WO2021043167A1 - 一种碳化硅单晶抛光片衬底的最终清洗方法 - Google Patents

一种碳化硅单晶抛光片衬底的最终清洗方法 Download PDF

Info

Publication number
WO2021043167A1
WO2021043167A1 PCT/CN2020/113033 CN2020113033W WO2021043167A1 WO 2021043167 A1 WO2021043167 A1 WO 2021043167A1 CN 2020113033 W CN2020113033 W CN 2020113033W WO 2021043167 A1 WO2021043167 A1 WO 2021043167A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
ultrapure water
carbide single
hydrogen peroxide
single crystal
Prior art date
Application number
PCT/CN2020/113033
Other languages
English (en)
French (fr)
Inventor
徐伟
魏汝省
李斌
王英民
何超
靳霄曦
毛开礼
侯晓蕊
王程
马康夫
Original Assignee
山西烁科晶体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山西烁科晶体有限公司 filed Critical 山西烁科晶体有限公司
Publication of WO2021043167A1 publication Critical patent/WO2021043167A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0035Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like
    • B08B7/0057Cleaning by methods not provided for in a single other subclass or a single group in this subclass by radiant energy, e.g. UV, laser, light beam or the like by ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Definitions

  • the invention relates to a final cleaning method for a silicon carbide single crystal polished wafer substrate, and belongs to the technical field of surface purification of semiconductor materials.
  • silicon carbide Because silicon carbide has a wide band gap, high breakdown electric field, high thermal conductivity, low thermal expansion coefficient, and high temperature stability, it plays an important role in the application of high-power and high-temperature electronic devices. Because of the high-grade commercial devices, the silicon carbide substrate is required to have a defect-free surface and an ultra-clean surface. Wafer cleaning after CMP chemical mechanical polishing is considered to be the most important step in the substrate preparation process. Many silicon carbide wafers after chemical mechanical polishing have residual silica gel, chemicals and abrasives on the surface. The preparation of silicon carbide faces many challenges, mainly high hardness and strong chemical inertness, and clean, smooth, and defect-free polishing wafers are very important for subsequent high-quality epitaxial layers. The final cleaning of the polishing pad is mainly to remove all contaminants on the surface of the polishing pad, such as particles, organic matter, inorganic matter, metal ions and other impurities.
  • the fracture bond force field on the surface of the polishing sheet is very strong, which can easily adsorb various pollutants in the polishing environment.
  • the main contaminants deposited on the surface of the SiC polishing sheet are generally particles, metals, organics, and moisture molecules. And oxide film. Because the Si surface of the SiC polishing wafer will be covered by organic matter, it is difficult to remove the oxide film and related contamination.
  • the present invention provides a final cleaning method for a silicon carbide single crystal polished wafer substrate, which has simple operation, low environmental pollution and good process repeatability, and is suitable for large-scale production.
  • a final cleaning method for a silicon carbide single crystal polished wafer substrate includes the following steps:
  • step 2 Immerse the silicon carbide single crystal polishing sheet after cleaning in step 2) into a mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water, and add ultrasonic vibration to clean;
  • the silicon carbide single crystal polishing wafer after cleaning in step 3) is immersed in a mixed solution of hydrofluoric acid, hydrogen peroxide, and ultrapure water for cleaning, and the Si surface of the silicon carbide single crystal polishing wafer is completely immersed in the mixed solution;
  • the ultraviolet light is 184.9 nm ultraviolet light
  • the generated O 3 is used to clean the silicon carbide single crystal polished wafer for 10 minutes to 30 minutes.
  • the time for rinsing the silicon carbide single crystal polished sheet with ultrapure water is 10 to 25 minutes, and the temperature is room temperature.
  • the time for rinsing with ultrapure water is 5 minutes to 25 minutes, and the temperature is room temperature.
  • the shaking cleaning time is 5min to 15min, and the shaking cleaning temperature is 70°C to 90°C;
  • ammonia water is ammonia water with a concentration of 37%, and hydrogen peroxide is hydrogen peroxide with a concentration of 35%.
  • the cleaning time is 5 min to 15 min, and the shaking cleaning temperature is 70°C to 90°C, in which hydrochloric acid is hydrochloric acid with a concentration of 36%, and hydrogen peroxide is a hydrogen peroxide with a concentration of 35%.
  • hydrofluoric acid is hydrofluoric acid with a concentration of 38%
  • hydrogen peroxide is a hydrogen peroxide with a concentration of 35%.
  • the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • the present invention has the following beneficial effects:
  • the cleaning method of the present invention first removes the organic contamination on the surface; then dissolves the oxide layer; finally removes micro particles and metal contamination, and at the same time forms a passivation layer on the surface.
  • the method of the invention has simple operation, can avoid the use of a large amount of concentrated sulfuric acid that pollutes the environment, has good process repeatability, and is suitable for large-scale production.
  • the surface of the cleaned silicon carbide single crystal polishing sheet is clean, without a large number of particles, can show the unremoved scratch morphology, and can reduce the surface roughness of the polishing sheet at the same time.
  • Fig. 1 is a schematic flow chart of a final cleaning method for a silicon carbide single crystal polished wafer according to the present invention
