WO2021039716A1 - 生体組織染色試薬、生体組織染色キット及び生体組織染色方法 - Google Patents

生体組織染色試薬、生体組織染色キット及び生体組織染色方法 Download PDF

Info

Publication number
WO2021039716A1
WO2021039716A1 PCT/JP2020/031840 JP2020031840W WO2021039716A1 WO 2021039716 A1 WO2021039716 A1 WO 2021039716A1 JP 2020031840 W JP2020031840 W JP 2020031840W WO 2021039716 A1 WO2021039716 A1 WO 2021039716A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological tissue
staining
tissue staining
sample
antibody
Prior art date
Application number
PCT/JP2020/031840
Other languages
English (en)
French (fr)
Inventor
泰己 上田
悦生 洲▲崎▼
Original Assignee
株式会社CUBICStars
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社CUBICStars filed Critical 株式会社CUBICStars
Priority to US17/635,778 priority Critical patent/US20220326125A1/en
Priority to JP2021542888A priority patent/JP7197941B2/ja
Priority to EP20859017.4A priority patent/EP4001888B1/en
Publication of WO2021039716A1 publication Critical patent/WO2021039716A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Definitions

  • the present invention relates to a biological tissue staining reagent, a biological tissue staining kit, and a biological tissue staining method.
  • Patent Document 1 discloses an immunostaining method in which an antibody composition containing a predetermined concentration of urea and an antibody for immunostaining is brought into contact with a biomaterial. Further, in Non-Patent Documents 1 and 2, as an immunostaining method, a sample treated with methanol or dimethyl sulfoxide (DMSO) is incubated with a permeation solution containing glycine, DMSO and the like, subjected to blocking treatment, and then heparin. The iDISCO method of reacting with a primary antibody in a solution containing DMSO, donkey serum and the like, and then reacting with a secondary antibody is disclosed.
  • DMSO dimethyl sulfoxide
  • Nicolas Renier 5 outsiders, "iDISCO: a simple, rapid method to immediate tissue tissue sample for volume imaging.”, Cell, 2014, 159, 896-910 Nicolas Renier, 15 outsiders, “Mapping of brain activity by automation analysis of immediate early genes.”, Cell, 2016, 165, 1789-1802.
  • Non-Patent Documents 1 and 2 in addition to fading of fluorescent proteins such as GFP (Green Fluorescent Protein), shrinkage of the sample in dehydration and clearing treatment may occur. For this reason, it is difficult to use the iDISCO method especially for the analysis of biological tissues expressing fluorescent proteins.
  • GFP Green Fluorescent Protein
  • the present invention has been made in view of the above circumstances, and is applicable to a wide range of living tissues, and is capable of sufficiently permeating a staining agent and an antibody.
  • Living tissue staining reagent, biological tissue staining kit, and biological tissue staining method The purpose is to provide.
  • the biological tissue staining reagent according to the first aspect of the present invention is With nonionic surfactants at concentrations higher than 1%, With salt of 200 mM or more, including.
  • the biological tissue staining reagent according to the first aspect of the present invention is Further containing neutral buffer, It may be that.
  • the biological tissue staining reagent according to the first aspect of the present invention is Including additional blocking reagents, It may be that.
  • the biological tissue staining reagent according to the first aspect of the present invention is Of aromatic amines, aliphatic amides, nicotine amides, sulfamides, sulfonates, aminoalcohols, alcohols, sulfic acids, thioureas and carboxylic acids excluding urea or urea derivatives represented by the following general formula (1). Further comprising at least one additive selected from the compounds, It may be that.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen atoms, halogen atoms, or hydrocarbon groups independently of each other, and there are a plurality of carbon atoms constituting the hydrocarbon group. A part of the carbon atom may be substituted with a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • the hydrocarbon group includes a chain hydrocarbon group and a cyclic hydrocarbon group.
  • the biological tissue staining reagent according to the first aspect of the present invention is Including more dye, It may be that.
  • the biological tissue staining reagent according to the first aspect of the present invention is Further containing antibodies for immunostaining, It may be that.
  • the biological tissue staining kit according to the second aspect of the present invention is The biological tissue staining reagent according to the first aspect of the present invention and Dyeing agent and To be equipped.
  • the biological tissue staining kit according to the third aspect of the present invention is The biological tissue staining reagent according to the first aspect of the present invention and Immunostaining antibody and To be equipped.
  • the biological tissue staining kit according to the third aspect of the present invention is Further equipped with a weakly acidic buffer, It may be that.
  • the biological tissue staining kit according to the third aspect of the present invention is Further comprising a wash buffer containing a nonionic surfactant having a concentration higher than 1%, a salt of 200 mM or more and a neutral buffer. It may be that.
  • the biological tissue staining kit according to the second aspect and the third aspect of the present invention is Further provided with a phase separation inducing reagent that phase-separates from water, It may be that.
  • the biological tissue staining method according to the fourth aspect of the present invention is A biological tissue staining method using the biological tissue staining reagent according to the first aspect of the present invention.
  • the biological tissue staining method according to the fifth aspect of the present invention is It comprises a simultaneous staining step of exposing a living tissue to the biological tissue staining reagent according to the first aspect of the present invention, which comprises a staining agent and an antibody for immunostaining.
  • the biological tissue staining method according to the sixth aspect of the present invention is The staining step comprises mixing the biological tissue staining reagent according to the first aspect of the present invention, which comprises at least one of a staining agent and an antibody for immunostaining, the biological tissue, and the phase separation inducing reagent.
  • the present invention can be applied to a wide range of biological tissues, and stains and antibodies can be sufficiently permeated.
  • FIG. 1B is a diagram showing a biological tissue staining method in which an enzyme treatment step is added to the biological tissue staining method shown in FIG. 1 (A).
  • FIG. 1C is a diagram showing a biological tissue staining method in which a pretreatment step is added to the biological tissue staining method shown in FIG. 1 (A).
  • FIG. (A) and (B) are images of frozen sections prepared from mouse cerebellar hemispheres 3D-stained with propidium iodide (hereinafter referred to as "PI") and SYTO TM 16 (hereinafter referred to as "SYTO 16"), respectively. It is a figure which shows.
  • FIG. The scale bar corresponds to 1 mm. It is a figure which shows the image of the frozen section prepared from the mouse cerebral hemisphere 3D-stained with the stain agent in Example 4.
  • (A) and (B) are diagrams showing images of frozen sections prepared from mouse cerebral hemispheres 3D-stained with a urea-free dye dyeing buffer and a urea-containing dye dyeing buffer, respectively.
  • the scale bar in (A) corresponds to 2 mm.
  • (B) is a figure which shows the image of the signal of SYSTEMX-G and NeuN in the sagittal plane and the coronal plane of the whole brain shown in (A).
  • the scale bar in (B) corresponds to 100 ⁇ m. It is a figure which shows the image of the whole brain of the mouse which was 3D nuclear staining and 3D immunostaining in Example 10.
  • the signals of perbualbumin (PV), somatostatin (Sst) and glutamate decarboxylase (Gad) 67 are shown together with the signals of BOBO TM -1 iodide (462/481) (hereinafter referred to as “BOBO-1”), respectively.
  • the scale bars at b, c and d correspond to 2 mm.
  • the scale bar in e showing the signals of PV, Sst and Gad67 corresponds to 2 mm.
  • the scale bars at f and g showing a magnified image of a part of the brain in the horizontal plane (xy) correspond to 0.5 mm.
  • the scale bar at h showing the image of the coronal plane (xz) of the portion shown in e corresponds to 2 mm.
  • the scale bars in i and j showing the enlarged image of the portion shown in h correspond to 0.1 mm. It is a figure which shows the image of the whole brain of the mouse which was 3D immunostained in Example 11.
  • the scale bar at k which signals choline acetyltransferase (ChAT) and dopamine transporter (Dat) along with the yellow fluorescent protein (YFP) signal, corresponds to 2 mm.
  • the scale bar at l which shows the enlarged image of the portion indicated by “l” in k, corresponds to 0.5 mm.
  • the scale bar at m showing an image of a horizontal plane of a part of the brain corresponds to 0.5 mm.
  • the scale bar at n which shows the enlarged image of the portion indicated by "n” in m, corresponds to 0.5 mm.
  • the scale bars at o, p and q showing the image of the reconstructed sagittal plane relating to the portion indicated by "oq" in k correspond to 0.5 mm. It is a figure which shows the signal of the antibody in the mouse cerebellum which concerns on Example 13. Images and peak-bottom ratios of frozen sections of tissue in the cerebral cortex region of pigs according to Example 14 are shown.
