WO2021042459A1 - 彩膜基板的制备方法、彩膜基板及液晶显示面板 - Google Patents
彩膜基板的制备方法、彩膜基板及液晶显示面板 Download PDFInfo
- Publication number
- WO2021042459A1 WO2021042459A1 PCT/CN2019/112710 CN2019112710W WO2021042459A1 WO 2021042459 A1 WO2021042459 A1 WO 2021042459A1 CN 2019112710 W CN2019112710 W CN 2019112710W WO 2021042459 A1 WO2021042459 A1 WO 2021042459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film layer
- color filter
- silver
- filter substrate
- substrate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/1303—Apparatus specially adapted to the manufacture of LCDs
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
- G02F1/133516—Methods for their manufacture, e.g. printing, electro-deposition or photolithography
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133703—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by introducing organic surfactant additives into the liquid crystal material
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133796—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers having conducting property
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2202/00—Materials and properties
- G02F2202/36—Micro- or nanomaterials
Definitions
- This application relates to the field of display technology, and in particular to a method for preparing a color filter substrate, a color filter substrate, and a liquid crystal display panel.
- the HVA (High Vertical Alignment) alignment in TFT-LCD is a very important process, and its main function is to give the liquid crystal molecules in the boxed TFT-LCD a precondition.
- the tilt angle allows the liquid crystal molecules to rotate faster when the display panel is working, so as to improve the response speed of the panel.
- the HVA alignment process must be powered on.
- the current is provided by the metal circuit board, passes through the array substrate, and is introduced into the ITO (Indium Tin Oxides (Indium Tin Oxide) conductive film, eventually there is a pressure difference between the two ends of the array substrate and the color filter substrate to realize the deflection of the liquid crystal.
- the impedance of the ITO conductive film in the prior art is too large, the HVA signal is delayed, which further affects the normal alignment of the liquid crystal.
- the HVA signal is delayed, which further affects the normal alignment of the liquid crystal.
- This application provides a method for preparing a color filter substrate, a color filter substrate, and a liquid crystal display panel, which can reduce the impedance of an ITO conductive film, so as to solve the problem of the existing method for preparing a color filter substrate, a color filter substrate, and a liquid crystal display panel.
- the impedance of the conductive film is too large, causing a delay in the HVA signal, which further affects the technical problem of the normal alignment of the liquid crystal.
- the present application provides a method for preparing a color filter substrate.
- the method includes:
- the S20 further includes:
- the silver-containing electrophoresis solution is made by mixing silver nitrate, polyvinylpyrrolidone and distilled water.
- the mass ratio of the silver nitrate to the polyvinylpyrrolidone in the silver-containing electrophoresis solution is 1:30.
- the deposition voltage of the electrophoresis apparatus is 10V
- the reaction time of the electrophoresis apparatus is 10 minutes.
- the present application also provides a color film substrate, including: a glass substrate and a conductive film layer disposed on the glass substrate, the conductive film layer including an ITO film layer, and a silver nanoparticle film layer disposed on the ITO film layer.
- the conductive film layer is made by depositing silver nanoparticles on the ITO film layer by electrophoretic deposition.
- the low-impedance ITO conductive film is made by depositing silver nanoparticles on an ITO film layer by electrophoretic deposition.
- the electrophoretic deposition solution used in the electrophoretic deposition method is made by mixing silver nitrate, polyvinylpyrrolidone and distilled water, and the mass ratio of the silver nitrate to the polyvinylpyrrolidone is 1:30.
- the deposition voltage of the electrophoresis apparatus used in the electrophoretic deposition method is 10V
- the reaction time of the electrophoresis apparatus is 10 minutes.
- the present application further provides a liquid crystal display panel, which includes at least any one of the above-mentioned color filter substrates.
