise of the snail fan is more than 5dB lower than that of the axial flow fan, which can achieve a lower overall noise level, which improves the performance of the radiator 40 of the reagent compartment. Reduce noise while cooling efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热装置(100)及试剂仓(102),包括:制冷模块(20)、与制冷模块(20)相应设置并接触的散热器(40)、罩设在散热器(40)上的罩壳(60)、送风装置(80)与抽风装置(90),多个散热器(40)依次设置形成开口收紧的U型或马蹄形结构、或形成内腔为封口或未封口的三角形结构,罩壳(60)沿散热器(40)连续设置或依次拼接设置形成开口收紧型的U型或马蹄形结构的连续风道,送风装置(80)设置在风道的一端并于端口形成进风口,抽风装置(90)设置在风道的另一端并于端口形成抽风口;散热装置(100)及试剂仓(102),通过多个依次设置的散热器(40)对待散热件进行散热,罩壳(60)沿散热器(40)设置形成开口收紧型的U型或马蹄形结构的连续风道,送风装置(80)从风道的一端送风,抽风装置(90)从另一端抽风,形成有序气流,迅速带走散热器(40)热量,提高制冷效率。

Description

散热装置及具有该装置的试剂仓 技术领域
本发明涉及一种散热装置,特别涉及一种用于对医学化学发光设备中的试剂仓进行散热的散热装置及具有该散热装置的试剂仓。
背景技术
化学发光设备在进行取样分析时需要从试剂仓的试剂瓶中吸取一定量的试剂。试剂仓需要在开机30min内达到并维持在2~8℃以维持试剂温度。并且要求制冷散热时整机噪音水平低于79dB。现有的一般采用在试剂仓底部固定制冷模块方式进行制冷,热量通过轴流风扇排出。但是,由于轴流风扇一般噪声较大,且散热的气流方向紊乱,造成散热效率偏低,整个制冷模块的用户体验较差。
发明内容
基于此,有必要提供一种可提高散热效率的散热装置。
同时,提供一种可提高散热效率的试剂仓。
一种散热装置,包括:制冷模块、与所述制冷模块相应设置并接触的散热器、罩设在所述散热器上并形成风道的罩壳、与风道口相应设置的送风装置与抽风装置,多个散热器依次设置形成开口收紧的U型或马蹄形结构、或形成内腔为封口或未封口的三角形结构,所述罩壳沿依次设置的散热器连续设置或依次拼接设置形成开口收紧型的U型或马蹄形结构的连续风道,所述送风装置设置在所述风道的一端并于端口形成进风口,所述抽风装置设置在所述风道的另一端并于端口形成抽风口。
在优选的实施例中,多个散热器首尾连接或首尾部分连接或首尾依次紧邻设置;所述送风装置的送风方向、或抽风装置的抽风方向平行或近平行于散热器的散热鳍片。
在优选的实施例中,所述罩壳内壁间距所述散热器的散热鳍片4-6mm设置。
在优选的实施例中,所述罩壳内壁间距所述散热器的散热鳍片5mm设置,所述送风装置或抽风装置为鼓风机结构或鼓风机工作方式工作的蜗牛风扇。
在优选的实施例中,所述制冷模块包括:制冷片,所述制冷片的热端与所述散热器贴合。
在优选的实施例中,所述制冷片为半导体制冷片,所述散热器表面设置有容纳并接触所述制冷片的冷片凹槽,所述冷片凹槽与制冷片相应设置且深度不高于制冷片厚度或高度。
在优选的实施例中,所述制冷模块还包括:与所述制冷片相应设置并隔离制冷片热端或热端热量的隔热组件、及与所述隔热组件接触并穿过所述隔热组件与所述制冷片冷端接触传导的传导压块,所述隔热组件上设置有供所述传导压块穿过以与所述制冷片接触的中空腔。