  • (A) and (B) are diagrams showing a case of immunostaining with an immunostaining buffer solution without additives and a case of immunostaining with an immunostaining buffer solution with additives, respectively. It is a figure which shows the peak-bottom ratio of each compound which concerns on Example 15.
  • Example 16 It is a figure which shows the image of the frozen section prepared from the mouse cerebral hemisphere which was 3D immunostained in Example 16.
  • A), (B), (C) and (D) are diagrams showing images of frozen sections stained with antibodies against Synaptophysin, Gad67, Dat and Th, respectively. It is a figure which shows the image of the frozen section prepared from the mouse hemi-brain 3D-stained with the dyeing agent in the condition of having no additive or with an additive in Example 17.
  • A) and (B) are diagrams showing images of RedDot2 and SYSTEMX-G signals, respectively. It is a figure which shows the image of the frozen section prepared from the mouse cerebral hemisphere 3D-stained with the stain agent and antibody in Example 18.
  • FIG. 22B is a diagram showing an image of the signal of SYSTEMX-G.
  • C is a figure which shows the image which showed the signal of NeuN and the image which showed the signal of SYSTEMX-G merged. It is a figure which shows the image of the frozen section prepared from the mouse cerebellar hemisphere which was 3D immunostained under the condition of having no phase separation and with phase separation in Example 19. It is a figure which shows the image of the whole mouse brain which performed 3D nuclear staining and 3D immunostaining at the same time in Example 20.
  • (A) is a figure which shows the 3D reconstruction image which shows the signal of GFAP and SYSTEMX-G.
  • (B) is a figure which shows the image of the signal of GFAP.
  • (C) is a diagram showing a three-dimensional reconstructed image showing signals of Dat and SYSTEM-G.
  • (D) It is a figure which shows the image of the signal of Data.
  • the biological tissue staining reagent according to the present embodiment is a reagent suitable for staining biological tissue.
  • the biological tissue staining reagent contains a nonionic surfactant and a salt. More specifically, the biological tissue staining reagent may be a solution containing the above-mentioned nonionic surfactant and salt, preferably a buffer solution.
  • the main solvent of the solution or buffer is, for example, water. Only water may be used as the solvent.
  • nonionic surfactants include fatty acid-based surfactants, higher alcohol-based surfactants, and alkylphenol-based surfactants.
  • fatty acid-based surfactant include polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, and polyoxyethylene sorbitan monooleate.
  • higher alcohol-based surfactant include polyvinyl alcohol and the like.
  • alkylphenol-based surfactant include polyoxyethylene octylphenyl ether.
  • the nonionic surfactant is a Triton X TM series such as Triton X-100 and Triton X-140, Tween TM such as Tween-20, Tween-40, Tween-60 and Tween-80. It is at least one selected from the group consisting of the series and NP-40 (trade name). If necessary, two or more kinds of nonionic surfactants can be mixed and used.
  • Triton X TM series such as Triton X-100 and Triton X-140
  • Tween TM such as Tween-20, Tween-40, Tween-60 and Tween-80. It is at least one selected from the group consisting of the series and NP-40 (trade name). If necessary, two or more kinds of nonionic surfactants can be mixed and used.
  • the concentration of the nonionic surfactant in the biological tissue staining reagent according to the present embodiment is higher than 1%.
  • the concentration of the nonionic surfactant in the biological tissue staining reagent is, for example, 2 to 30%, 3 to 20%, 4 to 15% or 5 to 12%.
  • the concentration of the nonionic surfactant in the biological tissue staining reagent is 5% or 10%.
  • a salt is a compound in which an acid-derived anion and a base-derived cation are ionically bonded.
  • the salt is a compound produced by a neutralization reaction between an acid and a base, and may be a compound in which the hydrogen ion of the acid is replaced with a metal.
  • the salt is preferably a positive salt, for example, sodium chloride (NaCl), calcium chloride (CaCl 2 ), lithium chloride (LiCl), potassium chloride (KCl), etc., whose aqueous solution is neutral.
  • the salt concentration in the biological tissue staining reagent according to this embodiment is 200 mM or more.
  • the salt concentration is, for example, 200-2000 mM, 200-1500 mM, 200-1000 mM, 200-800 mM, 200-600 mM or 200-500 mM.
  • the salt concentration in the biological tissue staining reagent is 200 mM or 500 mM.
  • the biological tissue staining reagent according to the present embodiment can be used regardless of whether the biological tissue is stained with a staining agent or stained with an antibody via an immune reaction.
  • a known dyeing agent used for dyeing the living tissue can be preferably used.
  • the dyeing agent is a small molecule compound or a small molecule compound that binds to a predetermined molecule or the like constituting a biological tissue.
  • the stain may be, for example, a type of stain that stains tissue through binding to nucleic acids.
  • the stain may be a nuclear stain or a nucleic acid stain.
  • the antibody is derived from, for example, an antibody for immunostaining, a hybridoma culture supernatant, ascites of an animal subjected to intrasplenic immunization, antiserum, anti-plasma or serous of avian eggs. It is an immunoglobulin.
  • the biological tissue staining reagent uses a primary antibody labeled with a dye such as a fluorescent dye or a complex of the primary antibody and a Fab fragment antibody labeled with the dye in one step of immunostaining. It is preferably used for dyeing.
  • a dye such as a fluorescent dye or a complex of the primary antibody and a Fab fragment antibody labeled with the dye in one step of immunostaining. It is preferably used for dyeing.
  • Preferred antibodies are exemplified, for example, in Tables 1 and 2 below.
  • the dye that labels the antibody include dyes such as Alexa Fluor (trademark) dye, FITC (Fluorescein Isothio
  • the biological tissue staining reagent when used for immunostaining, the biological tissue staining reagent according to the present embodiment further contains a neutral buffer solution.
  • the neutral buffer solution refers to a buffer solution having a pH of 6 to 8, preferably 7.2 to 7.8, more preferably 7.4 to 7.6, and particularly preferably 7.5.
  • Specific examples of the neutral buffer solution include phosphate buffer solution, Tris buffer solution, HEPES buffer solution, acetate buffer solution, carbonic acid buffer solution, and citrate buffer solution.
  • these physiological salines such as PBS, D-PBS, Tris buffered saline and HEPES buffered saline may be used as the neutral buffer.
  • a HEPES buffer is particularly preferable, and the concentration thereof is 5 to 30 mM or 8 to 20 mM, preferably 8 to 12 mM or 10 mM.
  • the biological tissue staining reagent when used for immunostaining, the biological tissue staining reagent further contains a blocking reagent.
  • the blocking reagent is not particularly limited as long as it is used to prevent non-specific binding of the antibody.
  • Blocking reagents include, for example, skim milk, bovine serum albumin (BSA), fish gelatin, horse serum, fetal bovine serum (FBS), casein and the like.
  • the blocking reagent is casein.
  • the concentration of the blocking reagent in the biological tissue staining reagent is appropriately set, and is, for example, 0.1 to 3%, 0.2 to 2%, 0.3 to 1%, or 0.4 to 0.8%, preferably 0.4 to 0.8%. It is 0.5%.
  • the biological tissue staining reagent according to the present embodiment may further contain an additive that promotes the penetration of the staining agent or antibody into the biological tissue.
  • an additive is a compound that promotes the penetration of a stain or antibody into a living tissue.
  • the compound can be selected by evaluating the permeation efficiency of the staining agent or antibody into the living tissue in the staining with the staining agent or antibody of the living tissue.
  • the additives include aromatic amines, aliphatic amides, nicotine amides, sulfamides, sulfonates, aminoalcohols, alcohols, sulfic acids, thio, excluding urea or urea derivatives represented by the following general formula (1). It is a compound of ureas or carboxylic acids.
  • R 1 , R 2 , R 3 , and R 4 are hydrogen atoms, halogen atoms, or hydrocarbon groups independently of each other, and there are a plurality of carbon atoms constituting the hydrocarbon group. A part of the carbon atom may be replaced with a hetero atom such as a nitrogen atom, an oxygen atom or a sulfur atom.
  • Hydrocarbon groups include chain hydrocarbon groups and cyclic hydrocarbon groups.
  • the additive may be a cyclic amine, a cyclic amide, a chain amine, a chain amide, a sulfo group, or a compound having a combination thereof, excluding urea or a urea derivative represented by the general formula (1).
  • the additive is an amino alcohol.
  • Amino alcohols include, for example, N, N, N', N'-tetrakis (2-hydroxypropyl) ethylenediamine (hereinafter referred to as "Quadrol"), triethanolamine, triisopropanolamine, 2-amino-1,3-propane. Diol, 3-methylamino-1,2-propanediol, 3-amino-1,2-propanediol, N, N, N, N-tetrakis (2-hydroxyethyl) ethylenediamine, N-butyldiethanolamine and the like.