- the beneficial effects of this application are: the preparation method of the color film substrate, the color film substrate and the liquid crystal display panel, the silver nanoparticles are deposited on the surface of the ITO film layer by electrophoretic deposition, which reduces the ITO impedance and reduces the resistance and capacitance delay effect , Further make the liquid crystal alignment more fully.
- Fig. 1 is a flow chart of the method for preparing the color filter substrate of the present application.
- 2A-2B are structural schematic diagrams of the method for preparing the color filter substrate of the present application.
- FIG. 3 is a schematic diagram of the structure of the color filter substrate of the present application.
- FIG. 4 is a schematic diagram of the structure of the liquid crystal display panel of the present application.
- This application is directed to the preparation method of the color filter substrate, the color filter substrate and the liquid crystal display panel. Due to the excessive impedance of the ITO conductive film, the HVA signal is delayed, which further affects the technical problem of the normal alignment of the liquid crystal. This embodiment can solve the technical problem defect.
- Fig. 1 it is a flow chart of the preparation method of the color filter substrate of this application.
- the method includes:
- a glass substrate 11 is provided, and an ITO film layer 12 is formed on the surface of the glass substrate 11.
- the S10 further includes:
- a glass substrate 11 is provided to clean the glass substrate 11, and an ultrasonic cleaning effect is used during the cleaning operation to completely remove the oxide layer and oil stains on the surface of the glass substrate 11.
- ITO Indium Tin Oxide
- ITO film layer 12 is deposited on the surface of the glass substrate 11 by magnetron sputtering to form an ITO film layer 12; for magnetron sputtering, DC/RF power is preferably used, and the sputtering voltage is 150 ⁇ 180V
- the magnetic field intensity is 1000G ⁇ 1500G
- the process gas is Ar ⁇ O 2 mixed gas
- the volume ratio of argon:oxygen in the mixed gas is 2:1, as shown in Figure 2A.
- the S20 further includes:
- the silver-containing electrophoresis solution 20 is configured, and the silver-containing electrophoresis solution 20 is made by mixing silver nitrate, polyvinylpyrrolidone (PVP), and distilled water. After that, the above-mentioned mixed solution was ultrasonically treated for 1 hour to make the solution mixed uniformly, and the silver-containing electrophoresis solution 20 was obtained and placed in the electrophoresis apparatus 40.
- the mass ratio of the silver nitrate to the polyvinylpyrrolidone (PVP) in the silver-containing electrophoresis solution 20 is 1:30.
- the ITO film layer 12 and a conductive substrate 30 are respectively placed in the electrophoresis apparatus 40, so that the ITO film layer 12 is electrically connected to the negative electrode of the electrophoresis apparatus 40, and the conductive substrate 30 and The positive electrode of the electrophoresis apparatus 40 is electrically connected.
- a silver nanoparticle film layer 50 is formed on the surface of the ITO film layer 12, and the silver nanoparticle film layer 50 is on the ITO film layer.
- the uneven deposition of 12 fills up the surface defects of the European-style ITO film layer 12, improves the conductivity of the ITO film layer 12, and finally obtains a conductive film layer.
- the glass substrate 11 and the conductive film layer form a color
- the membrane substrate is shown in Figure 2B.
- the deposition voltage of the electrophoresis apparatus 40 is 10V
- the reaction time of the electrophoresis apparatus 40 is 10 minutes.
- the preparation method of the color film substrate of the present application can control the silver nano-particles of the silver nanoparticle film layer 50 by adjusting the mass ratio of the silver nitrate and the polyvinylpyrrolidone (PVP) in the silver-containing electrophoresis solution 20. Particle morphology.
- the preparation method of the color film substrate of the present application can control the silver nanoparticle film layer by adjusting the deposition voltage, the reaction time of the electrophoresis apparatus 40, and the distance between the ITO film layer 12 and the conductive substrate 30.
- the thickness of 50 looking for the best process conditions, can effectively achieve the preparation of low-impedance conductive film.
