WO2021043080A1 - 一种清洁机器人及其控制方法 - Google Patents
一种清洁机器人及其控制方法 Download PDFInfo
- Publication number
- WO2021043080A1 WO2021043080A1 PCT/CN2020/112086 CN2020112086W WO2021043080A1 WO 2021043080 A1 WO2021043080 A1 WO 2021043080A1 CN 2020112086 W CN2020112086 W CN 2020112086W WO 2021043080 A1 WO2021043080 A1 WO 2021043080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- area
- cleaned
- cleaning
- charging
- total
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 title claims abstract description 156
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000004146 energy storage Methods 0.000 claims abstract description 20
- 238000012544 monitoring process Methods 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 4
- 238000001514 detection method Methods 0.000 description 17
- 239000000428 dust Substances 0.000 description 12
- 238000004590 computer program Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 241001417527 Pempheridae Species 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005108 dry cleaning Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010408 sweeping Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L11/00—Machines for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L11/40—Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
- A47L11/4011—Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L11/00—Machines for cleaning floors, carpets, furniture, walls, or wall coverings
- A47L11/24—Floor-sweeping machines, motor-driven
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2805—Parameters or conditions being sensed
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2836—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means characterised by the parts which are controlled
- A47L9/2852—Elements for displacement of the vacuum cleaner or the accessories therefor, e.g. wheels, casters or nozzles
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L9/00—Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
- A47L9/28—Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
- A47L9/2868—Arrangements for power supply of vacuum cleaners or the accessories thereof
- A47L9/2873—Docking units or charging stations
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/02—Docking stations; Docking operations
- A47L2201/022—Recharging of batteries
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/04—Automatic control of the travelling movement; Automatic obstacle detection
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47L—DOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
- A47L2201/00—Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
- A47L2201/06—Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
Definitions
- the present disclosure relates to the field of control technology, and in particular to a cleaning robot and a control method thereof.
- the autonomous robotic device includes an on-board power supply unit (usually a battery) that is recharged at a charging dock or docking station.
- the types and methods of charging stations for example, radio signals, dead reckoning, ultrasonic beams, infrared beams coupled with radio signals, etc.
- Random collision type automatic cleaning equipment relies on collision sensors, ultrasonic sensors, infrared sensors, etc. to judge and avoid the approaching obstacles.
- the charging pile emits infrared signals, and the automatic cleaning equipment walks randomly until it "sees" The charging pile is guided to the charging pile by the charging pile signal for charging.
- the automatic cleaning equipment can determine its own position information based on the infrared signals from different radiation areas, thereby positioning, and judging the direction of travel based on the positioning information, so that the automatic cleaning robot faces charging The pile travels and goes up to the pile to charge.
- the household sweeping robot will automatically go to the charging pile for charging after the power is reduced to the set value.
- the current general power management strategy is: if the power of the sweeper drops to the lowest threshold, such as 5%, it will return to the charging pile and slowly charge to the set threshold, such as 80%. If there is still uncleaned area in the room at this time, you have to wait. The cleaning can be started only after charging to the threshold. This method is not smart enough, and it is not convenient and fast, and the comprehensive cleaning efficiency is relatively low.
- embodiments of the present disclosure provide a cleaning robot and a charging control method thereof, so as to enable the robot to be charged according to a smart charging method.
- embodiments of the present disclosure provide a cleaning robot, including:
- the drive system includes a biased drop suspension system which is fastened to the chassis in a movable manner and receives a spring bias downward and away from the chassis, the spring bias makes the drive wheels at a certain level
- the ground force maintains contact with the ground;
- the energy storage unit is supported by the chassis and includes at least one charging contact piece, the charging contact piece slightly protrudes from the plane of the chassis, wherein the energy storage unit is configured to follow when the robot is positioned at the charging station A predetermined amount of charge;
- the control system is arranged on the main board of the internal circuit of the cleaning robot, and includes a NAND non-transitory memory and a processor.
- the control system is configured to control the energy storage unit according to the predetermined area according to the area to be cleaned and the total power consumption factor. Quantity of charging.
- the total power consumption factor is obtained as follows:
- Total power consumption factor total power consumption of the total area of the last N complete cleanings/total area of the last N complete cleanings, N ⁇ 1.
- it also includes:
- the navigation device is used to monitor the cleaned area in real time and report the cleaned area to the control system, and the control system calculates the area to be cleaned according to the cleaned area, including:
- the light receiver is arranged on the outer side of the main body of the machine, and is used to receive the light signal from the charging pile;
- the laser ranging sensor is set on the top surface of the main body of the machine for drawing maps and avoiding obstacles.
- control system is configured to calculate the area of the area to be cleaned based on the difference between the total area and the cleaned area, wherein the total area is calculated in one of the following ways:
- the total area is equal to the maximum area completed by autonomous cleaning in the historical global cleaning
- the total area is equal to the sum of the sizes of all selection areas
- the total area is equal to the sum of the sizes of all the areas.
- embodiments of the present disclosure provide a cleaning robot charging control method, including:
- the control system calculates a predetermined charge amount according to the area to be cleaned and the total power consumption factor, and controls the energy storage unit to charge according to the predetermined charge amount.
- the total power consumption factor is obtained as follows:
- Total power consumption factor total power consumption of the total area of the last N complete cleanings/total area of the last N complete cleanings, N ⁇ 1.
- the total area is equal to the maximum area completed by autonomous cleaning in the historical global cleaning
- the total area is equal to the sum of the sizes of all selection areas
- the total area is equal to the sum of the sizes of all the areas.
- control system calculates a predetermined charge amount based on the area to be cleaned and the total power consumption factor, including:
- Pre-determined charge amount area to be cleaned * total power consumption factor * M, where M is the buffer factor, and the value range is 1-1.5.
- it also includes:
- the control system monitors the remaining power of the energy storage unit in real time, and when the remaining power reaches a specified threshold, changes the traveling characteristics of the robot to guide the robot to the charging pile for charging.
- it also includes:
- the method further includes: when the total power consumption factor cannot be obtained, the predetermined charging capacity is 80%.
- the method further includes: when it is determined that the number of charging times is greater than the predetermined number of times, the predetermined charging amount is 80%.
- the purpose of the present invention is to allow the sweeper to automatically calculate the remaining area to be cleaned according to the historical cleaning map records when the power is low, and calculate the power required for recharging according to the cleaning area. After recharging to the amount to be charged, continue to return to the breakpoint position for cleaning, which can greatly improve the overall cleaning efficiency and enhance the user experience.
- FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the disclosure
- Figure 2 is a perspective view of the robot structure provided by an embodiment of the disclosure.
- Figure 3 is a top view of a robot structure provided by an embodiment of the disclosure.
- Figure 4 is a bottom view of the robot structure provided by an embodiment of the disclosure.
- Figure 5 is a block diagram of the robot structure provided by an embodiment of the disclosure.
- FIG. 6 is a schematic diagram of the structure of a robot cleaning area provided by an embodiment of the disclosure.
- FIG. 7 is a schematic flowchart of a robot control method provided by an embodiment of the present disclosure.
- FIG. 8 is a schematic diagram of the electronic structure of a robot provided by an embodiment of the disclosure.
- first, second, third, etc. may be used to describe... in the embodiments of the present disclosure, these... should not be limited to these terms. These terms are only used to distinguish... from each other.
- first... can also be referred to as the second..., and similarly, the second... can also be referred to as the first...
- the automatic cleaning device 100 performs cleaning in a designated area. When the cleaning task is completed or the power is insufficient, the automatic cleaning device 100 will automatically search for the location of the charging pile 200 and determine that it is charged. After the position of the pile 200, the automatic cleaning device 100 automatically travels to the position of the charging pile 200 for charging.
- the automatic cleaning device 100 can travel on the ground through various combinations of movement relative to the following three mutually perpendicular axes defined by the main body 110: the front and rear axis X, the lateral axis Y, and the central vertical axis Z.
- the forward driving direction along the front-rear axis X is denoted as “forward”
- the backward driving direction along the front-rear axis X is denoted as “rearward”.
- the direction of the lateral axis Y is essentially a direction extending between the right and left wheels of the robot along the axis defined by the center point of the driving wheel module 141.
- the automatic cleaning device 100 can rotate around the Y axis.
- the robot 100 can rotate around the Z axis. In the forward direction of the automatic cleaning device 100, when the automatic cleaning device 100 is tilted to the right of the X axis, it is “turn right”, and when the automatic cleaning device 100 is tilted to the left of the X axis, it is “turn left”.
- the automatic cleaning equipment 100 includes a machine main body 110, a sensing system 120, a control system 130, a driving system 140, a cleaning system 150, an energy system 160 and a human-computer interaction system 170.
