WO2020133827A1 - 蓝相液晶面板的制作方法及其立体电极的制作方法 - Google Patents

蓝相液晶面板的制作方法及其立体电极的制作方法 Download PDF

Info

Publication number
WO2020133827A1
WO2020133827A1 PCT/CN2019/083456 CN2019083456W WO2020133827A1 WO 2020133827 A1 WO2020133827 A1 WO 2020133827A1 CN 2019083456 W CN2019083456 W CN 2019083456W WO 2020133827 A1 WO2020133827 A1 WO 2020133827A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase liquid
manufacturing
dimensional electrode
blue
Prior art date
Application number
PCT/CN2019/083456
Other languages
English (en)
French (fr)
Inventor
李迁
陈兴武
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2020133827A1 publication Critical patent/WO2020133827A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13793Blue phases

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a method for manufacturing a blue phase liquid crystal panel and a method for manufacturing a three-dimensional electrode.
  • the blue phase liquid crystal display panel has received extensive attention due to its advantages such as sub-millisecond response speed, but its own shortcomings such as high driving voltage have also become the main factors limiting its development.
  • different solutions have been proposed, for example: from the structure and shape of the new electrode, the arrangement of the new electrode, and the new blue-phase liquid crystal monomer material, etc. Improve.
  • the improvement of electrode structure and shape is one of the more effective implementations that have been generally proposed at present.
  • the present disclosure provides a new method for manufacturing a blue phase liquid crystal panel and a method for manufacturing a three-dimensional electrode to solve the above technical problems.
  • the present disclosure provides a method for manufacturing a blue-phase liquid crystal panel and a method for manufacturing a three-dimensional electrode, which can solve the manufacturing process problem of the three-dimensional electrode in the prior art.
  • the embodiments of the present disclosure provide a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel, including the following steps:
  • S20 depositing a thin film on the surface of the substrate, the material of the thin film is polysilicon or silicon oxide, and the height of the thin film is 100nm ⁇ 5um;
  • S40 immerse the substrate in an etching solution to perform etching treatment to form a plurality of three-dimensional bases distributed among phases;
  • S60 Deposit an ITO conductive layer on the surface of the three-dimensional substrate to obtain a three-dimensional electrode.
  • the thin film is formed on the surface of the substrate by a low-pressure chemical vapor deposition method.
  • the auxiliary metal layer is formed by an electron beam lithography method.
  • the step of forming the auxiliary metal layer by the electron beam lithography method includes:
  • S301 A metal layer is covered on the film, and the height of the metal layer is less than the height of the film;
  • the material of the electron beam photoresist is organic glass.
  • the material of the auxiliary metal layer is copper or silver.
  • the cross-sectional shape of the three-dimensional electrode is rectangular or trapezoidal.
  • the width of the electrode is adjusted by adjusting the concentration of the etching solution and the etching time to change the cross-sectional shape of the three-dimensional electrode.
  • the etching time is controlled within 1 minute to 60 minutes.
  • the embodiments of the present disclosure provide a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel, including the following steps:
  • S40 immerse the substrate in an etching solution to perform etching treatment to form a plurality of three-dimensional bases distributed among phases;
  • S60 Deposit an ITO conductive layer on the surface of the three-dimensional substrate to obtain a three-dimensional electrode.
  • the material of the thin film is polysilicon or silicon oxide.
  • the height of the thin film is 100 nm to 5 um.
  • a low-pressure chemical vapor deposition method is used to form the thin film on the surface of the substrate.
  • the auxiliary metal layer is formed by electron beam lithography.
  • the step of forming the auxiliary metal layer by electron beam lithography includes:
  • the material of the electron beam photoresist is organic glass.
  • the material of the auxiliary metal layer is copper or silver.
  • the cross-sectional shape of the three-dimensional electrode is rectangular or trapezoidal.
  • the width of the electrode is adjusted by adjusting the concentration of the etching solution and the etching time to change the cross-sectional shape of the three-dimensional electrode.
  • the disclosed embodiment provides a method for manufacturing a blue phase liquid crystal panel, including the following steps:
  • S1 Provide upper and lower substrates
  • S4 Combine the upper substrate and the lower substrate to ensure that the inner surfaces of the two face each other.
  • the beneficial effects of the present disclosure are as follows: a method for manufacturing a blue-phase liquid crystal panel and a method for manufacturing a three-dimensional electrode provided by the present disclosure, a three-dimensional pattern of polysilicon (silicon oxide) with different etching templates is formed on a substrate by using a metal assist method , On this basis, depositing an ITO conductive layer, and by controlling the concentration of the etching solution and the etching time, to obtain three-dimensional electrodes with different width/height ratios and different shapes, with adjustability to meet different electrode design needs, The driving voltage of the blue phase liquid crystal display panel can be reduced.
  • FIG. 1 is a flowchart of a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel provided in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel provided in Embodiment 1 of the present disclosure
  • FIG. 3 is a schematic structural diagram of a blue-phase liquid crystal display panel manufactured according to a method for manufacturing a blue-phase liquid crystal display panel provided in Embodiment 1 of the present disclosure
  • FIG. 4 is a flowchart of a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel provided in Embodiment 2 of the present disclosure
  • FIG. 5 is a schematic diagram of a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel provided in Embodiment 2 of the present disclosure
  • FIG. 6 is a schematic structural diagram of a blue-phase liquid crystal display panel manufactured according to a method for manufacturing a blue-phase liquid crystal display panel provided in Embodiment 1 of the present disclosure.
  • a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel according to Embodiment 1 of the present disclosure includes the following steps:
  • the material of the thin film deposited on the surface of the substrate 1 is polysilicon, and the low-pressure chemical vapor deposition method (Low Pressure Chemical Vapor Deposition (LPCVD) method can make the polysilicon film 2 evenly distributed on the substrate 1.