- the method for manufacturing the color filter substrate of the present application enables the silver nanoparticle film layer 50 to be deposited on the uneven film quality of the ITO film layer 12, which on the one hand fills up the surface defects of the ITO film layer 12, The conductivity of the ITO film layer 12 is improved; on the other hand, the thickness of the ITO film layer 12 is reduced, and the production cost is reduced.
- the present application also provides a color filter substrate.
- the color film substrate 60 includes: a glass substrate 61, a conductive film layer 62 disposed on the glass substrate 61, and the conductive film layer 62 includes an ITO film layer 621, which is disposed on the ITO film layer 621. On the silver nanoparticle film layer 622.
- the conductive film layer 62 is made by depositing silver nanoparticles on the ITO film layer 621 through electrophoretic deposition.
- the electrophoretic deposition solution used in the electrophoretic deposition method is made by mixing silver nitrate, polyvinylpyrrolidone and distilled water, and the mass ratio of the silver nitrate to the polyvinylpyrrolidone is 1:30; the electrophoretic deposition method uses The deposition voltage of the electrophoresis apparatus is 10V, and the reaction time of the electrophoresis apparatus is 10 minutes.
- the present application also provides a liquid crystal display panel.
- the liquid crystal display panel includes an array substrate 71, a color filter substrate 72, and a liquid crystal layer 73 disposed between the array substrate 71 and the color filter substrate 72, which are arranged oppositely.
- the array substrate 71 is provided with a first alignment film 74 on the side close to the color filter substrate 72; the color filter substrate 72 is provided with a second alignment film 75 on the side close to the array substrate 71.
- the color film substrate 72 includes: a glass substrate 721, a conductive film layer 722 disposed on the glass substrate 721, and the conductive film layer 722 includes an ITO film layer and an ITO film layer disposed on the ITO film layer. Silver nanoparticle film layer.
- the conductive film layer 722 is made by depositing silver nanoparticles on the ITO film layer by electrophoretic deposition.
- the electrophoretic deposition solution used in the electrophoretic deposition method is made by mixing silver nitrate, polyvinylpyrrolidone and distilled water, and the mass ratio of the silver nitrate to the polyvinylpyrrolidone (PVP) can be adjusted to control the silver nanoparticles.
- PVP polyvinylpyrrolidone
- the mass ratio of the silver nitrate to the polyvinylpyrrolidone is 1:30.
- the thickness of the silver nanoparticle film layer can be adjusted by adjusting the deposition voltage and reaction time of the electrophoresis apparatus, and the optimal process conditions can be searched for, which can effectively realize the preparation of the conductive film layer 722 .
- the deposition voltage of the electrophoresis apparatus used in the electrophoretic deposition method is 10V
- the reaction time of the electrophoresis apparatus is 10 minutes.
- a plurality of spacers 76 are further arranged between the color filter substrate 72 and the array substrate 71.
- the conductive film layer 722 in the liquid crystal display panel of the present application due to the excellent conductivity of the silver nanoparticle film layer, has excellent electrical properties, reduces the ITO impedance, reduces the resistance and capacitance delay effect, and realizes HVA
- the alignment process has a better alignment effect.
- the application of the conductive film layer 722 in the HVA alignment process can reduce the number of HVA curing pads, optimize the design, and save the production capacity of changing wires.
- the electrophoretic deposition method is used to prepare the conductive film layer 722, the deposition device is simple, and it has a great cost advantage compared with PVD (physical vapor deposition) equipment; secondly, ITO is a rare metal and is expensive, so the ITO film Electrophoretic deposition of silver on the surface of the layer can realize the thinning of the ITO film and reduce the cost.