- the machine body 110 includes a front part 111, a rear part 112, and a chassis part 113, which have an approximate circular shape (the front and rear are both circular), and may also have other shapes, including but not limited to an approximate D shape with a front and rear circle.
- the sensing system 120 includes a position determining device 121 located above the main machine body 110, a buffer 122 located in the forward portion 111 of the main machine body 110, a cliff sensor 123, an ultrasonic sensor, an infrared sensor, a magnetometer, and an accelerometer. Sensor devices such as gyroscopes, odometers, etc. provide the control system 130 with various position information and movement status information of the machine.
- the position determining device 121 includes, but is not limited to, a camera and a laser distance measuring device (LDS).
- LDS laser distance measuring device
- the following uses the laser ranging device of the triangulation ranging method as an example to illustrate how to determine the position.
- the basic principle of the triangulation method is based on the proportional relationship of similar triangles, so I won't repeat it here.
- the laser distance measuring device includes a light-emitting unit and a light-receiving unit.
- the light emitting unit may include a light source that emits light
- the light source may include a light emitting element, such as an infrared or visible light emitting diode (LED) that emits infrared light or visible light.
- the light source may be a light emitting element that emits a laser beam.
- a laser diode (LD) is used as an example of a light source.
- the laser diode (LD) can be a point laser, which measures the two-dimensional position information of obstacles, or a line laser, which measures three-dimensional position information of obstacles within a certain range.
- the light receiving unit may include an image sensor on which a light spot reflected or scattered by an obstacle is formed.
- the image sensor may be a collection of multiple unit pixels in a single row or multiple rows. These light-receiving elements can convert optical signals into electrical signals.
- the image sensor may be a complementary metal oxide semiconductor (CMOS) sensor or a charge coupled device (CCD) sensor, and it is preferably a complementary metal oxide semiconductor (CMOS) sensor due to cost advantages.
- the light receiving unit may include a light receiving lens assembly. The light reflected or scattered by the obstacle may travel through the light-receiving lens assembly to form an image on the image sensor.
- the light-receiving lens assembly may include a single lens or multiple lenses.
- the base may support the light-emitting unit and the light-receiving unit, and the light-emitting unit and the light-receiving unit are arranged on the base and spaced apart from each other by a certain distance.
- the base may be rotatably arranged on the main body 110, or the base itself may not rotate but a rotating element may be provided to rotate the emitted light and the received light.
- the rotational angular velocity of the rotating element can be obtained by setting the optocoupler element and the code disc.
- the optocoupler element senses the tooth gap on the code disc.
- the instantaneous angular velocity can be obtained by dividing the slip time of the tooth gap and the distance between the tooth gaps.
- the data processing device connected with the light-receiving unit such as DSP, records and transmits the obstacle distance value at all angles relative to the 0 degree angle direction of the robot to the data processing unit in the control system 130, such as an application processor containing a CPU (AP), the CPU runs a positioning algorithm based on particle filtering to obtain the current position of the robot, and draws a map based on this position for navigation.
- the positioning algorithm preferably uses real-time positioning and mapping (SLAM).
- the laser distance measuring device based on the triangulation method can measure the distance value at an infinite distance beyond a certain distance in principle, it is actually very difficult to realize long-distance measurement, such as 6 meters or more, mainly because The size of the pixel unit on the sensor of the light unit is limited, and it is also affected by the photoelectric conversion speed of the sensor, the data transmission speed between the sensor and the connected DSP, and the calculation speed of the DSP.
- the measured value of the laser distance measuring device affected by the temperature will also undergo changes that the system cannot tolerate, mainly because the thermal expansion and deformation of the structure between the light-emitting unit and the light-receiving unit causes the angle between the incident light and the outgoing light to change, and the light-emitting unit And the light-receiving unit itself also has temperature drift problems. After long-term use of the laser distance measuring device, the deformation caused by the accumulation of temperature changes, vibration and other factors will also seriously affect the measurement results. The accuracy of the measurement result directly determines the accuracy of drawing the map, which is the basis for the robot to further implement the strategy, which is particularly important.
- the forward part 111 of the main body 110 can carry a buffer 122.
- the buffer 122 detects the automatic cleaning equipment via a sensor system, such as an infrared sensor.
- the automatic cleaning device 100 can control the driving wheel module 141 through the events detected by the buffer 122, such as obstacles and walls, to make the automatic cleaning device 100 respond to the events. Respond, such as staying away from obstacles.
- the control system 130 is set on the main circuit board in the main body of the machine 110, and includes non-transitory memory, such as hard disk, flash memory, random access memory, and computing processor for communication, such as central processing unit, application processor, and application processing.
- the device uses a positioning algorithm, such as SLAM, to draw a real-time map of the environment where the robot is located according to the obstacle information fed back by the laser ranging device.
- the control system 130 can plan the most efficient and reasonable cleaning path and cleaning method based on the map information drawn by SLAM, which greatly improves the cleaning efficiency of the robot.
- the driving system 140 can manipulate the robot 100 to travel across the ground based on a driving command having distance and angle information, such as x, y, and ⁇ components.
- the driving system 140 includes a driving wheel module 141.
- the driving wheel module 141 can control the left wheel and the right wheel at the same time.
- the driving wheel module 141 preferably includes a left driving wheel module and a right driving wheel module, respectively.
- the left and right driving wheel modules are opposed to each other along a transverse axis defined by the main body 110.
- the robot may include one or more driven wheels 142, and the driven wheels include, but are not limited to, universal wheels.
- the driving wheel module includes a walking wheel, a driving motor, and a control circuit for controlling the driving motor.
- the driving wheel module can also be connected to a circuit for measuring driving current and an odometer.
- the driving wheel module 141 can be detachably connected to the main body 110 to facilitate disassembly, assembly and maintenance.
- the driving wheel may have a biased drop suspension system, fastened in a movable manner, for example, attached to the robot body 110 in a rotatable manner, and receives a spring bias that is biased downward and away from the robot body 110.
- the spring bias allows the driving wheel to maintain contact and traction with the ground with a certain ground force, and at the same time, the cleaning element of the automatic cleaning device 100 also contacts the ground 10 with a certain pressure.
- the cleaning system may be a dry cleaning system 150 and/or a wet cleaning system 153.
- the main cleaning function comes from the cleaning system 151 composed of a roller brush, a dust box, a fan, an air outlet, and the connecting parts between the four.
- the rolling brush which has a certain interference with the ground, sweeps the garbage on the ground and rolls it to the front of the dust suction port between the rolling brush and the dust box, and then is sucked into the dust box by the suction gas generated by the fan and passed through the dust box.
- the dust removal ability of the sweeper can be characterized by the cleaning efficiency of the garbage.
- the cleaning efficiency is affected by the structure and material of the roller brush, and is affected by the wind force of the air duct formed by the dust suction port, the dust box, the fan, the air outlet and the connecting parts between the four.
- the utilization rate is affected by the type and power of the wind turbine.
- the improvement of dust removal capacity is of greater significance to cleaning robots with limited energy. Because the improvement of dust removal ability directly and effectively reduces the energy requirements, that is to say, the original machine that can clean 80 square meters of ground with a single charge can evolve into a single charge to clean 100 square meters or more. And the service life of the battery that reduces the number of recharges will also be greatly increased, so that the frequency of users changing the battery will also increase.
- the dry cleaning system may also include a side brush 152 with a rotating shaft, which is at an angle with respect to the ground for moving debris to the rolling brush area of the cleaning system.
- the wet cleaning system 153 mainly includes a detachable water tank (not shown) arranged at the rear of the chassis.
- the water tank is fixed to the bottom of the chassis by a snap structure or a plurality of fixing screws.
- the bottom of the water tank includes a removable mop (not shown) ), the mop is connected to the bottom of the water tank by pasting.
- the energy system 160 includes rechargeable batteries, such as nickel-metal hydride batteries and lithium batteries.
- the rechargeable battery can be connected with a charging control circuit, a battery pack charging temperature detection circuit and a battery under-voltage monitoring circuit, and the charging control circuit, a battery pack charging temperature detection circuit, and a battery under-voltage monitoring circuit are connected to the single-chip control circuit.
- the host is connected to the charging post for charging through charging electrodes (which can be set as the first charging contact piece 161 and the second charging contact piece 162) arranged on the side of the fuselage or under the chassis.
- the human-computer interaction system 170 includes buttons on the host panel for the user to select functions; it may also include a display screen and/or indicator light and/or speaker.
- the display screen, indicator light and speaker show the user the current state of the machine or Function options; can also include mobile phone client programs.