  • FIG. 2 is a schematic diagram of the surface contamination of the silicon carbide single crystal polished wafer in the present invention.
  • Figure 3 is an inspection diagram of the surface of the polishing sheet after cleaning in the method of embodiment 1;
  • Figure 4 is a diagram showing the surface inspection of the polishing sheet after cleaning in the method of embodiment 2;
  • Figure 5 is a surface inspection diagram of the polishing sheet after cleaning in the method of embodiment 3;
  • Fig. 6 is an inspection diagram of the surface of the polishing sheet after cleaning in the method of embodiment 4.
  • ammonia is 37% ammonia
  • hydrochloric acid is 36% hydrochloric acid
  • hydrofluoric acid is 38% hydrofluoric acid
  • hydrogen peroxide is 35% hydrogen peroxide.
  • a final cleaning method for a silicon carbide single crystal polished wafer substrate includes the following steps:
  • the generated O 3 is used to clean the silicon carbide single crystal polished wafer for 10 minutes to 30 minutes;
  • O 3 Under the excitation of ultraviolet light, O 3 can not only generate an oxide film on the surface of the SiC silicon carbide substrate, but also effectively remove organic contamination on the surface of the substrate. In a short time, an oxide film is formed on the surface of the SiC silicon carbide substrate.
  • the basic process of surface cleaning is as follows: First, ultraviolet light stimulates the reaction of gas O 2 and O 3 , h means light is given, and the reaction is triggered by light energy (h is Planck constant, ⁇ is the frequency of light waves, h ⁇ is the energy of a single photon ).
  • the excited gas molecules O 3 react with the SiC silicon carbide substrate to produce oxide.
  • the oxidized silicon carbide single crystal polished wafer is immersed in a mixed solution of ammonia, hydrogen peroxide and ultrapure water, and then cleaned by megasonic oscillation; the weak alkalinity of NH 4 OH is used to oxidize the exposed Si surface layer and mega Acoustic effect removes particles adsorbed on the surface of the polishing sheet.
  • NH 4 OH has strong oxidizing properties, and can also oxidize and remove slight organic pollution and some metal ion pollution.
  • the hydrogen peroxide in the mixed solution can oxidize the exposed Si surface of the SiC surface and form a silicon dioxide oxide layer. Since the solution contains ammonia water, it is an alkaline solution, which can react and remove the subsequent oxide layer, thereby making it adsorb on the oxide layer. Remove the particles on the surface.
  • the ultrapure water is used for rinsing and rinsing for 5 minutes to 25 minutes, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • step 2 Immerse the silicon carbide single crystal polished sheet after cleaning in step 2) into a mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water, and add ultrasonic vibration to clean; using the principle that the active ions formed by HCl can easily react with metal ions, It dissolves alkali metal ions and hydroxides of aluminum, iron and magnesium, and the compound formed by chloride ions and residual metal ions in hydrochloric acid is dissolved in the aqueous solution and has megasonic action to remove metal ions.
  • the ultrapure water is used for rinsing and rinsing for 5 minutes to 25 minutes, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • step 3 Dip the silicon carbide single crystal polishing wafer after cleaning in step 3) into a mixed solution of hydrofluoric acid, hydrogen peroxide, and ultrapure water, and toss it up and down for cleaning. All the Si surface of the silicon carbide single crystal polishing wafer is immersed in the mixed solution. .
  • the ultrapure water is used for rinsing and rinsing for 5 minutes to 25 minutes, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • the method provided by the invention has simple operation, can avoid the use of a large amount of concentrated sulfuric acid, has good process repeatability, and is suitable for large-scale production.
  • the surface of the cleaned silicon carbide polishing sheet is clean without a large number of particles, and the unremoved scratch morphology can be displayed, and at the same time, the surface roughness of the polishing sheet can be reduced.
  • a final cleaning method for a silicon carbide single crystal polished wafer substrate includes the following steps:
  • the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • O 3 is used to clean the silicon carbide single crystal polished wafer under ultraviolet light irradiation
  • O 3 Under the excitation of ultraviolet light, O 3 can not only generate an oxide film on the surface of the SiC silicon carbide substrate, but also effectively remove organic contamination on the surface of the substrate. In a relatively short period of time, an oxide film is formed on the surface of the SiC silicon carbide substrate.
  • the basic process of surface cleaning is as follows: First, ultraviolet light excites the reaction of gas O 2 and O 3 , h means light is given, and the reaction is triggered by light energy (h is Planck constant, ⁇ is the frequency of light waves, h ⁇ is the energy of a single photon ).
  • the excited gas molecules react with the SiC silicon carbide substrate to produce oxide.
  • the oxidized silicon carbide single crystal polished wafer is immersed in a mixed solution of ammonia, hydrogen peroxide and ultrapure water, and then cleaned by megasonic oscillation; the weak alkalinity of NH 4 OH is used to oxidize the exposed Si surface layer and mega Acoustic effect removes particles adsorbed on the surface of the polishing sheet.
  • NH 4 OH has strong oxidizing properties, and can also oxidize and remove slight organic pollution and some metal ion pollution.