- PVD physical vapor deposition
- the preparation method of the color film substrate, the color film substrate and the liquid crystal display panel provided by this application deposit silver nanoparticles on the surface of the ITO film by electrophoretic deposition, which reduces the impedance of ITO and reduces The resistance-capacitance retardation effect is further improved to make the liquid crystal alignment more fully.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Optical Filters (AREA)
- Liquid Crystal (AREA)
Abstract
一种彩膜基板(60)的制备方法,包括:S10,在玻璃基板(11)的表面形成ITO膜层(12);S20,通过电泳沉积的方式在ITO膜层(12)的表面沉积银纳米粒子膜层(50),得到导电性膜层。还提供彩膜基板(60)和液晶显示面板。通过电泳沉积的方式在ITO膜层(12)的表面沉积银纳米粒子,减小了ITO阻抗,降低了电阻电容延迟效应,进一步使液晶配向更充分。
Description
本申请涉及显示技术领域,尤其涉及一种彩膜基板的制备方法、彩膜基板及液晶显示面板。
目前TFT-LCD(薄膜晶体管-液晶显示面板)中的HVA (High Vertical Alignment,高垂直排列)配向是一个很重要的过程,其主要作用是给成盒后的TFT-LCD中的液晶分子一个预倾角,让显示面板工作时液晶分子能更快地转动,以提高面板的响应速度。HVA配向制程必须经过加电,电流由金属电路板提供,经过阵列基板,通过金球导入彩膜基板上的ITO(Indium
Tin Oxides,氧化铟锡)导电薄膜,最终在阵列基板与彩膜基板的两端出现压差,实现液晶的偏转。然而,由于现有技术中ITO导电薄膜的阻抗过大,造成HVA信号出现延迟现象,进一步影响液晶的正常配向。
综上所述,现有的彩膜基板的制备方法、彩膜基板及液晶显示面板,由于ITO导电薄膜的阻抗过大,造成HVA信号出现延迟现象,进一步影响液晶的正常配向。
现有的彩膜基板的制备方法、彩膜基板及液晶显示面板,由于ITO导电薄膜的阻抗过大,造成HVA信号出现延迟现象,进一步影响液晶的正常配向。
本申请提供一种彩膜基板的制备方法、彩膜基板及液晶显示面板,能够减少ITO导电薄膜的阻抗,以解决现有的彩膜基板的制备方法、彩膜基板及液晶显示面板,由于ITO导电薄膜的阻抗过大,造成HVA信号出现延迟现象,进一步影响液晶的正常配向的技术问题。
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种彩膜基板的制备方法,所述方法包括:
S10,提供一玻璃基板,在所述玻璃基板的表面形成ITO膜层;
S20,通过电泳沉积的方式在所述ITO膜层的表面沉积银纳米粒子膜层,得到导电性膜层。
在本申请实施例所提供的彩膜基板的制备方法中,所述S20还包括:
S201,配置含银电泳溶液,并将所述含银电泳溶液置于电泳仪中;
S202,将所述ITO膜层以及一导电基板分别置于所述电泳仪中,使所述ITO膜层与所述电泳仪的负极电性连接,且所述导电基板与所述电泳仪的正极电性连接;
S203,开启所述电泳仪的电源并电镀一段时间后,在所述ITO膜层的表面形成银纳米粒子膜层,最终得到低阻抗ITO导电薄膜。
在本申请实施例所提供的彩膜基板的制备方法中,所述S201中,所述含银电泳溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成。
在本申请实施例所提供的彩膜基板的制备方法中,所述含银电泳溶液中所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30。
在本申请实施例所提供的彩膜基板的制备方法中,所述S203中,所述电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
本申请还提供一种彩膜基板,包括:玻璃基板、设置在玻璃基板上的导电性膜层,所述导电性膜层包括ITO膜层、设置在ITO膜层上的银纳米粒子膜层。
在本申请实施例所提供的彩膜基板中,所述导电性膜层由所述ITO膜层经电泳沉积方式沉积银纳米粒子制成。
在本申请实施例所提供的彩膜基板中,所述低阻抗ITO导电薄膜由ITO膜层经电泳沉积方式沉积银纳米粒子制成。