  • the amino alcohols are particularly preferably Quadrol, triethanolamine, triisopropanolamine, 2-amino-1,3-propanediol and N-butyldiethanolamine.
  • additives More specifically exemplified additives are pyridazine, 2-cyanoacetamide, 5-methyl-2-pyrrolidone, methacrylamide, nicotine amide, N, N-bis (2-cyanoethyl) formamide, nicotinic acid hydrazide, 4-.
  • the four compounds shown in FIG. 1A are typical examples of additives having a neutral pH.
  • the two compounds shown in FIG. 1B are typical examples of additives having an alkaline pH.
  • a plurality of kinds of compounds may be combined or used as an additive. Any combination of one or more of the above-mentioned compounds may be used as an additive.
  • a preferred combination as an additive is from combination 1, N, N-diethylnicotinamide (# 0609) and pyrazine (# 1086) consisting of nicotinic acid hydrazide (# 0854) and pyrazine (# 1086) shown in FIG. 1 (A).
  • the concentration of the additive in the biological tissue staining reagent is not limited, but is, for example, 0.1 to 10% by weight, 0.5 to 8% by weight, 1 to 7% by weight, 2 to 6% by weight, or 2.5 to 5% by weight. %.
  • the concentration of each component is 0.1 to 10% by weight, 0.5 to 8% by weight, 1 to 7% by weight, 2 to 6% by weight or 2
  • the concentration of each component in the biological tissue staining reagent may be the same or different, which is 5 to 5% by weight.
  • the biological tissue staining reagent according to the present embodiment may contain the above-mentioned staining agent.
  • concentration of the dyeing agent in the biological tissue staining reagent is not particularly limited, and is set according to the volume, type, experimental conditions, and the like of the biological tissue to be stained.
  • concentration of the dyeing agent is, for example, 1-10 ⁇ g / mL, 2-8 ⁇ g / mL or 3-5 ⁇ g / mL.
  • the biological tissue staining reagent according to the present embodiment may contain the above-mentioned antibody.
  • the concentration of the antibody in the biological tissue staining reagent is not particularly limited, and is set according to the volume, type, experimental conditions, and the like of the biological tissue to be stained.
  • the antibody concentration is, for example, 0.05 to 50 ⁇ g / mL, preferably 3 to 40 ⁇ g / mL, and particularly preferably 5 to 20 ⁇ g / mL.
  • the biological tissue to be stained with the reagent is, for example, an animal-derived sample or a plant-derived sample.
  • the animal include animals such as fish, amphibians, reptiles, birds and mammals.
  • a mammalian biological tissue is preferable. Mammals are not particularly limited, and examples thereof include mice, rats, rabbits, guinea pigs, marmosets, dogs, cats, ferrets, pigs, cows, horses, monkeys, chimpanzees, and humans.
  • the biological tissue may be an individual excluding living humans, or an organ, tissue, cell mass or cell obtained from an individual of a multicellular organism.
  • the biological tissue is, for example, the entire brain or a part of the brain such as the cerebral hemisphere.
  • the biological tissue may be a sample that has been immobilized, especially for microscopic observation.
  • the biological tissue is immobilized by a known method using formaldehyde (FA), paraformaldehyde (PFA) or the like.
  • FFA formaldehyde
  • PFA paraformaldehyde
  • PBS phosphate buffered saline
  • Biological tissues include, for example, biological tissues injected with a fluorescent chemical substance, biological tissues stained with a fluorescent chemical substance, biological tissues transplanted with cells expressing fluorescent protein, and living organisms of genetically modified animals expressing fluorescent protein. It may be an organization or the like.
  • the biological tissue staining reagent contains a staining agent in advance.
  • the immobilized and degreased sample as a living tissue as described above is stained with a stain.
  • CUBIC-L water containing 10% by weight N-butyl diethanolamine and 10% by weight Triton X-100
  • CUBIC-1 (15% by weight Triton X-100, 25% by weight Quadrol
  • CUBIC-1A 10% by weight Triton X-100, 5% by weight Quadrol, 10% by weight water containing urea and 25 mM NaCl
  • the sample is exposed to a biological tissue staining reagent.
  • the time of exposure is not particularly limited as long as the time for the biological tissue staining reagent to infiltrate into the sample.
  • the sample is immersed in a biological tissue staining reagent at 37 ° C. for 2-5 days. After degreasing the sample, it is preferable to wash the sample with PBS or the like before performing the staining step. After the staining step, the sample may be washed with PBS or the like.
  • Whether or not the sample is stained can be confirmed by a known method using an optical microscope or the like that can detect the stain agent.
  • a frozen section may be prepared from the sample by a known method, and the frozen section may be observed with an optical microscope or the like.
  • Observation of the sample can be done using any kind of light microscope.
  • the sample may be observed with three-dimensional super-decomposition microscopy techniques (eg, STED, 3D PALM, FPALM, 3D STORM and SIM).
  • the sample may be observed by applying a multi-photon excitation type optical microscope technique.
  • the sample may also be observed using a one-photon confocal microscope or a light sheet fluorescence microscope (LSFM).
  • the biological tissue staining reagent contains the antibody in advance.
  • the sample is exposed to a biological tissue staining reagent as in the staining step.
  • the sample is immersed in a biological tissue staining reagent at 23-37 ° C or 28-34 ° C, preferably 32 ° C.
  • the exposure time in the immunostaining step is not particularly limited as long as the biological tissue staining reagent infiltrates the inside of the sample, and is 1 day to 8 weeks, 2 days to 7 weeks, 3 days to 6 weeks, 4 days to 5 weeks. Or 1 to 4 weeks.
  • FIG. 2 illustrates each step constituting a biological tissue staining method when performing nuclear staining and immunostaining on a sample that is the whole brain of a mouse, together with the required time and temperature.
  • the biological tissue staining method shown in FIG. 2 (A) includes a fixation step for immobilizing a sample, a degreasing step for degreasing a sample, a nuclear staining step for staining the nucleus of a sample, an immunostaining step, and a post-immobilization step. , Includes a refractive index (RI) adjustment step.
  • RI refractive index
  • the RI of the sample is adjusted and made transparent so that the sample can be observed three-dimensionally with an optical microscope.
  • the sample may be embedded in a gel or the like, if necessary.
  • a washing step of washing the sample with PBS or the like is performed between steps.
  • the biological tissue staining method illustrated in FIG. 2B includes an enzymatic treatment step in which a sample is treated with an enzyme between the nuclear staining step and the immunostaining step.
  • the sample is partially digested with hyaluronidase, collagenase-P, or the like to suppress the binding of the antibody to the end of the sample and facilitate the penetration into the inside.
  • the biological tissue staining method illustrated in FIG. 2C includes a pretreatment step of exposing the degreased sample to a weakly acidic buffer containing an antibody between the nuclear staining step and the immunostaining step. Since the chemical properties of the degreased sample are similar to those of an anion-charged electrolyte gel, when the sample and antibody are held under weakly acidic conditions, the antibody with a cation charge becomes more acidic than the isoelectric point due to electrical interaction. A reversible complex is formed with the sample (see Example 13 below). This makes it possible to improve the concentration and permeability of the antibody in the sample.
  • the pH of the weakly acidic buffer is, for example, 4 to 6, 4.5 to 5.5 or 4.8 to 5.2.
  • the pH of the weakly acidic buffer is 5.
  • the weakly acidic buffers are, for example, citrate buffers and acetate buffers.
  • the weakly acidic buffer may contain a salt having a predetermined concentration, for example, 100 to 500 mM, 100 to 300 mM or 100 to 200 mM.
  • the weakly acidic buffer solution may further contain a compound or the like that promotes the penetration of the antibody into the living tissue.
  • the enzyme treatment step and the pretreatment step may be used in combination.
  • the sample may be washed after the enzyme treatment step, and then the pretreatment step may be performed.
  • the biological tissue staining reagent according to the present embodiment can perform 3D staining even for biological tissue containing a fluorescent protein without fading the fluorescent protein. Therefore, the biological tissue staining reagent can be applied to a wide range of biological tissues.
  • the biological tissue staining reagent can sufficiently and uniformly permeate various stains into the defatted biological tissue. This makes it possible to more reliably label the target of living tissue.
  • the biological tissue staining reagent according to the present embodiment can sufficiently and uniformly permeate the defatted biological tissue even if it is an antibody. Furthermore, as shown in Example 7 below, the biological tissue staining reagent according to the present embodiment can obtain a good signal-background ratio (SBR), and thus is more accurate in, for example, image analysis of stained biological tissue. Information can be obtained.