  • the height of the polysilicon film 2 is determined according to the design height of the three-dimensional electrode to be prepared. When the design height of the three-dimensional electrode 6 is high, the height of the deposited polysilicon film 2 increases accordingly; When the design height of the three-dimensional electrode 2 is low, the height of the deposited polysilicon film 2 decreases accordingly. Generally, the height of the polysilicon film 2 is approximately equal to the design height of the three-dimensional electrode to be prepared. Since the design height of the three-dimensional electrode 6 to be prepared generally ranges from 100 nm to 5 um, it is sufficient to control the height of the polycrystalline silicon thin film 2 also from 100 nm to 5 um.
  • An array pattern is formed on the upper surface of the polysilicon film 2 by electron beam lithography to form a plurality of auxiliary metal layers 3 distributed between each other. Because the minimum size of the three-dimensional electrode 6 can reach the nanometer level, the required pattern can be directly produced by the electron beam lithography method, which can ensure the accuracy of the auxiliary metal layer and form an ultra-fine pattern for subsequent three-dimensional electrodes. Prepare for preparation.
  • the step of forming the auxiliary metal layer 3 by the electron beam lithography method specifically includes:
  • a metal layer is formed on the polysilicon film 2, the material of the metal layer may be a metal catalyst such as copper or silver, and is used as an auxiliary metal.
  • the height of the metal layer should be less than the height of the polysilicon film 2.
  • An electron beam photoresist is formed on the metal layer by methods such as rotation, spray coating, drop coating, and screen printing.
  • the material of the electron beam photoresist may be PMMA (Polymethyl methacrylate, organic glass).
  • the electron beam photoresist is exposed through an electron beam exposure system.
  • the electron beam exposure system can be selected from existing electron beam exposure systems such as a Gaussian scanning system and a shaped electron beam scanning system. At the same time, the electron beam exposure system needs to adopt a suitable exposure dose.
  • the exposed electron beam photoresist is developed with a developing solution to form an electron beam photoresist pattern. Finally, the remaining electron beam photoresist is stripped to form a plurality of auxiliary metal layers 3.
  • the substrate 1 is immersed in an etching solution for etching. Since polysilicon can only be etched in a vertical direction, the etching solution can etch away the polysilicon film 2 located under the auxiliary metal layer 3 , The polycrystalline silicon three-dimensional substrate 4 is formed. Therefore, the cross section of the polycrystalline silicon three-dimensional substrate 4 has a rectangular shape.
  • the width of the three-dimensional polycrystalline silicon substrate 4 is related to the width of the auxiliary metal layer 3.
  • the etching solution may be a solution with a certain concentration such as HF/AgNO3, HF/H2O2/IPA, etc., and the temperature may be adjusted according to the shape of the three-dimensional electrode 6 to be produced under a temperature condition of 10°C to 100°C.
  • the concentration of the etching solution and the length of the etching time are controlled within 1 minute to 60 minutes.
  • the substrate 1 is subjected to a cleaning process, which can meet the requirements by washing with water, the residual etching liquid and the etched polysilicon can be removed, and the auxiliary metal layer 3 falls on two adjacent sites In the groove formed between the polycrystalline silicon three-dimensional substrate 4 and the polycrystalline silicon thin film 2. as well as
  • a layer of ITO conductive layer 5 is deposited on the surface of the polycrystalline silicon three-dimensional substrate 4 to obtain a three-dimensional electrode 6.
  • ITO conductive layer 5 is deposited on the surface of the polycrystalline silicon three-dimensional substrate 4, and at the same time, the auxiliary metal located in the groove formed between two adjacent polycrystalline silicon three-dimensional substrates 4 and the polycrystalline silicon thin film 2
  • a layer of ITO conductive layer 5 is deposited on the surface of layer 3 to obtain a three-dimensional electrode 6 with a rectangular cross-sectional shape.
  • a method for manufacturing a blue phase liquid crystal display panel 100 according to Embodiment 1 of the present disclosure includes the following steps:
  • the three-dimensional electrode 9 and the three-dimensional electrode are formed on the inner surfaces of the upper substrate 7 and the lower substrate 1 respectively 6;
  • the blue phase liquid crystal panel 100 includes an upper substrate 7, a lower substrate 1, a polysilicon film 2, a three-dimensional electrode 9 located on the inner surface of the upper substrate 7, a three-dimensional electrode 6 located on the inner surface of the lower substrate 1, and the upper substrate A plurality of blue phase liquid crystal molecules 8 between the substrate 7 and the lower substrate 1.
  • the cross-sectional shapes of the three-dimensional electrode 9 and the three-dimensional electrode 6 are rectangular, and the three-dimensional electrode 9 and the three-dimensional electrode 6 are arranged at intervals.
  • the blue-phase liquid crystal display panel 100 having the three-dimensional electrode 9 and the three-dimensional electrode 6 is compared to a planar electrode
  • the electric field line distribution of is more dense and is basically parallel to the horizontal direction.
  • the axial direction of the blue phase liquid crystal molecules 8 is in the same direction as the electric field line of the blue phase liquid crystal display panel 100. Therefore, under the same voltage condition, the The field strength is greater, so the driving voltage of the blue phase liquid crystal display panel 100 can be greatly reduced.
  • a method for manufacturing a three-dimensional electrode for a blue-phase liquid crystal display panel according to Embodiment 2 of the present disclosure includes the following steps:
  • the material selected for the film deposited on the surface of the substrate 1' is different from that in the first embodiment, and the polysilicon material selected in the first embodiment is replaced with a silicon oxide material.
  • the material of the thin film deposited on the surface of the substrate 1' is silicon oxide, and the silicon oxide material may be silicon dioxide.
  • LPCVD Low Pressure Chemical Vapor Deposition
  • the height of the silicon oxide film 2' is determined according to the design height of the three-dimensional electrode 6'to be prepared. When the design height of the three-dimensional electrode 6'is high, the deposited silicon oxide film 2' The height increases accordingly; when the design height of the three-dimensional electrode 6'is lower, the height of the deposited silicon oxide film 2'decreases accordingly.