在本申请实施例所提供的彩膜基板中,所述电泳沉积方式使用的电泳沉积溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成,所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30。
在本申请实施例所提供的彩膜基板中,所述电泳沉积方式使用的电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
本申请又提供了一种液晶显示面板,至少包括上述任一项的彩膜基板。
本申请的有益效果为:彩膜基板的制备方法、彩膜基板及液晶显示面板,通过电泳沉积的方式在ITO膜层的表面沉积银纳米粒子,减小了ITO阻抗,降低了电阻电容延迟效应,进一步使液晶配向更充分。
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请彩膜基板的制备方法流程图。
图2A-图2B为本申请彩膜基板的制备方法的结构示意图。
图3为本申请彩膜基板的结构示意图。
图4为本申请液晶显示面板的结构示意图。
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请针对彩膜基板的制备方法、彩膜基板及液晶显示面板,由于ITO导电薄膜的阻抗过大,造成HVA信号出现延迟现象,进一步影响液晶的正常配向的技术问题,本实施例能够解决该缺陷。
如图1所示,为本申请彩膜基板的制备方法流程图。所述方法包括:
S10,提供一玻璃基板11,在所述玻璃基板11的表面形成ITO膜层12。
具体的,所述S10还包括:
提供一玻璃基板11,对所述玻璃基板11进行清洁,清洁操作的同时使用超声波清洁效果以彻底去除所述玻璃基板11表面的氧化层和油污。之后,利用磁控溅射将ITO(氧化铟锡)沉积到所述玻璃基板11的表面形成ITO膜层12;磁控溅射时优选为采用直流/射频电源,溅射电压为150~180V,磁场强度为1000G~1500G,工艺气体采用Ar~O
2混合气体,混合气体中氩气:氧气的体积比为2:1,如图2A所示。
S20,通过电泳沉积的方式在所述ITO膜层12的表面沉积银纳米粒子膜层50,得到导电性膜层。
具体的,所述S20还包括:
首先配置含银电泳溶液20,所述含银电泳溶液20由硝酸银、聚乙烯吡咯烷酮(PVP)以及蒸馏水混合制成。之后,将上述混合的溶液超声处理1h,使溶液混合均匀,得到所述含银电泳溶液20并置于电泳仪40中。优选的,所述含银电泳溶液20中所述硝酸银与所述聚乙烯吡咯烷酮(PVP)的质量比例为1:30。然后,将所述ITO膜层12以及一导电基板30分别置于所述电泳仪40中,使所述ITO膜层12与所述电泳仪40的负极电性连接,且所述导电基板30与所述电泳仪40的正极电性连接。之后,开启所述电泳仪40的电源(DC)并电镀一段时间后,在所述ITO膜层12的表面形成银纳米粒子膜层50,所述银纳米粒子膜层50在所述ITO膜层12的不均处沉积,填补了欧式ITO膜层12的表面缺陷,提升所述ITO膜层12的导电性,最终得到导电性膜层,所述玻璃基板11与所述导电性膜层构成彩膜基板,如图2B所示。
优选的,所述电泳仪40的沉积电压为10V,所述电泳仪40的反应时间为10分钟。
具体地,本申请彩膜基板的制备方法通过调控所述含银电泳溶液20中所述硝酸银与所述聚乙烯吡咯烷酮(PVP)的质量比例可以调控所述银纳米粒子膜层50的银纳米粒子形貌。
具体地,本申请彩膜基板的制备方法通过调控所述电泳仪40的沉积电压、反应时间、所述ITO膜层12与所述导电基板30之间的距离可以调控所述银纳米粒子膜层50的厚度,寻找最佳工艺条件,能有效实现低阻抗的导电性膜层的制备。
具体地,本申请彩膜基板的制作方法,使所述银纳米粒子膜层50在所述ITO膜层12的膜质不均处沉积,一方面填补了所述ITO膜层12的表面缺陷,提升了所述ITO膜层12的导电性;另一方面实现所述ITO膜层12厚度的减薄,降低了生产成本。
如图3所示,本申请还提供一种彩膜基板。其中,所述彩膜基板60包括:玻璃基板61、设置在所述玻璃基板61上的导电性膜层62,所述导电性膜层62包括ITO膜层621、设置在所述ITO膜层621上的银纳米粒子膜层622。
具体地,所述导电性膜层62由所述ITO膜层621经电泳沉积方式沉积银纳米粒子制成。其中,所述电泳沉积方式使用的电泳沉积溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成,所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30;所述电泳沉积方式使用的电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