  • SBR signal-background ratio
  • the biological tissue staining reagent according to this embodiment can be incorporated into an existing 3D clearing staining method, and the antibody can penetrate into the sample. Further, as shown in Examples 9 and 10 below, the biological tissue staining reagent reliably labels the target without crossing even if the staining agent and the antibody in the same sample are used in combination or a plurality of types of antibodies are used. can do. Further, the biological tissue staining reagent can be applied to various antibodies as shown in Example 12 below.
  • a pretreatment step of exposing the degreased biological tissue to a weakly acidic buffer solution containing an antibody may be included. This improves tissue enrichment and tissue permeability of the antibody, ensuring that the target in the tissue is labeled.
  • the biological tissue staining method as shown in FIGS. 2 (A) and 2 (B), even if the immunostaining step is performed without performing the pretreatment step after the nuclear staining step, the target in the tissue is surely performed. Can be labeled.
  • the biological tissue staining reagent and the biological tissue staining method according to the present embodiment can be applied not only to 3D staining but also to so-called 2D staining, which stains tissue sections.
  • the stain agent and the antibody can be sufficiently and uniformly permeated into the degreased biological tissue. Therefore, by staining a nerve-related marker such as c-Fos, it is possible to analyze a functional neural circuit, a neuron reaction, or the like at a cell-level resolution.
  • a nerve-related marker such as c-Fos
  • the biological tissue staining reagent according to the present embodiment contains the above-mentioned additives to promote the penetration of the staining agent and the antibody into the sample.
  • the stainability inside the sample is enhanced, and the entire sample can be uniformly stained (see mainly Examples 16 to 18 and 20 below).
  • the above-mentioned additive is not limited to the biological tissue staining reagent according to the present embodiment, and promotes the penetration of the staining agent and the antibody into the sample even when the sample is stained with a conventional buffer for staining. To do.
  • a biological tissue staining kit in another embodiment, includes the above-mentioned biological tissue staining reagent and a staining agent.
  • the biological tissue staining kit may include the above-mentioned biological tissue staining reagent and an antibody.
  • the biological tissue staining kit may further include the above-mentioned weakly acidic buffer solution.
  • the biological tissue staining kit may further include a washing buffer solution containing a nonionic surfactant having a concentration higher than 1%, a salt of 200 mM or more, and a neutral buffer solution.
  • the wash buffer is suitable for washing the sample after immunostaining described above. After the immunostaining step, the sample stored overnight at 4 ° C. may be washed with a washing buffer.
  • the biological tissue staining kit may further include an instruction manual or instructions.
  • the instruction manual or instruction manual describes, for example, the composition of the biological tissue staining reagent and the protocol related to the above-mentioned biological tissue staining method.
  • the above-mentioned biological tissue staining reagent may contain other additives such as a pH adjuster, an osmoregulator, a preservative, and a sample drying inhibitor.
  • the additive may be included in the biological tissue staining kit separately from the biological tissue staining reagent.
  • the biological tissue staining kit is a package provided with a container containing a specific material such as an ingredient.
  • the biological tissue staining kit may be provided by mixing the plurality of components in the same container or in separate containers.
  • the instruction manual or instruction manual may be recorded on a recording medium such as paper or magnetic tape, a computer-readable disc, tape, or an electronic medium such as a CD-ROM.
  • the biological tissue staining kit may include a container containing a diluent, a solvent, a washing solution or other reagents.
  • the biological tissue staining kit may include the instruments and reagents necessary to carry out the procedures to realize the application of the kit.
  • Immunostaining buffer (1 ⁇ ) 10 mM HEPES (pH 7.5), 10% Triton X-100, 200 mM NaCl, 0.5% casein Immunostaining additive: (10 ⁇ ) 25% Quadrol Staining tube: 15 mL Staining tube
  • Immunostaining wash buffer 10 mM HEPES (pH 7.5), 10% Triton X-100 and 500 mM NaCl
  • Post-immunostaining fixative saturated FA (37-38%) / methanol * * After immunostaining, the fixative is diluted to 1% in immunostaining wash buffer using a staining tube.
  • the biological tissue staining method according to the present embodiment includes a simultaneous staining step of exposing a sample to a biological tissue staining reagent containing a staining agent, an antibody for immunostaining, and an additive. Similar to the staining step, the sample is exposed to a biological tissue stain reagent.
  • the sample in the co-staining step, is immersed in a biological tissue staining reagent at 23-37 ° C or 28-34 ° C, preferably 32 ° C.
  • the sample may be maintained at a first temperature and then at a second temperature lower than the first temperature.
  • the time for maintaining the first temperature may be longer, the same, or shorter than the time for maintaining the second temperature.
  • the first temperature is 23-37 ° C and the second temperature is 2-6 ° C.
  • the exposure time in the simultaneous staining step is not particularly limited as long as the biological tissue staining reagent infiltrates into the inside of the sample, and the sample is immersed in the biological tissue staining reagent for, for example, 3 weeks, 2 weeks, 1 week, or 2 to 6 days. Will be done.
  • FIG. 3 illustrates each step constituting a biological tissue staining method when nuclear staining and immunostaining are simultaneously performed on a sample that is the whole brain of a mouse.
  • the biological tissue staining method shown in FIG. 3 since the nuclear staining step and the immunostaining step are performed at the same time, the period required for nuclear staining and immunostaining can be shortened as compared with the case where nuclear staining and immunostaining are not performed at the same time.
  • the enzyme reaction step for improving the permeability of the antibody shown in FIG. 2A is not required in the biological tissue staining method shown in FIG.
  • the time required for staining the sample can be significantly shortened as shown in Example 18 below. ..
  • the initial concentration of the antibody and stain in the biological tissue stain reagent when the sample is exposed to the biological tissue stain reagent is extremely important for three-dimensionally permeating the sample with the antibody and stain.
  • a phase separation inducing reagent that is phase-separated from water is used in the staining step of exposing the sample to the biological tissue staining reagent.
  • the biological tissue staining method according to the present embodiment will be mainly described as being different from the first embodiment.
  • the phase separation inducing reagent may be either a liquid phase, a gas phase or a solid phase as long as it is phase-separated from water, which is the main component of the biological tissue staining reagent.
  • the phase separation inducing reagent is an oil such as mineral oil that is immiscible with water.
  • the phase separation inducing reagent is difficult to mix with the surfactant contained in the biological tissue staining reagent, its specific gravity is close to the specific gravity of the biological tissue staining reagent, and its viscosity is not excessively high. Examples of those satisfying this condition include KF-96 (manufactured by Shinetsu Silicone Co., Ltd., viscosity 50), which is one of the dimethyl silicone oils.
  • the biological tissue staining reagent according to the above embodiment containing at least one of an antibody and a staining agent, a sample, and a phase separation inducing reagent are mixed. Since the phase separation inducing reagent is phase-separated from water, the outside of the sample and the biological tissue staining reagent is covered with the phase separation inducing reagent. The sample is exposed to the biological tissue staining reagent separated from the phase separation inducing reagent, and at least one of the antibody and the staining agent penetrates the sample.
  • the staining agent or the antibody in the biological tissue staining reagent can be concentrated even if the amount of the antibody and the staining agent is the same as in the case where the phase separation inducing reagent is not used.
  • the concentration of the dyeing agent in the biological tissue staining reagent according to the present embodiment is, for example, 10 to 100 ⁇ g / mL, 20 to 80 ⁇ g / mL, or 30 to 50 ⁇ g / mL.
  • the concentration of the antibody in the biological tissue staining reagent according to the present embodiment is, for example, 0.5 to 500 ⁇ g / mL, preferably 30 to 400 ⁇ g / mL, and particularly preferably 50 to 200 ⁇ g / mL.
  • the biological tissue staining method according to the present embodiment using the phase separation induction reagent is not limited to the biological tissue staining reagent according to the first embodiment, and is an antibody when the sample is exposed to a conventional buffer solution for staining. Alternatively, it is effective in increasing the initial concentration of the stain.
  • the staining buffer containing at least one of an antibody and a staining agent, a sample, and a phase separation inducing reagent may be mixed. ..
  • the biological tissue staining reagent to which the sample is exposed is compared with the case where the phase separation inducing reagent is used and the phase separation inducing reagent is not used with the same amount of antibody or stain.
  • the initial concentration of antibody or stain can be increased. Therefore, the antibody or stain can be efficiently permeated into the sample at low cost (see Example 19 below).
  • a biological tissue staining kit including a buffer solution for staining and the above-mentioned phase separation induction reagent is provided.
  • the buffer solution for staining in the biological tissue staining kit is preferably the biological tissue staining reagent according to the first embodiment.
  • a biological tissue staining auxiliary material containing a substance that phase-separates from water is provided.