  • the height of the silicon oxide film 2' is approximately equal to the design height of the three-dimensional electrode 6'to be prepared. Since the design height of the three-dimensional electrode 6'to be prepared generally ranges from 100 nm to 5 um, it is sufficient to control the height of the silicon oxide film 2 ′ to be between 100 nm and 5 um.
  • An array pattern is formed on the upper surface of the silicon oxide film 2'by electron beam lithography to form a plurality of auxiliary metal layers 3'distributed between each other. Because the minimum size of the three-dimensional electrode 6'can reach the nanometer level, the electron beam lithography method can be used to directly produce the desired pattern, which can ensure the accuracy of the auxiliary metal layer 3'and form an ultra-fine pattern for the follow-up Prepare for the preparation of three-dimensional electrodes.
  • the step of forming the auxiliary metal layer 3'by electron beam lithography specifically includes:
  • a metal layer is formed on the silicon oxide film 2'.
  • the material of the metal layer may be a metal catalyst such as copper or silver.
  • the height of the metal layer should be less than the height of the polysilicon film.
  • An electron beam photoresist is formed on the metal layer by methods such as rotation, spray coating, drop coating, and screen printing.
  • the material of the electron beam photoresist may be PMMA (Polymethyl methacrylate, organic glass).
  • the electron beam photoresist is exposed through an electron beam exposure system.
  • the electron beam exposure system can be selected from existing electron beam exposure systems such as a Gaussian scanning system and a shaped electron beam scanning system. At the same time, the electron beam exposure system needs to adopt a suitable exposure dose.
  • the exposed electron beam photoresist is developed with a developing solution to form an electron beam photoresist pattern. Finally, the remaining electron beam photoresist is stripped to form a plurality of auxiliary metal layers 3'.
  • the array pattern obtained by the etching process in the second embodiment is different from the array pattern obtained by the etching process in the first embodiment.
  • the substrate 1' is immersed in an etching solution for etching. Since the silicon dioxide material can be etched in the vertical direction, it can be etched in the horizontal direction, and the etching speed in the vertical direction is the same as that in the horizontal direction. The etching rate is different. Therefore, the etching liquid can etch away the silicon oxide film 2'located under and on both sides of the auxiliary metal layer 3'to form a plurality of inter-distributed silicon oxide three-dimensional substrates 4'. Therefore, The cross-sectional shape of the three-dimensional silicon oxide substrate 4'is trapezoidal. The width of the three-dimensional silicon oxide substrate 4'is related to the width of the auxiliary metal layer 3'.
  • the etching solution can be selected from a certain concentration of HF/AgNO3, HF/H2O2/IPA and other solutions, under the temperature condition of 10 °C ⁇ 100 °C, according to the shape of the three-dimensional electrode 6'to be produced to adjust The concentration of the etching solution and the length of the etching time. If the height of the three-dimensional electrode 6'to be manufactured is high, the concentration of the etching solution or the etching time can be increased appropriately; if the height of the three-dimensional electrode 6'to be manufactured is low, it can be appropriately reduced Reduce the concentration of the etching solution or increase the etching time. Usually the etching time is controlled within 1min ⁇ 60min.
  • the substrate 1 is subjected to cleaning treatment, which can meet the requirements by washing with water, the residual etching liquid and the etched silicon dioxide can be removed, and the auxiliary metal layer 3'falls on two adjacent In the groove formed between the three-dimensional silicon oxide substrate 4'and the silicon oxide film 2'.
  • An ITO conductive layer 5' is deposited on the surface of the silicon oxide three-dimensional substrate 6', and at the same time, a recess formed between two adjacent silicon oxide three-dimensional substrates 6'and the silicon oxide film 2'can also be formed
  • An ITO conductive layer 5' is deposited on the surface of the auxiliary metal layer 3'in the groove.
  • a three-dimensional electrode 6' is obtained, and the cross-sectional shape of the three-dimensional electrode 6'is trapezoidal.
  • a method for manufacturing a blue-phase liquid crystal display panel 100' according to Embodiment 2 of the present disclosure includes the following steps:
  • the blue phase liquid crystal panel 100' includes an upper substrate 7', a lower substrate 1', a silicon oxide film 2', a three-dimensional electrode 9'located on the inner surface of the upper substrate 7', and a three-dimensional electrode 6'on the inner surface of the lower substrate 1' And a plurality of blue phase liquid crystal molecules 8 between the upper substrate 7'and the lower substrate 1'.
  • the three-dimensional electrode 9'and the three-dimensional electrode 6' Since the plurality of blue-phase liquid crystal molecules 8 are distributed between the three-dimensional electrode 9'and the three-dimensional electrode 6', compared with the planar electrode, the three-dimensional electrode 9'and the three-dimensional electrode 6'
  • the electric field lines of the blue phase liquid crystal display panel 100' are more densely distributed and are basically parallel to the horizontal direction.
  • the axial direction of the blue phase liquid crystal molecules 8 is in the same direction as the electric field lines of the blue phase liquid crystal display panel 100' Therefore, the field strength is greater under the same voltage condition, so the driving voltage of the blue phase liquid crystal display panel 100' can be greatly reduced.
  • the present disclosure provides a method for manufacturing a blue-phase liquid crystal panel and a method for manufacturing a three-dimensional electrode.
  • a metal-assisted method a three-dimensional pattern of polysilicon (silicon oxide) with different etching templates is formed on the substrate, and then deposited on this basis ITO conductive layer, and by controlling the concentration of the etching solution and the etching time, to obtain three-dimensional electrodes with different width/height ratios and different shapes, with adjustability, to meet different electrode design requirements, can reduce the blue phase liquid crystal display The driving voltage of the panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种蓝相液晶面板的制作方法及其立体电极(6)的制作方法,立体电极(6)的制作方法包括:提供一基板(1);在基板(1)表面形成一层薄膜(2);在薄膜(2)表面形成辅助金属层(3);将基板(1)刻蚀形成立体基底(4);将基板(1)清洗;以及在立体基底(4)表面沉积ITO(5),得到立体电极(6)。通过金属辅助法制作得到不同形状的立体电极(6),降低了显示面板的驱动电压。

