WO2021039813A1 - 光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法 - Google Patents

光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2021039813A1
WO2021039813A1 PCT/JP2020/032105 JP2020032105W WO2021039813A1 WO 2021039813 A1 WO2021039813 A1 WO 2021039813A1 JP 2020032105 W JP2020032105 W JP 2020032105W WO 2021039813 A1 WO2021039813 A1 WO 2021039813A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
negative lens
negative
conditional expression
Prior art date
Application number
PCT/JP2020/032105
Other languages
English (en)
French (fr)
Inventor
雅史 山下
智希 伊藤
知憲 栗林
啓吾 古井田
哲史 三輪
陽子 小松原
渡邊 勝也
杏菜 野中
歩 槇田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US17/636,872 priority Critical patent/US20220269056A1/en
Priority to JP2021542946A priority patent/JP7218814B2/ja
Priority to CN202080059140.XA priority patent/CN114270239A/zh
Publication of WO2021039813A1 publication Critical patent/WO2021039813A1/ja
Priority to JP2023005529A priority patent/JP2023040272A/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145523Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -++-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/16Optical objectives specially designed for the purposes specified below for use in conjunction with image converters or intensifiers, or for use with projectors, e.g. objectives for projection TV
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-++-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1451Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive
    • G02B15/145121Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being positive arranged +-+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1461Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being positive
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the present invention relates to an optical system, a method for manufacturing an optical device and an optical system, and a method for manufacturing a variable magnification optical system, an optical device and a variable magnification optical system.
  • a photographing lens provided in an imaging device using such an imaging element has good chromatic aberration in addition to reference aberrations (single wavelength aberrations) such as spherical aberration and coma, so that there is no color bleeding of an image in a white light source. It is desired that the lens has a high resolving power corrected to. In particular, in the correction of chromatic aberration, it is desirable that the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity.
  • a means for correcting chromatic aberration for example, a method using a resin material having anomalous dispersibility (see, for example, Patent Document 1) is known. As described above, with the recent increase in the number of pixels of the image pickup device, a photographing lens in which various aberrations are satisfactorily corrected is desired.
  • the optical system according to the present invention has an aperture diaphragm and a negative lens arranged on the object side of the aperture diaphragm and satisfying the following conditional expression.
  • -0.010 ⁇ ndN1- (2.015-0.0068 ⁇ ⁇ dN1) 50.00 ⁇ dN1 ⁇ 65.00 0.545 ⁇ gFN1 -0.010 ⁇ gFN1- (0.6418-0.00168 ⁇ ⁇ dN1)
  • ndN1 the refractive index of the negative lens with respect to the d-line
  • ⁇ dN1 the Abbe number
  • ⁇ gFN1 the partial dispersion ratio of the negative lens with respect to the d-line of the negative lens
  • the refractive index of the negative lens with respect to the g-line is ngN1.
  • ⁇ gFN1 (ngN1-nFN1) / (nFN1-nCN1) defined by the following equation.
  • the optical device according to the present invention is configured to include the above optical system.
  • each lens is arranged in a lens barrel so as to have an aperture diaphragm and a negative lens that satisfies the following conditional expression arranged on the object side of the aperture diaphragm. ..
  • ndN1 the refractive index of the negative lens with respect to the d-line
  • ⁇ dN1 the Abbe number
  • ⁇ gFN1 the partial dispersion ratio of the negative lens with respect to the d-line of the negative lens
  • the refractive index of the negative lens with respect to the g-line is ngN1.
  • ⁇ gFN1 (ngN1-nFN1) / (nFN1-nCN1) defined by the following equation.
  • variable magnification optical system has a plurality of lens groups including a lens group having a negative refractive power, and at the time of magnification change, the distance between adjacent lens groups changes, and the negative refractive power
  • the object-side negative lens group arranged on the object side most among the lens groups having the above has a negative lens that satisfies the following conditional expression.
  • ndN3 the refractive index of the negative lens with respect to the d-line
  • ndN3 the Abbe number ⁇ gFN3 based on the d-line of the negative lens: the partial dispersion ratio of the negative lens, and the refractive index of the negative lens with respect to the g-line is ngN3.
  • ⁇ gFN3 (ngN3-nFN3) / (nFN3-nCN3) defined by the following equation.
  • the optical device according to the present invention is configured to include the above-mentioned variable magnification optical system.
  • the method for manufacturing a variable magnification optical system according to the present invention is a method for manufacturing a variable magnification optical system having a plurality of lens groups including a lens group having a negative refractive force, and is adjacent to each lens at the time of magnification change.
  • the distance between the groups changes, and the object-side negative lens group arranged closest to the object side among the lens groups having a negative refractive force has a negative lens satisfying the following conditional expression in the lens barrel. Place each lens in.
  • ndN3 the refractive index of the negative lens with respect to the d-line
  • ndN3 the Abbe number ⁇ gFN3 based on the d-line of the negative lens: the partial dispersion ratio of the negative lens, and the refractive index of the negative lens with respect to the g-line is ngN3.
  • ⁇ gFN3 (ngN3-nFN3) / (nFN3-nCN3) defined by the following equation.
  • 6 (A), 6 (B), and 6 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the third embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 4th Embodiment. 8 (A), 8 (B), and 8 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fourth embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 5th Example.
  • 10 (A), 10 (B), and 10 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the fifth embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 6th Example. 12 (A), 12 (B), and 12 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the sixth embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 7th Example.
  • 14 (A), 14 (B), and 14 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the seventh embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 8th Example. 16 (A), 16 (B), and 16 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the eighth embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 9th Example.
  • 18 (A), 18 (B), and 18 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the ninth embodiment at infinity focusing, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on 10th Example. 20 (A), 20 (B), and 20 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the tenth embodiment, respectively. It is an aberration diagram. It is a lens block diagram in the infinity focusing state of the optical system which concerns on eleventh embodiment.
  • 22 (A), 22 (B), and 22 (C) show the wide-angle end state, the intermediate focal length state, and the telephoto end state of the optical system according to the eleventh embodiment, respectively.
  • the camera 1 is a digital camera provided with an optical system according to each embodiment as a photographing lens 2.
  • the light from an object (subject) (not shown) is collected by the photographing lens 2 and reaches the image sensor 3.
  • the image sensor 3 As a result, the light from the subject is captured by the image sensor 3 and recorded as a subject image in a memory (not shown).
  • This camera may be a mirrorless camera or a single-lens reflex type camera having a quick return mirror.
  • the optical system LS (1) as an example of the optical system (photographing lens) LS according to the first embodiment has the aperture diaphragm S and the following conditions arranged on the object side of the aperture diaphragm S. It has a negative lens (L4) that satisfies the formulas (1) to (4).
  • ndN1 the refractive index of the negative lens with respect to the d-line
  • ⁇ dN1 the Abbe number
  • ⁇ gFN1 the partial dispersion ratio of the negative lens based on the d-line of the negative lens
  • the refractive index of the negative lens with respect to the g-line is ngN1.
  • ⁇ gFN1 (ngN1-nFN1) / (nFN1-nCN1) defined by the following equation.
  • the optical system LS according to the first embodiment may be the optical system LS (2) shown in FIG. 3, the optical system LS (3) shown in FIG. 5, or the optical system LS (4) shown in FIG.
  • the optical system LS (5) shown in FIG. 9 may be used, or the optical system LS (6) shown in FIG. 11 may be used.
  • the optical system LS according to the first embodiment may be the optical system LS (7) shown in FIG. 13, the optical system LS (8) shown in FIG. 15, or the optical system LS (9) shown in FIG.
  • the optical system LS (10) shown in FIG. 19 may be used, and the optical system LS (11) shown in FIG. 21 may be used.
  • Conditional expression (1) defines the appropriate relationship between the refractive index of the negative lens with respect to the d-line and the Abbe number with respect to the d-line.
  • the lower limit value of the conditional expression (1) is set to ⁇ 0.005, 0.000, 0.003, 0.005, 0.007, and further 0.008. May be set to.
  • the upper limit of the conditional expression (1) may be set to less than 0.150. As a result, it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity). In this case, by setting the upper limit value of the conditional expression (1) to 0.100, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (1) may be set to 0.080, 0.060, 0.050, and further 0.045.
  • Conditional expression (2) defines an appropriate range of Abbe numbers based on the d-line of the negative lens. By satisfying the conditional expression (2), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).
  • the lower limit value of the conditional expression (2) may be set to 51.00, 51.50, 52.00, and further 52.40.
  • the upper limit value of the conditional expression (2) is set to 64.00, the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (2) is set to 63.00, 62.50, 62.00, 61.50, 61.00, 60.00, and further. It may be set to 59.50.
  • Conditional expression (3) appropriately defines the anomalous dispersibility of the negative lens. By satisfying the conditional expression (3), it is possible to satisfactorily correct the secondary spectrum in addition to the primary achromaticity in the correction of chromatic aberration.
  • the lower limit value of the conditional expression (3) may be set to 0.548, 0.549, and further 0.550.
  • Conditional expression (4) appropriately defines the anomalous dispersibility of the negative lens.
  • the lower limit value of the conditional expression (4) may be set to ⁇ 0.001.
  • the upper limit of the conditional expression (4) may be set to less than 0.040. As a result, it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity). In this case, by setting the upper limit value of the conditional expression (4) to 0.030, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit of the conditional expression (4) may be set to 0.025 and further 0.020.
  • the optical system LS is composed of an aperture stop S, a front group GF arranged on the object side of the aperture stop S, and a rear group GR arranged on the image side of the aperture stop S. It is desirable that the GF has the negative lens and satisfies the following conditional expression (5). -10.00 ⁇ (-fN1) / fF ⁇ 10.00 ... (5) However, fN1: focal length of the negative lens fF: focal length of the front group GF, and when the optical system LS is a variable magnification optical system, the focal length of the front group GF in the wide-angle end state.
  • Conditional expression (5) defines an appropriate relationship between the focal length of the negative lens and the focal length of the front group GF.
  • the lower limit value of the conditional expression (5) is set to -9.00, -8.50, -8.00, -7.00, -5.00, It may be set to -3.00, -1.50, -0.05, 0.05, and further 0.10.
  • the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (5) may be set to 7.50, 6.50, 5.00, 4.00, and further 3.00. Good.
  • the negative lens satisfies the following conditional expression (6). 0.10 ⁇ (-fN1) / f ⁇ 15.00 ... (6)
  • fN1 focal length of the negative lens
  • f focal length of the optical system LS
  • the optical system LS is a variable magnification optical system, the focal length of the optical system LS in the wide-angle end state.
  • Conditional expression (6) defines an appropriate relationship between the focal length of the negative lens and the focal length of the optical system LS. By satisfying the conditional equation (6), reference aberrations such as spherical aberration and coma can be satisfactorily corrected.
  • the lower limit value of the conditional expression (6) may be set to 0.30, 0.40, 0.45, and further 0.50.
  • the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (6) may be set to 12.00, 10.00, 8.50, and further 7.50.
  • the negative lens may satisfy the following conditional expression (3-1). 0.555 ⁇ gFN1 ... (3-1)
  • conditional expression (3-1) is the same expression as the conditional expression (3), and the same effect as the conditional expression (3) can be obtained.
  • the effect of the present embodiment can be made more reliable.
  • the negative lens may satisfy the following conditional expression (4-1). 0.010 ⁇ gFN1- (0.6418-0.00168 ⁇ ⁇ dN1) ⁇ ⁇ ⁇ (4-1)
  • conditional expression (4-1) is the same expression as the conditional expression (4), and the same effect as the conditional expression (4) can be obtained.
  • the lower limit value of the conditional expression (4-1) is set to 0.011, the effect of the present embodiment can be made more reliable.
  • the upper limit of the conditional expression (4-1) may be set to less than 0.030. As a result, the same effect as in the conditional expression (4) can be obtained. In this case, by setting the upper limit value of the conditional expression (4-1) to 0.028, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of this embodiment, the upper limit values of the conditional expression (4-1) may be set to 0.025, 0.023, and further 0.020.
  • the negative lens satisfies the following conditional expression (7).
  • Conditional expression (7) appropriately defines the thickness of the negative lens on the optical axis.
  • various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification) can be satisfactorily corrected.
  • the lower limit value of the conditional expression (7) is set to 0.450 [mm]
  • the effect of the present embodiment can be made more reliable.
  • the lower limit of the conditional expression (7) is set to 0.490 [mm], 0.550 [mm], 0.580 [mm], 0.650 [.
  • the negative lens is a single lens or one of the two lenses in a bonded lens in which two lenses are joined.
  • the change in optical characteristics due to temperature is small.
  • the negative lens is a lens in which the lens surface is in contact with air (that is, a single lens or a bonded lens obtained by joining two lenses. Even one of the lenses) is preferable because the optical characteristics do not change much with temperature.
  • the optical system LS it is desirable that at least one of the lens surface on the object side and the lens surface on the image side of the negative lens is in contact with air.
  • the change in optical characteristics due to temperature is small.
  • the optical characteristics do not change much with temperature, which is preferable.
  • the negative lens is a glass lens. It is preferable that the negative lens is a glass lens rather than a resin lens because it changes little over time and changes in optical characteristics due to temperature.
  • the manufacturing method of the optical system LS according to the first embodiment will be outlined with reference to FIG. 24.
  • the aperture diaphragm S and at least a negative lens are arranged on the object side of the aperture diaphragm S (step ST1).
  • each lens is arranged in the lens barrel so that at least one of the negative lenses arranged on the object side of the aperture diaphragm S satisfies the above conditional expressions (1) to (4) and the like (step).
  • ST2 According to such a manufacturing method, in the correction of chromatic aberration, it is possible to manufacture an optical system in which the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity.
  • the optical system LS (2) as an example of the optical system (photographing lens) LS according to the second embodiment has a plurality of lens groups including a lens group having a negative refractive power. There is. At the time of scaling, the distance between adjacent lens groups changes.
  • the object-side negative lens group (first lens group G1) arranged on the object side most of the lens groups having a negative refractive power is a negative lens (L13) that satisfies the following conditional equations (11) to (14). have.
  • ndN3 the refractive index of the negative lens with respect to the d-line
  • ⁇ dN3 the Abbe number ⁇ gFN3 with respect to the d-line of the negative lens: the partial dispersion ratio of the negative lens, and the refractive index of the negative lens with respect to the g-line is ngN3.
  • ⁇ gFN3 (ngN3-nFN3) / (nFN3-nCN3) defined by the following equation.
  • the optical system LS according to the second embodiment is a variable magnification optical system that changes the magnification by changing the distance between adjacent lens groups.
  • the optical system LS (variable magnification optical system) according to the second embodiment may be the optical system LS (3) shown in FIG. 5, the optical system LS (4) shown in FIG. 7, or the optical system LS shown in FIG. (5) may be used, or the optical system LS (6) shown in FIG. 11 may be used.
  • the optical system LS (variable magnification optical system) according to the second embodiment may be the optical system LS (7) shown in FIG. 13, the optical system LS (8) shown in FIG. 15, and the optical system shown in FIG.
  • the system LS (9) may be used, the optical system LS (10) shown in FIG. 19 may be used, or the optical system LS (11) shown in FIG. 21 may be used.
  • Conditional expression (11) defines an appropriate relationship between the refractive index of the negative lens with respect to the d-line and the Abbe number with respect to the d-line.
  • the lower limit value of the conditional expression (11) is set to ⁇ 0.005, 0.000, 0.003, 0.005, 0.007, and further 0.008. May be set to.
  • the upper limit of the conditional expression (11) may be set to less than 0.150. As a result, it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity). In this case, by setting the upper limit value of the conditional expression (1) to 0.100, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (1) may be set to 0.080, 0.060, 0.050, and further 0.045.
  • Conditional expression (12) defines an appropriate range of Abbe numbers with respect to the d-line of the negative lens. By satisfying the conditional expression (12), it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity).
  • the lower limit value of the conditional expression (12) may be set to 51.00, 51.50, 52.00, and further 52.40.
  • the upper limit value of the conditional expression (12) is set to 64.00, the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (12) is set to 63.00, 62.50, 62.00, 61.50, 61.00, 60.00, and further. It may be set to 59.50.
  • Conditional expression (13) appropriately defines the anomalous dispersibility of the negative lens. By satisfying the conditional expression (13), it is possible to satisfactorily correct the secondary spectrum in addition to the primary achromaticity in the correction of chromatic aberration.
  • the lower limit value of the conditional expression (13) may be set to 0.548, 0.549, and further 0.550.
  • Conditional expression (14) appropriately defines the anomalous dispersibility of the negative lens. By satisfying the conditional expression (14), it is possible to satisfactorily correct the secondary spectrum in addition to the primary achromaticity in the correction of chromatic aberration.
  • the lower limit value of the conditional expression (14) may be set to ⁇ 0.001.
  • the upper limit of the conditional expression (14) may be set to less than 0.040. As a result, it is possible to satisfactorily correct reference aberrations such as spherical aberration and coma, and correct primary chromatic aberration (achromaticity). In this case, by setting the upper limit value of the conditional expression (14) to 0.030, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit value of the conditional expression (14) may be set to 0.025 and further 0.020.
  • the negative lens satisfies the following conditional expression (15). 0.50 ⁇ fN3 / fGa ⁇ 7.00 ... (15)
  • fN3 focal length of the negative lens
  • fGa focal length of the negative lens group on the object side
  • Conditional expression (15) defines an appropriate relationship between the focal length of the negative lens and the focal length of the negative lens group on the object side. By satisfying the conditional expression (15), reference aberrations such as spherical aberration and coma can be satisfactorily corrected.
  • the lower limit value of the conditional expression (15) is set to 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0. It may be set to .90, 0.95, 1.00, 1.05, and further 1.10.
  • the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (15) is set to 6.20, 5.50, 5.00, 4.50, 4.00, 3.80, 3 It may be set to .30, 3.00, 2.80, and further 2.30.
  • the object-side negative lens group satisfies the following conditional expression (16). 0.20 ⁇ (-fGa) /f ⁇ 3.50 ... (16) However, fGa: focal length of the negative lens group on the object side f: focal length of the optical system LS (variable magnification optical system) in the wide-angle end state.
  • Conditional expression (16) defines an appropriate relationship between the focal length of the negative lens group on the object side and the focal length of the optical system LS (variable magnification optical system). By satisfying the conditional equation (16), reference aberrations such as spherical aberration and coma can be satisfactorily corrected.
  • the lower limit value of the conditional expression (16) is set to 0.30, 0.35, 0.40, 0.45, 0.50, and further 0.55. It may be set.
  • the upper limit value of the conditional expression (16) is set to 3.30, the effect of this embodiment can be made more reliable.
  • the upper limit of the conditional expression (16) is set to 3.00, 2.80, 2.65, 2.45, 2.15, and further 2.00. You may set it.
  • the negative lens may satisfy the following conditional expression (13-1). 0.555 ⁇ gFN3 ... (13-1)
  • conditional expression (13-1) is the same expression as the conditional expression (13), and the same effect as the conditional expression (13) can be obtained.
  • the lower limit value of the conditional expression (13-1) is set to 0.556, the effect of the present embodiment can be made more reliable.
  • the negative lens may satisfy the following conditional expression (14-1). 0.010 ⁇ gFN3- (0.6418-0.00168 ⁇ ⁇ dN3) ⁇ ⁇ ⁇ (14-1)
  • conditional expression (14-1) is the same expression as the conditional expression (14), and the same effect as the conditional expression (14) can be obtained.
  • the lower limit value of the conditional expression (14-1) is set to 0.011, the effect of the present embodiment can be made more reliable.
  • the upper limit of the conditional expression (14-1) may be set to less than 0.030. As a result, the same effect as in the conditional expression (14) can be obtained. In this case, by setting the upper limit value of the conditional expression (14-1) to 0.028, the effect of the present embodiment can be made more reliable. In order to further ensure the effect of the present embodiment, the upper limit of the conditional expression (14-1) may be set to 0.025, 0.023, and further 0.020.