如图4所示,本申请还提供一种液晶显示面板。其中,所述液晶显示面板包括相对设置的阵列基板71、彩膜基板72以及设置于所述阵列基板71和所述彩膜基板72之间的液晶层73。
具体地,所述阵列基板71上靠近所述彩膜基板72一侧设置有第一配向膜74;所述彩膜基板72上靠近所述阵列基板71一侧设置有第二配向膜75。
其中,所述彩膜基板72包括:玻璃基板721、设置在所述玻璃基板721上的导电性膜层722,所述导电性膜层722包括ITO膜层以及设置在所述ITO膜层上的银纳米粒子膜层。
具体的,所述导电性膜层722由所述ITO膜层经电泳沉积方式沉积银纳米粒子制成。
具体的,所述电泳沉积方式使用的电泳沉积溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成,所述硝酸银与所述聚乙烯吡咯烷酮(PVP)的质量比例可以调控所述银纳米粒子的银纳米粒子形貌。优选的,所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30。
具体的,所述电泳沉积方式中,可以通过调控电泳仪的沉积电压及反应时间调控所述银纳米粒子膜层的厚度,寻找最佳工艺条件,能有效实现所述导电性膜层722的制备。优选的,所述电泳沉积方式使用的电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
具体的,所述彩膜基板72与所述阵列基板71之间还设置有多个隔垫物76。
本申请液晶显示面板中的所述导电性膜层722,由于所述银纳米粒子膜层优良的导电性,具有出色的电性能,减小了ITO阻抗,降低了电阻电容延迟效应,实现了HVA配向制程更好的配向效果。
所述导电性膜层722应用于HVA配向制程中可以减少HVA固化垫的数量,优化了设计并节省了换线产能。
采用电泳沉积法制备所述导电性膜层722,沉积装置简单,相较于PVD(物理气相沉积)设备具有很大的成本优势;其次,ITO为稀有金属,价格昂贵,因此在所述ITO膜层表面电泳沉积银可实现所述ITO膜层的减薄,降低成本。
本申请的有益效果为:本申请所提供的彩膜基板的制备方法、彩膜基板及液晶显示面板,通过电泳沉积的方式在ITO膜层的表面沉积银纳米粒子,减小了ITO阻抗,降低了电阻电容延迟效应,进一步使液晶配向更充分。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。
Claims (10)
- 一种彩膜基板的制备方法,其中,所述方法包括:S10,提供一玻璃基板,在所述玻璃基板的表面形成ITO膜层;S20,通过电泳沉积的方式在所述ITO膜层的表面沉积银纳米粒子膜层,得到导电性膜层。
- 根据权利要求1所述的彩膜基板的制备方法,其中,所述S20还包括:S201,配置含银电泳溶液,并将所述含银电泳溶液置于电泳仪中;S202,将所述ITO膜层以及一导电基板分别置于所述电泳仪中,使所述ITO膜层与所述电泳仪的负极电性连接,且所述导电基板与所述电泳仪的正极电性连接;S203,开启所述电泳仪的电源并电镀一段时间后,在所述ITO膜层的表面形成银纳米粒子膜层,得到导电性膜层。
- 根据权利要求2所述的彩膜基板的制备方法,其中,所述S201中,所述含银电泳溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成。
- 根据权利要求3所述的彩膜基板的制备方法,其中,所述含银电泳溶液中所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30。
- 根据权利要求3所述的彩膜基板的制备方法,其中,所述S203中,所述电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
- 一种彩膜基板,其中,包括:玻璃基板、设置在所述玻璃基板上的导电性膜层,所述导电性膜层包括ITO膜层、设置在所述ITO膜层上的银纳米粒子膜层。
- 根据权利要求6所述的彩膜基板,其中,所述导电性膜层由所述ITO膜层经电泳沉积方式沉积银纳米粒子制成。
- 根据权利要求7所述的彩膜基板,其中,所述电泳沉积方式使用的电泳沉积溶液由硝酸银、聚乙烯吡咯烷酮以及蒸馏水混合制成,所述硝酸银与所述聚乙烯吡咯烷酮的质量比例为1:30。
- 根据权利要求7所述的彩膜基板,其中,所述电泳沉积方式使用的电泳仪的沉积电压为10V,所述电泳仪的反应时间为10分钟。
- 一种液晶显示面板,其中,至少包括权利要求6所述的彩膜基板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/615,361 US20210356809A1 (en) | 2019-09-03 | 2019-10-23 | Color Filter Substrate, Method for Fabricating Same, and Liquid Crystal Display Panel Comprising Same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910828323.2 | 2019-09-03 | ||