  • the hydrogen peroxide in the solution can oxidize the exposed Si surface of the SiC surface and form a silicon dioxide oxide layer. Because the solution contains ammonia water, it is an alkaline solution, which can react and remove the subsequent oxide layer, thereby making it adsorb on the oxide layer The particles are removed.
  • the ultrapure water is used for rinsing and rinsing, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • the volume ratio of the three is 0.2:1:5, the megasonic frequency is 800kHz, the shaking cleaning time is 6min, and the shaking cleaning temperature is 70°C.
  • ammonia water is ammonia water with a concentration of 37%
  • hydrogen peroxide is hydrogen peroxide with a concentration of 35%.
  • step 2 Immerse the silicon carbide single crystal polished sheet after cleaning in step 2) into a mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water, and add ultrasonic vibration to clean; using the principle that the active ions formed by HCl can easily react with metal ions, It dissolves alkali metal ions and hydroxides of aluminum, iron and magnesium, and the compound formed by chloride ions and residual metal ions in hydrochloric acid is dissolved in the aqueous solution and has megasonic action to remove metal ions.
  • the ultrapure water is used for rinsing and rinsing, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • the volume ratio of the three is 0.6:1:6, the ultrasonic frequency is 30kHz, the shaking cleaning time is 6min, and the shaking cleaning temperature is 75°C.
  • hydrochloric acid is hydrochloric acid with a concentration of 36%
  • hydrogen peroxide is a hydrogen peroxide with a concentration of 35%.
  • step 3 Immerse the silicon carbide single crystal polished wafer cleaned in step 3) into a mixed solution of hydrofluoric acid, hydrogen peroxide and ultrapure water.
  • the Si surface of the silicon carbide single crystal polished wafer is exposed to the air and exposed to oxygen molecules in the air. Or water vapor, a very thin oxide layer will grow at room temperature.
  • a layer of SiO 2 oxide layer (5-10nm) will be formed on the surface of the polishing wafer.
  • the diluted hydrofluoric acid aqueous solution (1%) forms H 2 SiF 6 (hydrofluorosilicic acid) with SiO 2 at room temperature to remove the oxide layer. While removing the oxide layer, silicon is also formed on the Si surface of the silicon carbide polishing wafer Hydrogen bond to form surface hydrophobicity;
  • the ultrapure water is used for rinsing and rinsing, and the ultrapure water is 18.25 megaohm ultrapure deionized water.
  • the volume ratio of the three is 0.5:1:100, the cleaning time is 5 minutes, and the cleaning temperature is 75°C.
  • hydrofluoric acid is hydrofluoric acid with a concentration of 38%
  • hydrogen peroxide is a hydrogen peroxide with a concentration of 35%.
  • step 1 Immerse the silicon carbide single crystal polishing wafer after cleaning in step 1) into the mixed solution of ammonia, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.25:1:5, the megasonic frequency is 900kHz, and the oscillation cleaning time 8min, the shaking cleaning temperature is 80°C;
  • the silicon carbide single crystal polishing wafer after cleaning in step 2) is immersed in the mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water and ultrasonically oscillated for cleaning.
  • the volume ratio of the three is 0.6:1:6, the ultrasonic frequency is 35kHz, and the vibration
  • the cleaning time is 8min, and the shaking cleaning temperature is 80°C;
  • the silicon carbide single crystal polished wafer after cleaning in step 3) is immersed in the mixed solution of hydrofluoric acid, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.6:1:100, the cleaning time is 8min, and the cleaning temperature is 80°C.
  • step 1 Immerse the silicon carbide single crystal polishing wafer after cleaning in step 1) into the mixed solution of ammonia, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.3:1:5, the megasonic frequency is 1000kHz, and the cleaning time is oscillating. 10min, the shaking cleaning temperature is 80°C;
  • the silicon carbide single crystal polishing wafer after cleaning in step 2) is immersed in the mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water and ultrasonically oscillated for cleaning.
  • the volume ratio of the three is 0.7:1:6, and the ultrasonic frequency is 40kHz.
  • the shaking cleaning time is 10min, and the shaking cleaning temperature is 80°C;
  • the silicon carbide single crystal polishing wafer after step 3) is immersed in the mixed solution of hydrofluoric acid, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.6:1:100, the cleaning time is 10min, and the cleaning temperature is 80°C.
  • step 1 Immerse the silicon carbide single crystal polishing wafer after cleaning in step 1) into the mixed solution of ammonia, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.3:1:5, the megasonic frequency is 1200kHz, and the oscillation cleaning time 15min, shaking cleaning temperature is 90°C;
  • the silicon carbide single crystal polishing wafer after cleaning in step 2) is immersed in the mixed solution of hydrochloric acid, hydrogen peroxide and ultrapure water and ultrasonically oscillated for cleaning.
  • the volume ratio of the three is 0.7:1:6, and the ultrasonic frequency is 50kHz.
  • the shaking cleaning time is 15min, and the shaking cleaning temperature is 80°C;
  • the silicon carbide single crystal polished wafer after cleaning in step 3) is immersed in the mixed solution of hydrofluoric acid, hydrogen peroxide and ultrapure water.
  • the volume ratio of the three is 0.6:1:100, the cleaning time is 10min, and the cleaning temperature is 80°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