Description

蓝相液晶面板的制作方法及其立体电极的制作方法 技术领域
本揭示涉及显示技术领域,尤其涉及一种蓝相液晶面板的制作方法及其立体电极的制作方法。
背景技术
蓝相液晶显示面板由于具有亚毫秒级的响应速度等优点,目前已得到广泛的关注,但是其自身具有的高驱动电压等缺点也成为了限制其发展的主要因素。针对如何降低蓝相液晶显示面板的驱动电压这一技术问题,目前已经提出了不同的方案,例如:从新电极的结构和形状、新电极的排列方式以及新的蓝相液晶单体材料等方面进行改进。其中,电极结构和形状的改进是目前普遍提出的比较有效的实施方案之一。
关于不同形状的立体电极,人们已经通过模拟手段证明其有效性,但是立体电极的主要难点在于立体电极的制作工艺,如何制作高度合适、导电性能好的立体电极成为亟待解决的问题。
因此,本揭示提供一种新的蓝相液晶面板的制作方法及其立体电极的制作方法,来解决上述技术问题。
技术问题
本揭示提供一种蓝相液晶面板的制作方法及其立体电极的制作方法,可解决现有技术中的立体电极的制作工艺问题。
技术解决方案
为解决上述问题,本揭示提供的技术方案如下:
本揭示实施例提供一种蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
S10:提供一基板;
S20:在所述基板表面沉积形成一层薄膜,所述薄膜的材料为多晶硅或氧化硅,所述薄膜的高度为100nm~5um;
S30:在所述薄膜表面制作阵列图案,形成有多个相间分布的辅助金属层;
S40:将所述基板浸入刻蚀液中进行刻蚀处理,形成多个相间分布的立体基底;
S50:将经过刻蚀处理后的所述基板进行清洗处理;以及
S60:在所述立体基底表面沉积一层ITO导电层,得到立体电极。
根据本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法,采用低压力化学气相沉积方法在所述基板表面形成所述薄膜。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,通过电子束光刻方法形成所述辅助金属层。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述通过电子束光刻方法形成所述辅助金属层的步骤包括:
S301:在所述薄膜上覆盖一层金属层,所述金属层的高度小于所述薄膜的高度;
S302:在所述金属层上覆盖一层电子束光刻胶;
S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
S304:对曝光后的所述电子束光刻胶进行显影;以及
S305:剥离所述电子束光刻胶,形成所述辅助金属层。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述电子束光刻胶的材质为有机玻璃。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述辅助金属层的材料为铜或银。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述立体电极的截面形状为矩形或梯形。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,通过调整所述刻蚀液的浓度与刻蚀时间来调整所述电极的宽度,以改变所述立体电极的截面形状。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述刻蚀时间控制在1分钟~60分钟内。
本揭示实施例提供一种蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
S10:提供一基板;
S20:在所述基板表面沉积形成一层薄膜;
S30:在所述薄膜表面制作阵列图案,形成有多个相间分布的辅助金属层;
S40:将所述基板浸入刻蚀液中进行刻蚀处理,形成多个相间分布的立体基底;
S50:将经过刻蚀处理后的所述基板进行清洗处理;以及
S60:在所述立体基底表面沉积一层ITO导电层,得到立体电极。
在本揭示实施例提供的一种蓝相液晶显示面板立体电极的制作方法中,所述薄膜的材料为多晶硅或氧化硅。
在本揭示实施例提供的一种蓝相液晶显示面板立体电极的制作方法中,所述薄膜的高度为100nm~5um。
在本揭示实施例提供的一种蓝相液晶显示面板立体电极的制作方法中,采用低压力化学气相沉积方法在所述基板表面形成所述薄膜。
在本揭示实施例提供的一种蓝相液晶显示面板立体电极的制作方法中,通过电子束光刻方法形成所述辅助金属层。
在本揭示实施例提供的一种蓝相液晶显示面板立体电极的制作方法中,所述通过电子束光刻方法形成所述辅助金属层的步骤包括:
S301:在所述薄膜上覆盖一层金属层;
S302:在所述金属层上覆盖一层电子束光刻胶;
S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
S304:对曝光后的所述电子束光刻胶进行显影;以及
S305:剥离所述电子束光刻胶,形成所述辅助金属层。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述电子束光刻胶的材质为有机玻璃。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述辅助金属层的材料为铜或银。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,所述立体电极的截面形状为矩形或梯形。
在本揭示实施例提供的蓝相液晶显示面板立体电极的制作方法中,通过调整所述刻蚀液的浓度与刻蚀时间来调整所述电极的宽度,以改变所述立体电极的截面形状。
本揭示实施例提供一种蓝相液晶面板的制作方法,包括以下步骤:
S1:提供上基板和下基板;
S2:采用上述蓝相液晶显示面板立体电极的制作方法,在所述上基板和/或所述下基板的内表面分别形成多个所述立体电极;
S3:在所述上基板和所述下基板之间填充蓝相液晶分子;以及
S4:将所述上基板和所述下基板结合,保证两者的内表面相互面对。
有益效果