  • the negative lens satisfies the following conditional expression (17).
  • Conditional expression (17) appropriately defines the thickness of the negative lens on the optical axis.
  • various aberrations such as coma and chromatic aberration (axial chromatic aberration and chromatic aberration of magnification) can be satisfactorily corrected.
  • the lower limit value of the conditional expression (17) is set to 0.450 [mm]
  • the effect of the present embodiment can be made more reliable.
  • the lower limit of the conditional expression (17) is set to 0.490 [mm], 0.550 [mm], 0.580 [mm], 0.650 [.
  • the negative lens is preferably a single lens or one of the two lenses in a bonded lens in which two lenses are joined. ..
  • the negative lens is a lens in which the lens surface is in contact with air (that is, a single lens or a bonded lens obtained by joining two lenses. Even one of the lenses) is preferable because the optical characteristics do not change much with temperature.
  • the optical system LS variable magnification optical system
  • glass is used as the lens material rather than resin
  • the change in optical characteristics due to temperature is small.
  • glass can be used as the material of the negative lens, even if the lens surface of the negative lens is in contact with air, the optical characteristics do not change much with temperature, which is preferable.
  • the negative lens is a glass lens. It is preferable that the negative lens is a glass lens rather than a resin lens because it has less change over time and less change in optical characteristics due to temperature.
  • the manufacturing method of the optical system LS (variable magnification optical system) according to the second embodiment will be outlined with reference to FIG. 25.
  • a plurality of lens groups including a lens group having a negative refractive power are arranged (step ST11).
  • the distance between adjacent lens groups is changed (step ST12).
  • the lens barrel so that the object-side negative lens group arranged on the object side most among the lens groups having a negative refractive power has a negative lens satisfying the above-mentioned conditional equations (11) to (14) and the like.
  • Each lens is arranged inside (step ST13). According to such a manufacturing method, in the correction of chromatic aberration, it is possible to manufacture a variable magnification optical system in which the secondary spectrum is satisfactorily corrected in addition to the primary achromaticity.
  • FIG. 3 show the optical system LS ⁇ LS (1) according to the first to eleventh embodiments.
  • FIG. 5 show the optical system LS ⁇ LS (1) according to the first to eleventh embodiments.
  • the moving direction when the focusing lens group focuses on a short-range object from infinity is referred to as "focusing". It is indicated by an arrow along with the letters.
  • the optical systems LS (2) to LS (11) according to the second to eleventh embodiments are variable magnification optical systems that change the magnification by changing the distance between adjacent lens groups.
  • each lens group is divided into each lens by a combination of reference numerals G and numbers.
  • Each is represented by a combination of reference numerals L and numbers.
  • the lens group and the like are represented by independently using combinations of the symbols and numbers for each embodiment. Therefore, even if the same combination of reference numerals and numbers is used between the examples, it does not mean that they have the same configuration.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is ° (degrees)
  • is the half angle of view
  • Y is the image height.
  • TL indicates the distance from the frontmost surface of the lens to the final surface of the lens on the optical axis at infinity, plus BF
  • BF is the image from the final surface of the lens on the optical axis at infinity.
  • the distance to the surface I (back focus) is shown.
  • fF indicates the focal length of the front group
  • fR indicates the focal length of the rear group.
  • the surface numbers indicate the order of the optical surfaces from the object side along the direction in which the light beam travels, and R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side).
  • R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side).
  • D is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member with respect to the d line
  • ⁇ d is optical.
  • the Abbe number with respect to the d-line of the material of the member is shown
  • ⁇ gF is the partial dispersion ratio of the material of the optical member.
  • the radius of curvature " ⁇ " indicates a plane or an aperture, and (aperture S) indicates an aperture stop S.
  • the description of the refractive index of air nd 1.00000 is omitted.
  • the surface number is marked with *, and the radius of curvature R indicates the paraxial radius of curvature.
  • the refractive index of the material of the optical member is C.
  • the partial dispersion ratio ⁇ gF of the material of the optical member is defined by the following equation (A).
  • f indicates the focal length of the entire lens system and ⁇ indicates the imaging magnification as [variable interval data during short-distance shooting].
  • the table of [Variable Interval Data for Short-distance Shooting] shows the surface spacing with the surface number in which the surface spacing is "variable" in [Lens Specifications] corresponding to each focal length and shooting magnification. ..
  • variable interval data at the time of variable magnification shooting corresponds to each variable magnification state of the wide-angle end (W), the intermediate focal length (M), and the telephoto end (T).
  • Lens specifications] indicates the surface spacing at the surface number where the surface spacing is "variable”.
  • the table of [lens group data] shows the starting surface (the surface closest to the object) and the focal length of each lens group.
  • mm is generally used for the focal length f, the radius of curvature R, the plane spacing D, other lengths, etc., unless otherwise specified, but the optical system is expanded proportionally. Alternatively, it is not limited to this because the same optical performance can be obtained even if the proportional reduction is performed.
  • FIG. 1 is a diagram showing a lens configuration in an infinity-focused state of the optical system according to the first embodiment.
  • the optical system LS (1) according to the first embodiment is composed of a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power arranged in order from the object side. There is.
  • the second lens group G2 moves toward the object along the optical axis.
  • the aperture diaphragm S is arranged in the first lens group G1.
  • the symbol (+) or (-) attached to each lens group symbol indicates the refractive power of each lens group, and this also applies to all the following examples.
  • the first lens group G1 includes a negative meniscus lens L1 having a convex surface facing the object side, a positive meniscus lens L2 having a convex surface facing the object side, and a negative meniscus lens L2 having a convex surface facing the object side, arranged in order from the object side.
  • a junction lens consisting of L3, a negative meniscus lens L4 with a convex surface facing the object side, a negative meniscus lens L5 with a convex surface facing the object side, and a positive meniscus lens L6 with a convex surface facing the object side, and a biconvex positive It is composed of a lens L7, a junction lens composed of a positive meniscus lens L8 having a concave surface facing the object side, a negative lens L9 having a biconcave shape, and a positive lens L10 having a biconvex shape.
  • An aperture diaphragm S is arranged between the positive lens L7 in the first lens group G1 and the positive meniscus lens L8 (of the junction lens).
  • the negative meniscus lens L4 of the first lens group G1 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 includes a positive meniscus lens L21 having a concave surface facing the object side, a positive meniscus lens L22 having a concave surface facing the object side, and a negative meniscus lens L23 having a concave surface facing the object side, which are arranged in order from the object side. It is composed of a bonded lens made of.
  • the image plane I is arranged on the image side of the second lens group G2.
  • the positive meniscus lens L21 has an aspherical lens surface on the image side.
  • the negative meniscus lens L1, the positive meniscus lens L2, the negative meniscus lens L3, the negative meniscus lens L4, the junction lens composed of the negative meniscus lens L5 and the positive meniscus lens L6, and the positive lens L7 are It constitutes a front group GF arranged on the object side of the aperture aperture S.
  • a junction lens consisting of a positive meniscus lens L8 and a negative lens L9, a positive lens L10, a positive meniscus lens L21, a positive meniscus lens L22, and a junction lens consisting of a negative meniscus lens L23 with a concave surface facing the object side are aperture stops. It constitutes a rear group GR arranged on the image side of S.
  • Table 1 below lists the values of the specifications of the optical system according to the first embodiment.
  • FIG. 2A is an aberration diagram of the optical system according to the first embodiment at infinity focusing.
  • FIG. 2B is a diagram of various aberrations of the optical system according to the first embodiment when focusing at an intermediate distance.
  • FIG. 2C is a diagram of various aberrations at the time of short-distance (close-distance) focusing of the optical system according to the first embodiment.
  • FNO indicates an F number
  • Y indicates an image height.
  • NA indicates the numerical aperture
  • Y indicates the image height.
  • the spherical aberration diagram shows the F number or numerical aperture value corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma aberration diagram shows the value of each image height.
  • the solid line shows the sagittal image plane and the broken line shows the meridional image plane.
  • the same reference numerals as those of the present embodiment are used, and duplicate description is omitted.
  • the optical system according to the first embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 3 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the second embodiment.
  • the first lens group G1 having a negative refractive power, the second lens group G2 having a positive refractive power, and the negative refraction are arranged in order from the object side. It is composed of a third lens group G3 having a force and a fourth lens group G4 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged in the second lens group G2.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconcave negative lens L13 arranged in order from the object side. It is composed of a convex positive lens L14.
  • the negative lens L13 of the first lens group G1 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the first lens group G1 corresponds to the object-side negative lens group
  • the negative lens L13 of the first lens group G1 corresponds to a negative lens satisfying the conditional equations (11) to (14) and the like.
  • the negative meniscus lens L11 is a hybrid type lens configured by providing a resin layer on the image side surface of the glass lens body.
  • the image-side surface of the resin layer is an aspherical surface
  • the negative meniscus lens L11 is a composite aspherical surface lens.
  • the surface number 1 is the object-side surface of the lens body
  • the surface number 2 is the image-side surface of the lens body
  • the object-side surface of the resin layer (the surface where the two are joined)
  • the surface number. 3 indicates the image-side surface of the resin layer.
  • the negative meniscus lens L12 is a hybrid type lens formed by providing a resin layer on the object-side surface of the glass lens body.
  • the surface of the resin layer on the object side is an aspherical surface
  • the negative meniscus lens L12 is a composite aspherical surface lens.
  • the surface number 4 is the surface of the resin layer on the object side
  • the surface number 5 is the surface of the resin layer on the image side
  • the surface of the lens body on the object side (the surface where both are joined)
  • the surface number. 6 indicates the image-side surface of the lens body.
  • the second lens group G2 includes a junction lens composed of a biconvex positive lens L21 and a biconcave negative lens L22 arranged in order from the object side, a positive meniscus lens L23 with a concave surface facing the object side, and biconvex. It is composed of a positive lens L24 having a shape and a junction lens composed of a negative meniscus lens L25 with a concave surface facing the object side.
  • An aperture diaphragm S is arranged between the positive meniscus lens L23 in the second lens group G2 and the positive lens L24 (of the junction lens).
  • the positive meniscus lens L23 of the second lens group G2 constitutes a vibration-proof lens group (subgroup) that can move in a direction perpendicular to the optical axis, and the displacement of the imaging position due to camera shake or the like (image on the image plane I). Blur) is corrected.
  • the third lens group G3 is composed of a biconcave negative lens L31 arranged in order from the object side and a positive meniscus lens L32 with a convex surface facing the object side. When focusing from an infinite distance object to a short distance (finite distance) object, the third lens group G3 moves toward the image side along the optical axis.
  • the fourth lens group G4 is composed of a positive meniscus lens L41 having a concave surface facing the object side arranged in order from the object side, and a junction lens composed of a biconcave negative lens L42 and a biconvex positive lens L43. Will be done.
  • the image plane I is arranged on the image side of the fourth lens group G4.
  • the positive meniscus lens L41 has an aspherical lens surface on the image side.
  • the negative meniscus lens L11, the negative meniscus lens L12, the negative lens L13, the positive lens L14, the junction lens including the positive lens L21 and the negative lens L22, and the positive meniscus lens L23 have an aperture stop S. It constitutes the front group GF arranged on the object side.
  • the junction lens consisting of the positive lens L24 and the negative meniscus lens L25, the negative lens L31, the positive meniscus lens L32, the positive meniscus lens L41, and the junction lens consisting of the negative lens L42 and the positive lens L43 are larger than the aperture aperture S. It constitutes the rear group GR arranged on the image side.
  • the eleventh surface is a virtual surface.
  • FIG. 4A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the second embodiment.
  • FIG. 4B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the second embodiment.
  • FIG. 4C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the second embodiment. From each aberration diagram, it can be seen that the optical system according to the second embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 5 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the third embodiment.
  • the first lens group G1 having a negative refractive power
  • the second lens group G2 having a positive refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a negative meniscus lens L11 having a convex surface facing the object side, a negative meniscus lens L12 having a convex surface facing the object side, and a biconcave negative lens L13 arranged in order from the object side. It is composed of a convex positive lens L14.
  • the negative meniscus lens L11, the negative meniscus lens L12, and the negative lens L13 of the first lens group G1 correspond to negative lenses satisfying the conditional equations (1) to (4) and the like.
  • the first lens group G1 corresponds to the object-side negative lens group
  • the negative meniscus lens L11, the negative meniscus lens L12, and the negative lens L13 of the first lens group G1 correspond to the conditional equations (11) to (14). ), Etc. are applicable to negative lenses.
  • the negative meniscus lens L11 has an aspherical lens surface on the image side.
  • the negative meniscus lens L12 has an aspherical lens surface on the image side.
  • the second lens group G2 includes a positive meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a convex surface facing the object side, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a bonded lens made of.
  • the aperture diaphragm S is arranged near the image side of the positive meniscus lens L23, and moves together with the second lens group G2 at the time of scaling.
  • the third lens group G3 is composed of a junction lens composed of a biconcave negative lens L31 and a biconvex positive lens L32 arranged in order from the object side, and a biconvex positive lens L33.
  • the positive lens L32 has an aspherical lens surface on the image side.
  • the fourth lens group G4 is composed of a biconcave negative lens L41. When focusing from an infinite distance object to a short distance (finite distance) object, the fourth lens group G4 moves toward the image side along the optical axis.
  • the fifth lens group G5 is composed of a positive meniscus lens L51 with a concave surface facing the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive meniscus lens L51 has an aspherical lens surface on the image side.
  • the negative meniscus lens L11, the negative meniscus lens L12, the negative lens L13, the positive lens L14, the positive meniscus lens L21, the negative meniscus lens L22, and the junction lens consisting of the positive meniscus lens L23 are opened. It constitutes a front group GF arranged on the object side of the aperture S.
  • a junction lens composed of a negative lens L31 and a positive lens L32, a positive lens L33, a negative lens L41, and a positive meniscus lens L51 form a rear group GR arranged on the image side of the aperture stop S.
  • Table 3 below lists the values of the specifications of the optical system according to the third embodiment.
  • FIG. 6A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the third embodiment.
  • FIG. 6B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the third embodiment.
  • FIG. 6C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the third embodiment. From each aberration diagram, it can be seen that the optical system according to the third embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 7 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the fourth embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG. 7, respectively.
  • the aperture diaphragm S is arranged in the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L22 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And consists of.
  • the second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a biconcave shape, a positive lens L23 having a biconvex shape, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a negative meniscus lens L24 directed toward the lens. When focusing from an infinity object to a short-distance (finite distance) object, the second lens group G2 moves toward the object along the optical axis.
  • the negative lens L22 and the negative meniscus lens L24 of the second lens group G2 correspond to negative lenses satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative lens L22 and the negative meniscus lens L24 of the second lens group G2 satisfy the conditional equations (11) to (14) and the like.
  • the negative meniscus lens L21 has an aspherical lens surface on the object side.
  • the negative meniscus lens L24 has an aspherical lens surface on the image side.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, a junction lens consisting of a negative meniscus lens L32 with a convex surface facing the object side, and a biconvex positive lens L33, and biconvex. It is composed of a positive lens L34 having a shape.
  • An aperture diaphragm S is arranged between the positive lens L31 in the third lens group G3 and the negative meniscus lens L32 (of the junction lens).
  • the fourth lens group G4 is a junction lens composed of a positive meniscus lens L41 having a concave surface facing the object side and a negative meniscus lens L42 having a concave surface facing the object side, arranged in order from the object side, and a biconcave negative lens L43. And consists of.
  • the fifth lens group G5 is composed of a biconvex positive lens L51, a biconvex positive lens L52, and a biconcave negative lens L53 arranged in order from the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive lens L51 has an aspherical lens surface on the object side.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L22, a positive meniscus lens L13, a negative meniscus lens L21, a negative lens L22, a positive lens L23, a negative meniscus lens L24, and a positive lens L31. Consists of the front lens group GF arranged on the object side of the aperture aperture S.
  • a junction lens consisting of a negative meniscus lens L32 and a positive lens L33, a positive lens L34, a junction lens consisting of a positive meniscus lens L41 and a negative meniscus lens L42, a negative lens L43, a positive lens L51, a positive lens L52 and a negative lens.
  • the junction lens made of L53 constitutes the rear group GR arranged on the image side of the aperture aperture S.
  • Table 4 lists the values of the specifications of the optical system according to the fourth embodiment.
  • FIG. 8A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the fourth embodiment.
  • FIG. 8B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the fourth embodiment.
  • FIG. 8C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the fourth embodiment. From each aberration diagram, it can be seen that the optical system according to the fourth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 9 is a diagram showing a lens configuration of the optical system (variable magnification optical system) according to the fifth embodiment in an infinity in-focus state.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move in the directions indicated by the arrows in FIG. 9, respectively.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And consists of.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a concave shape, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. It is composed of a concave negative lens L24.
  • the negative meniscus lens L21, the negative lens L22, and the negative lens L24 of the second lens group G2 correspond to the negative lenses satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative meniscus lens L21, the negative lens L22, and the negative lens L24 of the second lens group G2 correspond to the conditional equations (11) to (14). It corresponds to a negative lens that satisfies the above.
  • the third lens group G3 includes a biconvex positive lens L31 arranged in order from the object side, a plano-convex positive lens L32 with a convex surface facing the object side, and a positive meniscus lens L33 with a convex surface facing the object side. , A biconcave negative lens L34, a biconvex positive lens L35, and a biconcave negative lens L36.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the fourth lens group G4 is a junction lens composed of a biconvex positive lens L41 arranged in order from the object side, a negative meniscus lens L42 having a convex surface facing the object side, and a positive meniscus lens L43 having a convex surface facing the object side. And consists of. When focusing from an infinity object to a short-distance (finite distance) object, the fourth lens group G4 moves toward the object along the optical axis.
  • the fifth lens group G5 includes a negative meniscus lens L51 arranged in order from the object side and having a convex surface facing the object side, a junction lens consisting of a biconvex positive lens L52 and a biconcave negative lens L53, and an image side. It is composed of a flat concave negative lens L54 with a concave surface facing the surface, a biconvex positive lens L55, and a positive meniscus lens L56 with a convex surface facing the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the junction lens composed of the positive lens L52 and the negative lens L53 of the fifth lens group G5 and the negative lens L54 form a vibration-proof lens group (subgroup) that can move in the direction perpendicular to the optical axis, and are caused by camera shake or the like.