一种碳化硅单晶抛光片衬底的最终清洗方法,包括以下步骤:(1)氧化去除表面的有机沾污:用超纯水冲洗碳化硅单晶抛光片;在紫外光照射下,使用O 3进行清洗碳化硅单晶抛光片;再使用超纯水冲洗漂洗处理;(2)将氧化后的碳化硅单晶抛光片,浸入至氨水、双氧水及超纯水的混合溶液中,加超声波振荡清洗;(3)将步骤(2)清洗后的碳化硅单晶抛光片,浸入至盐酸、双氧水和超纯水的混合溶液中,加超声波振荡清洗;(4)将步骤(3)清洗后的碳化硅单晶抛光片,浸入至氢氟酸、双氧水、超纯水的混合溶液中,最后,再使用超纯水冲洗漂洗处理,从而去除微小颗粒、金属沾污,同时在表面形成钝化层。该方法操作简单,环境污染小、工艺重复性好,适用于规模化生产。

Description

一种碳化硅单晶抛光片衬底的最终清洗方法
本申请要求于2019年9月2日提交中国专利局、申请号为201910824773.4、发明名称为“一种碳化硅单晶抛光片衬底的最终清洗方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种碳化硅单晶抛光片衬底的最终清洗方法,属于半导体材料的表面净化技术领域。
背景技术
由于碳化硅具有宽禁带、高击穿电场、高热导率、低热膨胀系数以及高温稳定性,使其在大功率和高温电子器件的应用中具有很重要的作用。因为高等级的商业化器件,需要碳化硅衬底具有无缺陷的表面及超洁净的表面。CMP化学机械抛光后的晶圆清洗被认为是衬底片制备过程中最重要的一步。许多化学机械抛光后的碳化硅晶片表面残留硅胶体、化学物质以及研磨剂。碳化硅制备面临许多挑战主要是高硬度和强化学惰性,而洁净、光滑、无缺陷的抛光片对于后续获得高质量的外延层是很重要的。抛光片最终清洗主要是清除抛光片表面所有的污染物,如微粒、有机物、无机物、金属离子等杂质。
碳化硅化学机械抛光结束后,抛光片表面的断裂键力场很强,极易吸附抛光环境中的各种污染物,SiC抛光片表面主要沉积污染物一般有颗粒、金属、有机物、湿气分子和氧化膜。因为SiC抛光片的表面Si面会被有机物遮盖,使氧化膜和相关的沾污难以被去除。
发明内容
为克服现有技术的不足,本发明提供了一种碳化硅单晶抛光片衬底的最终清洗方法,该方法操作简单,环境污染小、工艺重复性好,适用于规模化生产。
本发明通过以下技术方案实现:
一种碳化硅单晶抛光片衬底的最终清洗方法,包括以下步骤:
1)氧化去除表面的有机沾污:
首先,用超纯水冲洗碳化硅单晶抛光片;
然后,在紫外光照射下,使用产生的O 3进行清洗碳化硅单晶抛光片;
最后,再使用超纯水冲洗漂洗处理;
2)振荡清洗:
将氧化后的碳化硅单晶抛光片,浸入至氨水、双氧水及超纯水的混合溶液中,加兆声波振荡清洗;
最后,再使用超纯水冲洗漂洗处理;
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至盐酸、双氧水和超纯水的混合溶液中,加超声波振荡清洗;
最后,再使用超纯水冲洗漂洗处理;
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至氢氟酸、双氧水、超纯水的混合溶液中上下抛动清洗,碳化硅单晶抛光片Si面表面全部浸入至混合溶液中;
最后,再使用超纯水冲洗漂洗处理。
优选的,步骤1)所述紫外光为184.9nm的紫外光,使用产生的O 3进行清洗碳化硅单晶抛光片10min~30min。
优选的,用超纯水冲洗碳化硅单晶抛光片的时间为10min~25min,温度为室温。
优选的,步骤1)~4)中,使用超纯水冲洗漂洗处理的时间为5min~25min,温度为室温。
优选的,所述步骤2)的氨水、双氧水及超纯水的混合溶液中,三者的比例为氨水:双氧水:超纯水=0.2~0.4:1:5,兆声波频率为800~1200kHz,振荡清洗时间为5min~15min,振荡清洗温度为70℃~90℃;其中氨水为浓度37%的氨水,双氧水为浓度35%的双氧水。
优选的,所述步骤3)的盐酸、双氧水和超纯水的混合溶液中,三者的比例为盐酸:双氧水:超纯水=0.5~1:1:6,超声波频率为20~90kHz,振荡清洗时间为5min~15min,振荡清洗温度为70℃~90℃,其中盐酸为浓度36%的盐酸,双氧水为浓度35%的双氧水。
优选的,所述步骤4)的氢氟酸、双氧水和超纯水的混合溶液中,三 者的比例为氢氟酸:双氧水:超纯水=0.5~1:1:100,清洗时间为5min~15min,清洗温度为70℃~90℃。其中氢氟酸为浓度38%的氢氟酸,双氧水为浓度35%的双氧水。
优选的,所述超纯水为18.25兆欧的超纯去离子水。
与现有技术相比,本发明具有如下有益效果:
本发明清洗方法,首先去除表面的有机沾污;然后溶解氧化层;最后再去除微小颗粒、金属沾污,同时使表面形成钝化层。
本发明方法,操作简单,可以避免使用大量污染环境的浓硫酸、工艺重复性好,适用于规模化生产。
本发明方法,清洗完的碳化硅单晶抛光片表面干净,无大量颗粒存在,能够展现出未去除的划痕形貌,同时能够降低抛光片表面粗糙度。
附图说明
图1为本发明一种碳化硅单晶抛光片最终清洗方法流程示意图;
图2为本发明中碳化硅单晶抛光片表面沾污示意图;
图3为实施例1方法清洗后抛光片表面检测图;
图4为实施例2方法清洗后抛光片表面检测图;
图5为实施例3方法清洗后抛光片表面检测图;
图6为实施例4方法清洗后抛光片表面检测图;
图2中,1-碳化硅单晶抛光片;2-金属离子;3-微粒;4-有机物;5-氧化层;6-硅面;7-碳面。
具体实施方式
以下所述试剂中,氨水为浓度37%的氨水,盐酸为浓度36%的盐酸,氢氟酸为浓度38%的氢氟酸,双氧水为浓度35%的双氧水。
一种碳化硅单晶抛光片衬底的最终清洗方法,包括以下步骤:
1)氧化去除表面的有机沾污:
首先,室温下,用超纯水冲洗碳化硅单晶抛光片10min~25min;所述超纯水为18.25兆欧的超纯去离子水。
然后,在184.9nm的紫外光(约6.7eV)照射下,使用产生的O 3进行清洗碳化硅单晶抛光片10min~30min;
最后,室温下,再使用超纯水冲洗漂洗处理5min~25min;