本揭示的有益效果为:本揭示提供的一种蓝相液晶面板的制作方法及其立体电极的制作方法,通过使用金属辅助法在基板上制作不同刻蚀模板多晶硅(氧化硅)的立体化图案,在此基础上沉积ITO导电层,以及通过控制刻蚀液的浓度和刻蚀时间,来得到不同宽度/高度比和不同形状的立体电极,具有可调性,满足了不同的电极设计需求,能够降低蓝相液晶显示面板的驱动电压。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示实施例一中提供的一种蓝相液晶显示面板立体电极的制作方法的流程图;
图2为本揭示实施例一中提供的一种蓝相液晶显示面板立体电极的制作方法的示意图;
图3为根据本揭示实施例一中提供的一种蓝相液晶显示面板的制作方法制作而成的蓝相液晶显示面板的结构示意图;
图4为本揭示实施例二中提供的一种蓝相液晶显示面板立体电极的制作方法的流程图;
图5为本揭示实施例二中提供的一种蓝相液晶显示面板立体电极的制作方法的示意图;
图6为根据本揭示实施例一中提供的一种蓝相液晶显示面板的制作方法制作而成的蓝相液晶显示面板的结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。在图中,结构相似的单元是用以相同标号表示。
实施例一
参考图1、图2,根据本揭示实施例一的蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
S10:提供一基板1;
S20:在所述基板1表面沉积形成一层多晶硅薄膜2;
本实施例一中在所述基板1表面沉积的薄膜的材料选用多晶硅,通过低压力化学气相沉积法(Low Pressure Chemical Vapor Deposition,LPCVD)的方法进行沉积,能够使所述多晶硅薄膜2在所述基板1上分布均匀。所述多晶硅薄膜2的高度根据所需要制备的立体电极的设计高度进行确定,当所述立体电极6的设计高度较高时,沉积而成的所述多晶硅薄膜2的高度随之升高;当所述立体电极2的设计高度较低时,沉积而成的所述多晶硅薄膜2的高度随之降低。一般来说,所述多晶硅薄膜2的高度与所需要制备的立体电极的设计高度大致相等。因为所需制备的立体电极6的设计高度的通常范围在100nm~5um之间,因此,控制所述多晶硅薄膜2的高度也在100nm~5um之间即可。
S30:在所述多晶硅薄膜2表面制作阵列图案,形成有多个相间分布的辅助金属层3;
在所述多晶硅薄膜2上表面通过电子束光刻方法制作阵列图案,形成多个相间分布的所述辅助金属层3。因为立体电极6的尺寸的最小尺寸可达到纳米级别,因此采用所述电子束光刻方法可直接制作所需图案,能够保证所述辅助金属层的精度,形成超精细图案,为后续立体电极的制备做准备。所述通过电子束光刻方法形成所述辅助金属层3的步骤具体包括:
S301:在所述多晶硅薄膜2上覆盖一层金属层;
S302:在所述金属层上覆盖一层电子束光刻胶;
S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
S304:对曝光后的所述电子束光刻胶进行显影;以及
S305:剥离所述电子束光刻胶,形成有所述辅助金属层3。
在所述多晶硅薄膜2上形成一层金属层,所述金属层的材料可选择铜或银等金属催化剂,作为金属辅助使用,所述金属层的高度应小于所述多晶硅薄膜2的高度。通过旋转、喷涂、滴涂、丝网印刷等方法,在所述金属层上形成电子束光刻胶,所述电子束光刻胶的材质可以是PMMA(Polymethyl methacrylate,有机玻璃)等。之后,通过电子束曝光系统,对所述电子束光刻胶进行曝光,所述电子束曝光系统可选择高斯扫描系统、成型电子束扫描系统等现有电子束曝光系统。同时,所述电子束曝光系统需采用合适的曝光剂量。之后,采用显影液对曝光后的所述电子束光刻胶进行显影,形成电子束光刻胶图形。最后,对保留的所述电子束光刻胶进行剥离,形成多个所述辅助金属层3。
S40:将所述基板1浸入刻蚀液中进行刻蚀处理,形成多个相间分布的多晶硅立体基底4;
将所述基板1浸入刻蚀液中进行刻蚀处理,由于多晶硅只可进行垂直方向的刻蚀,因此,所述刻蚀液可将位于所述辅助金属层3下方的多晶硅薄膜2刻蚀掉,形成多晶硅立体基底4,因此,所述多晶硅立体基底4的截面呈矩形形状。所述多晶硅立体基底4的宽度与所述辅助金属层3的宽度有关。所述刻蚀液可以选取一定浓度的HF/AgNO3、HF/H2O2/IPA等溶液,在10℃~100℃的温度条件下,根据所需制作的立体电极6的形状,来进行调整所述刻蚀液的浓度及刻蚀时间的长短。若所需制作的立体电极6的高度较高,则可适当增加所述刻蚀液的浓度或增加刻蚀时间;若所需制作的立体电极6的高度较低,则可适当减小所述刻蚀液的浓度或增加刻蚀时间。通常将刻蚀时间控制在1分钟~60分钟内。
S50:将经过刻蚀处理后的所述基板1进行清洗处理;
将所述基板1进行清洗处理,该处理采用水洗即可满足要求,可将残余的所述刻蚀液及被刻蚀掉的多晶硅清除,所述辅助金属层3掉落在相邻两个所述多晶硅立体基底4与所述多晶硅薄膜2之间形成的凹槽内。以及
S60:在所述多晶硅立体基底4表面沉积一层ITO导电层5,得到立体电极6。
在所述多晶硅立体基底4表面沉积一层ITO导电层5,同时,也可将位于相邻两个所述多晶硅立体基底4与所述多晶硅薄膜2之间形成的凹槽内的所述辅助金属层3表面沉积一层ITO导电层5,得到截面形状为矩形的立体电极6。
参考图3,根据本揭示实施例一中提供的一种蓝相液晶显示面板100的制作方法,包括以下步骤:
S1:提供上基板7和下基板1;
S2:采用本揭示实施例一中所述的蓝相液晶显示面板立体电极的制作方法,在所述上基板7和所述下基板1的内表面分别形成所述立体电极9和所述立体电极6;
S3:在所述上基板7和所述下基板1之间填充多个蓝相液晶分子8;以及
S4:将所述上基板7和所述下基板1结合,保证两者的内表面相互面对,形成蓝相液晶显示面板100。