- the mobile phone client can show the user the map of the environment where the equipment is located, and the location of the machine, which can provide users with richer and more user-friendly functional items.
- Fig. 5 is a block diagram of electrical connections of an automatic cleaning device provided according to an embodiment of the present invention.
- the automatic cleaning device may include: a microphone array unit for recognizing a user's voice, a communication unit for communicating with a remote control device or other devices, a moving unit for driving the main body, a cleaning unit, and a A memory unit that stores information.
- the input unit buttons of the sweeping robot, etc.
- object detection sensor object detection sensor
- charging unit microphone array unit
- direction detection unit direction detection unit
- position detection unit position detection unit
- communication unit drive unit
- memory unit can be connected to the control unit to transmit predetermined information to the control Unit or receive predetermined information from the control unit.
- the microphone array unit may compare the voice input through the receiving unit with the information stored in the memory unit to determine whether the input voice corresponds to a specific command. If it is determined that the input voice corresponds to a specific command, the corresponding command is transmitted to the control unit. If the detected voice cannot be compared with the information stored in the memory unit, the detected voice can be regarded as noise to ignore the detected voice.
- the detected voice corresponds to the words "come here, here, here, here", and there is a text control command (come here) corresponding to the words in the information stored in the memory unit.
- the corresponding command can be transmitted to the control unit.
- the direction detection unit may detect the direction of the voice by using the time difference or level of the voice input to the plurality of receiving units.
- the direction detection unit transmits the direction of the detected voice to the control unit.
- the control unit may determine the movement path by using the voice direction detected by the direction detection unit.
- the position detection unit may detect the coordinates of the subject in the predetermined map information.
- the information detected by the camera and the map information stored in the memory unit may be compared with each other to detect the current position of the subject.
- the location detection unit can also use the Global Positioning System (GPS).
- GPS Global Positioning System
- the position detection unit can detect whether the subject is arranged in a specific position.
- the position detection unit may include a unit for detecting whether the main body is arranged on the charging pile.
- a method for detecting whether the main body is arranged on the charging pile it can be detected whether the main body is arranged at the charging position according to whether power is input into the charging unit. For another example, it is possible to detect whether the main body is arranged at the charging position through a charging position detection unit arranged on the main body or the charging pile.
- the communication unit may transmit/receive predetermined information to/from a remote control device or other devices.
- the communication unit can update the map information of the sweeping robot.
- the driving unit can operate the moving unit and the cleaning unit.
- the driving unit may move the moving unit along a moving path determined by the control unit.
- the memory unit stores predetermined information related to the operation of the cleaning robot. For example, map information of the area where the cleaning robot is arranged, control command information corresponding to the voice recognized by the microphone array unit, direction angle information detected by the direction detection unit, position information detected by the position detection unit, and objects
- the obstacle information detected by the detection sensor can be stored in the memory unit.
- the control unit can receive information detected by the receiving unit, camera, and object detection sensor.
- the control unit may recognize the user's voice based on the transmitted information, detect the direction in which the voice occurs, and detect the location of the automatic cleaning device.
- the control unit can also operate the mobile unit and the cleaning unit.
- embodiments of the present disclosure provide a cleaning robot, including:
- the chassis is located at the bottom of the cleaning robot;
- the drive system includes a biased drop suspension system that is movably fastened to the chassis and receives a spring bias downward and away from the chassis, the spring The bias enables the driving wheel to maintain contact with the ground with a certain ground force;
- the energy storage unit is supported by the chassis and includes at least one charging contact piece, the charging contact piece slightly protrudes from the plane of the chassis, wherein The energy storage unit is configured to charge according to a predetermined amount when the robot is positioned at the charging station;
- the control system is arranged on the main board of the internal circuit of the cleaning robot, and includes a NAND non-transitory memory and a processor, wherein the control system is configured to The energy storage unit is controlled to be charged according to the predetermined amount according to the area to be cleaned and the total power consumption factor.
- the total power consumption factor is obtained as follows:
- the navigation device for real-time monitoring of the cleaned area and reporting the cleaned area to the control system, and the control system calculates the area to be cleaned according to the cleaned area
- the navigation device includes: a light receiver arranged on the outer side of the main body of the machine for receiving light signals from the charging pile; a laser ranging sensor arranged on the top surface of the main body of the machine for drawing maps and avoiding obstacles.
- control system is configured to calculate the area of the area to be cleaned based on the difference between the total area and the cleaned area, wherein the total area is calculated in one of the following ways:
- the total area is equal to the maximum area completed by autonomous cleaning in the historical global cleaning
- the total area is equal to the sum of the sizes of all selection areas
- the total area is equal to the sum of the sizes of all the areas.
- a designated cleaning mode can be selected through the mobile phone APP or the cleaning robot setting interface.
- the cleaning mode includes global cleaning mode, selected area cleaning mode or zoned cleaning mode.
- the global cleaning mode refers to the cleaning of all areas in the map drawn by the navigation device of the robot. For example, the entire area drawn on the map is divided into four sub-areas, area one (bedroom 1), area two (bedroom 2), and area three. (Kitchen) and area four (living room), as shown in Figure 6, at this time, if the global cleaning mode is selected, the cleaning robot is responsible for cleaning the four areas of the entire room, and the cleaning area is the sum of the four areas.
- Selected area cleaning mode means that the user can select one or more areas of area one (bedroom 1), area two (bedroom 2), area three (kitchen), and area four (living room) for cleaning, for example, select area one for cleaning ,
- the cleaning robot will clean in the area of area 1, and the cleaning area is the area of area 1.
- the zoned cleaning mode means that the user can define a range for cleaning in any one or more of zone one (bedroom 1), zone two (bedroom 2), zone three (kitchen), and zone four (living room) (e.g. The dotted area in Figure 6), the cleaning robot will only clean in the corresponding dotted area, and the cleaning area is the sum of the area of the two dotted areas in Figure 6.
- the purpose of the present invention is to allow the sweeper to automatically calculate the remaining area to be cleaned according to the historical cleaning map records when the power is low, and calculate the power required for recharging according to the cleaning area. After recharging to the amount to be charged, continue to return to the breakpoint position for cleaning, which can greatly improve the overall cleaning efficiency and enhance the user experience.
- an embodiment of the present disclosure provides a cleaning robot charging control method, which includes the following method steps, as shown in FIG. 7:
- S702 Monitor the cleaned area in real time through the navigation device, and report the cleaned area to a control system, and the control system calculates the area to be cleaned according to the cleaned area.
- the total area is equal to the maximum area completed by autonomous cleaning in the historical global cleaning
- the total area is equal to the sum of the sizes of all selection areas
- the total area is equal to the sum of the sizes of all the areas.
- any of the total area can be cleaned by the navigation device for multiple times, and the area sum of the entire area calculated after scanning the cleaning area, the cleaning area or map is stored in the cleaning robot storage device, and can be Through the user APP display to the terminal, the user can set the cleaning process on the APP interface.
- the control system calculates a predetermined charging capacity according to the area to be cleaned and the total power consumption factor, and controls the energy storage unit to charge according to the predetermined charging capacity.
- the total power consumption factor is obtained as follows:
- M is the cache factor
- the purpose of M as a caching factor is to prevent power consumption during walking back and forth, and to charge a little more to leave enough margin.
- the method further includes the following steps: the control system monitors the remaining power of the energy storage unit in real time, and when the remaining power reaches a specified threshold, changes the traveling characteristics of the robot to guide the robot to the charging pile for charging.
- the method further includes: when it is calculated that the predetermined charge amount is greater than the upper limit value or less than the lower limit value, charging according to the upper limit value or the lower limit value.
- the method further includes: when the total power consumption factor cannot be obtained, the predetermined charging capacity is 80%.
- the method further includes: when it is determined that the number of charging times is greater than the predetermined number of times, the predetermined charging amount is 80%.
- the power is less than 20%, it needs to be forced to recharge. At this time, calculate the power required for cleaning the remaining area. If the total power consumption factor cannot be obtained (due to the first cleaning, the total power consumption factor cannot be calculated), use the default 80% of the battery continues to sweep. If it is calculated that the required power is greater than 95%, it will continue to sweep at 95%. If the calculated power is less than 30%, press 30% to continue scanning. Resume scanning is supported at most 2-3 times, that is, there are two breakpoint cleaning at most during one cleaning process. Otherwise, the cleaning efficiency will be affected.
- An embodiment can be described as: when the cleaning of the area to be cleaned is completed, the control system obtains the remaining power of the energy storage unit, and when the remaining power is within the rechargeable range (for example, 15%-25%), the control system controls the cleaning equipment
- the drive system searches for the position of the charging pile, and when the position of the charging pile is obtained, it travels to the charging port of the charging pile for automatic charging.