在紫外光激发下,O 3不仅能够使SiC碳化硅衬底表面生成氧化膜,同时还能有效地清除衬底表面的有机沾污。在较短时间内,在SiC碳化硅衬底表面生成氧化膜。表面清洗基本过程如下:首先,紫外光激发气体O 2和O 3的反应,h表示给予光照,用光能触发反应(h是普朗克常量,υ是光波的频率,hυ就是单个光子的能量)。
O 2+hυ→O+O
O+O 2→O 3
O 3+hυ→O+O 2
然后,在紫外光照射下,激发的气体分子O 3和SiC碳化硅衬底反应产生氧化物。
2)振荡清洗:
将氧化后的碳化硅单晶抛光片,浸入至氨水、双氧水及超纯水的混合溶液中,加兆声波振荡清洗;利用NH 4OH的弱碱性来氧化SiC表面裸露的Si面表层及兆声作用,去除抛光片表面吸附的微粒,此外NH 4OH具强氧化性,也可氧化、去除轻微的有机物污染及部分金属离子污染。混合溶液中的双氧水可将SiC表面裸露的Si面表层氧化并生成二氧化硅氧化层,由于溶液中含有氨水,为碱性溶液,可将后续生成的氧化层反应去除,从而使吸附在氧化层上的微粒脱除。
优选的,最后,室温下,再使用超纯水冲洗漂洗处理5min~25min,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤2)的氨水、双氧水及超纯水的混合溶液中,三者的比例为氨水:双氧水:超纯水=0.2~0.4:1:5,兆声波频率为800~1200kHz,振荡清洗时间为5min~15min,振荡清洗温度为70℃~90℃;其中氨水为浓度37%的氨水,双氧水为浓度35%的双氧水。
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至盐酸、双氧水和超纯水的混合溶液中,加超声波振荡清洗;利用HCl所形成的活性离子易与金属离子化合反应的原理,可溶解碱金属离子和铝、铁及镁的氢氧化物,由盐酸中氯离子与残留金属离子形成的化合物溶解于水溶液中及兆声作用,从而去除金属离子。
优选的,最后,室温下,再使用超纯水冲洗漂洗处理5min~25min,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤3)的盐酸、双氧水和超纯水的混合溶液中,三者的比例为盐酸:双氧水:超纯水=0.5~1:1:6,超声波频率为20~90kHz,振荡清洗时间为5min~15min,振荡清洗温度为70℃~90℃,其中盐酸为浓度36%的盐酸,双氧水为浓度35%的双氧水。
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至氢氟酸、双氧水、超纯水的混合溶液中,上下抛动清洗,碳化硅单晶抛光片Si面表面全部浸入至混合溶液中。
碳化硅抛光片Si面经过1、2及3步溶液清洗后,由于双氧水的强氧化性,在抛光片表面上会生成一层SiO 2氧化层(5~10nm)。稀释氢氟酸水溶液(1%)在室温下与SiO 2形成H 2SiF 6(氢氟硅酸),用以去除氧化层,去除氧化层的同时,还在碳化硅抛光片Si面表面形成硅氢键,形成表面疏水性;
优选的,最后,室温下,再使用超纯水冲洗漂洗处理5min~25min,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤4)的氢氟酸、双氧水和超纯水的混合溶液中,三者的比例为氢氟酸:双氧水:超纯水=0.5~1:1:100,清洗时间为5min~15min,清洗温度为70℃~90℃。
本发明提供的方法,操作简单,可以避免使用大量浓硫酸、工艺重复性好,适用于规模化生产。
本发明提供的方法,清洗完的碳化硅抛光片表面干净,无大量颗粒存在,能够展现出未去除的划痕形貌,同时能够降低抛光片表面粗糙度。
下面结合具体实施例对本发明做进一步的详细说明,但是本发明的保护范围并不限于这些实施例,凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
实施例1
一种碳化硅单晶抛光片衬底的最终清洗方法,包括以下步骤:
1)氧化去除表面的有机沾污:
首先,用超纯水冲洗碳化硅单晶抛光片;所述超纯水为18.25兆欧的超纯去离子水。
然后,在紫外光照射下,使用O 3进行清洗碳化硅单晶抛光片;
最后,再使用超纯水冲洗漂洗处理;
在紫外光激发下,O 3不仅能够使SiC碳化硅衬底表面生成氧化膜,同时还能有效地清除衬底表面的有机沾污。在较短时间内,在SiC碳化硅衬底表面生成氧化膜中。表面清洗基本过程如下:首先,紫外光激发气体O 2和O 3的反应,h表示给予光照,用光能触发反应(h是普朗克常量,υ是光波的频率,hυ就是单个光子的能量)。
O 2+hυ→O+O
O+O 2→O 3
O 3+hυ→O+O 2
然后,在紫外光照射下,激发的气体分子和SiC碳化硅衬底反应产生氧化物。
2)超声振荡清洗:
将氧化后的碳化硅单晶抛光片,浸入至氨水、双氧水及超纯水的混合溶液中,加兆声波振荡清洗;利用NH 4OH的弱碱性来氧化SiC表面裸露的Si面表层及兆声作用,去除抛光片表面吸附的微粒,此外NH 4OH具强氧化性,也可氧化、去除轻微的有机物污染及部分金属离子污染。溶液中的双氧水可将SiC表面裸露的Si面表层氧化并生成二氧化硅氧化层,由于溶液中含有氨水,为碱性溶液,可将后续生成的氧化层反应去除,从而使吸附在氧化层上的微粒脱除。
最后,再使用超纯水冲洗漂洗处理,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤2)的氨水、双氧水及超纯水的混合溶液中,三者的体积比例为0.2:1:5,兆声波频率为800kHz,振荡清洗时间为6min,振荡清洗温度为70℃。其中氨水为浓度37%的氨水,双氧水为浓度35%的双氧水。
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至盐酸、双氧水和超纯 水的混合溶液中,加超声波振荡清洗;利用HCl所形成的活性离子易与金属离子化合反应的原理,可溶解碱金属离子和铝、铁及镁的氢氧化物,由盐酸中氯离子与残留金属离子形成的化合物溶解于水溶液中及兆声作用,从而去除金属离子。