  • the displacement of the image formation position (image blur on the image plane I) is corrected.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive meniscus lens L13, a negative meniscus lens L21, a negative lens L22, a positive meniscus lens L23, and a negative lens L24 are apertured. It constitutes a front group GF arranged on the object side of S. It is composed of a positive lens L31, a positive lens L32, a positive meniscus lens L33, a negative lens L34, a junction lens consisting of a positive lens L35 and a negative lens L36, a positive lens L41, a negative meniscus lens L42 and a positive meniscus lens L43.
  • the junction lens, the negative meniscus lens L51, the junction lens consisting of the positive lens L52 and the negative lens L53, the negative lens L54, the positive lens L55, and the positive meniscus lens L56 are arranged on the image side of the aperture aperture S. It constitutes the rear lens group GR.
  • Table 5 lists the values of the specifications of the optical system according to the fifth embodiment.
  • FIG. 10A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the fifth embodiment.
  • FIG. 10B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the fifth embodiment.
  • FIG. 10C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the fifth embodiment. From each aberration diagram, it can be seen that the optical system according to the fifth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 11 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the sixth embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5 having a negative refractive power.
  • the second lens group G2 and the fourth lens group G4 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged in the fifth lens group G5.
  • the first lens group G1 is a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a plano-convex shape having a convex surface facing the object side. It is composed of a positive lens L13.
  • the second lens group G2 includes a positive meniscus lens L21 arranged in order from the object side and having a convex surface facing the object side, a junction lens consisting of a biconvex positive lens L22 and a biconcave negative lens L23, and both concaves. It is composed of a junction lens composed of a negative lens L24 having a shape and a positive meniscus lens L25 having a convex surface facing the object side, and a negative meniscus lens L26 having a concave surface facing the object side.
  • the negative lens L23 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative lens L23 of the second lens group G2 corresponds to a negative lens satisfying the conditional equations (11) to (14) and the like.
  • the third lens group G3 includes a biconvex positive lens L31, a biconvex positive lens L32, a biconcave negative lens L33, and a biconvex positive lens L34 arranged in order from the object side. Consists of.
  • the fourth lens group G4 is a bonded lens composed of a plano-convex positive lens L41 having a convex surface facing the image side, a biconvex positive lens L42, and a biconcave negative lens L43 arranged in order from the object side. , Consists of. When focusing from an infinity object to a short-distance (finite distance) object, the fourth lens group G4 moves toward the object along the optical axis.
  • the fifth lens group G5 has a biconcave negative lens L51, a biconvex positive lens L52, a negative meniscus lens L53 with a convex surface facing the object side, and a concave surface on the object side, arranged in order from the object side. It consists of a junction lens consisting of a positive meniscus lens L54 facing and a negative lens L55 with a biconcave shape, a positive lens L56 with a biconvex shape, a negative meniscus lens L57 with a convex surface facing the object side, and a positive lens L58 with a biconvex shape. It is composed of a bonded lens and a biconcave negative lens L59.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • An aperture diaphragm S is arranged between the negative lens L51 and the positive lens L52 in the fifth lens group G5.
  • a fixed diaphragm (flare cut diaphragm) Sa is arranged between the negative lens L55 (of the junction lens) and the positive lens L56.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive lens L13, a positive meniscus lens L21, a junction lens consisting of a positive lens L22 and a negative lens L23, a negative lens L24 and a positive meniscus lens.
  • the negative lens L51 constitutes a front group GF arranged on the object side of the aperture aperture S.
  • Table 6 below lists the specifications of the optical system according to the sixth embodiment.
  • FIG. 12A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the sixth embodiment.
  • FIG. 12B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the sixth embodiment.
  • FIG. 12C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the sixth embodiment. From each aberration diagram, it can be seen that the optical system according to the sixth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 13 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the seventh embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a negative refractive power. Has been done.
  • the first to sixth lens groups G1 to G6 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 is composed of a negative meniscus lens L11 having a convex surface facing the object side, a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side, which are arranged in order from the object side. It is composed.
  • the second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a biconcave shape, a positive lens L23 having a biconvex shape, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a negative meniscus lens L24 directed toward the lens.
  • the negative lens L22 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative lens L22 of the second lens group G2 corresponds to a negative lens satisfying the conditional equations (11) to (14) and the like.
  • the third lens group G3 is composed of a biconvex positive lens L31 arranged in order from the object side, a negative meniscus lens L32 with a convex surface facing the object side, and a biconvex positive lens L33, and an object side. It is composed of a negative meniscus lens L34 with a concave surface facing the surface.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the junction lens composed of the negative meniscus lens L32 and the positive lens L33 of the third lens group G3 constitutes a vibration-proof lens group (subgroup) that can move in the direction perpendicular to the optical axis, and the imaging position due to camera shake or the like is formed.
  • the displacement image blur on the image plane I is corrected.
  • the fourth lens group G4 is a junction lens composed of a biconvex positive lens L41, a negative meniscus lens L42 with a concave surface facing the object side, and a negative meniscus lens L43 with a convex surface facing the object side, arranged in order from the object side. It is composed of a junction lens composed of a biconvex positive lens L44 and a biconvex positive lens L44.
  • the positive lens L44 has an aspherical lens surface on the image side.
  • the fifth lens group G5 is composed of a junction lens composed of a biconvex positive lens L51 and a biconcave negative lens L52 arranged in order from the object side.
  • the fifth lens group G5 moves toward the image side along the optical axis.
  • the negative lens L52 has an aspherical lens surface on the image side.
  • the sixth lens group G6 is composed of a negative meniscus lens L61 having a concave surface facing the object side and a biconvex positive lens L62 arranged in order from the object side.
  • the image plane I is arranged on the image side of the sixth lens group G6.
  • the negative meniscus lens L61 has an aspherical lens surface on the image side.
  • the negative meniscus lens L11, the positive lens L12, the positive meniscus lens L13, the negative meniscus lens L21, the negative lens L22, the positive lens L23, and the negative meniscus lens L24 are larger than the aperture stop S. It constitutes the front group GF arranged on the object side.
  • a lens, a junction lens composed of a positive lens L51 and a negative lens L52, a negative meniscus lens L61, and a positive lens L62 form a rear group GR arranged on the image side of the aperture aperture S.
  • Table 7 lists the values of the specifications of the optical system according to the seventh embodiment.
  • FIG. 14A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the seventh embodiment.
  • FIG. 14B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the seventh embodiment.
  • FIG. 14C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the seventh embodiment. From each aberration diagram, it can be seen that the optical system according to the seventh embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 15 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the eighth embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a regular meniscus lens L14 with a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens arranged in order from the object side. It is composed of a lens L24.
  • the negative lens L24 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative lens L24 of the second lens group G2 corresponds to a negative lens satisfying the conditional equations (11) to (14) and the like.
  • the third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a convex surface facing the object side, a negative meniscus lens L33 with a convex surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a bonded lens made of a positive lens L34 having a shape.
  • the third lens group G3 constitutes a vibration-proof lens group that can move in a direction perpendicular to the optical axis, and corrects displacement of the imaging position (image blur on the image plane I) due to camera shake or the like.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the positive lens L31 has aspherical lens surfaces on both sides.
  • the fourth lens group G4 is composed of a bonded lens composed of a positive meniscus lens L41 having a concave surface facing the object side and a biconcave negative lens L42 arranged in order from the object side.
  • the fourth lens group G4 moves toward the image side along the optical axis.
  • the fifth lens group G5 is composed of a junction lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 with a concave surface facing the object side, which are arranged in order from the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive lens L51 has an aspherical lens surface on the object side.
  • An optical filter FL is arranged between the fifth lens group G5 and the image plane I.
  • the optical filter FL for example, an NC filter (neutral color filter), a color filter, a polarizing filter, an ND filter (neutral density filter), an IR filter (infrared cut filter) and the like are used.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive meniscus lens L13, a positive meniscus lens L14, a negative meniscus lens L21, a negative lens L22, a positive lens L23, and a negative lens L24.
  • Consists of the front lens group GF arranged on the object side of the aperture aperture S.
  • a junction lens consisting of a positive lens L31, a negative meniscus lens L32, a negative meniscus lens L33 and a positive lens L34, a junction lens consisting of a positive meniscus lens L41 and a negative lens L42, and a junction consisting of a positive lens L51 and a negative meniscus lens L52.
  • the lens constitutes a rear group GR arranged on the image side of the aperture aperture S.
  • Table 8 lists the specifications of the optical system according to the eighth embodiment.
  • FIG. 16A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the eighth embodiment.
  • FIG. 16B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the eighth embodiment.
  • FIG. 16C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the eighth embodiment. From each aberration diagram, it can be seen that the optical system according to the eighth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 17 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the ninth embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a regular meniscus lens L14 with a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens arranged in order from the object side. It is composed of a junction lens made of L24.
  • the negative meniscus lens L21 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative meniscus lens L21 of the second lens group G2 corresponds to the negative lens satisfying the conditional equations (11) to (14) and the like. ..
  • the third lens group G3 includes a biconvex positive lens L31, a biconvex positive lens L32, and a biconcave negative lens L33 arranged in order from the object side, and a biconvex positive lens. It is composed of L34 and.
  • the third lens group G3 constitutes a vibration-proof lens group that can move in a direction perpendicular to the optical axis, and corrects displacement of the imaging position (image blur on the image plane I) due to camera shake or the like.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the positive lens L31 has aspherical lens surfaces on both sides.
  • the fourth lens group G4 is composed of a junction lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side.
  • the fifth lens group G5 is composed of a junction lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 with a concave surface facing the object side, which are arranged in order from the object side.
  • the fifth lens group G5 moves toward the object along the optical axis.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive lens L51 has an aspherical lens surface on the object side.
  • An optical filter FL is arranged between the fifth lens group G5 and the image plane I as in the eighth embodiment.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive meniscus lens L13, a positive meniscus lens L14, a negative meniscus lens L21, a negative lens L22, a positive lens L23, and a negative lens L24.
  • the bonded lens constitutes a front group GF arranged on the object side of the aperture aperture S.
  • a junction lens consisting of a positive lens L31, a positive lens L32 and a negative lens L33, a positive lens L34, a junction lens consisting of a positive lens L41 and a negative lens L42, and a junction lens consisting of a positive lens L51 and a negative meniscus lens L52.
  • Consists of a rear group GR arranged on the image side of the aperture aperture S.
  • Table 9 lists the values of the specifications of the optical system according to the ninth embodiment.
  • FIG. 18A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the ninth embodiment.
  • FIG. 18B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the ninth embodiment.
  • FIG. 18C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the ninth embodiment. From each aberration diagram, it can be seen that the optical system according to the ninth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 19 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the tenth embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fourth lens groups G1 to G4 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And consists of.
  • the second lens group G2 has a negative meniscus lens L21 having a convex surface facing the object side, a negative lens L22 having a biconcave shape, a positive lens L23 having a biconvex shape, and a concave surface on the object side, which are arranged in order from the object side. It is composed of a negative meniscus lens L24 directed toward the lens.
  • the negative meniscus lens L21 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative meniscus lens L21 of the second lens group G2 corresponds to the negative lens satisfying the conditional equations (11) to (14) and the like. ..
  • the third lens group G3 is a junction lens composed of a biconvex positive lens L31 arranged in order from the object side, a positive meniscus lens L32 having a convex surface facing the object side, and a negative meniscus lens L33 having a convex surface facing the object side. And a biconvex positive lens L34.
  • the third lens group G3 constitutes a vibration-proof lens group that can move in a direction perpendicular to the optical axis, and corrects displacement of the imaging position (image blur on the image plane I) due to camera shake or the like.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the positive lens L31 has aspherical lens surfaces on both sides.
  • the fourth lens group G4 is composed of a negative meniscus lens L41 with a convex surface facing the object side. When focusing from an infinite distance object to a short distance (finite distance) object, the fourth lens group G4 moves toward the image side along the optical axis.
  • the fifth lens group G5 is composed of a biconvex positive lens L51.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive lens L51 has an aspherical lens surface on the object side.
  • An optical filter FL is arranged between the fifth lens group G5 and the image plane I as in the eighth embodiment.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive meniscus lens L13, a negative meniscus lens L21, a negative lens L22, a positive lens L23, and a negative meniscus lens L24 are apertured. It constitutes a front group GF arranged on the object side of S.
  • a rear group in which a junction lens composed of a positive lens L31, a positive meniscus lens L32, and a negative meniscus lens L33, a positive lens L34, a negative meniscus lens L41, and a positive lens L51 are arranged on the image side of the aperture aperture S. It constitutes GR.
  • Table 10 lists the values of the specifications of the optical system according to the tenth embodiment.
  • FIG. 20A is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the tenth embodiment.
  • FIG. 20B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the tenth embodiment.
  • FIG. 20C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the tenth embodiment. From each aberration diagram, it can be seen that the optical system according to the tenth embodiment has various aberrations corrected well and has excellent imaging performance.
  • FIG. 21 is a diagram showing a lens configuration in an infinity-focused state of the optical system (variable magnification optical system) according to the eleventh embodiment.
  • the first lens group G1 having a positive refractive power
  • the second lens group G2 having a negative refractive power
  • the positive refractive power arranged in order from the object side. It is composed of a third lens group G3 having a force, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.
  • the first to fifth lens groups G1 to G5 move in the directions indicated by the arrows in FIG.
  • the aperture diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the first lens group G1 includes a junction lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12 arranged in order from the object side, and a positive meniscus lens L13 having a convex surface facing the object side. And a regular meniscus lens L14 with a convex surface facing the object side.
  • the second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens arranged in order from the object side. It is composed of a lens L24 and a junction lens composed of a positive meniscus lens L25 with a convex surface facing the object side.
  • the negative lens L24 of the second lens group G2 corresponds to a negative lens satisfying the conditional expressions (1) to (4) and the like.
  • the second lens group G2 corresponds to the object-side negative lens group
  • the negative lens L24 of the second lens group G2 corresponds to a negative lens satisfying the conditional equations (11) to (14) and the like.
  • the third lens group G3 includes a biconvex positive lens L31, a negative meniscus lens L32 with a convex surface facing the object side, a negative meniscus lens L33 with a convex surface facing the object side, and a biconvex lens arranged in order from the object side. It is composed of a bonded lens made of a positive lens L34 having a shape.
  • the third lens group G3 constitutes a vibration-proof lens group that can move in a direction perpendicular to the optical axis, and corrects displacement of the imaging position (image blur on the image plane I) due to camera shake or the like.
  • the aperture diaphragm S is arranged near the object side of the positive lens L31 and moves together with the third lens group G3 at the time of scaling.
  • the positive lens L31 has aspherical lens surfaces on both sides.
  • the fourth lens group G4 is composed of a junction lens composed of a biconvex positive lens L41 and a biconcave negative lens L42 arranged in order from the object side. When focusing from an infinite distance object to a short distance (finite distance) object, the fourth lens group G4 moves toward the image side along the optical axis.
  • the fifth lens group G5 is composed of a junction lens composed of a biconvex positive lens L51 and a negative meniscus lens L52 with a concave surface facing the object side, which are arranged in order from the object side.
  • the image plane I is arranged on the image side of the fifth lens group G5.
  • the positive lens L51 has an aspherical lens surface on the object side.
  • An optical filter FL is arranged between the fifth lens group G5 and the image plane I as in the eighth embodiment.
  • a junction lens composed of a negative meniscus lens L11 and a positive lens L12, a positive meniscus lens L13, a positive meniscus lens L14, a negative meniscus lens L21, a negative lens L22, a positive lens L23, and a negative lens L24.
  • a junction lens composed of a positive meniscus lens L25 and a front lens group GF arranged on the object side of the aperture aperture S constitutes the front group GF.
  • Table 11 lists the values of the specifications of the optical system according to the eleventh embodiment.
  • the sixth and nineteenth surfaces are virtual surfaces.
  • FIG. 22 (A) is an aberration diagram at infinity focusing in the wide-angle end state of the optical system according to the eleventh embodiment.
  • FIG. 22B is an aberration diagram at infinity focusing in the intermediate focal length state of the optical system according to the eleventh embodiment.
  • FIG. 22C is an aberration diagram at infinity focusing in the telephoto end state of the optical system according to the eleventh embodiment. From each aberration diagram, it can be seen that the optical system according to the eleventh embodiment has various aberrations corrected well and has excellent imaging performance.
  • the focusing lens group refers to a portion having at least one lens separated by an air interval that changes during focusing. That is, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to focus on a short-distance object from an infinity object.
  • This focusing lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like).
  • the configuration having the anti-vibration function is shown, but the present application is not limited to this, and the configuration does not have the anti-vibration function. You can also do it. Further, other embodiments that do not have the anti-vibration function can also be configured to have the anti-vibration function.
  • the lens surface may be formed on a spherical surface or a flat surface, or may be formed on an aspherical surface.
  • lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to processing and assembly adjustment errors can be prevented, which is preferable. Further, even if the image plane is deviated, the depiction performance is less deteriorated, which is preferable.
  • the aspherical surface is an aspherical surface formed by grinding, a glass mold aspherical surface formed by forming glass into an aspherical shape, or a composite aspherical surface formed by forming resin on the glass surface into an aspherical shape. It doesn't matter which one. Further, the lens surface may be a diffraction surface, and the lens may be a refractive index distribution type lens (GRIN lens) or a plastic lens.
  • GRIN lens refractive index distribution type lens
  • Each lens surface may be provided with an antireflection film having high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high contrast optical performance. As a result, flare and ghost can be reduced, and high contrast and high optical performance can be achieved.
  • G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group I image plane S aperture aperture