- Another embodiment can be described as: when the area to be cleaned is close to the complete range (for example, more than 90% of the remaining area is cleaned), the control system obtains the remaining power of the energy storage unit, and when the remaining power reaches the threshold that needs to be charged (for example, 25%), the control system controls the driving system of the cleaning equipment, searches for the position of the charging pile, and when the position of the charging pile is obtained, it travels to the charging interface of the charging pile for automatic charging. If the charging threshold is not reached, the remaining area to be cleaned will be cleaned before charging.
- the purpose of the present invention is to allow the sweeper to automatically calculate the remaining area to be cleaned according to the historical cleaning map records when the power is low, and calculate the power required for recharging according to the cleaning area. After recharging to the amount to be charged, continue to return to the breakpoint position for cleaning, which can greatly improve the overall cleaning efficiency and enhance the user experience.
- the embodiments of the present disclosure provide a cleaning robot, including a processor and a memory, the memory stores computer program instructions that can be executed by the processor, and when the processor executes the computer program instructions, any of the foregoing implementations is implemented Example method steps.
- the embodiments of the present disclosure provide a non-transitory computer-readable storage medium that stores computer program instructions that, when called and executed by a processor, implement the method steps of any of the foregoing embodiments.
- the robot may include a processing device (such as a central processing unit, a graphics processor, etc.) 801, which can be loaded into a random access memory (RAM) 803 programs to execute various appropriate actions and processing.
- a processing device such as a central processing unit, a graphics processor, etc.
- RAM random access memory
- various programs and data required for the operation of the electronic robot are also stored.
- the processing device 801, the ROM 802, and the RAM 803 are connected to each other through a bus 804.
- An input/output (I/O) interface 805 is also connected to the bus 804.
- the following devices can be connected to the I/O interface 805: including input devices 806 such as touch screen, touch pad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, liquid crystal display (LCD), speakers, vibration An output device 807 such as a device; a storage device 808 such as a magnetic tape, a hard disk, etc.; and a communication device 809.
- the communication device 809 may allow the electronic robot to communicate with other robots wirelessly or by wire to exchange data.
- FIG. 8 shows an electronic robot with various devices, it should be understood that it is not required to implement or have all of the illustrated devices. It may alternatively be implemented or provided with more or fewer devices.
- an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
- the computer program may be downloaded and installed from the network through the communication device 809, or installed from the storage device 808, or installed from the ROM 802.
- the processing device 801 the above-mentioned functions defined in the method of the embodiment of the present disclosure are executed.
- the aforementioned computer-readable medium in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
- the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above. More specific examples of computer-readable storage media may include, but are not limited to: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable removable Programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
- a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
- a computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
- the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
- the computer-readable signal medium may send, propagate or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
- the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wire, optical cable, RF (Radio Frequency), etc., or any suitable combination of the above.
- the above-mentioned computer-readable medium may be included in the above-mentioned robot; or it may exist alone without being assembled into the robot.
- the computer program code used to perform the operations of the present disclosure may be written in one or more programming languages or a combination thereof.
- the above-mentioned programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
- the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
- the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
- LAN local area network
- WAN wide area network