最后,再使用超纯水冲洗漂洗处理,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤3)的盐酸、双氧水和超纯水的混合溶液中,三者的体积比例为0.6:1:6,超声波频率为30kHz,振荡清洗时间为6min,振荡清洗温度为75℃。其中盐酸为浓度36%的盐酸,双氧水为浓度35%的双氧水。
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至氢氟酸、双氧水、超纯水的混合溶液中,碳化硅单晶抛光片Si面表面暴露在空气中,接触空气中的氧分子或水汽,在常温下即会生长一层很薄的氧化层。同时,碳化硅抛光片Si面经过1、2及3步溶液清洗后,由于双氧水的强氧化性,在抛光片表面上会生成一层SiO 2氧化层(5~10nm)。稀释氢氟酸水溶液(1%)在室温下与SiO 2形成H 2SiF 6(氢氟硅酸),用以去除氧化层,去除氧化层的同时,还在碳化硅抛光片Si面表面形成硅氢键,形成表面疏水性;
最后,再使用超纯水冲洗漂洗处理,所述超纯水为18.25兆欧的超纯去离子水。
所述步骤4)的氢氟酸、双氧水和超纯水的混合溶液中,三者的体积比例为0.5:1:100,清洗时间为5min,清洗温度为75℃。其中氢氟酸为浓度38%的氢氟酸,双氧水为浓度35%的双氧水。
使用lasertech表面缺陷检测系统对清洗后抛光片进行表面情况检测结果如图3所示。
实施例2
1)氧化去除表面的有机沾污:
首先,用超纯水冲洗(在室温下,漂洗10min;)碳化硅单晶抛光片;
然后,然后,在184.9nm(约6.7eV)紫外光照射下,时长10min,
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理;
2)兆声振荡清洗:
将步骤1)清洗后的碳化硅单晶抛光片,浸入至的氨水、双氧水及超纯水的混合溶液中,三者的体积比例为0.25:1:5,兆声波频率为900kHz,振荡清洗时间为8min,振荡清洗温度为80℃;
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理;
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至的盐酸、双氧水和超纯水的混合溶液中加超声波振荡清洗,三者的体积比例0.6:1:6,超声波频率为35kHz,振荡清洗时间为8min,振荡清洗温度为80℃;
最后,再使用超纯水冲洗漂洗处理;
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至的氢氟酸、双氧水和超纯水的混合溶液中三者的体积比例为0.6:1:100,清洗时间为8min,清洗温度为80℃。
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min;)处理。
使用lasertech表面缺陷检测系统对清洗后抛光片进行表面情况检测结果如图4所示。
实施例3
1)氧化去除表面的有机沾污:
首先,用超纯水冲洗(在室温下,漂洗10min)碳化硅单晶抛光片;
然后,在184.9nm(约6.7eV)紫外光照射下,时长15min,
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理;
2)兆声振荡清洗:
将步骤1)清洗后的碳化硅单晶抛光片,浸入至的氨水、双氧水及超纯水的混合溶液中,三者的体积比例为0.3:1:5,兆声波频率为1000kHz,振荡清洗时间为10min,振荡清洗温度为80℃;
最后,再使用超纯水冲洗漂洗(在室温下,漂洗5min~25min)处理;
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至的盐酸、双氧水和超纯水的混合溶液中加超声波振荡清洗,三者的体积比例为0.7:1:6,超声波频率为40kHz,振荡清洗时间为10min,振荡清洗温度为80℃;
最后,再使用超纯水冲洗漂洗处理;
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至的氢氟酸、双氧水和超纯水的混合溶液中三者的体积比例为0.6:1:100,清洗时间为10min,清洗温度为80℃。
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理。
使用lasertech表面缺陷检测系统对清洗后抛光片进行表面情况检测结果如图5所示。
实施例4
1)氧化去除表面的有机沾污:
首先,用超纯水冲洗(在室温下,漂洗10min)碳化硅单晶抛光片;
然后,然后,在184.9nm(约6.7eV)紫外光照射下,时长30min,
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理;
2)兆声振荡清洗:
将步骤1)清洗后的碳化硅单晶抛光片,浸入至的氨水、双氧水及超纯水的混合溶液中,三者的体积比例为0.3:1:5,兆声波频率为1200kHz,振荡清洗时间为15min,振荡清洗温度为90℃;
最后,再使用超纯水冲洗漂洗(在室温下,漂洗5min~25min)处理;
3)溶解氧化层:
将步骤2)清洗后的碳化硅单晶抛光片,浸入至的盐酸、双氧水和超纯水的混合溶液中加超声波振荡清洗,三者的体积比例为0.7:1:6,超声波频率为50kHz,振荡清洗时间为15min,振荡清洗温度为80℃;
最后,再使用超纯水冲洗漂洗处理;
4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
将步骤3)清洗后的碳化硅单晶抛光片,浸入至的氢氟酸、双氧水和超纯水的混合溶液中三者的体积比例为0.6:1:100,清洗时间为10min,清洗温度为80℃。
最后,再使用超纯水冲洗漂洗(在室温下,漂洗10min)处理。
使用lasertech表面缺陷检测系统对清洗后抛光片进行表面情况检测结果如图6所示。
本发明不会限制于本文所示的实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽范围。