Abstract

光学系(LS)は、開口絞り(S)と、開口絞り(S)より物体側に配置された以下の条件式を満足する負レンズ(L4)とを有している。 -0.010<ndN1-(2.015-0.0068×νdN1) 50.00<νdN1<65.00 0.545<θgFN1 -0.010<θgFN1-(0.6418-0.00168×νdN1) 但し、ndN1:負レンズのd線に対する屈折率 νdN1:負レンズのd線を基準とするアッベ数 θgFN1:負レンズの部分分散比

Description

光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法
 本発明は、光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法に関する。
 近年、デジタルカメラやビデオカメラ等の撮像装置に用いられる撮像素子は、高画素化が進んでいる。このような撮像素子を用いた撮像装置に設けられる撮影レンズは、球面収差、コマ収差等の基準収差(単一波長の収差)に加え、白色光源において像の色にじみがないように色収差も良好に補正された、高い解像力を有するレンズであることが望まれている。特に、色収差の補正においては、1次の色消しに加え、2次スペクトルが良好に補正されていることが望ましい。色収差の補正の手段として、例えば、異常分散性を有する樹脂材料を用いる方法(例えば、特許文献1を参照)が知られている。このように、近年の撮像素子の高画素化に伴い、諸収差が良好に補正された撮影レンズが望まれている。
特開2016-194609号公報
 本発明に係る光学系は、開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する負レンズとを有する。
 -0.010<ndN1-(2.015-0.0068×νdN1)
 50.00<νdN1<65.00
 0.545<θgFN1
 -0.010<θgFN1-(0.6418-0.00168×νdN1)
 但し、ndN1:前記負レンズのd線に対する屈折率
    νdN1:前記負レンズのd線を基準とするアッベ数
    θgFN1:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN1とし、前記負レンズのF線に対する屈折率をnFN1とし、前記負レンズのC線に対する屈折率をnCN1としたとき、次式で定義される
 θgFN1=(ngN1-nFN1)/(nFN1-nCN1)
 本発明に係る光学機器は、上記光学系を備えて構成される。
 本発明に係る光学系の製造方法は、開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する負レンズとを有するように、レンズ鏡筒内に各レンズを配置する。
 -0.010<ndN1-(2.015-0.0068×νdN1)
 50.00<νdN1<65.00
 0.545<θgFN1
 -0.010<θgFN1-(0.6418-0.00168×νdN1)
 但し、ndN1:前記負レンズのd線に対する屈折率
    νdN1:前記負レンズのd線を基準とするアッベ数
    θgFN1:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN1とし、前記負レンズのF線に対する屈折率をnFN1とし、前記負レンズのC線に対する屈折率をnCN1としたとき、次式で定義される
 θgFN1=(ngN1-nFN1)/(nFN1-nCN1)
 本発明に係る変倍光学系は、負の屈折力を有するレンズ群を含む複数のレンズ群を有し、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群は、以下の条件式を満足する負レンズを有する。
 -0.010<ndN3-(2.015-0.0068×νdN3)
 50.00<νdN3<65.00
 0.545<θgFN3
 -0.010<θgFN3-(0.6418-0.00168×νdN3)
 但し、ndN3:前記負レンズのd線に対する屈折率
    νdN3:前記負レンズのd線を基準とするアッベ数
    θgFN3:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN3とし、前記負レンズのF線に対する屈折率をnFN3とし、前記負レンズのC線に対する屈折率をnCN3としたとき、次式で定義される
 θgFN3=(ngN3-nFN3)/(nFN3-nCN3)
 本発明に係る光学機器は、上記変倍光学系を備えて構成される。
 本発明に係る変倍光学系の製造方法は、負の屈折力を有するレンズ群を含む複数のレンズ群を有する変倍光学系の製造方法であって、変倍の際に、隣り合う各レンズ群の間隔が変化し、前記負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群が、以下の条件式を満足する負レンズを有するように、レンズ鏡筒内に各レンズを配置する。
 -0.010<ndN3-(2.015-0.0068×νdN3)
 50.00<νdN3<65.00
 0.545<θgFN3
 -0.010<θgFN3-(0.6418-0.00168×νdN3)
 但し、ndN3:前記負レンズのd線に対する屈折率
    νdN3:前記負レンズのd線を基準とするアッベ数
    θgFN3:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN3とし、前記負レンズのF線に対する屈折率をnFN3とし、前記負レンズのC線に対する屈折率をnCN3としたとき、次式で定義される
 θgFN3=(ngN3-nFN3)/(nFN3-nCN3)
第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図2(A)、図2(B)、および図2(C)はそれぞれ、第1実施例に係る光学系の無限遠合焦時、中間距離合焦時、近距離合焦時の諸収差図である。 第2実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図4(A)、図4(B)、および図4(C)はそれぞれ、第2実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第3実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図6(A)、図6(B)、および図6(C)はそれぞれ、第3実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第4実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図8(A)、図8(B)、および図8(C)はそれぞれ、第4実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第5実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図10(A)、図10(B)、および図10(C)はそれぞれ、第5実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第6実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図12(A)、図12(B)、および図12(C)はそれぞれ、第6実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第7実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図14(A)、図14(B)、および図14(C)はそれぞれ、第7実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第8実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図16(A)、図16(B)、および図16(C)はそれぞれ、第8実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第9実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図18(A)、図18(B)、および図18(C)はそれぞれ、第9実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第10実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図20(A)、図20(B)、および図20(C)はそれぞれ、第10実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 第11実施例に係る光学系の無限遠合焦状態におけるレンズ構成図である。 図22(A)、図22(B)、および図22(C)はそれぞれ、第11実施例に係る光学系の広角端状態、中間焦点距離状態、望遠端状態における無限遠合焦時の諸収差図である。 各実施形態に係る光学系を備えたカメラの構成を示す図である。 第1実施形態に係る光学系の製造方法を示すフローチャートである。 第2実施形態に係る光学系(変倍光学系)の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、各実施形態に係る光学系を備えたカメラ(光学機器)を図23に基づいて説明する。このカメラ1は、図23に示すように撮影レンズ2として各実施形態に係る光学系を備えたデジタルカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、撮像素子3へ到達する。これにより被写体からの光は、当該撮像素子3によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。
 次に、第1実施形態に係る光学系について説明する。第1実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(1)は、図1に示すように、開口絞りSと、開口絞りSより物体側に配置された以下の条件式(1)~(4)を満足する負レンズ(L4)とを有している。
 -0.010<ndN1-(2.015-0.0068×νdN1)   ・・・(1)
 50.00<νdN1<65.00   ・・・(2)
 0.545<θgFN1   ・・・(3)
 -0.010<θgFN1-(0.6418-0.00168×νdN1)   ・・・(4)
 但し、ndN1:負レンズのd線に対する屈折率
    νdN1:負レンズのd線を基準とするアッベ数
    θgFN1:負レンズの部分分散比であり、負レンズのg線に対する屈折率をngN1とし、負レンズのF線に対する屈折率をnFN1とし、負レンズのC線に対する屈折率をnCN1としたとき、次式で定義される
 θgFN1=(ngN1-nFN1)/(nFN1-nCN1)
 なお、負レンズのd線を基準とするアッベ数νdN1は、次式で定義される
 νdN1=(ndN1-1)/(nFN1-nCN1)
 第1実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系、およびこの光学系を備えた光学機器を得ることが可能になる。第1実施形態に係る光学系LSは、図3に示す光学系LS(2)でも良く、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良く、図9に示す光学系LS(5)でも良く、図11に示す光学系LS(6)でも良い。また、第1実施形態に係る光学系LSは、図13に示す光学系LS(7)でも良く、図15に示す光学系LS(8)でも良く、図17に示す光学系LS(9)でも良く、図19に示す光学系LS(10)でも良く、図21に示す光学系LS(11)でも良い。
 条件式(1)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(1)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(1)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(1)の下限値を-0.005に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の下限値を、-0.001、0.000、0.003、0.005、0.007、さらに0.008に設定してもよい。
 なお、条件式(1)の上限値を0.150未満に設定してもよい。これにより、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。この場合、条件式(1)の上限値を0.100に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の上限値を、0.080、0.060、0.050、さらに0.045に設定してもよい。
 条件式(2)は、負レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(2)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(2)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(2)の下限値を50.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の下限値を、51.00、51.50、52.00、さらに52.40に設定してもよい。
 条件式(2)の上限値を64.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(2)の上限値を、63.00、62.50、62.00、61.50、61.00、60.00、さらに59.50に設定してもよい。
 条件式(3)は、負レンズの異常分散性を適切に規定するものである。条件式(3)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(3)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(3)の下限値を0.547に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3)の下限値を、0.548、0.549、さらに0.550に設定してもよい。
 条件式(4)は、負レンズの異常分散性を適切に規定するものである。条件式(4)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(4)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(4)の下限値を-0.005に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の下限値を-0.001に設定してもよい。
 なお、条件式(4)の上限値を0.040未満に設定してもよい。これにより、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。この場合、条件式(4)の上限値を0.030に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4)の上限値を0.025、さらに0.020に設定してもよい。
 第1実施形態に係る光学系LSは、開口絞りSと、開口絞りSより物体側に配置された前群GFと、開口絞りSより像側に配置された後群GRとからなり、前群GFは、前記負レンズを有して以下の条件式(5)を満足することが望ましい。
 -10.00<(-fN1)/fF<10.00   ・・・(5)
 但し、fN1:負レンズの焦点距離
    fF:前群GFの焦点距離、なお光学系LSが変倍光学系である場合、広角端状態における前群GFの焦点距離
 条件式(5)は、負レンズの焦点距離と前群GFの焦点距離の適切な関係を規定するものである。条件式(5)を満足することで、球面収差、コマ収差等の基準収差を良好に補正することができる。
 条件式(5)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差等の基準収差を補正することが困難になる。条件式(5)の下限値を-9.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の下限値を、-9.00、-8.50、-8.00、-7.00、-5.00、-3.00、-1.50、-0.05、0.05、さらに0.10に設定してもよい。
 条件式(5)の上限値を8.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(5)の上限値を、7.50、6.50、5.00、4.00、さらに3.00に設定してもよい。
 第1実施形態に係る光学系LSにおいて、負レンズは、以下の条件式(6)を満足することが望ましい。
 0.10<(-fN1)/f<15.00   ・・・(6)
 但し、fN1:負レンズの焦点距離
    f:光学系LSの焦点距離、なお光学系LSが変倍光学系である場合、広角端状態における光学系LSの焦点距離
 条件式(6)は、負レンズの焦点距離と光学系LSの焦点距離の適切な関係を規定するものである。条件式(6)を満足することで、球面収差、コマ収差等の基準収差を良好に補正することができる。
 条件式(6)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差等の基準収差を補正することが困難になる。条件式(6)の下限値を0.20に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の下限値を、0.30、0.40、0.45、さらに0.50に設定してもよい。
 条件式(6)の上限値を14.20に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(6)の上限値を、12.00、10.00、8.50、さらに7.50に設定してもよい。
 第1実施形態に係る光学系LSにおいて、負レンズは、以下の条件式(3-1)を満足してもよい。
 0.555<θgFN1   ・・・(3-1)
 条件式(3-1)は、条件式(3)と同様の式であり、条件式(3)と同様の効果を得ることができる。条件式(3-1)の下限値を0.556に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(3-1)の下限値を0.557とすることが好ましい。
 第1実施形態に係る光学系LSにおいて、負レンズは、以下の条件式(4-1)を満足してもよい。
 0.010<θgFN1-(0.6418-0.00168×νdN1)   ・・・(4-1)
 条件式(4-1)は、条件式(4)と同様の式であり、条件式(4)と同様の効果を得ることができる。条件式(4-1)の下限値を0.011に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4-1)の下限値を0.012とすることが好ましい。
 なお、条件式(4-1)の上限値を0.030未満に設定してもよい。これにより、条件式(4)と同様の効果を得ることができる。この場合、条件式(4-1)の上限値を0.028に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(4-1)の上限値を、0.025、0.023、さらに0.020に設定してもよい。
 第1実施形態に係る光学系LSにおいて、負レンズは、以下の条件式(7)を満足することが望ましい。
 DN1>0.400[mm]   ・・・(7)
 但し、DN1:負レンズの光軸上の厚さ
 条件式(7)は、負レンズの光軸上の厚さを適切に規定するものである。条件式(7)を満足することで、コマ収差、色収差(軸上色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(7)の対応値が上記範囲を外れてしまうと、コマ収差、色収差(軸上色収差および倍率色収差)等の諸収差を補正することが困難になる。条件式(7)の下限値を0.450[mm]に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(7)の下限値を、0.490[mm]、0.550[mm]、0.580[mm]、0.650[mm]、0.680[mm]、0.750[mm]、0.800[mm]、0.850[mm]、0.880[mm]、0.950[mm]、0.980[mm]、1.050[mm]、1.100[mm]、1.140[mm]、1.250[mm]、さらに1.350[mm]に設定してもよい。
 第1実施形態に係る光学系LSにおいて、負レンズは、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズであることが望ましい。レンズの材料として、樹脂よりもガラスを用いた方が、温度による光学特性の変化が少ない。本実施形態では、負レンズの材料としてガラスを用いることができるため、負レンズが、レンズ面が空気と接しているレンズ(すなわち、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズ)であっても、温度による光学特性の変化が少ないので好ましい。
 第1実施形態に係る光学系LSにおいて、負レンズにおける物体側のレンズ面および像側のレンズ面のうち、少なくとも一方のレンズ面が空気と接していることが望ましい。レンズの材料として、樹脂よりもガラスを用いた方が、温度による光学特性の変化が少ない。本実施形態では、負レンズの材料としてガラスを用いることができるため、負レンズのレンズ面が空気と接していても、温度による光学特性の変化が少ないので好ましい。
 第1実施形態に係る光学系LSにおいて、負レンズは、ガラスレンズであることが望ましい。負レンズは、樹脂レンズよりもガラスレンズである方が、経年変化が少なく、温度による光学特性の変化が少ないので好ましい。
 続いて、図24を参照しながら、第1実施形態に係る光学系LSの製造方法について概説する。まず、開口絞りSと、少なくとも開口絞りSより物体側に負レンズを配置する(ステップST1)。このとき、開口絞りSより物体側に配置された負レンズのうち少なくとも1枚が上記条件式(1)~(4)等を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST2)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系を製造することが可能になる。
 次に、第2実施形態に係る光学系について説明する。第2実施形態に係る光学系(撮影レンズ)LSの一例としての光学系LS(2)は、図3に示すように、負の屈折力を有するレンズ群を含む複数のレンズ群を有している。変倍の際に、隣り合う各レンズ群の間隔が変化する。負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群(第1レンズ群G1)は、以下の条件式(11)~(14)を満足する負レンズ(L13)を有している。
 -0.010<ndN3-(2.015-0.0068×νdN3)   ・・・(11)
 50.00<νdN3<65.00   ・・・(12)
 0.545<θgFN3   ・・・(13)
 -0.010<θgFN3-(0.6418-0.00168×νdN3)   ・・・(14)
 但し、ndN3:負レンズのd線に対する屈折率
    νdN3:負レンズのd線を基準とするアッベ数
    θgFN3:負レンズの部分分散比であり、負レンズのg線に対する屈折率をngN3とし、負レンズのF線に対する屈折率をnFN3とし、負レンズのC線に対する屈折率をnCN3としたとき、次式で定義される
 θgFN3=(ngN3-nFN3)/(nFN3-nCN3)
 なお、負レンズのd線を基準とするアッベ数νdN3は、次式で定義される
 νdN3=(ndN3-1)/(nFN3-nCN3)
 第2実施形態に係る光学系LSは、隣り合う各レンズ群の間隔を変化させることにより変倍を行う変倍光学系である。第2実施形態によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された変倍光学系、およびこの変倍光学系を備えた光学機器を得ることが可能になる。第2実施形態に係る光学系LS(変倍光学系)は、図5に示す光学系LS(3)でも良く、図7に示す光学系LS(4)でも良く、図9に示す光学系LS(5)でも良く、図11に示す光学系LS(6)でも良い。また、第2実施形態に係る光学系LS(変倍光学系)は、図13に示す光学系LS(7)でも良く、図15に示す光学系LS(8)でも良く、図17に示す光学系LS(9)でも良く、図19に示す光学系LS(10)でも良く、図21に示す光学系LS(11)でも良い。
 条件式(11)は、負レンズのd線に対する屈折率とd線を基準とするアッベ数の適切な関係を規定するものである。条件式(11)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(11)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(11)の下限値を-0.005に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(11)の下限値を、-0.001、0.000、0.003、0.005、0.007、さらに0.008に設定してもよい。
 なお、条件式(11)の上限値を0.150未満に設定してもよい。これにより、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。この場合、条件式(1)の上限値を0.100に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(1)の上限値を、0.080、0.060、0.050、さらに0.045に設定してもよい。
 条件式(12)は、負レンズのd線を基準とするアッベ数の適切な範囲を規定するものである。条件式(12)を満足することで、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。
 条件式(12)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(12)の下限値を50.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(12)の下限値を、51.00、51.50、52.00、さらに52.40に設定してもよい。
 条件式(12)の上限値を64.00に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(12)の上限値を、63.00、62.50、62.00、61.50、61.00、60.00、さらに59.50に設定してもよい。
 条件式(13)は、負レンズの異常分散性を適切に規定するものである。条件式(13)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(13)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(13)の下限値を0.547に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13)の下限値を、0.548、0.549、さらに0.550に設定してもよい。
 条件式(14)は、負レンズの異常分散性を適切に規定するものである。条件式(14)を満足することで、色収差の補正において、1次の色消しに加え、2次スペクトルを良好に補正することができる。
 条件式(14)の対応値が上記範囲を外れてしまうと、色収差の補正が困難になる。条件式(14)の下限値を-0.005に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14)の下限値を-0.001に設定してもよい。
 なお、条件式(14)の上限値を0.040未満に設定してもよい。これにより、球面収差、コマ収差等の基準収差の補正と、1次の色収差の補正(色消し)を良好に行うことができる。この場合、条件式(14)の上限値を0.030に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14)の上限値を0.025、さらに0.020に設定してもよい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、以下の条件式(15)を満足することが望ましい。
 0.50<fN3/fGa<7.00   ・・・(15)
 但し、fN3:負レンズの焦点距離
    fGa:物体側負レンズ群の焦点距離
 条件式(15)は、負レンズの焦点距離と物体側負レンズ群の焦点距離の適切な関係を規定するものである。条件式(15)を満足することで、球面収差、コマ収差等の基準収差を良好に補正することができる。
 条件式(15)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差等の基準収差を補正することが困難になる。条件式(15)の下限値を0.55に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(15)の下限値を、0.60、0.65、0.70、0.75、0.80、0.85、0.90、0.95、1.00、1.05、さらに1.10に設定してもよい。
 条件式(15)の上限値を6.50に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(15)の上限値を、6.20、5.50、5.00、4.50、4.00、3.80、3.30、3.00、2.80、さらに2.30に設定してもよい。
 第2実施形態に係る光学系LS(変倍光学系)において、物体側負レンズ群は、以下の条件式(16)を満足することが望ましい。
 0.20<(-fGa)/f<3.50   ・・・(16)
 但し、fGa:物体側負レンズ群の焦点距離
    f:広角端状態における光学系LS(変倍光学系)の焦点距離
 条件式(16)は、物体側負レンズ群の焦点距離と光学系LS(変倍光学系)の焦点距離の適切な関係を規定するものである。条件式(16)を満足することで、球面収差、コマ収差等の基準収差を良好に補正することができる。
 条件式(16)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差等の基準収差を補正することが困難になる。条件式(16)の下限値を0.25に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(16)の下限値を、0.30、0.35、0.40、0.45、0.50、さらに0.55に設定してもよい。
 条件式(16)の上限値を3.30に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(16)の上限値を、3.00、2.80、2.65、2.45、2.15、さらに2.00に設定してもよい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、以下の条件式(13-1)を満足してもよい。
 0.555<θgFN3   ・・・(13-1)
 条件式(13-1)は、条件式(13)と同様の式であり、条件式(13)と同様の効果を得ることができる。条件式(13-1)の下限値を0.556に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(13-1)の下限値を0.557とすることが好ましい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、以下の条件式(14-1)を満足してもよい。
 0.010<θgFN3-(0.6418-0.00168×νdN3)   ・・・(14-1)
 条件式(14-1)は、条件式(14)と同様の式であり、条件式(14)と同様の効果を得ることができる。条件式(14-1)の下限値を0.011に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14-1)の下限値を0.012とすることが好ましい。
 なお、条件式(14-1)の上限値を0.030未満に設定してもよい。これにより、条件式(14)と同様の効果を得ることができる。この場合、条件式(14-1)の上限値を0.028に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(14-1)の上限値を、0.025、0.023、さらに0.020に設定してもよい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、以下の条件式(17)を満足することが望ましい。
 DN3>0.400[mm]   ・・・(17)
 但し、DN3:負レンズの光軸上の厚さ
 条件式(17)は、負レンズの光軸上の厚さを適切に規定するものである。条件式(17)を満足することで、コマ収差、色収差(軸上色収差および倍率色収差)等の諸収差を良好に補正することができる。
 条件式(17)の対応値が上記範囲を外れてしまうと、コマ収差、色収差(軸上色収差および倍率色収差)等の諸収差を補正することが困難になる。条件式(17)の下限値を0.450[mm]に設定することで、本実施形態の効果をより確実なものとすることができる。本実施形態の効果をさらに確実なものとするために、条件式(17)の下限値を、0.490[mm]、0.550[mm]、0.580[mm]、0.650[mm]、0.680[mm]、0.750[mm]、0.800[mm]、0.850[mm]、0.880[mm]、0.950[mm]、0.980[mm]、1.050[mm]、1.100[mm]、1.140[mm]、1.250[mm]、さらに1.350[mm]に設定してもよい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズであることが望ましい。レンズの材料として、樹脂よりもガラスを用いた方が、温度による光学特性の変化が少ない。本実施形態では、負レンズの材料としてガラスを用いることができるため、負レンズが、レンズ面が空気と接しているレンズ(すなわち、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズ)であっても、温度による光学特性の変化が少ないので好ましい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズにおける物体側のレンズ面および像側のレンズ面のうち、少なくとも一方のレンズ面が空気と接していることが望ましい。レンズの材料として、樹脂よりもガラスを用いた方が、温度による光学特性の変化が少ない。本実施形態では、負レンズの材料としてガラスを用いることができるため、負レンズのレンズ面が空気と接していても、温度による光学特性の変化が少ないので好ましい。
 第2実施形態に係る光学系LS(変倍光学系)において、負レンズは、ガラスレンズであることが望ましい。負レンズは、樹脂レンズよりもガラスレンズである方が、経年変化が少なく、温度による光学特性の変化が少ないので好ましい。
 続いて、図25を参照しながら、第2実施形態に係る光学系LS(変倍光学系)の製造方法について概説する。まず、負の屈折力を有するレンズ群を含む複数のレンズ群を配置する(ステップST11)。そして、変倍の際に、隣り合う各レンズ群の間隔が変化するように構成する(ステップST12)。また、負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群が、上記条件式(11)~(14)等を満足する負レンズを有するように、レンズ鏡筒内に各レンズを配置する(ステップST13)。このような製造方法によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された変倍光学系を製造することが可能になる。