- each block in the flowchart or block diagram may represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions.
- the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
- each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
- the units involved in the embodiments described in the present disclosure can be implemented in software or hardware. Among them, the name of the unit does not constitute a limitation on the unit itself under certain circumstances.
- the device embodiments described above are merely illustrative.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement without creative work.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Electric Vacuum Cleaner (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Abstract
一种清洁机器人及其控制方法,包括:底盘;驱动系统(140);能量存储单元,由底盘支撑并且包括至少一个充电接触片,充电接触片略伸出于底盘平面,其中,能量存储单元配置为在机器人定位在充电站时按照预定量充电;控制系统(130),设置于清洁机器人内部电路主板上,包括与非暂时性存储器以及处理器,其中,控制系统配置为根据待清扫面积和总耗电因子来控制能量存储单元按照预定量充电。如此,能够根据历史清扫地图记录,自动计算本次剩余待清扫面积,根据清扫面积计算回充所需要充到的电量。能够大幅度提高综合清扫效率,提升用户体验。
Description
相关申请的交叉引用
本申请要求于2019年9月5日递交的中国专利申请第201910838307.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
本公开涉及控制技术领域,尤其涉及一种清洁机器人及其控制方法。
自主机器人设备包括在充电座或对接站处再充电的机载电源单元(通常是电池)。机器人在寻找或与它们对接时使用的充电站类型和方法(例如,无线电信号,航位推算,超声波束,与无线电信号耦合的红外波束等)在效果和应用方面都有很大差异。随机碰撞型自动清洁设备依靠碰撞传感器和超声传感器、红外传感器等判断接近的障碍物并躲避,当机器电量不足需要返回充电桩时,充电桩发射红外信号,自动清洁设备随机行走直至“看到”充电桩,并被充电桩信号引导上桩,进行充电。充电桩发射的红外信号形成的多个辐射区域,自动清洁设备可以根据来自不同辐射区域的红外信号判断自身的位置信息,从而进行定位,并根据定位信息判断行进方向,以使得自动清洁机器人朝向充电桩行进并上桩充电。
目前家用扫地机器人,在电量降低到设定值后,会自动到充电桩进行充电。目前普遍的电量管理策略是:如果扫地机电量降低到最低阈值例如5%,则会回到充电桩慢慢充到设定阈值例如80%,如果此时房间还有未清扫区域,则要等待充电到该阈值后方可再次启动清扫。这种方式不够智能,而且也不方便快捷,综合清扫效率较为低下。
发明内容
有鉴于此,本公开实施例提供一种清洁机器人及其充电控制方法,用以使机器人能够按照智能充电方式进行充电。
根据本公开的具体实施方式,第一方面,本公开实施例提供一种清洁机器人,包括:
底盘;
驱动系统,包括偏置下落式悬挂系统,所述悬挂系统以可移动方式紧固到所述底盘,且接收向下及远离所述底盘的弹簧偏置,所述弹簧偏置使得驱动轮以一定的着地力维持与地面的接触;
能量存储单元,由所述底盘支撑并且包括至少一个充电接触片,所述充电接触片略伸出于所述底盘平面,其中,所述能量存储单元配置为在所述机器人定位在充电站时按照预定量充电;
控制系统,设置于清洁机器人内部电路主板上,包括与非暂时性存储器以及处理器,其中,所述控制系统配置为根据待清扫面积和总耗电因子来控制所述能量存储单元按照所述预定量充电。
可选的,所述总耗电因子按照如下方式获得:
总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1。
可选的,还包括:
导航装置,用于实时监测已清扫面积,并将所述已清扫面积上报至所述控制系统,所述控制系统根据所述已清扫面积计算获得所述待清扫面积,包括:
光接收器,设置于机器主体外侧面,用于接收充电桩发出的光信号;
激光测距传感器,设置于机器主体顶面,用于绘制地图和避障。
可选的,所述控制系统配置为根据总面积与已清扫面积之差计算待清扫区域面积,其中,所述总面积按如下方式之一计算:
对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;
对于选区清扫模式,所述总面积等于所有选区大小之和;
对于划区清扫模式,所述总面积等于所有划区大小之和。
根据本公开的具体实施方式,第二方面,本公开实施例提供一种清洁机器人充电控制方法,包括:
通过导航装置实时监测已清扫面积,并将所述已清扫面积上报至控制系统,所述控制系统根据所述已清扫面积计算获得待清扫面积;
所述控制系统根据所述待清扫面积和总耗电因子计算预定充电量并控制所述能量存储单元按照所述预定充电量充电。
可选的,所述总耗电因子按照如下方式获得:
总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1。
可选的,根据总面积与已清扫面积之差计算待清扫区域面积,其中,所述总面积按如下方式之一计算:
对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;
对于选区清扫模式,所述总面积等于所有选区大小之和;
对于划区清扫模式,所述总面积等于所有划区大小之和。
可选的,所述控制系统根据所述待清扫面积和总耗电因子计算预定充电量,包括:
预定充电量=待清扫面积*总耗电因子*M,其中,M为缓存因子,取值范围为1-1.5。
可选的,还包括:
控制系统实时监测能量存储单元的剩余电量,当所述剩余电量达到指定阈值时,改变机器人的行进特性,以将所述机器人引导至充电桩进行充电。
可选的,还包括:
当计算出所述预定充电量大于上限值或小于下限值,则按照所述上限值或下限值充电。
可选的,还包括:当无法获取所述总耗电因子时,所述预定充电量为80%。
可选的,还包括:当判断充电次数大于预定次数时,所述预定充电量为80%。相对于现有技术,本公开至少具有以下技术效果:
本发明的目的是通过让扫地机在电量较低的情况下,根据历史清扫地图记录,自动计算本次剩余待清扫面积,根据该清扫面积计算回充所需要充到的电量。回充至待充电量后,继续回到断点位置进行清扫,这样能够大幅度提高综合清扫效率,提升用户体验。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的一应用场景示意图;
图2为本公开实施例提供的机器人结构立体图;
图3为本公开实施例提供的机器人结构俯视图;
图4为本公开实施例提供的机器人结构仰视图;
图5为本公开实施例提供的机器人结构框图;
图6为本公开实施例提供的机器人清扫区域结构示意图;
图7为本公开一实施例提供的机器人控制方法的流程示意图;
图8为本公开实施例提供的机器人的电子结构示意图。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
应当理解,尽管在本公开实施例中可能采用术语第一、第二、第三等来描述……,但这些……不应限于这些术语。这些术语仅用来将……彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一……也可以被称为第二……,类似地,第二……也可以被称为第一……。
为了更加清楚地描述机器人的行为,进行如下方向定义:
如图1所示为本公开应用场景图,自动清洁设备100在指定区域内进行清洁工作,当清扫任务完成后或电量不足时,自动清洁设备100会自动搜寻充电桩200的位置,确定到充电桩200的位置后,自动清洁设备100自动行进到充电桩200的位置进行充电。
如图2所示,自动清洁设备100可通过相对于由主体110界定的如下三个相互垂直轴的移动的各种组合在地面上行进:前后轴X、横向轴Y及中心垂直轴Z。沿着前后轴X的前向驱动方向标示为“前向”,且沿着前后轴X的向后驱动方向标示为“后向”。横向轴Y的方向实质上是沿着由驱动轮模块141的中心点界定的轴心在机器人的右轮与左轮之间延伸的方向。
自动清洁设备100可以绕Y轴转动。当自动清洁设备100的前向部分向上倾斜,向后向部分向下倾斜时为“上仰”,且当自动清洁设备100的前向部分向下倾斜,向后向部分向上倾斜时为“下俯”。另外,机器人100可以绕Z轴转动。在自动清洁设备100的前向方向上,当自动清洁设备100向X轴的右侧倾斜为“右转”,当自动清洁设备100向X轴的左侧倾斜为“左转”。
如图3所示,自动清洁设备100包含机器主体110、感知系统120、控制系统130、驱动系统140、清洁系统150、能源系统160和人机交互系统170。
机器主体110包括前向部分111、后向部分112以及底盘部分113,具有近似圆形形状(前后都为圆形),也可具有其他形状,包括但不限于前方后圆的近似D形形状。
如图3所示,感知系统120包括位于机器主体110上方的位置确定装置121、位于机器主体110的前向部分111的缓冲器122、悬崖传感器123和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置,向控制系统130提供机器的各种位置信息和运动状态信息。位置确定装置121包括但不限于摄像头、激光测距装置(LDS)。下面以三角测距法的激光测距装置为例说明如何进行位置确定。三角测距法的基本原理基于相似三角形的等比关系,在此不做赘述。
激光测距装置包括发光单元和受光单元。发光单元可以包括发射光的光源,光源可以包括发光元件,例如发射红外光线或可见光线的红外或可见光线发光二极管(LED)。或者,光源可以是发射激光束的发光元件。在本实施例中,将激光二极管(LD)作为光源的例子。具体地,由于激光束的单色、定向和准直特性,使用激光束的光源可以使得测量相比于其它光更为准确。激光二极管(LD)可以是点激光,测量出障碍物的二维位置信息,也可以是线激光,测量出障碍物一定范围内的三维位置信息。
受光单元可以包括图像传感器,在该图像传感器上形成由障碍物反射或散射的光点。图像传感器可以是单排或者多排的多个单位像素的集合。这些受光元件可以将光信号转换为电信号。图像传感器可以为互补金属氧化物半导体(CMOS)传感器或者电荷耦合元件(CCD)传感器,由于成本上的优势优选是互补金属氧化物半导体(CMOS)传感器。而且,受光单元可以包括受光透镜组件。由障碍物反射或散射的光可以经由受光透镜组件行进以在图像传感器上形成图像。受光透镜组件可以包括单个或者多个透 镜。基部可以支撑发光单元和受光单元,发光单元和受光单元布置在基部上且彼此间隔一特定距离。为了测量机器人周围360度方向上的障碍物情况,可以使基部可旋转地布置在主体110上,也可以基部本身不旋转而通过设置旋转元件而使发射光、接收光发生旋转。旋转元件的旋转角速度可以通过设置光耦元件和码盘获得,光耦元件感应码盘上的齿缺,通过齿缺间距的滑过时间和齿缺间距离值相除可得到瞬时角速度。码盘上齿缺的密度越大,测量的准确率和精度也就相应越高,但在结构上就更加精密,计算量也越高;反之,齿缺的密度越小,测量的准确率和精度相应也就越低,但在结构上可以相对简单,计算量也越小,可以降低一些成本。