Claims (9)

  1. 一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,包括以下步骤:
    1)氧化去除表面的有机沾污:
    首先,用超纯水冲洗碳化硅单晶抛光片;
    然后,在紫外光照射下,使用产生的O 3清洗碳化硅单晶抛光片;
    最后,再使用超纯水进行冲洗漂洗处理;
    2)振荡清洗:
    将氧化后的碳化硅单晶抛光片,浸入至氨水、双氧水及超纯水的混合溶液中,加兆声波振荡清洗;
    3)溶解氧化层:
    将步骤2)振荡清洗后的碳化硅单晶抛光片,浸入至盐酸、双氧水和超纯水的混合溶液中,加超声波振荡清洗;
    4)去除微小颗粒、金属沾污,同时在表面形成钝化层:
    将步骤3)溶解氧化层后的碳化硅单晶抛光片,浸入至氢氟酸、双氧水、超纯水的混合溶液中上下抛动清洗,碳化硅单晶抛光片Si面表面全部浸入至混合溶液中;
    最后,再使用超纯水冲洗漂洗处理。
  2. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,步骤1)所述紫外光为184.9nm的紫外光,使用产生的O 3清洗碳化硅单晶抛光片的时间为10min~30min。
  3. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,步骤1)用超纯水进行冲洗漂洗处理的时间为10min~25min,温度为室温。
  4. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,所述步骤2)中,加兆声波振荡清洗后,还包括使用超纯水冲洗漂洗处理;
    所述步骤3)中,加超声波振荡清洗后,还包括使用超纯水冲洗漂洗处理。
  5. 根据权利要求1或4所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,步骤1)~4)中,使用超纯水冲洗漂洗处理的时间独立为5min~25min,温度为室温。
  6. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,所述步骤2)的氨水、双氧水及超纯水的混合溶液中,三者的体积比例为氨水:双氧水:超纯水=0.2~0.4:1:5,兆声波频率为800~1200kHz,振荡清洗的时间为5min~15min,振荡清洗的温度为70℃~90℃;其中氨水为浓度37%的氨水,双氧水为浓度35%的双氧水。
  7. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,所述步骤3)的盐酸、双氧水和超纯水的混合溶液中,三者的体积比例为盐酸:双氧水:超纯水=0.5~1:1:6,超声波频率为20~90kHz,振荡清洗的时间为5min~15min,振荡清洗的温度为70℃~90℃,其中盐酸为浓度36%的盐酸,双氧水为浓度35%的双氧水。
  8. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,所述步骤4)的氢氟酸、双氧水和超纯水的混合溶液中,三者的体积比例为氢氟酸:双氧水:超纯水=0.5~1:1:100,上下抛动清洗的时间为5min~15min,上下抛动清洗的温度为70℃~90℃,其中氢氟酸为浓度38%的氢氟酸,双氧水为浓度35%的双氧水。
  9. 根据权利要求1所述的一种碳化硅单晶抛光片衬底的最终清洗方法,其特征在于,所述超纯水为18.25兆欧的超纯去离子水。
PCT/CN2020/113033 2019-09-02 2020-09-02 一种碳化硅单晶抛光片衬底的最终清洗方法 WO2021043167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910824773.4 2019-09-02
CN201910824773.4A CN110681624A (zh) 2019-09-02 2019-09-02 一种碳化硅单晶抛光片衬底的最终清洗方法

Publications (1)

Publication Number Publication Date
WO2021043167A1 true WO2021043167A1 (zh) 2021-03-11

Family

ID=69107707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113033 WO2021043167A1 (zh) 2019-09-02 2020-09-02 一种碳化硅单晶抛光片衬底的最终清洗方法

Country Status (2)