CN201910828323.2A CN110596986A (zh) | 2019-09-03 | 2019-09-03 | 彩膜基板的制备方法、彩膜基板及液晶显示面板 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021042459A1 true WO2021042459A1 (zh) | 2021-03-11 |
Family
ID=68857135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/112710 WO2021042459A1 (zh) | 2019-09-03 | 2019-10-23 | 彩膜基板的制备方法、彩膜基板及液晶显示面板 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20210356809A1 (zh) |
CN (1) | CN110596986A (zh) |
WO (1) | WO2021042459A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080314628A1 (en) * | 2007-06-25 | 2008-12-25 | Samsung Electronics Co., Ltd. | Method of forming metal pattern, patterned metal structure, and thin film transistor-liquid crystal displays using the same |
CN202285073U (zh) * | 2011-11-08 | 2012-06-27 | 京东方科技集团股份有限公司 | 彩膜基板及显示面板 |
CN203084685U (zh) * | 2012-12-21 | 2013-07-24 | 北京京东方光电科技有限公司 | 一种彩膜基板及显示装置 |
CN104080956A (zh) * | 2011-12-02 | 2014-10-01 | 阿尔塔纳股份公司 | 在非导电衬底上制造的导电结构及其制造方法 |
CN107513699A (zh) * | 2017-09-07 | 2017-12-26 | 深圳赢特科技有限公司 | 一种基于银纳米线的导电涂层及其制备方法 |
CN108971510A (zh) * | 2018-07-26 | 2018-12-11 | 深圳清华大学研究院 | 银纳米线及其制备方法、银纳米线薄膜及复合薄膜 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297462A (ja) * | 1986-06-18 | 1987-12-24 | Toyota Motor Corp | 高速真空成膜方法 |
JP2000314806A (ja) * | 1999-04-28 | 2000-11-14 | Fuji Xerox Co Ltd | 導電性カラーフィルターの製造方法 |
KR100510376B1 (ko) * | 2004-11-11 | 2005-08-30 | (주)미래프라즈마 | 스피커용 압전필름 표면의 접착력 증대 방법 및 그에 의해 만들어진 필름형 스피커 |
CN103091930B (zh) * | 2013-01-30 | 2016-05-11 | 深圳市华星光电技术有限公司 | 一种液晶透镜和立体显示装置 |
CN104788022B (zh) * | 2015-03-31 | 2017-04-05 | 哈尔滨工业大学 | 片状纳米银电致变色薄膜的应用 |
CN105259693A (zh) * | 2015-11-11 | 2016-01-20 | 深圳市华星光电技术有限公司 | 液晶显示装置及其彩膜基板 |
CN107942591B (zh) * | 2017-11-20 | 2020-07-31 | 深圳市华星光电技术有限公司 | 一种阵列基板及液晶显示面板 |
-
2019
- 2019-09-03 CN CN201910828323.2A patent/CN110596986A/zh active Pending
- 2019-10-23 WO PCT/CN2019/112710 patent/WO2021042459A1/zh active Application Filing