与受光单元连接的数据处理装置,如DSP,将相对于机器人0度角方向上的所有角度处的障碍物距离值记录并传送给控制系统130中的数据处理单元,如包含CPU的应用处理器(AP),CPU运行基于粒子滤波的定位算法获得机器人的当前位置,并根据此位置制图,供导航使用。定位算法优选使用即时定位与地图构建(SLAM)。
基于三角测距法的激光测距装置虽然在原理上可以测量一定距离以外的无限远距离处的距离值,但实际上远距离测量,例如6米以上,的实现是很有难度的,主要因为受光单元的传感器上像素单元的尺寸限制,同时也受传感器的光电转换速度、传感器与连接的DSP之间的数据传输速度、DSP的计算速度影响。激光测距装置受温度影响得到的测量值也会发生系统无法容忍的变化,主要是因为发光单元与受光单元之间的结构发生的热膨胀变形导致入射光和出射光之间的角度变化,发光单元和受光单元自身也会存在温漂问题。激光测距装置长期使用后,由于温度变化、振动等多方面因素累积而造成的形变也会严重影响测量结果。测量结果的准确性直接决定了绘制地图的准确性,是机器人进一步进行策略实行的基础,尤为重要。
如图3所示,机器主体110的前向部分111可承载缓冲器122,在清洁过程中驱动轮模块141推进机器人在地面行走时,缓冲器122经由传感器系统,例如红外传感器,检测自动清洁设备100的行驶路径中的一或多个事件,自动清洁设备100可通过由缓冲器122检测到的事件,例如障碍物、墙壁,而控制驱动轮模块141使自动清洁设备100来对所述事件做出响应,例如远离障碍物。
控制系统130设置在机器主体110内的电路主板上,包括与非暂时性存储器,例如硬盘、快闪存储器、随机存取存储器,通信的计算处理器,例如中央处理单元、应用处理器,应用处理器根据激光测距装置反馈的障碍物信息利用定位算法,例如SLAM,绘制机器人所在环境中的即时地图。并且结合缓冲器122、悬崖传感器123和超声传感器、红外传感器、磁力计、加速度计、陀螺仪、里程计等传感装置反馈的距离信息、速度信息综合判断扫地机当前处于何种工作状态,如过门槛,上地毯,位于悬崖处,上方或者下方被卡住,尘盒满,被拿起等等,还会针对不同情况给出具体的下一步动作策略,使得机器人的工作更加符合主人的要求,有更好的用户体验。进一步地,控制系统130能基于SLAM绘制的即使地图信息规划最为高效合理的清扫路径和清扫方式,大大提高机器 人的清扫效率。
如图4所示,驱动系统140可基于具有距离和角度信息,例如x、y及θ分量,的驱动命令而操纵机器人100跨越地面行驶。驱动系统140包含驱动轮模块141,驱动轮模块141可以同时控制左轮和右轮,为了更为精确地控制机器的运动,优选驱动轮模块141分别包括左驱动轮模块和右驱动轮模块。左、右驱动轮模块沿着由主体110界定的横向轴对置。为了机器人能够在地面上更为稳定地运动或者更强的运动能力,机器人可以包括一个或者多个从动轮142,从动轮包括但不限于万向轮。驱动轮模块包括行走轮和驱动马达以及控制驱动马达的控制电路,驱动轮模块还可以连接测量驱动电流的电路和里程计。驱动轮模块141可以可拆卸地连接到主体110上,方便拆装和维修。驱动轮可具有偏置下落式悬挂系统,以可移动方式紧固,例如以可旋转方式附接到机器人主体110,且接收向下及远离机器人主体110偏置的弹簧偏置。弹簧偏置允许驱动轮以一定的着地力维持与地面的接触及牵引,同时自动清洁设备100的清洁元件也以一定的压力接触地面10。
清洁系统可为干式清洁系统150和/或湿式清洁系统153。作为干式清洁系统,主要的清洁功能源于滚刷、尘盒、风机、出风口以及四者之间的连接部件所构成的清扫系统151。与地面具有一定干涉的滚刷将地面上的垃圾扫起并卷带到滚刷与尘盒之间的吸尘口前方,然后被风机产生并经过尘盒的有吸力的气体吸入尘盒。扫地机的除尘能力可用垃圾的清扫效率进行表征,清扫效率受滚刷结构和材料影响,受吸尘口、尘盒、风机、出风口以及四者之间的连接部件所构成的风道的风力利用率影响,受风机的类型和功率影响。相比于普通的插电吸尘器,除尘能力的提高对于能源有限的清洁机器人来说意义更大。因为除尘能力的提高直接有效降低了对于能源要求,也就是说原来充一次电可以清扫80平米地面的机器,可以进化为充一次电清扫100平米甚至更多。并且减少充电次数的电池的使用寿命也会大大增加,使得用户更换电池的频率也会增加。更为直观和重要的是,除尘能力的提高是最为明显和重要的用户体验,用户会直接得出扫得是否干净/擦得是否干净的结论。干式清洁系统还可包含具有旋转轴的边刷152,旋转轴相对于地面成一定角度,以用于将碎屑移动到清洁系统的滚刷区域中。
湿式清洁系统153主要包括可拆卸的设置于底盘后端位置的水箱(未图示),水箱通过卡扣结构或多个固定螺丝固定于底盘底端,水箱底层包括可拆卸的拖布(未图示),拖布通过粘贴的方式连接于水箱底层。
能源系统160包括充电电池,例如镍氢电池和锂电池。充电电池可以连接有充电控制电路、电池组充电温度检测电路和电池欠压监测电路,充电控制电路、电池组充电温度检测电路、电池欠压监测电路再与单片机控制电路相连。主机通过设置在机身侧方或者底盘下方的充电电极(可以设置为第一充电接触片161和第二充电接触片162)与充电桩连接进行充电。
人机交互系统170包括主机面板上的按键,按键供用户进行功能选择;还可以包括 显示屏和/或指示灯和/或喇叭,显示屏、指示灯和喇叭向用户展示当前机器所处状态或者功能选择项;还可以包括手机客户端程序。对于路径导航型自动清洁设备,在手机客户端可以向用户展示设备所在环境的地图,以及机器所处位置,可以向用户提供更为丰富和人性化的功能项。
图5是根据本发明实施例的所提供的自动清洁设备的电连接方框图。
根据当前实施例的自动清洁设备可以包括:用于识别用户的语音的麦克阵列单元、用于与远程控制设备或其他设备通信的通信单元、用于驱动主体的移动单元、清洁单元、以及用于存储信息的存储器单元。输入单元(扫地机器人的按键等)、物体检测传感器、充电单元、麦克阵列单元、方向检测单元、位置检测单元、通信单元、驱动单元以及存储器单元可以连接到控制单元,以将预定信息传送到控制单元或从控制单元接收预定信息。
麦克阵列单元可以将通过接收单元输入的语音与存储在存储器单元中的信息比较,以确定输入语音是否对应于特定的命令。如果确定所输入的语音对应于特定的命令,则将对应的命令传送到控制单元。如果无法将检测到的语音与存储在存储器单元中的信息相比较,则所检测到的语音可被视为噪声以忽略所检测到的语音。
例如,检测到的语音对应词语“过来、来这里、到这里、到这儿”,并且存在与存储在存储器单元的信息中的词语相对应的文字控制命令(come here)。在这种情况下,可以将对应的命令传送到控制单元中。
方向检测单元可以通过使用输入到多个接收单元的语音的时间差或水平来检测语音的方向。方向检测单元将检测到的语音的方向传送到控制单元。控制单元可以通过使用由方向检测单元检测到的语音方向来确定移动路径。
位置检测单元可以检测主体在预定地图信息内的坐标。在一个实施例中,由摄像头检测到的信息与存储在存储器单元中的地图信息可以相互比较以检测主体的当前位置。除了摄像头之外,位置检测单元还可以使用全球定位系统(GPS)。
从广义上说,位置检测单元可以检测主体是否布置在特定的位置上。例如,位置检测单元可以包括用于检测主体是否布置在充电桩上的单元。
例如,在用于检测主体是否布置在充电桩上的方法中,可以根据电力是否输入到充电单元中来检测主体是否布置在充电位置处。又例如,可以通过布置在主体或充电桩上的充电位置检测单元来检测主体是否布置在充电位置处。
通信单元可以将预定信息传送到/接收自远程控制设备或者其他设备。通信单元可以更新扫地机器人的地图信息。
驱动单元可以操作移动单元和清洁单元。驱动单元可以沿由控制单元确定的移动路径移动所述移动单元。
存储器单元中存储与扫地机器人的操作有关的预定信息。例如,扫地机器人所布置的区域的地图信息、与麦克阵列单元所识别的语音相对应的控制命令信息、由方向检测 单元检测到的方向角信息、由位置检测单元检测到的位置信息以及由物体检测传感器检测到的障碍物信息可以存储在存储器单元中。
控制单元可以接收由接收单元、摄像头以及物体检测传感器检测到的信息。控制单元可以基于所传送的信息识别用户的语音、检测语音发生的方向、以及检测自动清洁设备的位置。此外,控制单元还可以操作移动单元和清洁单元。
根据本公开的具体实施方式,本公开实施例提供一种清洁机器人,包括:
底盘,位于清洁机器人底部;驱动系统,包括偏置下落式悬挂系统,所述悬挂系统以可移动方式紧固到所述底盘,且接收向下及远离所述底盘的弹簧偏置,所述弹簧偏置使得驱动轮以一定的着地力维持与地面的接触;能量存储单元,由所述底盘支撑并且包括至少一个充电接触片,所述充电接触片略伸出于所述底盘平面,其中,所述能量存储单元配置为在所述机器人定位在充电站时按照预定量充电;控制系统,设置于清洁机器人内部电路主板上,包括与非暂时性存储器以及处理器,其中,所述控制系统配置为根据待清扫面积和总耗电因子来控制所述能量存储单元按照所述预定量充电。
可选的,所述总耗电因子按照如下方式获得:
总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1,例如N=5。
可选的,还包括:导航装置,用于实时监测已清扫面积,并将所述已清扫面积上报至所述控制系统,所述控制系统根据所述已清扫面积计算获得所述待清扫面积,其中,导航装置包括:光接收器,设置于机器主体外侧面,用于接收充电桩发出的光信号;激光测距传感器,设置于机器主体顶面,用于绘制地图和避障。
可选的,所述控制系统配置为根据总面积与已清扫面积之差计算待清扫区域面积,其中,所述总面积按如下方式之一计算:
对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;
对于选区清扫模式,所述总面积等于所有选区大小之和;
对于划区清扫模式,所述总面积等于所有划区大小之和。
可以通过手机APP或清扫机器人设置界面选择一种指定的清扫模式,清扫模式包括全局清扫模式、选区清扫模式或划区清扫模式。其中,全局清扫模式是指,通过清扫机器人的导航装置所绘制的地图中的全部区域,例如地图绘制的全部区域分成四个子区域,区域一(卧室1)、区域二(卧室2)、区域三(厨房)、区域四(客厅),如图6所示,此时,如果选择全局清扫模式,则清扫机器人负责清扫的区域包括整个房间的四个区域,清扫面积为四个区域面积之和。选区清扫模式是指,用户可以选择区域一(卧室1)、区域二(卧室2)、区域三(厨房)、区域四(客厅)中的一个或多个区域进行清扫,例如选择区域一进行清扫,则清扫机器人就在区域一范围内清扫,清扫面积为区域一的面积。划区清扫模式是指,用户可以在区域一(卧室1)、区域二(卧室2)、区域三(厨房)、区域四(客厅)的任何一个或多个中划定一个范围进行清扫(例如图6中的虚线区 域),清扫机器人后续则只在对应的虚线区域内清扫,清扫面积为图6中两处虚线区域面积之和。