在优选的实施例中,所述隔热组件包括:与所述散热器相应设置并连接的隔热安装部、及相对所述隔热安装部设置在中部的隔热主体,所述中空腔设置在隔热主体中,所述隔热主体的周边于与所述传导压块接触的一面凸出设置,所述隔热主体与所述制冷片接触的一面的周边设置有与制冷片边缘接触的台阶面或内凹面。
在优选的实施例中,所述传导压块包括:传导主体、及凸设在所述传导主体上与所述中空腔相应设置并穿过中空腔与制冷片冷端接触的凸出接触部。
一种试剂仓,包括:试剂仓本体及设置在所述试剂仓本体底部的散热装置,所述试剂仓本体侧面设置有保温层,所述散热装置为上述散热装置。
上述散热装置及具有该散热结构的试剂仓,通过多个依次设置的散热器对试剂仓本体或待散热件进行散热,散热器依次拼接或连接设置以尽量设置最大散热面积对试剂仓本体或待散热件进行散热,多个散热器依次设置形成开口收紧型的U型或马蹄形结构、或形成内腔为封口或未封口的三角形结构,适用于圆形或近圆形结构的试剂仓本体或待散热件,以尽量最大的散热面积对试剂仓本体或待散热件进行散热,罩壳沿依次设置的散热器连续设置或依次拼接设置形成开口收紧型的U型或马蹄形结构的连续风道,送风装置从风道的一端进行送风,抽风装置从风道的另一端进行抽风,通过风道形成有序的气流,通过风道一端送风对散热器进行散热后带走的热量从另一端通过抽风机抽出,可以迅速带走散热器、散热鳍片表面的热量,提高制冷效率,同时通过风道形成有序有效的散 热气流,进行有效散热。
附图说明
图1为本发明一实施例的试剂仓的部分结构示意图;
图2为本发明一实施例的试剂仓的另一视角的部分结构示意图;
图3为本发明一实施例的去掉罩壳的试剂仓的部分结构示意图;
图4为本发明一实施例的散热器与送风装置的部分结构示意图;
图5为本发明一实施例的散热装置的部分结构示意图。
具体实施方式
如图1至图5所示,本发明一实施例的散热装置100,包括:制冷模块20、与制冷模块20相应设置的散热器40、罩设在散热器40上并形成风道的罩壳60、与风道口相应设置的送风装置80与抽风装置90。
多个散热器40依次设置形成开口收紧的U型或马蹄形结构、或形成内腔为封口或未封口的三角形结构。本实施例的散热装置100主要适用于安装在圆形、近圆形、或椭圆形的需要散热的装置或散热面上。
进一步,本实施例的罩壳60沿依次设置的散热器40连续设置或依次拼接设置形成开口收紧型的U型或马蹄形结构的连续风道。
本实施例的送风装置80设置在风道的一端并于端口形成进风口。抽风装置90设置在风道的另一端并于端口形成抽风口。
本实施例的散热器40包括:散热接触部42、及设置在散热接触部42上的散热鳍片44。
本实施例的多个散热器40首尾连接或首尾部分连接或首尾依次紧邻设置,通过罩壳60形成的风道串联。
进一步,本实施例的送风装置80的送风方向、或抽风装置90的抽风方向平行或近平行于散热器40的散热鳍片44。
为了方便安装布置,便于拼接组装,本实施例的散热装置100设置有三个散热器40、分别与三个散热器40相应设置的三个制冷模块20,拼接拐角处通过罩壳60连通形成连续风道。
优选的,本实施例的送风装置80、抽风装置90采用蜗牛状的蜗牛风扇,通过风 扇的不同转向实现送风或抽风。
进一步,本实施例的罩壳60内壁间距散热器40的散热鳍片4-6mm设置。优选的,本实施例的罩壳60内壁间距散热器40的散热鳍片5mm设置。
进一步,本实施例的制冷模块20包括:制冷片22。本实施例的制冷片22的热端与散热器40贴合。进一步,本实施例的制冷片22的热端与散热器40的散热接触部42贴合。为了限位、定位制冷片22,本实施例的散热器40表面设置有容纳并接触制冷片22的冷片凹槽422。本实施例的冷片凹槽422大小、深度与制冷片22相应设置,且不高于制冷片22厚度或高度。