该蓝相液晶面板100包括上基板7、下基板1、多晶硅薄膜2,位于所述上基板7内表面的立体电极9、位于所述下基板1内表面的立体电极6,以及位于所述上基板7与下基板1之间的多个蓝相液晶分子8。所述立体电极9与所述立体电极6的截面形状为矩形,所述立体电极9与所述立体电极6间隔排列。由于所述蓝相液晶8分布在所述立体电极9与所述立体电极6之间,相比于平面电极,具有所述立体电极9与所述立体电极6的所述蓝相液晶显示面板100的电场线分布更为密集且基本在水平方向平行分布,所述蓝相液晶分子8的轴向方向与所述蓝相液晶显示面板100的电场线位于同一方向,因此,在相同电压条件下其场强更大,因此可大幅度降低所述蓝相液晶显示面板100的驱动电压。
实施例二
参考图4、图5,根据本揭示实施例二的蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
S10:提供一基板1';
S20:在所述基板1'表面沉积形成一层氧化硅薄膜2';
本实施例二中在所述基板1'表面沉积的薄膜所选用的材料与实施例一中有所不同,将实施例一中选用的多晶硅材料替换成了氧化硅材料。通过利用所选不同材料的自身性质的差异性,以此来制作不同形状的立体电极6'。
本实施例二中在所述基板1'表面沉积的薄膜的材料选用氧化硅,该氧化硅材料可为二氧化硅。通过低压力化学气相沉积法(Low Pressure Chemical Vapor Deposition,LPCVD)的方法进行沉积,能够使所述氧化硅薄膜2'在所述基板上分布均匀。所述氧化硅薄膜2'的高度根据所需要制备的立体电极6'的设计高度进行确定,当所述立体电极6'的设计高度较高时,沉积而成的所述氧化硅薄膜2'的高度随之升高;当所述立体电极6'的设计高度较低时,沉积而成的所述氧化硅薄膜2'的高度随之降低。一般来说,所述氧化硅薄膜2'的高度与所需要制备的立体电极6'的设计高度大致相等。因所需制备的立体电极6'的设计高度的通常范围在100nm~5um之间,因此,控制所述氧化硅薄膜2'的高度也在100nm~5um之间即可。
S30:在所述氧化硅薄膜2'表面制作阵列图案,形成有多个相间分布的辅助金属层3';
在所述氧化硅薄膜2'上表面通过电子束光刻方法制作阵列图案,形成多个相间分布的所述辅助金属层3'。因为立体电极6'的尺寸的最小尺寸可达到纳米级别,因此采用所述电子束光刻方法可直接制作所需图案,能够保证所述辅助金属层3'的精度,形成超精细图案,为后续立体电极的制备做准备。所述通过电子束光刻方法形成所述辅助金属层3'的步骤具体包括:
S301:在所述氧化硅薄膜2'上覆盖一层金属层;
S302:在所述金属层上覆盖一层电子束光刻胶;
S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
S304:对曝光后的所述电子束光刻胶进行显影;以及
S305:剥离所述电子束光刻胶,形成有所述辅助金属层3'。
在所述氧化硅薄膜2'上形成一层金属层,所述金属层的材料可选择铜或银等金属催化剂,作为金属辅助使用,所述金属层的高度应小于所述多晶硅薄膜的高度。通过旋转、喷涂、滴涂、丝网印刷等方法,在所述金属层上形成电子束光刻胶,所述电子束光刻胶的材质可以是PMMA(Polymethyl methacrylate,有机玻璃)等。之后,通过电子束曝光系统,对所述电子束光刻胶进行曝光,所述电子束曝光系统可选择高斯扫描系统、成型电子束扫描系统等现有电子束曝光系统。同时,所述电子束曝光系统需采用合适的曝光剂量。之后,采用显影液对曝光后的所述电子束光刻胶进行显影,形成电子束光刻胶图形。最后,对保留的所述电子束光刻胶进行剥离,形成多个所述辅助金属层3'。
S40:将所述基板1'浸入刻蚀液中进行刻蚀处理,形成有多个相间分布的氧化硅立体基底4';
因二氧化硅与多晶硅的性质存在差异,因此本实施例二中经过刻蚀处理得到的阵列图案与实施例一中经过刻蚀处理得到的阵列图案存在差异。
将所述基板1'浸入刻蚀液中进行刻蚀处理,由于二氧化硅材料在进行垂直方向刻蚀的同时可以进行水平方向的刻蚀,且在垂直方向的刻蚀速度与水平方向的刻蚀速度不同,因此,所述刻蚀液可将位于所述辅助金属层3'下方及两侧的氧化硅薄膜2'刻蚀掉,形成多个相间分布的氧化硅立体基底4',因此,所述氧化硅立体基底4'的截面形状呈梯形。所述氧化硅立体基底4'的宽度与所述辅助金属层3'的宽度有关。所述刻蚀液可以选取一定浓度的HF/AgNO3、HF/H2O2/IPA等溶液,在10℃~100℃的温度条件下,根据所需制作的立体电极6'的形状,来进行调整所述刻蚀液的浓度及刻蚀时间的长短。若所需制作的立体电极6'的高度较高,则可适当增加所述刻蚀液的浓度或增加刻蚀时间;若所需制作的立体电6'极的高度较低,则可适当减小所述刻蚀液的浓度或增加刻蚀时间。通常将刻蚀时间控制在1min~60min内。
S50:将经过刻蚀处理后的所述基板1进行清洗处理;
将所述基板1进行清洗处理,该处理采用水洗即可满足要求,可将残余的所述刻蚀液及被刻蚀的二氧化硅清除,所述辅助金属层3'掉落在相邻两个所述氧化硅立体基底4'与所述氧化硅薄膜2'之间形成的凹槽内。
S60:在所述氧化硅阵列图案4'表面沉积一层ITO导电层5',得到立体电极6'。
在所述氧化硅立体基底6'表面沉积一层ITO导电层5',同时,也可将位于相邻两个所述氧化硅立体基底6'与所述氧化硅薄膜2'之间形成的凹槽内的所述辅助金属层3'表面沉积一层ITO导电层5'。得到立体电极6',所述立体电极6'的截面形状呈梯形。
参考图6,根据本揭示实施例二中提供的一种蓝相液晶显示面板100'的制作方法,包括以下步骤:
S1:提供上基板7'和下基板1';
S2:采用本揭示实施例二中所述的蓝相液晶显示面板立体电极的制作方法,在所述上基板7'和/或所述下基板1'的内表面分别形成所述立体电极9'与所述立体电极6';
S3:在所述上基板7'和所述下基板1'之间填充多个蓝相液晶分子8;以及
S4:将所述上基板7'和所述下基板1'结合,保证两者的内表面相互面对,形成所述蓝相液晶显示面板100'。
该蓝相液晶面板100'包括上基板7'、下基板1'、氧化硅薄膜2',位于所述上基板7'内表面的立体电极9'、下基板1'内表面的立体电极6',以及位于所述上基板7'与下基板1'之间的多个蓝相液晶分子8。所述立体电极9'与立体电极6'的截面形状为梯形,所述立体电极9'与所述立体电极6'间隔排列。由于所述多个蓝相液晶分子8分布在所述立体电极9'与所述立体电极6'之间,相比于平面电极,具有所述立体电极9'与所述立体电极6'的所述蓝相液晶显示面板100'的电场线分布更为密集且基本在水平方向平行分布,所述蓝相液晶分子8的轴向方向与所述蓝相液晶显示面板100'的电场线位于同一方向,因此,在相同电压条件下其场强更大,因此可大幅度降低所述蓝相液晶显示面板100'的驱动电压。