本发明的目的是通过让扫地机在电量较低的情况下,根据历史清扫地图记录,自动计算本次剩余待清扫面积,根据该清扫面积计算回充所需要充到的电量。回充至待充电量后,继续回到断点位置进行清扫,这样能够大幅度提高综合清扫效率,提升用户体验。
根据本公开的具体实施方式,本公开实施例提供一种清洁机器人充电控制方法,包括如下方法步骤,如图7所示:
S702:通过导航装置实时监测已清扫面积,并将所述已清扫面积上报至控制系统,所述控制系统根据所述已清扫面积计算获得待清扫面积。
可选的,根据总面积与已清扫面积之差计算待清扫区域面积,其中,所述总面积按如下方式之一计算:
对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;
对于选区清扫模式,所述总面积等于所有选区大小之和;
对于划区清扫模式,所述总面积等于所有划区大小之和。
三种模式说明,如上所述,此处不再赘述。
其中,所述任何一种总面积,都可以通过导航装置通过多次的清扫,对清扫区域扫描后计算获得的整个区域的面积和,该清扫面积或地图存储于清扫机器人存储设备中,并可以通过用户APP显示到终端,用户可以在APP界面对清扫过程进行设置。
S704:所述控制系统根据所述待清扫面积和总耗电因子计算预定充电量并控制所述能量存储单元按照所述预定充电量充电。
可选的,所述总耗电因子按照如下方式获得:
总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1,例如N=5。
可选的,预定充电量按照如下方式计算,预定充电量=待清扫面积*总耗电因子*M,其中,M为缓存因子,取值范围为1-1.5。M做为缓存因子目的是防止来回行走的行程耗电,多充一点,留够余量。
可选的,还包括如下步骤:控制系统实时监测能量存储单元的剩余电量,当所述剩余电量达到指定阈值时,改变机器人的行进特性,以将所述机器人引导至充电桩进行充电。
可选的,还包括:当计算出所述预定充电量大于上限值或小于下限值,则按照所述上限值或下限值充电。可选的,还包括:当无法获取所述总耗电因子时,所述预定充电量为80%。可选的,还包括:当判断充电次数大于预定次数时,所述预定充电量为80%。
例如,如果电量低于20%时,就需要强制回充,此时计算剩余面积清扫需要的电量,如果无法获取总耗电因子(由于第一次清扫,无法计算总耗电因子),采用默认的80%电量续扫。如果计算出来需要的电量大于95%,则在95%时出来续扫。如果计算出来电量小于30%,按30%出来续扫。续扫最多支持2-3次,即一次清扫过程中,最多出现两次断点清扫。否则,影响清扫效率。
一种实施例可以描述为,当待清扫面积清扫完毕时,控制系统获取能量存储单元的剩余电量,当剩余电量处于可充电范围内时(例如15%-25%),控制系统控制清洁设备的驱动系统,搜寻充电桩的位置,当获取到充电桩的位置时,行进到充电桩的充电接口进行自动充电。
另一种实施例可以描述为,当待清扫面积清扫接近完毕范围时(例如清扫完剩余面积的90%以上),控制系统获取能量存储单元的剩余电量,当剩余电量达到需充电的阈值时(例如25%),控制系统控制清洁设备的驱动系统,搜寻充电桩的位置,当获取到充电桩的位置时,行进到充电桩的充电接口进行自动充电。若未达到充电阈值,则将待清扫面积剩余面积清扫完毕后进行充电。
本发明的目的是通过让扫地机在电量较低的情况下,根据历史清扫地图记录,自动计算本次剩余待清扫面积,根据该清扫面积计算回充所需要充到的电量。回充至待充电量后,继续回到断点位置进行清扫,这样能够大幅度提高综合清扫效率,提升用户体验。
本公开实施例提供一种清洁机器人,包括处理器和存储器,所述存储器存储有能够被所述处理器执行的计算机程序指令,所述处理器执行所述计算机程序指令时,实现前述任一实施例的方法步骤。
本公开实施例提供一种非瞬时性计算机可读存储介质,存储有计算机程序指令,所述计算机程序指令在被处理器调用和执行时实现前述任一实施例的方法步骤。
如图8所示,机器人可以包括处理装置(例如中央处理器、图形处理器等)801,其可以根据存储在只读存储器(ROM)802中的程序或者从存储装置808加载到随机访问存储器(RAM)803中的程序而执行各种适当的动作和处理。在RAM 803中,还存储有电子机器人操作所需的各种程序和数据。处理装置801、ROM 802以及RAM 803通过总线804彼此相连。输入/输出(I/O)接口805也连接至总线804。
通常,以下装置可以连接至I/O接口805:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置806;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置807;包括例如磁带、硬盘等的存储装置808;以及通信装置809。通信装置809可以允许电子机器人与其他机器人进行无线或有线通信以交换数 据。虽然图8示出了具有各种装置的电子机器人,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置809从网络上被下载和安装,或者从存储装置808被安装,或者从ROM 802被安装。在该计算机程序被处理装置801执行时,执行本公开实施例的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述机器人中所包含的;也可以是单独存在,而未装配入该机器人中。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序 产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
Claims (12)
- 一种清洁机器人,其特征在于,包括:底盘;驱动系统,包括偏置下落式悬挂系统,所述悬挂系统以可移动方式紧固到所述底盘,且接收向下及远离所述底盘的弹簧偏置,所述弹簧偏置使得驱动轮以一定的着地力维持与地面的接触;能量存储单元,由所述底盘支撑并且包括至少一个充电接触片,所述充电接触片略伸出于所述底盘平面,其中,所述能量存储单元配置为在所述机器人定位在充电站时按照预定量充电;控制系统,设置于清洁机器人内部电路主板上,包括与非暂时性存储器以及处理器,其中,所述控制系统配置为根据待清扫面积和总耗电因子来控制所述能量存储单元按照所述预定量充电。
- 根据权利要求1所述的清洁机器人,其特征在于:所述总耗电因子按照如下方式获得:总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1。
- 根据权利要求1所述的清洁机器人,其特征在于,还包括:导航装置,用于实时监测已清扫面积,并将所述已清扫面积上报至所述控制系统,所述控制系统根据所述已清扫面积计算获得所述待清扫面积,包括:光接收器,设置于机器主体外侧面,用于接收充电桩发出的光信号;激光测距传感器,设置于机器主体顶面,用于绘制地图和避障。
- 根据权利要求3所述的清洁机器人,其特征在于:所述控制系统配置为根据总面积与已清扫面积之差计算待清扫区域面积,其中,所述总面积按如下方式之一计算:对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;对于选区清扫模式,所述总面积等于所有选区大小之和;对于划区清扫模式,所述总面积等于所有划区大小之和。
- 一种清洁机器人充电控制方法,其特征在于,包括:通过导航装置实时监测已清扫面积,并将所述已清扫面积上报至控制系统,所述控制系统根据所述已清扫面积计算获得待清扫面积;所述控制系统根据所述待清扫面积和总耗电因子计算预定充电量并控制所述能量存储单元按照所述预定充电量充电。
- 根据权利要求5所述的方法,其特征在于:所述总耗电因子按照如下方式获得:总耗电因子=最近N次完整清扫的总面积的总耗电/最近N次完整清扫的总面积,N≥1。
- 根据权利要求6所述的方法,其特征在于:根据总面积与已清扫面积之差计算待 清扫区域面积,其中,所述总面积按如下方式之一计算:对于全局清扫模式,所述总面积等于历史全局清扫中自主清扫完成的最大面积;对于选区清扫模式,所述总面积等于所有选区大小之和;对于划区清扫模式,所述总面积等于所有划区大小之和。
- 根据权利要求7所述的方法,其特征在于:所述控制系统根据所述待清扫面积和总耗电因子计算预定充电量,包括:预定充电量=待清扫面积*总耗电因子*M,其中,M为缓存因子,取值范围为1-1.5。
- 根据权利要求8所述的方法,其特征在于:还包括:控制系统实时监测能量存储单元的剩余电量,当所述剩余电量达到指定阈值时,改变机器人的行进特性,以将所述机器人引导至充电桩进行充电。
- 根据权利要求6-9任一所述的方法,其特征在于:还包括:当计算出所述预定充电量大于上限值或小于下限值,则按照所述上限值或下限值充电。
- 根据权利要求6所述的方法,其特征在于:还包括:当无法获取所述总耗电因子时,所述预定充电量为80%。
- 根据权利要求10所述的方法,其特征在于:当判断充电次数大于预定次数时,所述预定充电量为80%。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/640,325 US20220338700A1 (en) | 2019-09-05 | 2020-08-28 | Cleaning robot and control method therefor |
EP20859899.5A EP4014827B1 (en) | 2019-09-05 | 2020-08-28 | Cleaning robot and control method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910838307.1A CN110623606B (zh) | 2019-09-05 | 2019-09-05 | 一种清洁机器人及其控制方法 |
CN201910838307.1 | 2019-09-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021043080A1 true WO2021043080A1 (zh) | 2021-03-11 |
Family
ID=68970869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/112086 WO2021043080A1 (zh) | 2019-09-05 | 2020-08-28 | 一种清洁机器人及其控制方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220338700A1 (zh) |
EP (1) | EP4014827B1 (zh) |
CN (2) | CN110623606B (zh) |
TW (1) | TWI789625B (zh) |
WO (1) | WO2021043080A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114305221A (zh) * | 2021-12-17 | 2022-04-12 | 美智纵横科技有限责任公司 | 充电设备和扫地机器人 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110623606B (zh) * | 2019-09-05 | 2024-05-10 | 北京石头创新科技有限公司 | 一种清洁机器人及其控制方法 |