以工作状态或正常使用状态作为参考,本实施例的凹槽422设置在散热器40的散热接触部42的上表面或靠近待散热件的一面。
优选的,本实施例的制冷片为半导体制冷片。
进一步,本实施例的制冷模块20还包括:与制冷片22相应设置并隔离制冷片22热端或热端热量的隔热组件24、及与隔热组件24接触并穿过隔热组件24与制冷片22冷端接触传导的传导压块26。隔热组件24上设置有供传导压块26穿过以与制冷片22接触的中空腔246。
进一步,本实施例的隔热组件24包括:与散热器40相应设置并连接的隔热安装部242、及相对隔热安装部242设置在中部的隔热主体244。本实施例的中空腔246设置在隔热主体244中。
为了方便加工,同时为使传导压块26更好地与隔热主体244接触定位,本实施例的隔热主体244的周边边缘部位、于与传导压块26接触的一面凸出设置。
本实施例的隔热主体244与制冷片22接触的一面的周边边缘位置设置有与制冷片22边缘接触的台阶面或内凹面。
进一步,本实施例的传导压块26包括:传导主体262、及凸设在传导主体262上与中空腔246相应设置并穿过中空腔246与制冷片22冷端接触传导的凸出接触部264。
如图1至3所示,本发明一实施例的试剂仓102,包括:试剂仓本体70、及设置在试剂仓本体70底部的散热装置100。
本实施例的试剂仓本体70侧面设置有保温层。本实施例的试剂仓本体70的保温 层为保温棉包裹形成。优选的,试剂仓本体70侧部的保温层通过两层保温棉缠绕形成。本实施例的散热装置100为上述散热装置,在此不再赘述。
本发明通过将试剂仓本体70底部设置散热装置100,散热装置100的三个散热器40首尾通过风道串联。在第一个散热器40的端部布置蜗牛风扇作为送风装置80对着散热器40的散热鳍片44吹风,吹风方向与散热鳍片44平行。在第三个散热器40的尾部布置另一个蜗牛风扇作为抽风装置90进行抽风,抽风方向平行或近平行于散热鳍片44,通过这种方式使得气流快速将散热鳍片44表面的热量带走。本实施例的近平行状态指平行设置,偏差不超过30°。优选的,平行偏差不超过15°。
本实施例中形成风道的串联拼接罩壳60与散热器鳍片44间距4-6mm,优选的间距约5mm,提高气流的层流水平,进而提高散热鳍片44的散热效率。
本实施例的试剂仓本体70侧面通过两层保温棉缠绕包裹形成保温层进行保温。整机制冷工作时,先开启蜗牛风扇,再打开制冷片,使得制冷片22开始工作时热端的热量可以第一时间被导走,提高试剂仓制冷速度。制冷片22热端与散热器40上表面即散热接触部42贴合,在散热器40上表面即散热接触部42开设冷片凹槽422,冷片凹槽422深度不高于制冷片22的厚度或高度如0.5mm左右的深凹槽,将制冷片22嵌入其中。
本发明的试剂仓102的试剂仓本体70外圈通过两层10mm的保温棉包裹,用以对仓体的保温。在试剂仓本体70底部布置三个制冷模块20,制冷模块20的制冷片22的热端与鳍片式散热器40直接贴合,三个散热器40通过罩壳依次连接形成依次首尾相连的风道,在第一个散热器40端部布置作为送风装置80的蜗牛风扇对着散热器40吹风,吹风方向与散热鳍片44方向平行。
第三个散热器40尾部布置有作为抽风装置90的蜗牛风扇进行抽风。形成风道的罩壳60与散热鳍片44保持约5mm间隙,气流方向与散热鳍片方向平行,可以迅速带走散热鳍片表面的热量,提高制冷效率。同时,该发明仅使用两个蜗牛风扇,在相同负压的情况下,蜗牛风扇的噪音要比轴流风扇低5dB以上,可以实现更低的整体噪音水平,在提高试剂仓的散热器40的散热效率的同时降低噪声。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但 并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
发明概述
技术问题
问题的解决方案
发明的有益效果