本揭示通过提供的一种蓝相液晶面板的制作方法及其立体电极的制作方法,通过使用金属辅助法在基板上制作不同刻蚀模板多晶硅(氧化硅)的立体化图案,在此基础上沉积ITO导电层,以及通过控制刻蚀液的浓度和刻蚀时间,来得到不同宽度/高度比和不同形状的立体电极,具有可调性,满足了不同的电极设计需求,能够降低蓝相液晶显示面板的驱动电压。
综上所述,虽然本揭示已以优选实施例揭露如上,但上述优选实施例并非用以限制本揭示,本领域的普通技术人员,在不脱离本揭示的精神和范围内,均可作各种更动与润饰,因此本揭示的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
    S10:提供一基板;
    S20:在所述基板表面沉积形成一层薄膜,所述薄膜的材料为多晶硅或氧化硅,所述薄膜的高度为100nm~5um;
    S30:在所述薄膜表面制作阵列图案,形成有多个相间分布的辅助金属层;
    S40:将所述基板浸入刻蚀液中进行刻蚀处理,形成多个相间分布的立体基底;
    S50:将经过刻蚀处理后的所述基板进行清洗处理;以及
    S60:在所述立体基底表面沉积一层ITO导电层,得到立体电极。
  2. 根据权利要求1所述的蓝相液晶显示面板立体电极的制作方法,其中采用低压力化学气相沉积方法在所述基板表面形成所述薄膜。
  3. 根据权利要求1所述的蓝相液晶显示面板立体电极的制作方法,其中通过电子束光刻方法形成所述辅助金属层。
  4. 根据权利要求3所述的蓝相液晶显示面板立体电极的制作方法,其中所述通过电子束光刻方法形成所述辅助金属层的步骤包括:
    S301:在所述薄膜上覆盖一层金属层,所述金属层的高度小于所述薄膜的高度;
    S302:在所述金属层上覆盖一层电子束光刻胶;
    S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
    S304:对曝光后的所述电子束光刻胶进行显影;以及
    S305:剥离所述电子束光刻胶,形成所述辅助金属层。
  5. 根据权利要求4所述的蓝相液晶显示面板立体电极的制作方法,其中所述电子束光刻胶的材质为有机玻璃。
  6. 根据权利要求4所述的蓝相液晶显示面板立体电极的制作方法,其中所述辅助金属层的材料为铜或银。
  7. 根据权利要求1所述的蓝相液晶显示面板立体电极的制作方法,其中所述立体电极的截面形状为矩形或梯形。
  8. 根据权利要求1所述的蓝相液晶显示面板立体电极的制作方法,其中通过调整所述刻蚀液的浓度与刻蚀时间来调整所述电极的宽度,以改变所述立体电极的截面形状。
  9. 根据权利要求8所述的蓝相液晶显示面板立体电极的制作方法,其中所述刻蚀时间控制在1分钟~60分钟内。
  10. 一种蓝相液晶显示面板立体电极的制作方法,包括以下步骤:
    S10:提供一基板;
    S20:在所述基板表面沉积形成一层薄膜;
    S30:在所述薄膜表面制作阵列图案,形成有多个相间分布的辅助金属层;
    S40:将所述基板浸入刻蚀液中进行刻蚀处理,形成多个相间分布的立体基底;
    S50:将经过刻蚀处理后的所述基板进行清洗处理;以及
    S60:在所述立体基底表面沉积一层ITO导电层,得到立体电极。
  11. 根据权利要求10所述的蓝相液晶显示面板立体电极的制作方法,其中所述薄膜的材料为多晶硅或氧化硅。
  12. 根据权利要求10所述的蓝相液晶显示面板立体电极的制作方法,其中所述薄膜的高度为100nm~5um。
  13. 根据权利要求12所述的蓝相液晶显示面板立体电极的制作方法,其中采用低压力化学气相沉积方法在所述基板表面形成所述薄膜。
  14. 根据权利要求10所述的蓝相液晶显示面板立体电极的制作方法,其中通过电子束光刻方法形成所述辅助金属层。
  15. 根据权利要求14所述的蓝相液晶显示面板立体电极的制作方法,其中所述通过电子束光刻方法形成所述辅助金属层的步骤包括:
    S301:在所述薄膜上覆盖一层金属层;
    S302:在所述金属层上覆盖一层电子束光刻胶;
    S303:采用电子束曝光系统,对所述电子束光刻胶进行曝光;
    S304:对曝光后的所述电子束光刻胶进行显影;以及
    S305:剥离所述电子束光刻胶,形成所述辅助金属层。
  16. 根据权利要求14所述的蓝相液晶显示面板立体电极的制作方法,其中所述电子束光刻胶的材质为有机玻璃。
  17. 根据权利要求14所述的蓝相液晶显示面板立体电极的制作方法,其中所述辅助金属层的材料为铜或银。
  18. 根据权利要求10所述的蓝相液晶显示面板立体电极的制作方法,其中所述立体电极的截面形状为矩形或梯形。
  19. 根据权利要求10所述的蓝相液晶显示面板立体电极的制作方法,其中通过调整所述刻蚀液的浓度与刻蚀时间来调整所述电极的宽度,以改变所述立体电极的截面形状。
  20. 一种蓝相液晶面板的制作方法,包括以下步骤:
    S1:提供上基板和下基板;
    S2:采用如权利要求10中的蓝相液晶显示面板立体电极的制作方法,在所述上基板和/或所述下基板的内表面分别形成多个所述立体电极;
    S3:在所述上基板和所述下基板之间填充多个蓝相液晶分子;以及
    S4:将所述上基板和所述下基板结合,保证两者的内表面相互面对。
PCT/CN2019/083456 2018-12-26 2019-04-19 蓝相液晶面板的制作方法及其立体电极的制作方法 WO2020133827A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811601232.7 2018-12-26
CN201811601232.7A CN109597250B (zh) 2018-12-26 2018-12-26 蓝相液晶面板的制作方法及其立体电极的制作方法