  • phase separation induction reagent according to the present embodiment may be applied to the simultaneous staining step in the above-mentioned second embodiment. As a result, the time required for staining the sample can be further significantly reduced (see Example 20 below).
  • a phase separation inducing reagent is added to the biological tissue staining kit according to the first embodiment.
  • An example of the specifications of the phase separation inducing reagent is mineral oil or dimethyl silicone oil (KF-96 (viscosity 50), manufactured by Shinetsu Silicone Co., Ltd.).
  • CUBIC-L 10% by weight N-butyldiethanolamine (# B0725 manufactured by Tokyo Chemical Industry Co., Ltd.) 10% by weight Triton X-100 (# 12967-45 manufactured by Nacalai Tesque)
  • Triton X-100 (# 12967-45 manufactured by Nacalai Tesque)
  • Two-stage distilled water TS 10% by weight Triton X-100 500 mM NaCl 0.05% by weight NaN 3
  • CUBIC-1A 10% by weight Triton X-100 5% by weight Quadrol (# T0781 manufactured by Tokyo Chemical Industry Co., Ltd.) 10% by weight urea (# 35904-45 manufactured by Nacalai Tesque) 25 mM NaCl (# 31319-45 manufactured by Nacalai Tesque)
  • Two-stage distilled water HS 10 mM HEPES (pH 7.5) (manufactured by Nacalai Tesque Co.
  • Dyeing buffer solution for dyeing A: 10% by weight Triton X-100 500 mM NaCl 5% by weight Quadrol
  • Two-stage distilled water dyeing agent dyeing buffer solution B 10% by weight Triton X-100 500 mM NaCl 5% by weight Quadrol 10 wt% urea two-stage distilled water Buffer solution for immunostaining A: 10 mM HEPES (pH 7.5) 10% by weight Triton X-100 200 mM NaCl 0.05% by weight NaN 3
  • Immunostaining buffer B 10 mM HEPES (pH 7.5) 0.1% by weight or 5% by weight Triton X-100 200 mM arginine-HCl 0.5% (w / v) Casein (manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 1 3D nuclear staining with high concentration salt and detergent (sample preparation) Euthanize a 5-month-old ICR mouse (manufactured by Claire Japan) with an excessive amount (intraperitoneal> 100 mg / kg) of pentobarbital (pentobarbital sodium salt (Nacalai Tesque, # 02095-04)). It was transcardially perfused and fixed with 10 mL phosphate buffered saline (PBS) containing 10 U / mL heparin followed by 20-30 mL PBS containing 4% PFA. The whole brain was then removed from the head and further fixed in PBS containing 4% PFA for 8-24 hours at 4 ° C. The fixed whole brain was immersed in CUBIC-L at 37 ° C. for 5 days to obtain a degreased whole brain. A sample was a degreased cerebral hemisphere cut from the degreased whole brain.
  • PBS phosphate buffered saline
  • An electric xy stage (manufactured by PRIOR) and software (cellSensDimencetion 1.18, manufactured by Olympus) were used to obtain a 16-bit image including the entire frozen section.
  • Fiji / ImageJ was used for computer processing of images.
  • FIG. 4 shows a nuclear-stained image of each frozen section at positions 2, 3 and 4 mm from the outside. A uniform nuclear-stained image was obtained throughout the frozen section.
  • Example 2 3D nuclear staining at different salt concentrations (sample preparation)
  • the whole brain of an 8-week-old C57BL / 6 mouse (manufactured by Nippon SLC Co., Ltd.) fixed in the same manner as in Example 1 was immersed in CUBIC-1A at 37 ° C. for about 10 days to obtain a degreased whole brain.
  • a sample was a degreased cerebral hemisphere cut from the degreased whole brain.
  • the cells were immersed in PBS containing DAPI (1: 500, manufactured by Dojindo Molecular Technologies, # D0523) for 30 minutes at room temperature.
  • the obtained frozen section was observed with a fluorescence microscope in the same manner as in Example 1.
  • (result) 5 (A) and 5 (B) show nuclear-stained images of frozen sections of 3D-stained samples with PI and SYTO 16, respectively.
  • PI ionized dye
  • SYTO 16 more uniform nuclear stained images were obtained over the frozen sections under the conditions of HS and CUBIC-1A with high NaCl concentrations. I was. It was also confirmed that the nucleus can be detected by post 2D staining with DAPI.
  • Example 3 3D nuclear staining with various stains (sample preparation) The whole brain fixed in the same manner as in Example 2 was immersed in CUBIC-1A at 37 ° C. for about 10 days for degreasing treatment, and a cut cerebellar hemisphere was obtained as a sample.
  • the sample was immersed in CUBIC-1A having a NaCl concentration of 500 mM and stained at 32 ° C. for 2 days.
  • the dyes used were DAPI (1: 400), SYSTEM-G (1: 2500, Thermo Fisher Scientific, # S7020), RedDot2 (1: 150, Biotium, # 40061) or NeuroTrace (1: 150). , Thermo Fisher Scientific, manufactured by # N21483).
  • a frozen section was prepared from the sample in the same manner as in Example 2. The obtained frozen section was observed with a fluorescence microscope in the same manner as in Example 1.
  • FIG. 6 shows a nuclear-stained image of a frozen section of a sample stained with DAPI, SYSTEMG, RedDot2 and NeuroTrace. With any of the stains, a uniform nuclear stained image was obtained over the frozen section. This showed that CUBIC-1A with increased salt concentration could perform uniform 3D nuclear staining with various stains.
  • Example 4 3D nuclear staining with a stain buffer (sample preparation) A cerebral hemisphere sample was obtained in the same manner as in Example 1 except that an 8-week-old C57BL / 6 mouse was used.
  • the sample was immersed in a stain buffer A mixed with SYSTEMX-G (1: 2500) and stained at 37 ° C. for 3 days.
  • the sample was similarly stained with the stain buffer B, which is a mixture of the stain buffer A and urea.
  • a frozen section was prepared from the sample in the same manner as in Example 1 above, and the frozen section was observed.
  • (result) 7 (A) and 7 (B) show nuclear-stained images of frozen sections of the sample stained with the stain A and the stain B, respectively. A uniform nuclear-stained image was obtained throughout the frozen section with and without urea. Compared with the urea-containing dye dyeing buffer B, the urea-free dye dyeing buffer A gave an overall stronger signal.
  • Example 5 3D immunostaining with medium concentration salt and detergent (sample preparation) A sample having a thickness of about 3 mm was obtained by coronal cutting from the cerebral hemisphere that had been degreased in the same manner as in Example 1.
  • the sample was immersed in immunostaining buffer A in which a mouse anti-NeuN antibody (Anti-NeuN-A488 antibody, manufactured by Merck Millipore, MAB377X) labeled with the fluorescent dye Alexa488 was mixed at a concentration of 10 ⁇ g / mL, and the sample was immersed at 32 ° C. Stained for 4 days.
  • NeuN is a marker for nerve cell nuclei.
  • a frozen section having a coronal cross section and a thickness of 50 ⁇ m was prepared from the stained sample, and the frozen section was observed in the same manner as in Example 1 above.
  • FIG. 8 shows an immunostained image of the frozen section. A uniform nerve nucleus staining image was obtained throughout the frozen section.
  • Example 6 Immunostaining with different concentrations of surfactant (sample preparation) The whole brain of an 8-week-old C57BL / 6 mouse fixed in the same manner as in Example 1 was immersed in CUBIC-1A at 37 ° C. for about 10 days to obtain a whole brain degreased as a sample. A 50 ⁇ m-thick frozen section of the whole sagittal section was prepared from the sample and used for staining.
  • (result) 9 (A) and 9 (B) show immunostaining images of frozen sections stained with buffer B for immunostaining. A stronger signal was obtained at higher concentrations of Triton X-100.
  • 10 (A) and 10 (B) show immunostaining images of frozen sections stained with buffer C for immunostaining. When the concentration of Triton X-100 was 10% by weight, a stronger signal than 5% by weight was obtained.
  • Example 7 Comparison of immunostaining buffer and PBST buffer (sample preparation) A sample obtained by immersing the whole brain of an 8-week-old C57BL / 6 mouse fixed in the same manner as in Example 1 in CUBIC-L for 3 days was subjected to degreasing treatment. A 50 ⁇ m-thick frozen section of the whole sagittal section was prepared from the sample and used for staining.
  • Frozen sections were immersed in immunostaining buffer E, which was a mixture of 1 ⁇ g / mL mouse anti-NeuN antibody and Fab-anti-mouse IgG 1- A594 at a weight ratio of about 1: 0.75, and 24 at 32 ° C. Time stained. Frozen sections were prepared from the stained sample. For comparison, the frozen section was similarly stained with PBST buffer (0.1% (v / v) Triton X-100 and 3% donkey serum (Sigma-Aldrich, # D9663)), and the frozen section after staining was used. Was observed in the same manner as in Example 1 above.