 以下、各実施形態の実施例に係る光学系LSを図面に基づいて説明する。なお、第1実施形態に対応する実施例は、第1~第11実施例であり、第2実施形態に対応する実施例は、第2~第11実施例である。図1、図3、図5、図7、図9、図11、図13、図15、図17、図19、図21は、第1~第11実施例に係る光学系LS{LS(1)~LS(11)}の構成及び屈折力配分を示す断面図である。第1~第11実施例に係る光学系LS(1)~LS(11)の断面図では、合焦レンズ群が無限遠から近距離物体に合焦する際の移動方向を、「合焦」という文字とともに矢印で示している。第2~第11実施例に係る光学系LS(2)~LS(11)は、隣り合う各レンズ群の間隔を変化させることにより変倍を行う変倍光学系である。第2~第11実施例に係る光学系LS(2)~LS(11)の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これら図1、図3、図5、図7、図9、図11、図13、図15、図17、図19、図21において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表11を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例、表4は第4実施例、表5は第5実施例、表6は第6実施例、表7は第7実施例、表8は第8実施例、表9は第9実施例、表10は第10実施例、表11は第11実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)、C線(波長λ=656.3nm)、F線(波長λ=486.1nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、2ωは画角(単位は°(度)で、ωが半画角である)、Yは像高を示す。TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離にBFを加えた距離を示し、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離(バックフォーカス)を示す。fFは前群の焦点距離を示し、fRは後群の焦点距離を示す。なお、光学系が変倍光学系である場合、これらの値は、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態におけるそれぞれについて示している。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数を、θgFは光学部材の材料の部分分散比をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 光学部材の材料のg線(波長λ=435.8nm)に対する屈折率をngとし、光学部材の材料のF線(波長λ=486.1nm)に対する屈折率をnFとし、光学部材の材料のC線(波長λ=656.3nm)に対する屈折率をnCとする。このとき、光学部材の材料の部分分散比θgFは次式(A)で定義される。
 θgF=(ng-nF)/(nF-nC)   …(A)
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(B)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(サグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12   …(B)
 光学系が変倍光学系でない場合、[近距離撮影時可変間隔データ]として、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、[近距離撮影時可変間隔データ]の表には、各焦点距離および撮影倍率に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
 光学系が変倍光学系である場合、[変倍撮影時可変間隔データ]として、広角端(W)、中間焦点距離(M)、望遠端(T)の各変倍状態に対応する、[レンズ諸元]において面間隔が「可変」となっている面番号での面間隔を示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 [条件式対応値]の表には、各条件式に対応する値を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る光学系の無限遠合焦状態におけるレンズ構成を示す図である。第1実施例に係る光学系LS(1)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とから構成されている。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。開口絞りSは、第1レンズ群G1内に配設される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、物体側に凸面を向けた負メニスカスレンズL3と、物体側に凸面を向けた負メニスカスレンズL4と、物体側に凸面を向けた負メニスカスレンズL5および物体側に凸面を向けた正メニスカスレンズL6からなる接合レンズと、両凸形状の正レンズL7と、物体側に凹面を向けた正メニスカスレンズL8および両凹形状の負レンズL9からなる接合レンズと、両凸形状の正レンズL10と、から構成される。第1レンズ群G1における正レンズL7と(接合レンズの)正メニスカスレンズL8との間に、開口絞りSが配置される。本実施例では、第1レンズ群G1の負メニスカスレンズL4が条件式(1)~(4)等を満足する負レンズに該当する。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL21と、物体側に凹面を向けた正メニスカスレンズL22および物体側に凹面を向けた負メニスカスレンズL23からなる接合レンズと、から構成される。第2レンズ群G2の像側に、像面Iが配置される。正メニスカスレンズL21は、像側のレンズ面が非球面である。
 本実施例では、負メニスカスレンズL1と、正メニスカスレンズL2と、負メニスカスレンズL3と、負メニスカスレンズL4と、負メニスカスレンズL5および正メニスカスレンズL6からなる接合レンズと、正レンズL7とが、開口絞りSよりも物体側に配置された前群GFを構成する。正メニスカスレンズL8および負レンズL9からなる接合レンズと、正レンズL10と、正メニスカスレンズL21と、正メニスカスレンズL22および物体側に凹面を向けた負メニスカスレンズL23からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f    18.427
FNO     2.925
 2ω    100.785
  Y    21.700
 TL    102.549
 BF    37.769
 fF    332.090
 fR    33.732
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     47.34020   1.800  1.84042  43.34  0.5621
  2     25.82350   4.000
  3     37.48750   6.900  1.65160  58.54  0.5436
  4     363.46330   0.100
  5     22.64200   1.300  1.79668  45.37  0.5592
  6     12.39830   3.900
  7     31.60920   1.150  1.62731  59.30  0.5584
  8     13.95370   2.500
  9     45.71850   1.000  1.62041  60.12  0.5417
  10     9.13380   3.000  1.59507  35.51  0.5913
  11     15.12450   1.000
  12     23.56840   12.300  1.69911  27.83  0.6107
  13    -23.38780   0.700
  14      ∞     1.850         (絞りS)
  15    -38.67920   4.000  1.62588  35.70  0.5847
  16    -13.61320   1.200  1.86074  23.01  0.6195
  17     72.75580   1.000
  18     78.27770   3.400  1.66755  41.96  0.5745
  19    -15.39400   D19(可変)
  20    -33.19360   2.000  1.51680  64.12  0.5360
  21*    -30.04030   1.200
  22    -26.81950   5.000  1.59319  67.87  0.5435
  23    -13.53970   1.800  1.86074  23.01  0.6195
  24    -16.60140   BF
[非球面データ]
 第21面
 κ=1.000,A4=5.0910E-05,A6=1.2580E-07
 A8=-9.2250E-10,A10=5.5330E-12,A12=0.0000E+00
[近距離撮影時可変間隔データ]
    無限遠合焦状態 中間距離合焦状態  近距離合焦状態
     f=18.427   β=-0.033     β=-0.110
 D19    3.681      2.861        1.035
[レンズ群データ]
 群   始面   焦点距離
 G1    1    36.330
 G2    20    61.320
[条件式対応値]
<負メニスカスレンズL4(fN1=-40.849)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.016
 条件式(2)νdN1=59.30
 条件式(3),(3-1)θgFN1=0.5584
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0162
 条件式(5)(-fN1)/fF=0.123
 条件式(6)(-fN1)/f=2.217
 条件式(7)DN1=1.150
 図2(A)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る光学系の中間距離合焦時の諸収差図である。図2(C)は、第1実施例に係る光学系の近距離(至近距離)合焦時の諸収差図である。無限遠合焦時の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。中間距離合焦時または近距離合焦時の各収差図において、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)、CはC線(波長λ=656.3nm)、FはF線(波長λ=486.1nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第2実施例に係る光学系LS(2)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図3の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2内に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。本実施例では、第1レンズ群G1の負レンズL13が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第1レンズ群G1が物体側負レンズ群に該当し、第1レンズ群G1の負レンズL13が条件式(11)~(14)等を満足する負レンズに該当する。負メニスカスレンズL11は、ガラス製レンズ本体の像側の面に樹脂層が設けられて構成されるハイブリッド型のレンズである。樹脂層の像側の面が非球面であり、負メニスカスレンズL11は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号1がレンズ本体の物体側の面、面番号2がレンズ本体の像側の面および樹脂層の物体側の面(両者が接合する面)、面番号3が樹脂層の像側の面を示す。負メニスカスレンズL12は、ガラス製レンズ本体の物体側の面に樹脂層が設けられて構成されるハイブリッド型のレンズである。樹脂層の物体側の面が非球面であり、負メニスカスレンズL12は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号4が樹脂層の物体側の面、面番号5が樹脂層の像側の面およびレンズ本体の物体側の面(両者が接合する面)、面番号6がレンズ本体の像側の面を示す。
 第2レンズ群G2は、物体側から順に並んだ、両凸形状の正レンズL21および両凹形状の負レンズL22からなる接合レンズと、物体側に凹面を向けた正メニスカスレンズL23と、両凸形状の正レンズL24および物体側に凹面を向けた負メニスカスレンズL25からなる接合レンズと、から構成される。第2レンズ群G2における正メニスカスレンズL23と(接合レンズの)正レンズL24との間に、開口絞りSが配置される。第2レンズ群G2の正メニスカスレンズL23は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 第3レンズ群G3は、物体側から順に並んだ、両凹形状の負レンズL31と、物体側に凸面を向けた正メニスカスレンズL32と、から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第3レンズ群G3が光軸に沿って像側に移動する。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41と、両凹形状の負レンズL42および両凸形状の正レンズL43からなる接合レンズと、から構成される。第4レンズ群G4の像側に、像面Iが配置される。正メニスカスレンズL41は、像側のレンズ面が非球面である。
 本実施例では、負メニスカスレンズL11と、負メニスカスレンズL12と、負レンズL13と、正レンズL14と、正レンズL21および負レンズL22からなる接合レンズと、正メニスカスレンズL23とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL24および負メニスカスレンズL25からなる接合レンズと、負レンズL31と、正メニスカスレンズL32と、正メニスカスレンズL41と、負レンズL42および正レンズL43からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。なお、第11面は仮想面である。
(表2)
[全体諸元]
 変倍比=1.881
        W      M       T
  f    10.310     14.992     19.394
FNO     4.625     5.233     5.828
 2ω    55.344     43.833     36.393
  Y    14.250     14.250     14.250
 TL    127.176    118.440    118.247
 BF    38.107     45.676     53.470
 fF    -25.207    -22.363    -21.191
 fR    35.566     35.133     34.930
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     72.21520   2.400  1.77250  49.62  0.5518
  2     18.07840   0.200  1.56093  36.64  0.5931
  3*     12.80980   13.500
  4*     38.72530   0.200  1.55389  38.09  0.5928
  5     33.77930   1.500  1.80610  40.97  0.5688
  6     15.49570   6.413
  7    -222.76580   1.300  1.68348  54.80  0.5501
  8     47.03490   0.100
  9     25.72760   4.150  1.71736  29.57  0.6036
  10    -234.96610   D10(可変)
  11      ∞     1.100
  12     24.59470   2.550  1.72825  28.38  0.6069
  13    -16.15400   0.800  1.91082  35.25  0.5824
  14     27.17750   1.920
  15    -248.17450   1.580  1.51680  63.88  0.5360
  16    -25.45380   1.455
  17      ∞     1.802         (絞りS)
  18     21.50780   3.280  1.53172  48.78  0.5622
  19    -15.09980   0.900  1.91082  35.25  0.5824
  20    -23.42430   D20(可変)
  21    -112.18850   0.800  1.91082  35.25  0.5824
  22     28.22450   0.697
  23     18.60970   1.830  1.51680  63.88  0.5360
  24     78.16100   D24(可変)
  25    -60.82670   1.350  1.53110  55.91  0.5684
  26*    -34.60170   0.600
  27    -134.59820   0.800  1.91082  35.25  0.5824
  28     21.04650   5.600  1.48749  70.31  0.5291
  29    -15.26510   BF
[非球面データ]
 第3面
 κ=0.039,A4=-1.10E-05,A6=-2.98E-08
 A8=1.59E-10,A10=2.68E-13,A12=0.00E+00
 第4面
 κ=0.208,A4=-3.60E-06,A6=8.87E-08
 A8=2.10E-10,A10=-2.30E-13,A12=0.00E+00
 第26面
 κ=1.000,A4=5.66E-05,A6=5.08E-08
 A8=-2.05E-09,A10=3.50E-11,A12=0.00E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D10   25.062    8.757    0.770
 D20    1.457    2.644    3.179
 D24    5.723    4.536    4.001
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -16.381
 G2    11    24.075
 G3    21    -53.290
 G4    25    70.213
[条件式対応値]
<負レンズL13(fN1=-56.709)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=-2.250
 条件式(6)(-fN1)/f=5.500
 条件式(7)DN1=1.300
<負レンズL13(fN3=-56.709)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)
  νdN3=54.80
 条件式(13),(13-1)
  θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)
  fN3/fGa=3.462
 条件式(16)
  (-fGa)/f=1.589
 条件式(17)DN3=1.300
 図4(A)は、第2実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図4(C)は、第2実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第3実施例に係る光学系LS(3)は、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図5の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、両凸形状の正レンズL14と、から構成される。本実施例では、第1レンズ群G1の負メニスカスレンズL11、負メニスカスレンズL12、および負レンズL13が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第1レンズ群G1が物体側負レンズ群に該当し、第1レンズ群G1の負メニスカスレンズL11、負メニスカスレンズL12、および負レンズL13が条件式(11)~(14)等を満足する負レンズに該当する。負メニスカスレンズL11は、像側のレンズ面が非球面である。負メニスカスレンズL12は、像側のレンズ面が非球面である。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた負メニスカスレンズL22および物体側に凸面を向けた正メニスカスレンズL23からなる接合レンズと、から構成される。開口絞りSは、正メニスカスレンズL23の像側近傍に配置され、変倍の際、第2レンズ群G2とともに移動する。
 第3レンズ群G3は、物体側から順に並んだ、両凹形状の負レンズL31および両凸形状の正レンズL32からなる接合レンズと、両凸形状の正レンズL33と、から構成される。正レンズL32は、像側のレンズ面が非球面である。
 第4レンズ群G4は、両凹形状の負レンズL41から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って像側に移動する。
 第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51から構成される。第5レンズ群G5の像側に、像面Iが配置される。正メニスカスレンズL51は、像側のレンズ面が非球面である。
 本実施例では、負メニスカスレンズL11と、負メニスカスレンズL12と、負レンズL13と、正レンズL14と、正メニスカスレンズL21と、負メニスカスレンズL22および正メニスカスレンズL23からなる接合レンズとが、開口絞りSよりも物体側に配置された前群GFを構成する。負レンズL31および正レンズL32からなる接合レンズと、正レンズL33と、負レンズL41と、正メニスカスレンズL51とが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
 変倍比=2.018
        W      M       T
  f    14.420     20.000     29.100
FNO     4.073     4.072     4.066
 2ω    115.788     91.602     67.988
  Y    20.500     20.500     20.500
 TL    121.803    110.314    103.827
 BF    15.000     23.093     30.403
 fF    12.336     18.020     29.688
 fR   -249.182    -357.800   -1948.200
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     92.62990   3.000  1.68348  54.80  0.5501
  2*     15.67070   4.579
  3     28.37140   2.900  1.68348  54.80  0.5501
  4*     21.12170   12.704
  5     -37.55490   1.900  1.68348  54.80  0.5501
  6     88.75380   0.100
  7     98.47090   5.412  1.86109  34.82  0.5864
  8     -53.58090   D8(可変)
  9     20.49420   4.232  1.59349  67.00  0.5358
  10    164.24190   3.859
  11     16.69960   1.200  1.88300  40.66  0.5668
  12     8.68950   4.536  1.52748  56.00  0.5481
  13    180.51560   2.500
  14      ∞     D14(可変)      (絞りS)
  15    -357.35260   1.100  1.81600  46.59  0.5567
  16     14.59730   3.507  1.49782  82.57  0.5386
  17*   -561.45740   1.192
  18     36.97580   6.029  1.49782  82.57  0.5386
  19    -12.85510   D19(可変)
  20    -20.05630   1.000  1.55199  62.60  0.5377
  21     48.74520   D21(可変)
  22    -64.12910   1.200  1.51680  63.88  0.5360
  23*    -53.18510   BF
[非球面データ]
 第2面
 κ=0.000,A4=-9.16E-07,A6=3.00E-08
 A8=-1.16E-10,A10=1.53E-13,A12=0.00E+00
 第4面
 κ=0.000,A4=3.15E-05,A6=-2.15E-08
 A8=4.46E-10,A10=-1.10E-12,A12=2.22E-15
 第17面
 κ=1.000,A4=5.91E-05,A6=1.04E-07
 A8=3.02E-09,A10=-4.09E-11,A12=0.00E+00
 第23面
 κ=1.000,A4=3.06E-05,A6=2.73E-08
 A8=-4.72E-11,A10=7.08E-13,A12=0.00E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D8    33.229    16.105    1.500
 D14    2.125    2.115    2.279
 D19    2.000    2.982    4.774
 D21    8.500    5.069    3.922
[レンズ群データ]
 群   始面   焦点距離
 G1    1    -23.700
 G2    9    28.300
 G3    15    28.700
 G4    20    -25.600
 G5    22    581.300
[条件式対応値]
<負メニスカスレンズL11(fN1=-28.041)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=2.273
 条件式(6)(-fN1)/f=1.945
 条件式(7)DN1=3.000
<負メニスカスレンズL12(fN1=-144.389)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=11.705
 条件式(6)(-fN1)/f=10.013
 条件式(7)DN1=2.900
<負レンズL13(fN1=-38.375)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=3.111
 条件式(6)(-fN1)/f=2.661
 条件式(7)DN1=1.900
<負メニスカスレンズL11(fN3=-28.041)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=1.183
 条件式(16)(-fGa)/f=1.644
 条件式(17)DN3=3.000
<負メニスカスレンズL12(fN3=-144.389)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=6.092
 条件式(16)(-fGa)/f=1.644
 条件式(17)DN3=2.900
<負レンズL13(fN3=-38.375)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=1.619
 条件式(16)(-fGa)/f=1.644
 条件式(17)DN3=1.900
 図6(A)は、第3実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図6(C)は、第3実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、第4実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第4実施例に係る光学系LS(4)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図7の矢印で示す方向に移動する。開口絞りSは、第3レンズ群G3内に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL22からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第2レンズ群G2が光軸に沿って物体側に移動する。本実施例では、第2レンズ群G2の負レンズL22および負メニスカスレンズL24が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負レンズL22および負メニスカスレンズL24が条件式(11)~(14)等を満足する負レンズに該当する。負メニスカスレンズL21は、物体側のレンズ面が非球面である。負メニスカスレンズL24は、像側のレンズ面が非球面である。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32および両凸形状の正レンズL33からなる接合レンズと、両凸形状の正レンズL34と、から構成される。第3レンズ群G3における正レンズL31と(接合レンズの)負メニスカスレンズL32との間に、開口絞りSが配置される。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41および物体側に凹面を向けた負メニスカスレンズL42からなる接合レンズと、両凹形状の負レンズL43と、から構成される。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51と、両凸形状の正レンズL52および両凹形状の負レンズL53からなる接合レンズと、から構成される。第5レンズ群G5の像側に、像面Iが配置される。正レンズL51は、物体側のレンズ面が非球面である。
 本実施例では、負メニスカスレンズL11および正レンズL22からなる接合レンズと、正メニスカスレンズL13と、負メニスカスレンズL21と、負レンズL22と、正レンズL23と、負メニスカスレンズL24と、正レンズL31とが、開口絞りSよりも物体側に配置された前群GFを構成する。負メニスカスレンズL32および正レンズL33からなる接合レンズと、正レンズL34と、正メニスカスレンズL41および負メニスカスレンズL42からなる接合レンズと、負レンズL43と、正レンズL51と、正レンズL52および負レンズL53からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
 変倍比=4.708
        W      M       T
  f    24.721     50.047    116.396
FNO     4.061     4.089     4.154
 2ω    86.421     43.929     19.678
  Y    21.600     21.600     21.600
 TL    147.200    161.419    192.191
 BF    32.363     42.319     54.282
 fF    130.487    -421.097    -283.255
 fR    64.879     65.108     63.558
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     200.00000   1.200  1.80090  23.50  0.6172
  2     104.14190   7.444  1.49782  82.57  0.5138
  3    -307.28920   0.100
  4     57.34930   5.648  1.59593  53.79  0.5519
  5     128.95340   D5(可変)
  6*     71.49190   1.050  1.90795  33.46  0.5892
  7     17.08640   6.423
  8     -51.62780   1.200  1.68348  54.80  0.5501
  9     41.08490   0.100
  10     39.55730   6.320  1.85168  23.41  0.6176
  11    -44.35580   0.786
  12    -28.66820   1.200  1.68348  54.80  0.5501
  13*   -263.12090   D13(可変)
  14     43.24040   3.754  1.61063  51.59  0.5558
  15    -90.35860   0.100
  16      ∞     0.100         (絞りS)
  17     39.53750   1.200  1.93504  24.35  0.6140
  18     18.91420   5.342  1.49801  82.47  0.5140
  19    -147.86550   0.100
  20     48.40300   2.948  1.59761  53.52  0.5524
  21    -295.39370   D21(可変)
  22    -35.36590   3.889  1.92286  20.88  0.6287
  23     18.36590   1.200  1.67449  44.60  0.5682
  24    -175.62470   2.444
  25    -58.08520   1.200  1.69893  42.67  0.5717
  26    870.88710   D26(可変)
  27*    157.96590   5.992  1.49782  82.57  0.5138
  28    -24.48700   0.100
  29     65.91830   7.455  1.69249  43.15  0.5709
  30    -25.49740   5.017  1.88686  29.29  0.5989
  31     75.48320   BF
[非球面データ]
 第6面
 κ=1.000,A4=-2.91E-06,A6=-1.03E-08
 A8=2.57E-11,A10=-6.80E-14,A12=0.00E+00
 第13面
 κ=1.000,A4=-1.06E-05,A6=-1.03E-08
 A8=-3.07E-11,A10=0.00E+00,A12=0.00E+00
 第27面
 κ=1.000,A4-1.53E-05,A6=9.72E-09
 A8=-2.61E-11,A10=3.55E-14,A12=0.00E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D5    1.500    19.695    47.327
 D13   24.246    10.310    1.500
 D21    2.853    9.990    14.771
 D26   13.928    6.794    2.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    115.700