Claims (10)

  1. 一种散热装置,其特征在于,包括:制冷模块、与所述制冷模块相应设置并接触的散热器、罩设在所述散热器上并形成风道的罩壳、与风道口相应设置的送风装置与抽风装置,多个散热器依次设置形成开口收紧的U型或马蹄形结构、或形成内腔为封口或未封口的三角形结构,所述罩壳沿依次设置的散热器连续设置或依次拼接设置形成开口收紧型的U型或马蹄形结构的连续风道,所述送风装置设置在所述风道的一端并于端口形成进风口,所述抽风装置设置在所述风道的另一端并于端口形成抽风口。
  2. 根据权利要求1所述的散热装置,其特征在于,多个散热器首尾连接或首尾部分连接或首尾依次紧邻设置;所述送风装置的送风方向、或抽风装置的抽风方向平行或近平行于散热器的散热鳍片。
  3. 根据权利要求1所述的散热装置,其特征在于,所述罩壳内壁间距所述散热器的散热鳍片4-6mm设置。
  4. 根据权利要求1所述的散热装置,其特征在于,所述罩壳内壁间距所述散热器的散热鳍片5mm设置,所述送风装置或抽风装置为鼓风机结构或鼓风机工作方式工作的蜗牛风扇。
  5. 根据权利要求1至4任意一项所述的散热装置,其特征在于,所述制冷模块包括:制冷片,所述制冷片的热端与所述散热器贴合。
  6. 根据权利要求5所述的散热装置,其特征在于,所述制冷片为半导体制冷片,所述散热器表面设置有容纳并接触所述制冷片的冷片凹槽,所述冷片凹槽与制冷片相适应设置且深度不高于制冷片厚度或高度。
  7. 根据权利要求5所述的散热装置,其特征在于,所述制冷模块还包括:与所述制冷片相应设置并隔离制冷片热端或热端热量的隔热组件、及与所述隔热组件接触并穿过所述隔热组件与所述制冷片冷端接触传导的传导压块,所述隔热组件上设置有供所述传导压块穿过以与所述制冷片接触的中空腔。
  8. 根据权利要求7所述的散热装置,其特征在于,所述隔热组件包括:与所述散热器相应设置并连接的隔热安装部、及相对所述隔热安装部设置在中部的隔热主体,所述中空腔设置在隔热主体中,所述隔热主体的周边于与所述传导压块接触的一面凸出设置,所述隔热主体与所述制冷片接触的一面的周边设置有与制冷片边缘接触的台阶面或内凹面。
  9. 根据权利要求7所述的散热装置,其特征在于,所述传导压块包括:传导主体、及凸设在所述传导主体上与所述中空腔相应设置并穿过中空腔与制冷片冷端接触的凸出接触部。
  10. 一种试剂仓,其特征在于,包括:试剂仓本体及设置在所述试剂仓本体底部的散热装置,所述试剂仓本体侧面设置有保温层,所述散热装置为权利要求1-9任意一项所述散热装置。
PCT/CN2019/111370 2019-09-11 2019-10-16 散热装置及具有该装置的试剂仓 WO2021046960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910858680.3 2019-09-11
CN201910858680.3A CN110595131B (zh) 2019-09-11 2019-09-11 散热装置及具有该装置的试剂仓

Publications (1)

Publication Number Publication Date
WO2021046960A1 true WO2021046960A1 (zh) 2021-03-18

Family

ID=68858824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111370 WO2021046960A1 (zh) 2019-09-11 2019-10-16 散热装置及具有该装置的试剂仓

Country Status (2)