  • immunostaining buffer E was a mixture of 1 ⁇ g / mL mouse anti-NeuN antibody and Fab-anti-mouse IgG 1- A594 at a weight ratio of about 1: 0.75, and 24 at 32 ° C. Time stained. Frozen sections were prepared from the stained sample. For comparison, the frozen section was similarly stained with PBST buffer (0
  • FIG. 11 shows a nucleus-stained image of each sample of the frozen section stained with the immunostaining buffer E and the frozen section stained with the PBST buffer.
  • the enlarged image of the portion indicated by "1" and "2" at the upper left end showed that the signal-to-noise ratio was improved by staining with the immunostaining buffer E rather than the PBST buffer.
  • Example 8 Comparison with Other 3D Clearing Staining Method AbScale (Hiroshi Hama, 10 persons outside), which is a 3D clearing dyeing method that has already been reported, "ScaleS: an optical clearing buffer for bioscopic imaging", N. , 2015, 18, 1518-1529), iDISCO + (December 2016 version https://idisco.info/idisco-protocol/) disclosed in Non-Patent Document 2 and the immunostaining buffer E.
  • the staining method used the degree of antibody penetration into the defatted sample was determined by immersing the cerebral hemisphere of an 8-week-old C57BL / 6 mouse fixed in the same manner as in Example 1 in CUBIC-L at 37 ° C. for 3 days. Compared.
  • ScaleS0 is 20% (w / v) D- (-)-sorbitol (manufactured by Nacalai Tesque, # 32021-95), 5% (w / v) glycerol (manufactured by Nacalai Tesque, # 17018-25).
  • ScaleA2 is obtained by dissolving 10% (w / v) glycerol, 4M urea, and 0.1% (w / v) Triton X-100 in distilled water.
  • ScaleB4 is 8M urea dissolved in distilled water.
  • iDISCO + original
  • the fixed samples were sequentially treated with 20%, 40%, 60%, 80% and 100% methanol in the order shown in FIG. 12 to dehydrate the samples, and 66% dichloromethane (DCM) / 33.
  • the sample was shaken overnight in% methanol.
  • the sample was then washed with 100% methanol and treated overnight in methanol containing 5% hydrogen peroxide.
  • the sample was sequentially re-dehydrated with 80%, 60%, 40% and 20% methanol, and the sample was washed.
  • the sample was treated with a permeation solution and a blocking solution.
  • immunostaining buffer E For staining with immunostaining buffer E, the samples were immersed in 50% CUBIC-L and 100% CUBIC-L in the order shown in FIG. 12, washed, and then with mouse monoclonal anti-NeuN IgG (10 ⁇ g / mL) and A488. The sample was immersed in immunostaining buffer E mixed with a labeled anti-mouse secondary Fab (Jackson ImmunoResearch laboratories, # 115-547-185) at a weight ratio of 1: 1 and stained at 32 ° C.
  • immunostaining buffer E mixed with a labeled anti-mouse secondary Fab (Jackson ImmunoResearch laboratories, # 115-547-185) at a weight ratio of 1: 1 and stained at 32 ° C.
  • FIG. 13 showing images of frozen sections of each sample, in the case of staining with AbScale (original) and iDISCO + (original), the nerve nucleus staining image inside the sample was not completely obtained.
  • the staining using the immunostaining buffer E according to the example a nucleon-stained image inside the sample was obtained well.
  • AbScale and iDISCO + were clearly improved in the nerve nucleus staining image inside the sample by staining with the immunostaining buffer E. From this, it was shown that the antibody can be sufficiently permeated into the living tissue by the immunostaining buffer E even in combination with the existing 3D clear staining method.
  • the concentration of the antibody, the use of the Fab antibody, the temperature at the time of staining, etc. are adjusted.
  • the penetration efficiency of the antibody into the sample could be improved.
  • Example 9 Two-color 3D staining of the whole brain A protocol (hereinafter referred to as “CUBIC-HV”) applicable to 3D tissue staining and image analysis according to the following examples is shown in FIG. 2 (A). Illustrated. For nuclear staining in CUBIC-HV, the above-mentioned buffer solution B for staining with a stain was used. For immunostaining in CUBIC-HV, the above-mentioned buffer solution E for immunostaining was used. As shown in FIG. 2 (B), an enzyme treatment was arbitrarily added to CUBIC-HV.
  • Example preparation A sample obtained by immersing the whole brain of a fixed 8-week-old C57BL / 6 mouse in CUBIC-L at 37 ° C. for 3 days in the same manner as in Example 1 was subjected to degreasing treatment.
  • the sample was washed with PBS and stored in PBS containing 0.05% NaN 3 until use at 4 ° C.
  • the sample was immersed in a stain buffer solution B mixed with SYSTEMX-G (1: 2500) and stained at 37 ° C. for 5 days.
  • Enzyme treatment After washing the sample, it was treated with an enzyme.
  • enzyme treatment samples were sampled with CAPSO buffer (10 mM CAPSO (Sigma-Aldrich, # C2278) and 150 mM NaCl, pH 10) containing hyaluronidase (Sigma-Aldrich, # H4272 or H3884, 3 mg / mL). It was treated at 37 ° C. for 24 hours.
  • CUBIC-R is a two-stage distilled water containing 45% by weight of antipyrine and 30% by weight of nicotinamide, buffered with 0.5% (v / w) N-butyldiethanolamine (pH to 10). is there.
  • the sample was washed with PBS and then post-fixed with 1% formaldehyde (FA) at room temperature for 5 hours.
  • F formaldehyde
  • the sample was immersed in CUBIC-R diluted 1: 1 with water for 1 day at room temperature.
  • the sample was immersed in undiluted CUBIC-R at room temperature for 2-3 days.
  • the sample was embedded in a gel prepared with 2% (w / v) agarose dissolved in CUBIC-R.
  • the sample was observed in 3D with a light sheet microscope (LSFM) equipped with left and right sheet illumination units (manufactured by Olympus) and two macro zoom microscopes (MVX10, manufactured by Olympus) arranged on the front side and the rear side of the sample.
  • LSFM light sheet microscope
  • MVX10 macro zoom microscopes
  • the sheet illumination was generated by a sheet illumination unit having a cylindrical lens.
  • the thickness of the seat illumination was adjusted to a range of about 5 to 10 ⁇ m with a mechanical slit.
  • a laser, ⁇ 32 single band pass filter (520 / 44 nm and 641/75 nm, manufactured by Semirock), a tube lens (MVX-TV XC, manufactured by Olympus) and an sCMOS camera (Zyla 5.5, manufactured by Andor) were used.
  • the transparent sample embedded in the sample holder and gel is subjected to an electric xyz stage (the x and y stages are MTS50 / MZ8E manufactured by Thorlabs, and the z stage is manufactured by Physik mixture).
  • M-112.1 DG M-112.1 DG and placed in a sample chamber with an irradiation and imaging window filled with an RI conditioning oil mixture consisting of HIVAC-F4 and mineral oil (RI is about 1.51).
  • RI is about 1.51
  • a sample was scanned in the z direction with a step size of 9 ⁇ m to obtain a 16-bit image.
  • Multiple z-stack data were acquired by moving the focus of the sheet illumination so that the beam waist confocal parameters covered the entire sample of each xy image after tiling. All electronic devices were controlled by LabVIEW software (manufactured by National Instruments).
  • the brain image obtained by LSFM was processed as follows using Fiji / ImageJ.
  • one image was constructed by tiling six images (three places x light irradiation from the left and right) in which the focus of the sheet illumination was moved at each z position.
  • the x position at the end of the tiling was determined by collecting images in which the focal position of the light sheet was moved at the z position in the center of the sample and comparing the signal contrast of each image. Prior to tiling, the average intensity between the images obtained by moving the focal position of the light sheet at each z-step was equalized. After tiling, the obtained 16-bit image was converted to 8-bit and blank areas were excluded.
  • the noise signal was then filtered out by the following filter: 1) Select noise pixels outside the brain region with the intensity threshold and apply ImageJ's "remove outlier” function. 2) Select a noise pixel whose intensity threshold is larger than the staining signal, and apply the “remove outlier” function of ImageJ or replace the intensity with 0. 3) Select noise pixels by combining intensity threshold and manual selection, and apply ImageJ's "clear” function. If necessary, the xy positions between the different channels were manually matched.
  • the z-stack data obtained by LSFM and processed as described above was reconstructed with Imaris software (version 8.4, manufactured by Bitplane) and visualized as a pseudo color image. The brightness and contrast of the pseudo-color image were adjusted.