 G2    6    -18.700
 G3    14    27.100
 G4    22    -46.200
 G5    27    54.900
[条件式対応値]
<負レンズL22(fN1=-33.299)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=0.255
 条件式(6)(-fN1)/f=1.347
 条件式(7)DN1=1.200
<負メニスカスレンズL24(fN1=-47.172)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=0.362
 条件式(6)(-fN1)/f=1.908
 条件式(7)DN1=1.200
<負レンズL22(fN3=-33.299)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=1.781
 条件式(16)(-fGa)/f=0.756
 条件式(17)DN3=1.200
<負メニスカスレンズL24(fN3=-47.172)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=2.523
 条件式(16)(-fGa)/f=0.756
 条件式(17)DN3=1.200
 図8(A)は、第4実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図8(C)は、第4実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、第5実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第5実施例に係る光学系LS(5)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第4レンズ群G4とがそれぞれ図9の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニスカスレンズL23と、両凹形状の負レンズL24と、から構成される。本実施例では、第2レンズ群G2の負メニスカスレンズL21、負レンズL22、および負レンズL24が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負メニスカスレンズL21、負レンズL22、および負レンズL24が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた平凸形状の正レンズL32と、物体側に凸面を向けた正メニスカスレンズL33と、両凹形状の負レンズL34と、両凸形状の正レンズL35および両凹形状の負レンズL36からなる接合レンズと、から構成される。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41と、物体側に凸面を向けた負メニスカスレンズL42および物体側に凸面を向けた正メニスカスレンズL43からなる接合レンズと、から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って物体側に移動する。
 第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL51と、両凸形状の正レンズL52および両凹形状の負レンズL53からなる接合レンズと、像側に凹面を向けた平凹形状の負レンズL54と、両凸形状の正レンズL55と、物体側に凸面を向けた正メニスカスレンズL56と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5の正レンズL52および負レンズL53からなる接合レンズ、および負レンズL54は、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正メニスカスレンズL13と、負メニスカスレンズL21と、負レンズL22と、正メニスカスレンズL23と、負レンズL24とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、正レンズL32と、正メニスカスレンズL33と、負レンズL34と、正レンズL35および負レンズL36からなる接合レンズと、正レンズL41と、負メニスカスレンズL42および正メニスカスレンズL43からなる接合レンズと、負メニスカスレンズL51と、正レンズL52および負レンズL53からなる接合レンズと、負レンズL54と、正レンズL55と、正メニスカスレンズL56とが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
 変倍比=2.745
        W      M       T
  f    71.400    140.000    196.000
FNO     2.865     2.937     2.862
 2ω    33.666     17.094     12.198
  Y    21.600     21.600     21.600
 TL    245.880    245.880    245.880
 BF    53.818     53.818     53.818
 fF    -86.769    -153.380    -238.187
 fR    67.044     63.889     67.044
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     120.99680   2.800  1.95000  29.37  0.6002
  2     87.12840   9.900  1.49782  82.57  0.5386
  3    -1437.70340   0.100
  4     97.36390   7.700  1.45600  91.37  0.5342
  5     657.25840   D5(可変)
  6     73.32110   2.400  1.68348  54.80  0.5501
  7     33.43260   10.250
  8    -134.27600   2.000  1.62731  59.30  0.5584
  9     104.31770   2.000
  10     55.93640   4.400  1.84666  23.78  0.6192
  11    193.35670   3.550
  12    -72.87930   2.200  1.62731  59.30  0.5584
  13    610.02530   D13(可変)
  14      ∞     2.500         (絞りS)
  15    667.50610   3.700  1.83481  42.73  0.5648
  16    -127.34870   0.200
  17     91.74030   3.850  1.59319  67.90  0.5440
  18      ∞     0.200
  19     52.70200   4.900  1.49782  82.57  0.5386
  20    340.98300   2.120
  21    -123.54810   2.200  2.00100  29.13  0.5995
  22    172.97240   4.550
  23    104.97670   5.750  1.90265  35.72  0.5804
  24    -70.95230   2.200  1.58144  40.98  0.5763
  25     42.96180   D25(可変)
  26     69.69710   4.800  1.49782  82.57  0.5386
  27    -171.29750   0.100
  28     43.33010   2.000  1.95000  29.37  0.6002
  29     28.62160   5.550  1.59319  67.90  0.5440
  30    175.11530   D30(可変)
  31     59.19620   1.800  1.80400  46.60  0.5575
  32     33.42540   5.150
  33    127.38170   3.350  1.84666  23.78  0.6192
  34    -127.38220   1.600  1.68348  54.80  0.5501
  35     43.09820   2.539
  36      ∞     1.600  1.95375  32.32  0.5901
  37     71.19380   3.750
  38    107.03200   3.850  1.59319  67.90  0.5440
  39    -166.05150   0.150
  40     49.83700   3.900  1.71999  50.27  0.5527
  41    161.11230   BF
[変倍撮影時可変間隔データ]
       W     M     T
 D5    2.882    35.671    50.879
 D13   50.300    17.511    2.303
 D25   17.270    14.466    17.270
 D30    2.000    4.804    2.000
[レンズ群データ]
 群   始面   焦点距離
 G1    1    143.763
 G2    6    -45.569
 G3    14    90.760
 G4    26    60.061
 G5    31   -112.026
[条件式対応値]
<負メニスカスレンズL21(fN1=-92.166)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=-1.062
 条件式(6)(-fN1)/f=1.291
 条件式(7)DN1=2.400
<負レンズL22(fN1=-93.285)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.016
 条件式(2)νdN1=59.30
 条件式(3),(3-1)θgFN1=0.5584
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0162
 条件式(5)(-fN1)/fF=-1.075
 条件式(6)(-fN1)/f=1.307
 条件式(7)DN1=2.000
<負レンズL24(fN1=-103.650)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.016
 条件式(2)νdN1=59.30
 条件式(3),(3-1)θgFN1=0.5584
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0162
 条件式(5)(-fN1)/fF=-1.195
 条件式(6)(-fN1)/f=1.452
 条件式(7)DN1=2.200
<負メニスカスレンズL21(fN3=-92.166)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=2.023
 条件式(16)(-fGa)/f=0.638
 条件式(17)DN3=2.400
<負レンズL22(fN3=-93.285)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.016
 条件式(12)νdN3=59.30
 条件式(13),(13-1)θgFN3=0.5584
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0162
 条件式(15)fN3/fGa=2.047
 条件式(16)(-fGa)/f=0.638
 条件式(17)DN3=2.000
<負レンズL24(fN3=-103.650)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.016
 条件式(12)νdN3=59.30
 条件式(13),(13-1)θgFN3=0.5584
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0162
 条件式(15)fN3/fGa=2.274
 条件式(16)(-fGa)/f=0.638
 条件式(17)DN3=2.200
 図10(A)は、第5実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図10(C)は、第5実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、第6実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第6実施例に係る光学系LS(6)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第2レンズ群G2と第4レンズ群G4とがそれぞれ図11の矢印で示す方向に移動する。開口絞りSは、第5レンズ群G5内に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた平凸形状の正レンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸形状の正レンズL22および両凹形状の負レンズL23からなる接合レンズと、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL26と、から構成される。本実施例では、第2レンズ群G2の負レンズL23が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負レンズL23が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32と、両凹形状の負レンズL33と、両凸形状の正レンズL34と、から構成される。
 第4レンズ群G4は、物体側から順に並んだ、像側に凸面を向けた平凸形状の正レンズL41と、両凸形状の正レンズL42および両凹形状の負レンズL43からなる接合レンズと、から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って物体側に移動する。
 第5レンズ群G5は、物体側から順に並んだ、両凹形状の負レンズL51と、両凸形状の正レンズL52と、物体側に凸面を向けた負メニスカスレンズL53と、物体側に凹面を向けた正メニスカスレンズL54および両凹形状の負レンズL55からなる接合レンズと、両凸形状の正レンズL56と、物体側に凸面を向けた負メニスカスレンズL57および両凸形状の正レンズL58からなる接合レンズと、両凹形状の負レンズL59と、から構成される。第5レンズ群G5の像側に、像面Iが配置される。第5レンズ群G5における負レンズL51と正レンズL52との間に、開口絞りSが配置される。なお、(接合レンズの)負レンズL55と正レンズL56との間に、固定絞り(フレアカット絞り)Saが配置される。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正レンズL13と、正メニスカスレンズL21と、正レンズL22および負レンズL23からなる接合レンズと、負レンズL24および正メニスカスレンズL25からなる接合レンズと、負メニスカスレンズL26と、正レンズL31と、正レンズL32と、負レンズL33と、正レンズL34と、正レンズL41と、正レンズL42および負レンズL43からなる接合レンズと、負レンズL51とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL52と、負メニスカスレンズL53と、正メニスカスレンズL54および負レンズL55からなる接合レンズと、正レンズL56と、負メニスカスレンズL57および正レンズL58からなる接合レンズと、負レンズL59とが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
 変倍比=2.354
        W      M       T
  f    123.600    200.000    291.000
FNO     2.910     2.910     2.911
 2ω    19.564     12.076     8.292
  Y    21.630     21.630     21.630
 TL    341.394    341.394    341.394
 BF    54.819     54.819     54.819
 fF   1986.248    3213.999    4676.377
 fR    102.747    102.747    102.747
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     319.23390   5.200  1.90265  35.77  0.5815
  2     151.34780   13.400  1.49782  82.57  0.5386
  3    -783.35470   0.100
  4     136.11850   13.200  1.43385  95.23  0.5386
  5      ∞     D5(可変)
  6     122.06030   7.600  1.72047  34.71  0.5834
  7    1981.86560   13.000
  8     303.62550   4.700  1.71736  29.57  0.6036
  9    -303.62550   2.850  1.65240  55.27  0.5607
  10    100.55440   3.315
  11   -1987.36830   2.650  1.80400  46.60  0.5575
  12     51.73610   3.700  1.66382  27.35  0.6319
  13    100.83750   6.065
  14    -83.24470   2.500  1.87071  40.73  0.5682
  15    -665.86980   D15(可変)
  16    601.42740   4.700  1.75500  52.33  0.5475
  17    -159.25800   0.100
  18     93.67070   6.800  1.43385  95.23  0.5386
  19    -253.82990   1.564
  20    -113.21580   5.000  1.65412  39.68  0.5738
  21     87.15300   0.975
  22    116.35500   5.000  1.91082  35.25  0.5822
  23    -377.46590   D23(可変)
  24      ∞     4.000  1.80400  46.60  0.5575
  25    -119.18440   0.100
  26     63.25160   6.800  1.59349  67.00  0.5366
  27    -196.14820   1.800  1.84666  23.78  0.6192
  28    196.14820   D28(可変)
  29    -128.97450   1.900  2.00100  29.13  0.5995
  30     94.21930   4.866
  31      ∞     8.000         (絞りS)
  32    416.97790   5.000  1.72916  54.61  0.5443
  33    -76.00320   4.000
  34    163.99730   2.000  1.80611  40.73  0.5672
  35     69.61920   3.496
  36    -129.19950   3.600  1.90200  25.26  0.6165
  37    -52.57870   1.900  1.62731  59.30  0.5583
  38    177.27800   5.206
  39      ∞     9.390
  40     78.30600   5.000  2.00100  29.13  0.5995
  41    1628.46070   0.100
  42     63.86980   3.000  1.80400  46.60  0.5575
  43     33.62860   10.000  1.48749  70.32  0.5291
  44    -75.31750   6.047
  45    -67.14290   2.000  1.90043  37.37  0.5772
  46    216.78070   BF
[変倍撮影時可変間隔データ]
       W     M     T
 D5    5.100    40.193    66.953
 D15   63.457    28.364    1.603
 D23   21.296    17.639    18.670
 D28    6.100    9.757    8.725
[レンズ群データ]
 群   始面   焦点距離
 G1    1    252.497
 G2    6    -70.230
 G3    16    107.659
 G4    24    91.176
 G5    29   -145.483
[条件式対応値]
<負レンズL23(fN1=-115.463)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.013
 条件式(2)νdN1=55.27
 条件式(3),(3-1)θgFN1=0.5607
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0118
 条件式(5)(-fN1)/fF=0.058
 条件式(6)(-fN1)/f=0.934
 条件式(7)DN1=2.850
<負レンズL23(fN3=-115.463)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.013
 条件式(12)νdN3=55.27
 条件式(13),(13-1)θgFN3=0.5607
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0118
 条件式(15)fN3/fGa=1.644
 条件式(16)(-fGa)/f=0.568
 条件式(17)DN3=2.850
 図12(A)は、第6実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図12(B)は、第6実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図12(C)は、第6実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、第7実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第7実施例に係る光学系LS(7)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、負の屈折力を有する第6レンズ群G6とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第6レンズ群G1~G6がそれぞれ図13の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。本実施例では、第2レンズ群G2の負レンズL22が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負レンズL22が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32および両凸形状の正レンズL33からなる接合レンズと、物体側に凹面を向けた負メニスカスレンズL34と、から構成される。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。第3レンズ群G3の負メニスカスレンズL32および正レンズL33からなる接合レンズは、光軸と垂直な方向へ移動可能な防振レンズ群(部分群)を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および物体側に凹面を向けた負メニスカスレンズL42からなる接合レンズと、物体側に凸面を向けた負メニスカスレンズL43および両凸形状の正レンズL44からなる接合レンズと、から構成される。正レンズL44は、像側のレンズ面が非球面である。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および両凹形状の負レンズL52からなる接合レンズから構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第5レンズ群G5が光軸に沿って像側に移動する。負レンズL52は、像側のレンズ面が非球面である。
 第6レンズ群G6は、物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL61と、両凸形状の正レンズL62と、から構成される。第6レンズ群G6の像側に、像面Iが配置される。負メニスカスレンズL61は、像側のレンズ面が非球面である。
 本実施例では、負メニスカスレンズL11と、正レンズL12と、正メニスカスレンズL13と、負メニスカスレンズL21と、負レンズL22と、正レンズL23と、負メニスカスレンズL24とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、負メニスカスレンズL32および正レンズL33からなる接合レンズと、負メニスカスレンズL34と、正レンズL41および負メニスカスレンズL42からなる接合レンズと、負メニスカスレンズL43および正レンズL44からなる接合レンズと、正レンズL51および負レンズL52からなる接合レンズと、負メニスカスレンズL61と、正レンズL62とが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
 変倍比=7.882
        W      M       T
  f    24.616    105.000    194.013
FNO     4.120     6.306     6.504
 2ω    86.537     22.101     12.176
  Y    21.039     21.700     21.700
 TL    126.886    169.749    190.789
 BF    11.756     31.173     39.042
 fF    -22.178    -43.419    -73.532
 fR    26.333     23.348     25.057
[レンズ諸元]
 面番号     R     D     nd   νd  θgF
  1     198.37380   1.700   1.90366  31.27  0.5948
  2     78.64770   0.867
  3     81.68370   6.232   1.59319  67.90  0.5440
  4    -439.34990   0.100
  5     64.30820   5.536   1.59319  67.90  0.5440
  6     450.30050   D6(可変)
  7     223.68080   1.100   1.90265  35.72  0.5804
  8     19.06430   5.167
  9     -52.46300   1.000   1.68348  54.80  0.5501
  10     49.37630   0.579
  11     34.85960   3.123   1.92286  20.88  0.6390
  12    -79.48030   0.778
  13    -33.96090   0.902   1.81600  46.59  0.5567
  14   -2925.82960   D14(可変)
  15      ∞     2.000          (絞りS)
  16     42.72150   2.329   1.90265  35.72  0.5804
  17    -223.01850   0.500
  18     36.53960   1.000   2.00100  29.12  0.5996
  19     20.75820   3.544   1.57957  53.74  0.5519
  20    -71.54230   1.387
  21    -37.29020   1.001   1.95375  32.33  0.5905
  22    -437.70110   D22(可変)
  23     37.71780   4.779   1.83481  42.73  0.5648
  24    -37.71780   1.000   1.90366  31.27  0.5948
  25    -338.61890   0.100
  26     31.18000   3.102   1.95375  32.33  0.5905
  27     15.34670   8.806   1.49710  81.49  0.5377
  28*    -42.86350   D28(可変)
  29    490.77490   3.221   1.84666  23.80  0.6215
  30    -34.21660   1.001   1.85135  40.13  0.5685
  31*    31.39620   D31(可変)
  32    -18.58490   1.400   1.85135  40.13  0.5685
  33*    -25.93960   0.100
  34    179.9029    3.8234   1.68376  37.57  0.5782
  35    -92.9069    BF
[非球面データ]
 第28面
 κ=1.000,A4=2.86E-05,A6=-1.68E-07
 A8=2.77E-09,A10=-2.49E-11,A12=7.74E-14
 第31面
 κ=1.000,A4=-7.57279E-06,A6=1.58867E-07
 A8=-2.59261E-09,A10=2.08033E-11,A12=-5.7658E-14
 第33面
 κ=1.000,A4=-7.21237E-07,A6=-1.27431E-08
 A8=8.85331E-11,A10=-2.09373E-13,A12=0.0000E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D6    1.562    40.013    56.454
 D14   19.428    4.423    1.154
 D22   13.086    3.754    1.522
 D28    4.931    5.545    1.907
 D31    9.947    18.665    24.534
[レンズ群データ]
 群   始面   焦点距離
 G1    1    103.121
 G2    7    -16.904
 G3    15    48.856
 G4    23    29.282
 G5    29    -39.335
 G6    32   -6290.822
[条件式対応値]
<負レンズL22(fN1=-37.069)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=-1.671
 条件式(6)(-fN1)/f=1.506
 条件式(7)DN1=1.000
<負レンズL22(fN3=-37.069)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=2.193
 条件式(16)(-fGa)/f=0.687
 条件式(17)DN3=1.000
 図14(A)は、第7実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図14(B)は、第7実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図14(C)は、第7実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第8実施例)
 第8実施例について、図15~図16および表8を用いて説明する。図15は、第8実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第8実施例に係る光学系LS(8)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図15の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24と、から構成される。本実施例では、第2レンズ群G2の負レンズL24が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負レンズL24が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34からなる接合レンズと、から構成される。第3レンズ群G3は、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。正レンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL41および両凹形状の負レンズL42からなる接合レンズから構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って像側に移動する。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および物体側に凹面を向けた負メニスカスレンズL52からなる接合レンズから構成される。第5レンズ群G5の像側に、像面Iが配置される。正レンズL51は、物体側のレンズ面が非球面である。第5レンズ群G5と像面Iとの間には、光学フィルターFLが配設されている。光学フィルターFLとして、例えば、NCフィルター(ニュートラルカラーフィルター)や、カラーフィルター、偏光フィルター、NDフィルター(減光フィルター)、IRフィルター(赤外線カットフィルター)等が用いられる。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正メニスカスレンズL13と、正メニスカスレンズL14と、負メニスカスレンズL21と、負レンズL22と、正レンズL23と、負レンズL24とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、負メニスカスレンズL32と、負メニスカスレンズL33および正レンズL34からなる接合レンズと、正メニスカスレンズL41および負レンズL42からなる接合レンズと、正レンズL51および負メニスカスレンズL52からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表8に、第8実施例に係る光学系の諸元の値を掲げる。
(表8)
[全体諸元]
 変倍比=78.219
        W      M       T
  f     4.430     13.187    346.510
FNO     2.746     3.489     6.835
 2ω    86.498     33.500     1.299
  Y     3.350     4.000     4.000
 TL    131.989    135.543    198.671