CN111176301A (zh) * | 2020-03-03 | 2020-05-19 | 江苏美的清洁电器股份有限公司 | 地图构建方法以及扫地机器人的清扫方法 |
CN111650937B (zh) * | 2020-06-04 | 2022-12-23 | 追觅创新科技(苏州)有限公司 | 自移动设备的控制方法、装置、设备及存储介质 |
CN112069283A (zh) * | 2020-09-14 | 2020-12-11 | 小狗电器互联网科技(北京)股份有限公司 | 扫地机清扫面积去重方法、装置、计算机设备和存储介质 |
CN112137527B (zh) * | 2020-09-15 | 2021-08-24 | 珠海市一微半导体有限公司 | 基于电量的自适应续扫控制方法、芯片及清洁机器人 |
CN112137508B (zh) * | 2020-09-15 | 2021-08-24 | 珠海市一微半导体有限公司 | 扫地机电量的自适应续扫控制方法、芯片及清洁机器人 |
TWD218288S (zh) * | 2021-03-11 | 2022-04-11 | 大陸商北京小米移動軟件有限公司 | 智慧型掃地機器人 |
CN115211760B (zh) * | 2021-04-16 | 2024-01-05 | 速感科技(北京)有限公司 | 清洁机器人及其清洁方法和计算机可读存储介质 |
CN112971628A (zh) * | 2021-04-25 | 2021-06-18 | 珠海格力电器股份有限公司 | 扫地机器人清扫控制方法、装置、计算机设备和介质 |
USD990802S1 (en) * | 2021-08-05 | 2023-06-27 | Shenzhen Haitao Optimization Technology Co., Ltd. | Sweeping robot |
CN113729583A (zh) * | 2021-09-26 | 2021-12-03 | 汇智机器人科技(深圳)有限公司 | 一种洗地机补给方法、系统和设备 |
CN115055456B (zh) * | 2022-06-06 | 2024-06-14 | 国家石油天然气管网集团有限公司 | 一种输油管道清洗机器人及输油管道清洗方法 |
JP1771033S (ja) * | 2022-12-30 | 2024-05-21 | 掃除ロボット | |
CN115969287B (zh) * | 2023-03-21 | 2023-09-26 | 科大讯飞股份有限公司 | 清洁机器人及其电量管理方法、装置及存储介质 |
CN116722628A (zh) * | 2023-08-01 | 2023-09-08 | 北京小米移动软件有限公司 | 充电方法及装置、电子设备、存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108733040A (zh) * | 2017-04-21 | 2018-11-02 | 深圳乐动机器人有限公司 | 机器人的回充控制系统及具有其的机器人 |
EP3412193A1 (de) * | 2017-06-08 | 2018-12-12 | Vorwerk & Co. Interholding GmbH | Verfahren zum betrieb eines einen akkumulator aufweisenden haushaltsgerätes |
CN109984687A (zh) * | 2019-06-03 | 2019-07-09 | 常州工程职业技术学院 | 一种扫地机器人的自动清扫控制方法 |
CN110136704A (zh) * | 2019-04-03 | 2019-08-16 | 北京石头世纪科技股份有限公司 | 机器人语音控制方法、装置、机器人和介质 |
CN110623606A (zh) * | 2019-09-05 | 2019-12-31 | 北京石头世纪科技股份有限公司 | 一种清洁机器人及其控制方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE523130T1 (de) * | 2005-02-18 | 2011-09-15 | Irobot Corp | Selbstfahrender flächenreinigungsroboter für nass-und trockenreinigung |
JP6384950B2 (ja) * | 2014-07-29 | 2018-09-05 | 株式会社コーワ | 布団清掃用吸込具及び、布団用清掃機 |
CN106235954A (zh) * | 2016-09-22 | 2016-12-21 | 蔡展 | 一种自动清扫机器人及其充电系统 |
TWI640288B (zh) * | 2016-09-23 | 2018-11-11 | 世擘股份有限公司 | 自動清潔裝置、自動清潔系統以及自動充電方法 |
KR102014141B1 (ko) * | 2017-08-07 | 2019-10-21 | 엘지전자 주식회사 | 로봇청소기 |
CN208973678U (zh) * | 2017-09-19 | 2019-06-14 | 北京石头世纪科技股份有限公司 | 防潮垫和智能清洁系统 |
CN107703930B (zh) * | 2017-10-11 | 2019-11-05 | 珠海市一微半导体有限公司 | 机器人的续扫控制方法 |
US12038756B2 (en) * | 2017-12-19 | 2024-07-16 | Carnegie Mellon University | Intelligent cleaning robot |
KR102317048B1 (ko) * | 2019-08-23 | 2021-10-25 | 엘지전자 주식회사 | 로봇 청소기 및 이의 제어방법 |
CN210931183U (zh) * | 2019-09-05 | 2020-07-07 | 北京石头世纪科技股份有限公司 | 一种清洁机器人 |
-
2019
- 2019-09-05 CN CN201910838307.1A patent/CN110623606B/zh active Active
- 2019-09-05 CN CN202410495066.6A patent/CN118285699A/zh active Pending
-
2020
- 2020-08-28 EP EP20859899.5A patent/EP4014827B1/en active Active
- 2020-08-28 US US17/640,325 patent/US20220338700A1/en active Pending
- 2020-08-28 WO PCT/CN2020/112086 patent/WO2021043080A1/zh unknown
- 2020-09-02 TW TW109130110A patent/TWI789625B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108733040A (zh) * | 2017-04-21 | 2018-11-02 | 深圳乐动机器人有限公司 | 机器人的回充控制系统及具有其的机器人 |
EP3412193A1 (de) * | 2017-06-08 | 2018-12-12 | Vorwerk & Co. Interholding GmbH | Verfahren zum betrieb eines einen akkumulator aufweisenden haushaltsgerätes |
CN110136704A (zh) * | 2019-04-03 | 2019-08-16 | 北京石头世纪科技股份有限公司 | 机器人语音控制方法、装置、机器人和介质 |
CN109984687A (zh) * | 2019-06-03 | 2019-07-09 | 常州工程职业技术学院 | 一种扫地机器人的自动清扫控制方法 |
CN110623606A (zh) * | 2019-09-05 | 2019-12-31 | 北京石头世纪科技股份有限公司 | 一种清洁机器人及其控制方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4014827A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114305221A (zh) * | 2021-12-17 | 2022-04-12 | 美智纵横科技有限责任公司 | 充电设备和扫地机器人 |
Also Published As
Publication number | Publication date |
---|---|
EP4014827A4 (en) | 2022-09-28 |
TWI789625B (zh) | 2023-01-11 |
EP4014827B1 (en) | 2024-07-24 |
US20220338700A1 (en) | 2022-10-27 |
CN118285699A (zh) | 2024-07-05 |
CN110623606B (zh) | 2024-05-10 |
EP4014827A1 (en) | 2022-06-22 |
CN110623606A (zh) | 2019-12-31 |
TW202110378A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021043080A1 (zh) | 一种清洁机器人及其控制方法 | |
WO2021043002A1 (zh) | 一种清洁机器人及其控制方法 | |
WO2021042982A1 (zh) | 一种清洁机器人及其控制方法 | |
AU2018100726A4 (en) | Automatic cleaning device and cleaning method | |
EP3998007A1 (en) | Automatic cleaning device control method and apparatus, device and medium | |
CN114468898B (zh) | 机器人语音控制方法、装置、机器人和介质 | |
CN109932726B (zh) | 机器人测距校准方法、装置、机器人和介质 | |
CN109920425B (zh) | 机器人语音控制方法、装置、机器人和介质 | |
CN210931183U (zh) | 一种清洁机器人 | |
CN210931181U (zh) | 一种清洁机器人 | |
CN210931182U (zh) | 一种清洁机器人 | |
WO2021098410A1 (zh) | 摄像头装置及清洁机器人 | |
AU2022204218B2 (en) | Camera Apparatus and Cleaning Robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20859899 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020859899 Country of ref document: EP Effective date: 20220315 |