  • FIG. 14A shows, from the left, an image showing the SYSTEM-G signal, an image showing the NeuN signal, and an image obtained by merging these images.
  • LSFM gave a z-stack image containing the sample in a nearly isotropic voxel size (8.3 ⁇ 8.3 ⁇ 9 ⁇ m).
  • FIG. 14B shows an image of the sagittal plane (yz) or coronal plane (xz) of the data shown in FIG. 14 (A). Homogeneous staining and images could be obtained at almost isotropic cell-level resolution.
  • Example 10 Multicolored 3D staining of the whole brain Tissue staining facilitates staining and visualization of multiple targets in a single specimen than genetic techniques.
  • the entire mouse brain was 3D stained according to CUBIC-HV with BOBO-1 and three different antibodies associated with GABA neurons as follows.
  • a sample degreased was obtained by immersing the whole brain of a fixed 8-week-old C57BL / 6 mouse in CUBIC-L for 3 days in the same manner as in Example 1.
  • the sample was washed with PBS and stored in PBS containing 0.05% NaN 3 until use at 4 ° C.
  • the sample was immersed in a dyeing buffer solution B mixed with BOBO-1 (1: 400) and stained at 37 ° C. for 5 days. After washing the sample, it was enzymatically treated with hyaluronidase in the same manner as in Example 9.
  • the sample was washed with PBS, mouse monoclonal anti-PV IgG 1 / Fab-Cy3 (1:50, manufactured by Swant, # PV235), rat monoclonal anti-Sst IgG 2b / Fab-A594 (1:10, Millipore).
  • the sample was washed with PBS and then fixed at room temperature with 1% FA for 5 hours. After washing the sample, RI adjustment was performed with CUBIC-R, and a 3D image was obtained as described above using LSFM.
  • FIG. 15 shows images of channels related to PV (b), Sst (c) and Gad67 (d) together with channels of BOBO-1.
  • the voxel size was 8.3 x 8.3 x 9 ⁇ m.
  • An image in which these four channels are superimposed is shown in FIG. 15e.
  • F in FIG. 15 and g in FIG. 15 show images of a horizontal plane (xy) in which a part of the brain is enlarged.
  • FIG. 15h shows an image of the coronal plane (xz) of the portion shown in FIG. 15e.
  • I in FIG. 15 and j in FIG. 15 show enlarged images of the portions shown in h in FIG. 15, respectively.
  • Appropriate antibody types (host species and isotypes) and stains, excitation light and bandpass radiation filters have shown that signals can be identified from different fluorescent channels.
  • Example 11 Multicolored 3D staining of whole brain expressing fluorescent protein
  • the whole brain labeled with fluorescent protein was 3D stained as follows according to CUBIC-HV using two kinds of antibodies.
  • Th1-YFP-H transgenic mice 8-week-old Th1-YFP-H transgenic mice (Feng, GP, et al., 8 outside, "Imaging neuronal subsets in transgenic mice expressing multipple spectral 2000, GFP", year 2000, GFP Regarding ⁇ 51), a sample obtained by defatting the whole brain fixed in the same manner as in Example 1 was immersed in CUBIC-L for 3 days. After washing the sample, it was enzymatically treated with hyaluronidase in the same manner as in Example 9. YFP is expressed in the brain of Th1-YFP-H transgenic mice.
  • the sample was washed with PBS for mouse monoclonal anti-Dat IgG 1 / Fab-A594 (1: 100, Abcam, # ab128848) and goat polyclonal anti-ChAT IgG / Fab-A647 (1:20, Millipore).
  • the sample was immersed in buffer E for immunostaining, which was mixed with # AB144) and further added 2.5 wt% Quadrol, and stained at 32 ° C. for 15 days, and then at 4 ° C. for 5 days.
  • the sample was washed with PBS and then fixed at room temperature with 1% FA for 5 hours.
  • CUBIC-R + (M) is 0.5% (v / w) N in two-stage distilled water containing 45% by weight of antipyrine and 30% by weight of N-methylnicotinamide (# M0374 manufactured by Tokyo Chemical Industry Co., Ltd.). -It is buffered (pH to 10) with butyldiethanolamine.
  • FIG. 16k shows an image in which the channels of Chat, Dat and YFP are superimposed.
  • the voxel size was 8.3 x 8.3 x 9 ⁇ m.
  • L in FIG. 16 shows an enlarged image of the portion indicated by “l” in k in FIG. M in FIG. 16 shows an image of a horizontal plane of a part of the brain.
  • N in FIG. 16 shows an enlarged image of the portion shown in m in FIG. It can be confirmed that the image of the corticospinal tract labeled with YFP and the image of the projection pathway of Dat immunostained dopaminergic neurons are adjacent to each other.
  • O to q of FIG. 16 show images of the reconstructed sagittal plane relating to the portion indicated by “oq” in k of FIG. “*” In k to q of FIG. 16 indicates a non-specific vascular signal due to insufficient perfusion of the sample.
  • each target is labeled with a different dye without reducing the signal of FP expressed in the brain, and each target station. It was shown that an image that can identify the presence can be obtained.
  • Example 12 Selection of antibody for 3D staining Using the hemi-brain of 8-week-old C57BL / 6 mice degreased with CUBIC-L or CUBIC-1A as in Example 1 or 2 above. Various antibodies were stained according to CUBIC-HV. In image analysis, signal intensity, SBR, compatibility with enzyme treatment and penetration efficiency were examined, and antibodies preferable for 3D staining with CUBIC-HV were identified (see Tables 1 and 2).
  • Example 13 Reversible complex formation between antibody-tissue by electrical interaction
  • the antibody used for immunostaining is concentrated in the tissue and penetrated into the tissue in order to reliably label the target in the tissue. It is expected that pretreatment to improve the performance will be applied.
  • an anion-charged polymer such as polyglutamic acid and an antibody are incubated under weakly acidic conditions, the antibody becomes more acidic than the isoelectric point, and the antibody having a cation charge forms a reversible complex with the polymer by electrical interaction.
  • the formation of a complex between the antibody and the tissue due to electrical interaction was confirmed.
  • the cerebral hemisphere of an 8-week-old C57BL / 6 mouse fixed in the same manner as in Example 1 was immersed in CUBIC-L at 37 ° C. for 3 days to obtain a degreased sample.
  • Samples were incubated overnight at 37 ° C. in a mixture of Alexa488-labeled anti-mouse IgG antibody in 10 mM citrate buffer (pH 5) containing a given concentration of NaCl.
  • an antibody that does not cause an antigen-antibody reaction with the tissue was used in principle.
  • the sample was irradiated with a blue light illuminator, photographed with a digital camera equipped with an orange filter, and then channels were separated for each color with Fiji / ImageJ.
  • Example 14 Construction of evaluation system for antibody permeation efficiency (sample preparation) A small column of the cerebral cortex region was prepared as a sample from a porcine brain slice fixed with 4% PFA for about 5 days using a biopsy puncher having a diameter of 1.5 mm. A sample degreased by immersing in CUBIC-L at 37 ° C. for about 2 days was used for staining.
  • FIG. 18 (result) 18 (A) and 18 (B) show images of frozen sections of a sample stained with immunostaining buffer E supplemented with distilled water and Quadrol, respectively.
  • the addition of Quadrol increased the stainability inside the sample, reflecting the effect of increasing the penetration of the antibody.
  • a representative region in which the left and right sides of the column were stained almost evenly was selected using microscopic images, and a graph of brightness values was prepared.
  • the ratio (peak-bottom ratio) of the maximum brightness (peak) on the left and right in the graph to the minimum brightness (bottom) in the sample is high in the sample without Quadrol, and the internal stainability is increased in the sample with Quadrol added.
  • the compound was searched for as follows using the peak-bottom ratio as a quantitative index of antibody permeability to tissues.
  • Example 15 Search for compounds that improve the efficiency of antibody penetration into tissues
  • Each of the 426 compounds listed was added to the immunostaining buffer E at 2.5% by weight and stained in the same manner as in Example 14. Was carried out.
  • the primary antibody was changed from an anti-Synaptophysin antibody to an anti-neurofilament antibody (Anti-phospho-neurofilament SMI31, manufactured by BioLegend, # 801601, 20 ⁇ g / mL), and each of the 137 compounds listed separately was stained in the same manner. carried out. From the microscopic images of the frozen sections, the antibody permeability at 24 hours was evaluated by the peak-bottom ratio.
  • the peak-bottom ratio of each compound when the anti-Synaptophysin antibody is used is shown in FIG. In FIG. 19, the peak-bottom ratio when water is added to the immunostaining buffer E as a compound is indicated by an arrow.