- 2019-10-23 US US16/615,361 patent/US20210356809A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080314628A1 (en) * | 2007-06-25 | 2008-12-25 | Samsung Electronics Co., Ltd. | Method of forming metal pattern, patterned metal structure, and thin film transistor-liquid crystal displays using the same |
CN202285073U (zh) * | 2011-11-08 | 2012-06-27 | 京东方科技集团股份有限公司 | 彩膜基板及显示面板 |
CN104080956A (zh) * | 2011-12-02 | 2014-10-01 | 阿尔塔纳股份公司 | 在非导电衬底上制造的导电结构及其制造方法 |
CN203084685U (zh) * | 2012-12-21 | 2013-07-24 | 北京京东方光电科技有限公司 | 一种彩膜基板及显示装置 |
CN107513699A (zh) * | 2017-09-07 | 2017-12-26 | 深圳赢特科技有限公司 | 一种基于银纳米线的导电涂层及其制备方法 |
CN108971510A (zh) * | 2018-07-26 | 2018-12-11 | 深圳清华大学研究院 | 银纳米线及其制备方法、银纳米线薄膜及复合薄膜 |
Also Published As
Publication number | Publication date |
---|---|
CN110596986A (zh) | 2019-12-20 |
US20210356809A1 (en) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103092416B (zh) | 一种消影高透过率ogs用玻璃及其制造方法 | |
WO2019205702A1 (zh) | 阵列基板及其制作方法 | |
CN103885221B (zh) | 大板加电线路及其制造方法 | |
CN105824158A (zh) | 阵列基板、显示装置及阵列基板制作方法 | |
WO2020073383A1 (zh) | 一种显示面板和显示面板的制程 | |
CN105974683A (zh) | 液晶显示面板及其制作方法 | |
CN102998856A (zh) | 一种阵列基板及其制作方法、显示装置 | |
WO2020134006A1 (zh) | 液晶显示面板以及显示装置 | |
JPS63104023A (ja) | 電気光学装置 | |
WO2021042459A1 (zh) | 彩膜基板的制备方法、彩膜基板及液晶显示面板 | |
CN109298578A (zh) | 一种复合型电致变色玻璃及其加工方法 | |
CN107978608A (zh) | Ips型薄膜晶体管阵列基板及其制作方法 | |
CN104934445B (zh) | Tft基板组及其制作方法 | |
CN108628022B (zh) | 一种液晶显示器及其制备方法 | |
US10627684B2 (en) | Liquid crystal mother substrate and vertical alignment curing method thereof | |
WO2020133827A1 (zh) | 蓝相液晶面板的制作方法及其立体电极的制作方法 | |
JPS63113585A (ja) | 透明電極ならびにその製法および用途 | |
CN103204633B (zh) | 一种具有多种刻蚀模式的刻蚀系统 | |
CN104280903A (zh) | 液晶显示器及其制造方法、彩膜基板及其制造方法 | |
JPH0659267A (ja) | 表示装置用基板及びその製造方法 | |
CN203700196U (zh) | 一种导电玻璃样片制作装置 | |
CN217426385U (zh) | 一种低电阻高透过率ito导电膜 | |
CN102914919B (zh) | 一种多维电场模式液晶显示器的制作方法及装置 | |
CN101864557A (zh) | 一种透明导电薄膜制备方法 | |
JP4964369B2 (ja) | Ag合金薄膜の形成方法および情報表示素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19944107 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944107 Country of ref document: EP Kind code of ref document: A1 |