 BF     0.400     0.400     0.400
 fF    -12.191    -16.895    -161.406
 fR    24.512     28.996    -59.326
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     635.18304   2.300  1.78590  44.17  0.5626
  2     88.21131   7.500  1.43700  95.10  0.5336
  3    -295.14033   0.100
  4     87.82570   6.100  1.49782  82.57  0.5386
  5    1219.65670   0.100
  6     90.98562   4.700  1.49782  82.57  0.5386
  7     353.92110   D7(可変)
  8     61.45834   1.000  1.83481  42.73  0.5648
  9     11.78636   5.700
  10    -21.52038   0.800  1.83481  42.73  0.5648
  11    108.15181   0.100
  12     28.80632   3.150  1.92286  20.88  0.6390
  13    -40.21061   1.090
  14    -18.76071   0.700  1.65167  56.24  0.5536
  15    322.64495   D15(可変)
  16      ∞     0.750         (絞りS)
  17*    12.55338   3.000  1.55332  71.68  0.5404
  18*    -98.92515   2.600
  19     23.66805   1.000  1.90366  31.31  0.5947
  20     12.27040   1.750
  21     16.93839   0.500  1.78590  44.17  0.5626
  22     11.18664   3.500  1.49782  82.57  0.5386
  23    -27.12612   D23(可変)
  24    -553.37396   2.500  1.53172  48.78  0.5622
  25    -25.28953   0.500  1.49782  82.57  0.5386
  26     15.03788   D26(可変)
  27*    18.69956   2.100  1.58913  61.22  0.5401
  28    -19.90834   0.500  1.71736  29.57  0.6036
  29    -53.24372   D29(可変)
  30      ∞     0.210  1.51680  63.88  0.5360
  31      ∞     0.850
  32      ∞     0.500  1.51680  63.88  0.5360
  33      ∞     BF
[非球面データ]
 第17面
 κ=1.000,A4= -3.03829E-05,A6=-3.11384E-07
 A8=8.41204E-09,A10=0.00000E+00,A12=0.00000E+00
 第18面
 κ=1.000,A4=5.13608E-05,A6=-3.72416E-07
 A8=1.42105E-08,A10=-5.31468E-11,A12=0.00000E+00
 第27面
 κ=1.000,A4=-7.86909E-06,A6=2.69411E-07
 A8=-4.51379E-09,A10=0.00000E+00,A12=0.00000E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D7    0.750    29.576    96.457
 D15   58.597    27.038    1.750
 D23    1.000    10.725    20.681
 D26    8.328    7.495    24.390
 D29    9.314    6.709    1.392
[レンズ群データ]
 群   始面   焦点距離
 G1    1    121.894
 G2    8    -10.354
 G3    16    19.925
 G4    24    -30.515
 G5    27    26.216
[条件式対応値]
<負レンズL24(fN1=-27.185)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.019
 条件式(2)νdN1=56.24
 条件式(3),(3-1)θgFN1=0.5536
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0063
 条件式(5)(-fN1)/fF=-2.230
 条件式(6)(-fN1)/f=6.137
 条件式(7)DN1=0.700
<負レンズL24(fN3=-27.185)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.019
 条件式(12)νdN3=56.24
 条件式(13),(13-1)θgFN3=0.5536
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0063
 条件式(15)fN3/fGa=2.626
 条件式(16)(-fGa)/f=2.337
 条件式(17)DN3=0.700
 図16(A)は、第8実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図16(B)は、第8実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図16(C)は、第8実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第8実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第9実施例)
 第9実施例について、図17~図18および表9を用いて説明する。図17は、第9実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第9実施例に係る光学系LS(9)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図17の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23および両凹形状の負レンズL24からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の負メニスカスレンズL21が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負メニスカスレンズL21が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、両凸形状の正レンズL32および両凹形状の負レンズL33からなる接合レンズと、両凸形状の正レンズL34と、から構成される。第3レンズ群G3は、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。正レンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズから構成される。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および物体側に凹面を向けた負メニスカスレンズL52からなる接合レンズから構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第5レンズ群G5が光軸に沿って物体側に移動する。第5レンズ群G5の像側に、像面Iが配置される。正レンズL51は、物体側のレンズ面が非球面である。第5レンズ群G5と像面Iとの間には、第8実施例と同様に光学フィルターFLが配設されている。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正メニスカスレンズL13と、正メニスカスレンズL14と、負メニスカスレンズL21と、負レンズL22と、正レンズL23および負レンズL24からなる接合レンズとが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、正レンズL32および負レンズL33からなる接合レンズと、正レンズL34と、正レンズL41および負レンズL42からなる接合レンズと、正レンズL51および負メニスカスレンズL52からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表9に、第9実施例に係る光学系の諸元の値を掲げる。
(表9)
[全体諸元]
 変倍比=56.908
        W      M       T
  f     4.397     12.677    250.201
FNO     3.492     4.324     7.259
 2ω    87.204     34.976     1.799
  Y     3.400     4.000     4.000
 TL    102.372    105.195    145.381
 BF     0.600     0.600     0.600
 fF    -10.013    -13.902    -140.788
 fR    20.171     20.847    115.149
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     273.18981   1.800  1.80440  39.61  0.5719
  2     65.52782   5.650  1.43700  95.10  0.5336
  3    -246.12543   0.200
  4     75.42445   3.500  1.49782  82.57  0.5386
  5     483.55234   0.200
  6     54.82234   4.100  1.49782  82.57  0.5386
  7     376.10491   D7(可変)
  8    4953.19040   1.000  1.67769  52.63  0.5546
  9      7.50793   4.500
  10    -23.16393   0.900  1.83481  42.73  0.5648
  11     47.61347   0.200
  12     16.11916   3.000  1.92286  20.88  0.6390
  13    -143.49864   0.900  1.91082  35.25  0.5822
  14     37.59639   D14(可変)
  15      ∞     0.750         (絞りS)
  16*    12.15820   2.500  1.55332  71.68  0.5404
  17*    -58.02211   0.200
  18     11.49728   2.100  1.49782  82.57  0.5386
  19    -77.93882   0.800  1.88300  40.66  0.5668
  20     11.77346   0.650
  21    137.02945   1.900  1.48749  70.32  0.5291
  22    -12.01805   D22(可変)
  23     40.61484   1.200  1.79504  28.69  0.6065
  24    -53.39104   0.600  1.79952  42.09  0.5667
  25     14.78044   D25(可変)
  26*     7.45330   3.050  1.62299  58.12  0.5438
  27    -12.70314   0.800  1.83400  37.18  0.5778
  28    -65.93420   D28(可変)
  29      ∞     0.210  1.51680  63.88  0.5360
  30      ∞     1.348
  31      ∞     0.500  1.51680  63.88  0.5360
  32      ∞     BF
[非球面データ]
 第16面
 κ=1.366,A4=-3.45996E-05,A6=4.67304E-07
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
 第17面
 κ=1.000,A4=1.57317E-04,A6=8.62777E-07
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
 第26面
 κ=1.000,A4=2.30650E-05,A6=1.26895E-07
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D7    0.500    18.937    61.732
 D14   42.310    18.734    0.200
 D22    1.000    3.984    8.357
 D25    9.814    9.840    28.250
 D28    5.590    10.542    3.684
[レンズ群データ]
 群   始面   焦点距離
 G1    1    79.847
 G2    8    -8.267
 G3    15    15.573
 G4    23    -29.814
 G5    26    31.361
[条件式対応値]
<負メニスカスレンズL21(fN1=-11.061)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.021
 条件式(2)νdN1=52.63
 条件式(3),(3-1)θgFN1=0.5546
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0012
 条件式(5)(-fN1)/fF=-1.105
 条件式(6)(-fN1)/f=2.516
 条件式(7)DN1=1.000
<負メニスカスレンズL21(fN3=-11.061)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.021
 条件式(12)νdN3=52.63
 条件式(13),(13-1)θgFN3=0.5546
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0012
 条件式(15)fN3/fGa=1.338
 条件式(16)(-fGa)/f=1.880
 条件式(17)DN3=1.000
 図18(A)は、第9実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図18(B)は、第9実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図18(C)は、第9実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第9実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第10実施例)
 第10実施例について、図19~図20および表10を用いて説明する。図19は、第10実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第10実施例に係る光学系LS(10)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第4レンズ群G1~G4がそれぞれ図19の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24と、から構成される。本実施例では、第2レンズ群G2の負メニスカスレンズL21が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負メニスカスレンズL21が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた正メニスカスレンズL32および物体側に凸面を向けた負メニスカスレンズL33からなる接合レンズと、両凸形状の正レンズL34と、から構成される。第3レンズ群G3は、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。正レンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、物体側に凸面を向けた負メニスカスレンズL41から構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って像側に移動する。
 第5レンズ群G5は、両凸形状の正レンズL51から構成される。第5レンズ群G5の像側に、像面Iが配置される。正レンズL51は、物体側のレンズ面が非球面である。第5レンズ群G5と像面Iとの間には、第8実施例と同様に光学フィルターFLが配設されている。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正メニスカスレンズL13と、負メニスカスレンズL21と、負レンズL22と、正レンズL23と、負メニスカスレンズL24とが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、正メニスカスレンズL32および負メニスカスレンズL33からなる接合レンズと、正レンズL34と、負メニスカスレンズL41と、正レンズL51とが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表10に、第10実施例に係る光学系の諸元の値を掲げる。
(表10)
[全体諸元]
 変倍比=32.853
        W      M       T
  f     4.432     10.612    145.611
FNO     3.567     4.361     7.435
 2ω    85.001     40.168     3.043
  Y     3.300     4.000     4.000
 TL    68.023     68.790     99.945
 BF     0.400     0.400     0.400
 fF    -7.660     -9.862    -59.394
 fR    21.418     26.678    -30.263
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     102.43988   0.950  1.80100  34.92  0.5853
  2     36.00812   3.750  1.49700  81.73  0.5371
  3    -149.20420   0.100
  4     34.83218   2.650  1.60300  65.44  0.5389
  5     280.45373   D5(可変)
  6     60.18046   0.500  1.62731  59.30  0.5584
  7      6.30550   3.715
  8     -12.51258   0.550  1.90366  31.31  0.5947
  9     30.14088   0.100
  10     15.65323   2.400  1.92286  20.88  0.639
  11    -15.92321   0.400
  12    -10.47990   0.550  1.80610  40.97  0.5688
  13    -89.27818   D13(可変)
  14      ∞     0.700         (絞りS)
  15*     7.22087   2.200  1.49710  81.56  0.5385
  16*    -25.69859   0.100
  17     9.11323   2.200  1.53172  48.78  0.5622
  18     75.26227   0.400  1.91082  35.25  0.5822
  19     6.37325   0.650
  20     14.90902   1.700  1.49700  81.73  0.5371
  21    -16.93987   D21(可変)
  22     18.44495   0.600  1.49700  81.73  0.5371
  23     6.77356   D23(可変)
  24*    11.50000   2.200  1.53113  55.75  0.5628
  25    -35.52133   0.600
  26      ∞     0.210  1.51680  63.88  0.5360
  27      ∞     0.450
  28      ∞     0.500  1.51680  63.88  0.5360
  29      ∞     BF
[非球面データ]
 第15面
 κ=-1.173,A4=4.61200E-04,A6=-1.72721E-06
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
 第16面
 κ=1.000,A4=1.73828E-04,A6=8.92317E-07
 A8=-5.35697E-08,A10=0.00000E+00,A12=0.00000E+00
 第24面
 κ=2.877,A4=-1.20577E-04,A6=2.62458E-06
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D5    0.278    10.454    39.970
 D13   26.913    13.530    1.598
 D21    2.982    8.797    15.299
 D23    9.275    7.435    14.504
[レンズ群データ]
 群   始面   焦点距離
 G1    1    55.798
 G2    6    -6.256
 G3    14    11.856
 G4    22    -21.912
 G5    24    16.626
[条件式対応値]
<負メニスカスレンズL21(fN1=-11.268)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.016
 条件式(2)νdN1=59.30
 条件式(3),(3-1)θgFN1=0.5584
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0162
 条件式(5)(-fN1)/fF=-1.471
 条件式(6)(-fN1)/f=2.542
 条件式(7)DN1=0.500
<負メニスカスレンズL21(fN3=-11.268)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.016
 条件式(12)νdN3=59.30
 条件式(13),(13-1)θgFN3=0.5584
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0162
 条件式(15)fN3/fGa=1.801
 条件式(16)(-fGa)/f=1.411
 条件式(17)DN3=0.500
 図20(A)は、第10実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図20(B)は、第10実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図20(C)は、第10実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第10実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第11実施例)
 第11実施例について、図21~図22および表11を用いて説明する。図21は、第11実施例に係る光学系(変倍光学系)の無限遠合焦状態におけるレンズ構成を示す図である。第11実施例に係る光学系LS(11)は、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。広角端状態(W)から望遠端状態(T)に変倍する際、第1~第5レンズ群G1~G5がそれぞれ図21の矢印で示す方向に移動する。開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配設される。
 第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11および両凸形状の正レンズL12からなる接合レンズと、物体側に凸面を向けた正メニスカスレンズL13と、物体側に凸面を向けた正メニスカスレンズL14と、から構成される。
 第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24および物体側に凸面を向けた正メニスカスレンズL25からなる接合レンズと、から構成される。本実施例では、第2レンズ群G2の負レンズL24が条件式(1)~(4)等を満足する負レンズに該当する。また本実施例では、第2レンズ群G2が物体側負レンズ群に該当し、第2レンズ群G2の負レンズL24が条件式(11)~(14)等を満足する負レンズに該当する。
 第3レンズ群G3は、物体側から順に並んだ、両凸形状の正レンズL31と、物体側に凸面を向けた負メニスカスレンズL32と、物体側に凸面を向けた負メニスカスレンズL33および両凸形状の正レンズL34からなる接合レンズと、から構成される。第3レンズ群G3は、光軸と垂直な方向へ移動可能な防振レンズ群を構成し、手ブレ等による結像位置の変位(像面I上の像ブレ)を補正する。開口絞りSは、正レンズL31の物体側近傍に配置され、変倍の際、第3レンズ群G3とともに移動する。正レンズL31は、両側のレンズ面が非球面である。
 第4レンズ群G4は、物体側から順に並んだ、両凸形状の正レンズL41および両凹形状の負レンズL42からなる接合レンズから構成される。無限遠物体から近距離(有限距離)物体への合焦の際、第4レンズ群G4が光軸に沿って像側に移動する。
 第5レンズ群G5は、物体側から順に並んだ、両凸形状の正レンズL51および物体側に凹面を向けた負メニスカスレンズL52からなる接合レンズから構成される。第5レンズ群G5の像側に、像面Iが配置される。正レンズL51は、物体側のレンズ面が非球面である。第5レンズ群G5と像面Iとの間には、第8実施例と同様に光学フィルターFLが配設されている。
 本実施例では、負メニスカスレンズL11および正レンズL12からなる接合レンズと、正メニスカスレンズL13と、正メニスカスレンズL14と、負メニスカスレンズL21と、負レンズL22と、正レンズL23と、負レンズL24および正メニスカスレンズL25からなる接合レンズとが、開口絞りSよりも物体側に配置された前群GFを構成する。正レンズL31と、負メニスカスレンズL32と、負メニスカスレンズL33および正レンズL34からなる接合レンズと、正レンズL41および負レンズL42からなる接合レンズと、正レンズL51および負メニスカスレンズL52からなる接合レンズとが、開口絞りSよりも像側に配置された後群GRを構成する。
 以下の表11に、第11実施例に係る光学系の諸元の値を掲げる。なお、第6面および第19面は仮想面である。
(表11)
[全体諸元]
 変倍比=118.076
        W      M       T
  f     4.429     14.376    523.001
FNO     2.820     3.650     8.128
 2ω    85.436     30.806     0.863
  Y     3.350     4.000     4.000
 TL    167.110    170.132    264.500
 BF     0.540     0.540     0.540
 fF    -12.897    -17.631    -239.375
 fR    32.087     42.873    -80.219
[レンズ諸元]
 面番号     R     D    nd   νd  θgF
  1     825.93933   2.900  1.80400  46.60  0.5575
  2     112.39133   7.800  1.43700  95.10  0.5336
  3    -453.66816   0.100
  4     115.49170   6.300  1.49782  82.57  0.5386
  5    9088.66420   0.100
  6       ∞     0.000
  7     133.81125   4.700  1.49782  82.57  0.5386
  8     571.60343   D8(可変)
  9     55.85227   1.300  1.87071  40.73  0.5682
  10     13.94864   7.000
  11    -32.19593   1.200  1.80420  46.50  0.5572
  12     57.84873   0.100
  13     28.64191   3.800  1.90200  25.26  0.6165
  14    -70.26333   1.600
  15    -20.59922   1.000  1.68348  54.80  0.5501
  16     39.38825   1.800  1.92286  20.88  0.6390
  17    139.67089   D17(可変)
  18      ∞     0.600         (絞りS)
  19      ∞     1.106
  20*    13.03513   4.100  1.49710  81.56  0.5385
  21*    -80.65458   2.800
  22     26.48603   1.200  1.91082  35.25  0.5822
  23     11.88277   2.000
  24     14.86421   1.200  1.77250  49.62  0.5518
  25     11.87360   3.600  1.49782  82.57  0.5386
  26    -35.53498   D26(可変)
  27    509.89664   1.200  1.53172  48.78  0.5622
  28    -22.32829   0.700  1.49700  81.61  0.5389
  29     17.44965   D29(可変)
  30*    18.42875   2.000  1.58913  61.22  0.5401
  31    -31.60931   0.600  1.75520  27.57  0.6092
  32    -241.53196   D32(可変)
  33      ∞     0.400  1.51680  63.88  0.5360
  34      ∞     0.700
  35      ∞     0.500  1.51680  63.88  0.5360
  36      ∞     BF
[非球面データ]
 第20面
 κ=1.000,A4=-3.21091E-05,A6=-8.68271E-08
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
 第21面
 κ=1.000,A4=3.10451E-05,A6=-2.93413E-08
 A8=7.59720E-10,A10=0.00000E+00,A12=0.00000E+00
 第30面
 κ=1.000,A4=-1.73347E-06,A6=0.00000E+00
 A8=0.00000E+00,A10=0.00000E+00,A12=0.00000E+00
[変倍撮影時可変間隔データ]
       W     M     T
 D8    0.750    41.177   143.201
 D17   80.493    34.159    1.024
 D26    2.275    10.638    22.193
 D29   14.580    16.417    33.124
 D32    6.065    4.795    2.012
[レンズ群データ]
 群   始面   焦点距離
 G1    1    170.892
 G2    9    -11.362
 G3    18    22.993
 G4    27    -38.719
 G5    30    33.447
[条件式対応値]
<負レンズL24(fN1=-19.656)>
 条件式(1)
  ndN1-(2.015-0.0068×νdN1)=0.041
 条件式(2)νdN1=54.80
 条件式(3),(3-1)θgFN1=0.5501
 条件式(4),(4-1)
  θgFN1-(0.6418-0.00168×νdN1)=0.0004
 条件式(5)(-fN1)/fF=-1.524
 条件式(6)(-fN1)/f=4.438
 条件式(7)DN1=1.000
<負レンズL24(fN3=-19.656)>
 条件式(11)
  ndN3-(2.015-0.0068×νdN3)=0.041
 条件式(12)νdN3=54.80
 条件式(13),(13-1)θgFN3=0.5501
 条件式(14),(14-1)
  θgFN3-(0.6418-0.00168×νdN3)=0.0004
 条件式(15)fN3/fGa=1.730
 条件式(16)(-fGa)/f=2.565
 条件式(17)DN3=1.000
 図22(A)は、第11実施例に係る光学系の広角端状態における無限遠合焦時の諸収差図である。図22(B)は、第11実施例に係る光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。図22(C)は、第11実施例に係る光学系の望遠端状態における無限遠合焦時の諸収差図である。各諸収差図より、第11実施例に係る光学系は、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 上記各実施例によれば、色収差の補正において、1次の色消しに加え、2次スペクトルが良好に補正された光学系または変倍光学系を実現することができる。
 ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 なお、以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 合焦レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示すものとする。すなわち、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。
 第2実施例、第5実施例、および第7~第11実施例において、防振機能を有する構成のものを示したが、本願はこれに限られず、防振機能を有していない構成とすることもできる。また、防振機能を有していない他の実施例についても、防振機能を有する構成とすることができる。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
 G5 第5レンズ群          G6 第6レンズ群
  I 像面               S 開口絞り