Country Link
CN (1) CN110681624A (zh)
WO (1) WO2021043167A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110681624A (zh) * 2019-09-02 2020-01-14 山西烁科晶体有限公司 一种碳化硅单晶抛光片衬底的最终清洗方法
CN111816549A (zh) * 2020-06-01 2020-10-23 浙江博蓝特半导体科技股份有限公司 碳化硅晶片表面清洗方法
CN111883416A (zh) * 2020-07-17 2020-11-03 河北同光科技发展有限公司 一种碳化硅晶片化学机械抛光后表面保护方法
CN113764259B (zh) * 2020-09-18 2024-05-07 英迪那米(徐州)半导体科技有限公司 一种半导体芯片的清洗方法
CN112605051A (zh) * 2020-10-28 2021-04-06 威科赛乐微电子股份有限公司 一种晶片研磨夹具的清洗方法
CN112871849B (zh) * 2020-12-29 2022-08-12 北京天科合达半导体股份有限公司 一种去除碳化硅晶片表面颗粒的清洗方法
CN113005519B (zh) * 2021-02-26 2022-07-01 哈尔滨科友半导体产业装备与技术研究院有限公司 一种采用预处理籽晶生长碳化硅晶体的方法
CN113026105B (zh) * 2021-02-26 2022-07-05 哈尔滨科友半导体产业装备与技术研究院有限公司 一种使用预处理粉料制备碳化硅晶体的生长方法
CN113289959A (zh) * 2021-05-12 2021-08-24 上海富乐德智能科技发展有限公司 一种半导体etch设备静电吸盘部品陶瓷表面洗净方法
CN113862792A (zh) * 2021-09-27 2021-12-31 哈尔滨科友半导体产业装备与技术研究院有限公司 一种碳化硅籽晶的清洗方法
CN113894097B (zh) * 2021-09-29 2022-08-16 广东先导微电子科技有限公司 化学机械抛光后的碲锌镉单晶晶片的清洗工艺
CN113690131A (zh) * 2021-10-27 2021-11-23 广州粤芯半导体技术有限公司 一种湿法清洗工艺
CN114850127B (zh) * 2022-05-30 2024-03-15 福建晶安光电有限公司 一种滤波器基片的清洗工艺
CN114678259B (zh) * 2022-05-30 2023-11-17 杭州乾晶半导体有限公司 一种抛光后的碳化硅晶片的清洗方法以及相应的清洗剂
CN115247278A (zh) * 2022-06-23 2022-10-28 中电化合物半导体有限公司 一种碳化硅外延结构及其制备方法
CN116936348B (zh) * 2023-09-07 2024-01-30 浙江晶越半导体有限公司 一种晶片表面的清洗方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150547A1 (ja) * 2009-06-26 2010-12-29 株式会社Sumco シリコンウェーハの洗浄方法、およびその洗浄方法を用いたエピタキシャルウェーハの製造方法
CN102251242A (zh) * 2011-07-05 2011-11-23 国电宁夏太阳能有限公司 多晶硅清洗方法
CN102974565A (zh) * 2012-12-12 2013-03-20 天津中环领先材料技术有限公司 一种单晶硅晶圆抛光片的清洗方法
US8529695B2 (en) * 2000-11-22 2013-09-10 Sumco Corporation Method for manufacturing a silicon wafer
CN108648989A (zh) * 2018-05-16 2018-10-12 福建北电新材料科技有限公司 一种单晶碳化硅衬底晶片清洗方法
CN109585268A (zh) * 2018-11-02 2019-04-05 山东天岳先进材料科技有限公司 一种碳化硅晶片的清洗方法
CN110681624A (zh) * 2019-09-02 2020-01-14 山西烁科晶体有限公司 一种碳化硅单晶抛光片衬底的最终清洗方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1601703A (zh) * 2003-09-27 2005-03-30 旺宏电子股份有限公司 超纯水中氢氧自由基清洗晶圆表面的方法
CN100428406C (zh) * 2007-02-27 2008-10-22 江苏佳讯电子有限公司 半导体管芯总成晶粒表面的处理方法
CN102486994B (zh) * 2010-12-02 2015-08-12 有研新材料股份有限公司 一种硅片清洗工艺
CN103311094A (zh) * 2012-03-16 2013-09-18 中国科学院微电子研究所 一种对晶圆表面进行处理的方法
CN203521379U (zh) * 2013-06-18 2014-04-02 上海交通大学 紫外光和臭氧表面清洗与氧化改性真空设备
CN104167381B (zh) * 2014-07-11 2017-04-12 湖南红太阳光电科技有限公司 一种连续式真空紫外光臭氧表面清洗与氧化改性设备及其使用方法
CN104377119B (zh) * 2014-10-23 2017-05-24 中国电子科技集团公司第四十六研究所 一种锗单晶抛光片的清洗方法
CN108511316A (zh) * 2017-02-27 2018-09-07 东莞新科技术研究开发有限公司 半导体晶片的清洗方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8529695B2 (en) * 2000-11-22 2013-09-10 Sumco Corporation Method for manufacturing a silicon wafer
WO2010150547A1 (ja) * 2009-06-26 2010-12-29 株式会社Sumco シリコンウェーハの洗浄方法、およびその洗浄方法を用いたエピタキシャルウェーハの製造方法
CN102251242A (zh) * 2011-07-05 2011-11-23 国电宁夏太阳能有限公司 多晶硅清洗方法
CN102974565A (zh) * 2012-12-12 2013-03-20 天津中环领先材料技术有限公司 一种单晶硅晶圆抛光片的清洗方法
CN108648989A (zh) * 2018-05-16 2018-10-12 福建北电新材料科技有限公司 一种单晶碳化硅衬底晶片清洗方法
CN109585268A (zh) * 2018-11-02 2019-04-05 山东天岳先进材料科技有限公司 一种碳化硅晶片的清洗方法
CN110681624A (zh) * 2019-09-02 2020-01-14 山西烁科晶体有限公司 一种碳化硅单晶抛光片衬底的最终清洗方法

Also Published As

Publication number Publication date
CN110681624A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
WO2021043167A1 (zh) 一种碳化硅单晶抛光片衬底的最终清洗方法
TWI405621B (zh) 電子材料的清洗液及清洗方法
JPH08187474A (ja) 洗浄方法
JPH08195369A (ja) 基板の洗浄方法
CN111940394B (zh) 半导体高阶制程apc装置的石英部件再生清洗方法
CN113675073B (zh) 一种晶片的清洗方法
KR19990067948A (ko) 전자재료용 세정수
JP4482844B2 (ja) ウェハの洗浄方法
JP2008311660A (ja) 半導体ウェハを洗浄、乾燥及び親水化する方法
TW201910015A (zh) 一種半導體晶圓的清洗方法
CN111816549A (zh) 碳化硅晶片表面清洗方法
WO2011086876A1 (ja) シリコンウェーハの表面浄化方法
JP4857738B2 (ja) 半導体ウエーハの洗浄方法および製造方法
KR100841994B1 (ko) 실리콘 웨이퍼의 산화막 제조 방법
JP2007214412A (ja) 半導体基板洗浄方法
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
KR20090030204A (ko) 반도체 웨이퍼의 세척 방법
JP2001054768A (ja) 洗浄方法及び洗浄装置
JP3595681B2 (ja) エピタキシャルウェーハの製造方法
JP2006272069A (ja) 洗浄装置
JP5463740B2 (ja) 研磨した石英ガラス基板の洗浄方法
JP2002001243A (ja) 電子材料の洗浄方法
JP4351497B2 (ja) 半導体装置の製造方法、及び半導体製造装置
JPH11293288A (ja) 電子材料用洗浄水及び電子材料用洗浄液
JP2002045806A (ja) 洗浄装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859904

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20859904

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.09.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20859904

Country of ref document: EP

Kind code of ref document: A1