Publications (1)

Publication Number Publication Date
WO2020133827A1 true WO2020133827A1 (zh) 2020-07-02

Family

ID=65962774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083456 WO2020133827A1 (zh) 2018-12-26 2019-04-19 蓝相液晶面板的制作方法及其立体电极的制作方法

Country Status (2)

Country Link
CN (1) CN109597250B (zh)
WO (1) WO2020133827A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597250B (zh) * 2018-12-26 2021-06-01 Tcl华星光电技术有限公司 蓝相液晶面板的制作方法及其立体电极的制作方法
CN115700217A (zh) * 2021-07-21 2023-02-07 合肥本源量子计算科技有限责任公司 一种空气桥的制备方法及一种超导量子器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399142A (zh) * 2008-09-24 2009-04-01 东南大学 一种高发光效率的荫罩式等离子体显示板
KR101103015B1 (ko) * 2011-09-07 2012-01-05 주식회사 조양이에스 투명전극층 및 금속전극층 에칭 방법
CN108172584A (zh) * 2017-12-26 2018-06-15 深圳市华星光电半导体显示技术有限公司 阵列基板及其上电极线图案的制备方法和液晶显示面板
CN108205227A (zh) * 2017-12-29 2018-06-26 深圳市华星光电技术有限公司 立体电极的制作方法和蓝相液晶显示面板的制作方法
CN109597250A (zh) * 2018-12-26 2019-04-09 深圳市华星光电技术有限公司 蓝相液晶面板的制作方法及其立体电极的制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102243968B (zh) * 2011-05-25 2013-03-13 西安交通大学 炮筒结构的立体薄膜场发射平板显示器阴极的制作方法
GB201117279D0 (en) * 2011-10-06 2011-11-16 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
US9405164B2 (en) * 2013-08-21 2016-08-02 Board Of Trustees Of Northern Illinois University Electrochromic device having three-dimensional electrode
CN104880883A (zh) * 2015-06-12 2015-09-02 武汉华星光电技术有限公司 一种蓝相液晶显示面板及其制作方法
CN105242465B (zh) * 2015-11-23 2018-03-13 武汉华星光电技术有限公司 一种蓝相液晶显示面板及蓝相液晶显示面板的制作方法
CN106783120B (zh) * 2016-12-13 2018-03-27 深圳顺络电子股份有限公司 一种电子元件电极的制作方法及电子元件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101399142A (zh) * 2008-09-24 2009-04-01 东南大学 一种高发光效率的荫罩式等离子体显示板
KR101103015B1 (ko) * 2011-09-07 2012-01-05 주식회사 조양이에스 투명전극층 및 금속전극층 에칭 방법
CN108172584A (zh) * 2017-12-26 2018-06-15 深圳市华星光电半导体显示技术有限公司 阵列基板及其上电极线图案的制备方法和液晶显示面板
CN108205227A (zh) * 2017-12-29 2018-06-26 深圳市华星光电技术有限公司 立体电极的制作方法和蓝相液晶显示面板的制作方法
CN109597250A (zh) * 2018-12-26 2019-04-09 深圳市华星光电技术有限公司 蓝相液晶面板的制作方法及其立体电极的制作方法

Also Published As

Publication number Publication date
CN109597250B (zh) 2021-06-01
CN109597250A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
US8633066B2 (en) Thin film transistor with reduced edge slope angle, array substrate and having the thin film transistor and manufacturing method thereof
WO2015096416A1 (zh) 薄膜晶体管及其制作方法、阵列基板及其制作方法
JP4959631B2 (ja) グレースケールマスク
CN105045002A (zh) Psva型液晶显示面板及其制作方法
CN107039351B (zh) Tft基板的制作方法及tft基板
CN105161499A (zh) 一种显示基板及其制作方法和显示装置
CN111180471A (zh) 阵列基板及其制造方法
CN103413782B (zh) 一种阵列基板及其制作方法和显示面板
WO2020133827A1 (zh) 蓝相液晶面板的制作方法及其立体电极的制作方法
WO2015010410A1 (zh) 阵列基板及其制作方法和显示面板
CN100485861C (zh) 薄膜刻蚀方法
CN103489873A (zh) 阵列基板及其制作方法、显示装置
US7358195B2 (en) Method for fabricating liquid crystal display device
US9519192B2 (en) Array substrate, flat display panel and manufacturing method for the same
CN104576401B (zh) 薄膜晶体管的制造方法及薄膜晶体管、基板、显示面板
JPH032833A (ja) 液晶表示装置の製造法
JPH02215134A (ja) 薄膜トランジスタの製造方法
CN109659323A (zh) 一种显示面板及其制作方法
US20210288081A1 (en) Display panel and display device
CN106773375B (zh) 显示面板及其制备方法、显示装置
JPH05224220A (ja) 液晶表示素子用基板のパタ−ン形成方法
KR100698043B1 (ko) 액정 표시 장치의 형성 방법
KR100663287B1 (ko) 프린지 필드 구동 액정표시장치의 제조방법
WO2014190678A1 (zh) 阵列基板、显示装置及阵列基板的制造方法
TWI291570B (en) Method of reducing transparent electrode cutoff during the production of thin film transistor liquid crystal display substrates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903083

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903083

Country of ref document: EP

Kind code of ref document: A1