Country Link
CN (1) CN110595131B (zh)
WO (1) WO2021046960A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604550Y (zh) * 2003-03-17 2004-02-25 微星科技股份有限公司 散热装置
US6920044B2 (en) * 2003-10-03 2005-07-19 Chuan-Hung Lin Extendible and flexible heat-dissipation air conduit base as computer heat dissipation device
CN201242715Y (zh) * 2008-05-09 2009-05-20 无锡职业技术学院 笔记本电脑散热装置
CN107589592A (zh) * 2017-09-08 2018-01-16 深圳市华星光电技术有限公司 用于背光模组的散热结构及背光模组
CN108226462A (zh) * 2018-03-05 2018-06-29 苏州长光华医生物医学工程有限公司 一种制冷效果好的免疫分析仪试剂仓
CN207866713U (zh) * 2017-12-28 2018-09-14 深圳市新产业生物医学工程股份有限公司 试剂仓及化学发光检测仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2795719Y (zh) * 2004-10-12 2006-07-12 葛云震 双向送排风自洁型空调外机
CN205103263U (zh) * 2015-10-28 2016-03-23 四川迈克生物医疗电子有限公司 试剂仓装置及样本分析仪
CN208074666U (zh) * 2017-12-21 2018-11-09 广州亮点灯饰有限公司 一种快速散热的led导轨灯
CN208255241U (zh) * 2018-03-05 2018-12-18 苏州长光华医生物医学工程有限公司 一种制冷效果好的免疫分析仪试剂仓

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604550Y (zh) * 2003-03-17 2004-02-25 微星科技股份有限公司 散热装置
US6920044B2 (en) * 2003-10-03 2005-07-19 Chuan-Hung Lin Extendible and flexible heat-dissipation air conduit base as computer heat dissipation device
CN201242715Y (zh) * 2008-05-09 2009-05-20 无锡职业技术学院 笔记本电脑散热装置
CN107589592A (zh) * 2017-09-08 2018-01-16 深圳市华星光电技术有限公司 用于背光模组的散热结构及背光模组
CN207866713U (zh) * 2017-12-28 2018-09-14 深圳市新产业生物医学工程股份有限公司 试剂仓及化学发光检测仪
CN108226462A (zh) * 2018-03-05 2018-06-29 苏州长光华医生物医学工程有限公司 一种制冷效果好的免疫分析仪试剂仓

Also Published As

Publication number Publication date
CN110595131A (zh) 2019-12-20
CN110595131B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2018068572A1 (zh) 一种高效散热的防水壳体及具有其的防水舞台灯
KR101683948B1 (ko) 냉온장 컵홀더
KR20140036055A (ko) 냉온장 컵홀더
TWI437951B (zh) 散熱裝置
JP2008159688A (ja) 電子機器の冷却構造
US8297062B2 (en) Heat-dissipating device for supplying cold airflow
CN104812222B (zh) 散热结构及具有该散热结构的电子装置
TWM295285U (en) Case housing with thermoelectric cooling apparatus
US20230210596A1 (en) Hair-removal apparatus
KR20120066212A (ko) 자동차의 냉온장고
WO2021046960A1 (zh) 散热装置及具有该装置的试剂仓
WO2022022041A1 (zh) 变流器模块和变流器机柜
US20110192572A1 (en) Heat exchanger
WO2021196506A1 (zh) 一种脱毛仪以及半导体制冷片
KR20140066889A (ko) 냉온장 컵홀더
WO2016192298A1 (zh) 传冷装置及具有该传冷装置的半导体制冷箱
CN211043089U (zh) 散热装置及具有该装置的试剂仓
CN208509308U (zh) 一种具有散热风路的led开关电源
JP6156913B2 (ja) 電子装置
EP3684142A3 (en) Induction heating device having improved cooling structure
JP2015118783A (ja) 冷却装置
WO2016123992A1 (zh) 换热装置及具有其的半导体制冷冰箱
CN210512286U (zh) 母乳冷藏装置及薄型高效散热机构
CN101452194B (zh) 投影装置
JP2005294802A (ja) 放熱モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944687

Country of ref document: EP

Kind code of ref document: A1