Claims (22)

  1.  開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する負レンズとを有する光学系。
     -0.010<ndN1-(2.015-0.0068×νdN1)
     50.00<νdN1<65.00
     0.545<θgFN1
     -0.010<θgFN1-(0.6418-0.00168×νdN1)
     但し、ndN1:前記負レンズのd線に対する屈折率
        νdN1:前記負レンズのd線を基準とするアッベ数
        θgFN1:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN1とし、前記負レンズのF線に対する屈折率をnFN1とし、前記負レンズのC線に対する屈折率をnCN1としたとき、次式で定義される
     θgFN1=(ngN1-nFN1)/(nFN1-nCN1)
  2.  前記開口絞りと、前記開口絞りより物体側に配置された前群と、前記開口絞りより像側に配置された後群とからなり、
     前記前群は、前記負レンズを有して以下の条件式を満足する請求項1に記載の光学系。
     -10.00<(-fN1)/fF<10.00
     但し、fN1:前記負レンズの焦点距離
        fF:前記前群の焦点距離、なお前記光学系が変倍光学系である場合、広角端状態における前記前群の焦点距離
  3.  前記負レンズは、以下の条件式を満足する請求項1または2に記載の光学系。
     0.10<(-fN1)/f<15.00
     但し、fN1:前記負レンズの焦点距離
        f:前記光学系の焦点距離、なお前記光学系が変倍光学系である場合、広角端状態における前記光学系の焦点距離
  4.  前記負レンズは、以下の条件式を満足する請求項1~3のいずれか一項に記載の光学系。
     0.555<θgFN1
  5.  前記負レンズは、以下の条件式を満足する請求項1~4のいずれか一項に記載の光学系。
     0.010<θgFN1-(0.6418-0.00168×νdN1)
  6.  前記負レンズは、以下の条件式を満足する請求項1~5のいずれか一項に記載の光学系。
     DN1>0.400[mm]
     但し、DN1:前記負レンズの光軸上の厚さ
  7.  前記負レンズは、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズである請求項1~6のいずれか一項に記載の光学系。
  8.  前記負レンズにおける物体側のレンズ面および像側のレンズ面のうち、少なくとも一方のレンズ面が空気と接している請求項1~7のいずれか一項に記載の光学系。
  9.  前記負レンズは、ガラスレンズである請求項1~8のいずれか一項に記載の光学系。
  10.  請求項1~9のいずれか一項に記載の光学系を備えて構成される光学機器。
  11.  開口絞りと、前記開口絞りより物体側に配置された以下の条件式を満足する負レンズとを有するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     -0.010<ndN1-(2.015-0.0068×νdN1)
     50.00<νdN1<65.00
     0.545<θgFN1
     -0.010<θgFN1-(0.6418-0.00168×νdN1)
     但し、ndN1:前記負レンズのd線に対する屈折率
        νdN1:前記負レンズのd線を基準とするアッベ数
        θgFN1:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN1とし、前記負レンズのF線に対する屈折率をnFN1とし、前記負レンズのC線に対する屈折率をnCN1としたとき、次式で定義される
     θgFN1=(ngN1-nFN1)/(nFN1-nCN1)
  12.  負の屈折力を有するレンズ群を含む複数のレンズ群を有し、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群は、以下の条件式を満足する負レンズを有する変倍光学系。
     -0.010<ndN3-(2.015-0.0068×νdN3)
     50.00<νdN3<65.00
     0.545<θgFN3
     -0.010<θgFN3-(0.6418-0.00168×νdN3)
     但し、ndN3:前記負レンズのd線に対する屈折率
        νdN3:前記負レンズのd線を基準とするアッベ数
        θgFN3:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN3とし、前記負レンズのF線に対する屈折率をnFN3とし、前記負レンズのC線に対する屈折率をnCN3としたとき、次式で定義される
     θgFN3=(ngN3-nFN3)/(nFN3-nCN3)
  13.  前記負レンズは、以下の条件式を満足する請求項12に記載の変倍光学系。
     0.50<fN3/fGa<7.00
     但し、fN3:前記負レンズの焦点距離
        fGa:前記物体側負レンズ群の焦点距離
  14.  前記物体側負レンズ群は、以下の条件式を満足する請求項12または13に記載の変倍光学系。
     0.20<(-fGa)/f<3.50
     但し、fGa:前記物体側負レンズ群の焦点距離
        f:広角端状態における前記変倍光学系の焦点距離
  15.  前記負レンズは、以下の条件式を満足する請求項12~14のいずれか一項に記載の変倍光学系。
     0.555<θgFN3
  16.  前記負レンズは、以下の条件式を満足する請求項12~15のいずれか一項に記載の変倍光学系。
     0.010<θgFN3-(0.6418-0.00168×νdN3)
  17.  前記負レンズは、以下の条件式を満足する請求項12~16のいずれか一項に記載の変倍光学系。
     DN3>0.400[mm]
     但し、DN3:前記負レンズの光軸上の厚さ
  18.  前記負レンズは、単レンズもしくは、2枚のレンズを接合した接合レンズにおける前記2枚のレンズのうち一方のレンズである請求項12~17のいずれか一項に記載の変倍光学系。
  19.  前記負レンズにおける物体側のレンズ面および像側のレンズ面のうち、少なくとも一方のレンズ面が空気と接している請求項12~18のいずれか一項に記載の変倍光学系。
  20.  前記負レンズは、ガラスレンズである請求項12~19のいずれか一項に記載の変倍光学系。
  21.  請求項12~20のいずれか一項に記載の変倍光学系を備えて構成される光学機器。
  22.  負の屈折力を有するレンズ群を含む複数のレンズ群を有する変倍光学系の製造方法であって、
     変倍の際に、隣り合う各レンズ群の間隔が変化し、
     前記負の屈折力を有するレンズ群のうち最も物体側に配置された物体側負レンズ群が、以下の条件式を満足する負レンズを有するように、
     レンズ鏡筒内に各レンズを配置する変倍光学系の製造方法。
     -0.010<ndN3-(2.015-0.0068×νdN3)
     50.00<νdN3<65.00
     0.545<θgFN3
     -0.010<θgFN3-(0.6418-0.00168×νdN3)
     但し、ndN3:前記負レンズのd線に対する屈折率
        νdN3:前記負レンズのd線を基準とするアッベ数
        θgFN3:前記負レンズの部分分散比であり、前記負レンズのg線に対する屈折率をngN3とし、前記負レンズのF線に対する屈折率をnFN3とし、前記負レンズのC線に対する屈折率をnCN3としたとき、次式で定義される
     θgFN3=(ngN3-nFN3)/(nFN3-nCN3)
PCT/JP2020/032105 2019-08-30 2020-08-26 光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法 WO2021039813A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/636,872 US20220269056A1 (en) 2019-08-30 2020-08-26 Optical system, optical apparatus and method for manufacturing the optical system, and zoom optical system, optical apparatus and method for manufacturing the zoom optical system
JP2021542946A JP7218814B2 (ja) 2019-08-30 2020-08-26 変倍光学系および光学機器
CN202080059140.XA CN114270239A (zh) 2019-08-30 2020-08-26 光学系统、光学设备及光学系统的制造方法以及变倍光学系统、光学设备及变倍光学系统的制造方法
JP2023005529A JP2023040272A (ja) 2019-08-30 2023-01-18 光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-157739 2019-08-30
JP2019157743 2019-08-30
JP2019-157743 2019-08-30
JP2019157739 2019-08-30

Publications (1)

Publication Number Publication Date
WO2021039813A1 true WO2021039813A1 (ja) 2021-03-04

Family

ID=74685917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032105 WO2021039813A1 (ja) 2019-08-30 2020-08-26 光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法

Country Status (4)

Country Link
US (1) US20220269056A1 (ja)
JP (2) JP7218814B2 (ja)
CN (1) CN114270239A (ja)
WO (1) WO2021039813A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158817A (ja) * 1989-11-17 1991-07-08 Olympus Optical Co Ltd 変倍レンズ
JP2016155745A (ja) * 2015-02-20 2016-09-01 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2020012911A (ja) * 2018-07-13 2020-01-23 キヤノン株式会社 ズームレンズ及び撮像装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157550A (en) * 1989-10-26 1992-10-20 Olympus Optical Co., Ltd. Vari-focal lens system
JP2017026976A (ja) * 2015-07-28 2017-02-02 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
TWI687385B (zh) * 2017-03-31 2020-03-11 日商Hoya股份有限公司 光學玻璃及光學元件
JP2019060971A (ja) * 2017-09-25 2019-04-18 富士フイルム株式会社 結像レンズおよび光学装置
JP6881603B2 (ja) * 2017-12-15 2021-06-02 株式会社ニコン 光学系および光学機器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158817A (ja) * 1989-11-17 1991-07-08 Olympus Optical Co Ltd 変倍レンズ
JP2016155745A (ja) * 2015-02-20 2016-09-01 株式会社オハラ 光学ガラス、プリフォーム及び光学素子
JP2020012911A (ja) * 2018-07-13 2020-01-23 キヤノン株式会社 ズームレンズ及び撮像装置

Also Published As

Publication number Publication date
JP7218814B2 (ja) 2023-02-07
US20220269056A1 (en) 2022-08-25
JPWO2021039813A1 (ja) 2021-03-04
CN114270239A (zh) 2022-04-01
JP2023040272A (ja) 2023-03-22

Similar Documents

Publication Publication Date Title
JP7014253B2 (ja) 変倍光学系および光学機器
JP2021105746A (ja) 光学系および光学機器
JP6221451B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2015075943A1 (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP2021105744A (ja) 光学系および光学機器
JP2016065912A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
WO2017099244A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2021105747A (ja) 光学系および光学機器
JP2023072037A (ja) 光学系および光学機器、並びに、変倍光学系および光学機器
JP6981478B2 (ja) 光学系および光学機器
JP2023052982A (ja) 光学系、光学機器、および光学系の製造方法
WO2021039696A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
WO2021039813A1 (ja) 光学系、光学機器および光学系の製造方法、並びに、変倍光学系、光学機器および変倍光学系の製造方法
JP7036124B2 (ja) 光学系および光学機器
WO2019229817A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2021039815A1 (ja) 光学系、光学機器、および光学系の製造方法
JP2015102690A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JPWO2019116568A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2024034428A1 (ja) 光学系、光学機器及び光学系の製造方法
WO2021256065A1 (ja) 光学系、光学機器、および光学系の製造方法
JP7031739B2 (ja) ズームレンズ及び光学機器
JP2021036283A (ja) 光学系、光学機器、および光学系の製造方法
WO2019220629A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542946

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856024

Country of ref document: EP

Kind code of ref document: A1