  • Tables 3 to 7 show compounds having a peak-bottom ratio smaller than that of Quadrol, which had a peak-bottom ratio of about 2.8.
  • Table 8 shows the compounds in which the peak-bottom ratio when the anti-neurofilament antibody was used showed a peak-bottom ratio smaller than that of Quadrol, and a clear penetration-increasing effect was obtained from the stained image.
  • cyclic amines cyclic amides, chain amines, chain amides, sulfo groups, or compounds having a combination thereof. From these identified compounds, a compound that does not strongly inhibit antibody staining and a compound that can obtain an effect of increasing permeation even with a plurality of other antibodies were selected and used as additives in the following examples.
  • Example 16 3D immunostaining with a typical combination of additives
  • the cerebral hemisphere degreased in the same manner as in Example 1 was immersed in buffer E for immunostaining and stained at 32 ° C. for 3 to 4 days.
  • the immunostaining buffer E contains an anti-Synaptophysin antibody (# D073-3, 20 ⁇ g / mL), a mouse monoclonal anti-Gad67 IgG 2a (Merck Millipore, # MAB5406, 10 ⁇ g / mL), and a mouse monoclonal anti-Dat.
  • IgG 1 (abcam, # ab128848, 10 ⁇ g / mL) or mouse monoclonal anti-Th antibody (abcam, # 13786, 10 ⁇ g / mL) and Alexa594-labeled Fab-anti-mouse or rabbit IgG (Abcam, 10 ⁇ g / mL) for each primary antibody.
  • Fab-anti-mouse IgG 1- A594 (# 115-587-185), Fab-anti-mouse IgG 2a- A594 (# 115-587-186), Fab-anti-lab 59, manufactured by Jackson ImmunoResearch laboratories.
  • FIGS. 20 A), (B), (C) and (D) showing images of frozen sections of each sample stained with an antibody against Synaptophysin, Gad67, Dat or Th, respectively, the sample was sampled by the combination of each additive.
  • the stainability inside was increased.
  • the effect of the additive on promoting the penetration of the antibody was shown.
  • the use of additive # 0146 gave a stronger penetration promoting effect.
  • Example 17 3D nuclear staining with a typical combination of additives
  • the hemi-brain treated with degreasing in the same manner as in Example 1 was immersed in 250 ⁇ L of buffer solution F for staining and stained at 37 ° C. for 2 or 3 days. ..
  • the staining buffer F is RedDot2 (1:50) or SYSTEMX-G (1:500) and two kinds of additives (# 0854, # 1086 and # 0609 shown in FIG. 1 (A)) having a predetermined concentration. ) And, including.
  • frozen sections were prepared from the sample in the same manner as in Example 2. The obtained frozen section was observed with a fluorescence microscope in the same manner as in Example 1.
  • FIGS. 21 (A) and 21 (B) showing nuclear-stained images of frozen sections of each sample stained with RedDot2 or SYSTEM-G the stainability inside the sample was increased by the combination of each additive.
  • the increase in stainability was particularly remarkable in the cerebellar region.
  • the effect of promoting the penetration of the dyeing agent by the additive was shown.
  • Example 18 Simultaneous 3D nuclear staining and 3D immunostaining with typical combinations of additives (sample preparation)
  • a sample obtained by immersing the whole brain of a fixed 8-week-old C57BL / 6 mouse in CUBIC-L at 37 ° C. for 3 days in the same manner as in Example 1 was subjected to degreasing treatment. Samples were washed with PBS and stored at 4 ° C. in PBS containing 0.05% NaN 3.
  • Example 9 The stained sample was clarified with CUBIC-R (RI adjustment) in the same manner as in Example 9, the sample was embedded in a gel prepared with 2% (w / v) agarose dissolved in CUBIC-R, and 3D was embedded with LSFM. Observed. The images of the brain obtained by LSFM were tiled using Fiji / ImageJ in the same manner as in Example 9. The obtained z-stack data was reconstructed with Imaris software and visualized as a pseudo-color image. In this example, the enzyme treatment in Example 9 was not performed.
  • FIG. 22 (A) is an image showing a NeuN signal.
  • FIG. 22B is an image showing the signal of SYSTEMX-G.
  • FIG. 22C is an image obtained by merging an image showing a NeuN signal and an image showing a SYSTEMG signal. The image corresponds to a stack in the center of the sample where the permeability of the stain extracted from the z-stack data obtained by LSFM can be evaluated. As shown in FIGS. 22A to 22C, homogeneously stained cell-level resolution images could be obtained. It was shown that the use of additives can perform nuclear staining and immunostaining in the whole mouse brain.
  • Example 19 3D immunostaining using phase separation Samples obtained from the cerebellar hemisphere treated in the same manner as in Example 1 were subjected to immunostaining buffer E or 0. It was immersed in PBS mixed with 1% Triton X-100 (hereinafter referred to as "PBST") and stained at 32 ° C. for 2 days. The frozen sections prepared after staining were observed with a fluorescence microscope.
  • PBST Triton X-100
  • Immunostaining buffer E and PBST were mouse monoclonal anti-NeuN IgG (10 ⁇ g / mL or 100 ⁇ g / mL) and Alexa 594 labeled Fab-anti-mouse IgG 1 (# 115-587-185, mouse anti-NeuN antibody and weight, respectively). Add an amount that makes a ratio of about 1: 0.75). Under the condition without phase separation, the doses of immunostaining buffer E and PBST were 150 ⁇ L each.
  • the doses of immunostaining buffer E and PBST were 15 ⁇ L each, and the sample and immunostaining buffer E or PBST were phase-separated in silicone oil KF-96 (viscosity 50). ..
  • Example 20 Simultaneous 3D nuclear staining and 3D immunostaining using additives and phase separation (sample preparation) The degreased mouse whole brain sample was washed with PBS in the same manner as in Example 1, and the sample was stored in PBS containing 0.05% NaN 3 until use at 4 ° C.
  • Example 9 These were phase-separated in mineral oil, stained at 32 ° C. for 5 days, and then further stained at 4 ° C. for 1 day.
  • the stained sample was clarified with CUBIC-R (RI adjustment) in the same manner as in Example 9, the sample was embedded in a gel prepared with 2% (w / v) agarose dissolved in CUBIC-R, and 3D was embedded with LSFM. Observed.
  • the images of the brain obtained by LSFM were tiled using Fiji / ImageJ in the same manner as in Example 9.
  • the obtained z-stack data was reconstructed with Imaris software and visualized as a pseudo-color image. In this example, the enzyme treatment in Example 9 was not performed.
  • FIG. 24 (A) shows a three-dimensional reconstructed image showing the signals of GFAP and SYSTEMX-G.
  • FIG. 24B shows an image of the GFAP signal obtained by extracting the z-stack in the center of the sample and superimposing it at the maximum luminance value (MAX) in order to show the internal stainability.
  • FIG. 24C shows a three-dimensional reconstructed image showing the signals of Dat and SYSTEM-G.
  • FIG. 24D shows an image of the Data signal obtained by extracting the z-stack in the center of the sample and superimposing it at the maximum luminance value (MAX). It has been shown that homogeneous nuclear and immunostaining can be completed within a week by utilizing both antibody and stain concentrates by additive and phase separation.
  • the present invention is suitable for staining biological tissues.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

生体組織染色試薬は、1%より高濃度の非イオン性界面活性剤と、200mM以上の塩と、を含む。

Description

生体組織染色試薬、生体組織染色キット及び生体組織染色方法
 本発明は、生体組織染色試薬、生体組織染色キット及び生体組織染色方法に関する。
 医学及び生物学の研究において、組織全体及び個体全体等を対象とする体系的な3次元(3D)観察及び解析が試みられている。組織の透明化及び3D画像化の方法の開発によって、1細胞以下の解像度で全身又は器官全体を包括的に観察することが可能になった。このようなデータセットから生物学的な情報をより多く得るために、構造、細胞の種類及び細胞の活性に適した標識が求められる。
 標識では、遺伝学及びウイルスを利用した手法が利用されている。さらに、透明化及び3D画像化と組み合わされた様々な染色剤及び抗体によって生物学的標本の3D染色が評価されている。染色剤及び抗体を利用する染色は、ヒト及び動物の標本を含む幅広い試料に適用でき、複数の標的を比較的容易に標識できるため、遺伝学及びウイルスを利用した手法よりも適用範囲が広く、有利である。実際に1980年代頃から、昆虫、エビの神経系、カエルの胚等で器官全体及び全身の体系的な観察が検討された。近年、3D観察がげっ歯類及びヒト等の様々な器官、全身及び病理組織標本等で展開されている。
 厚みのある標本内部への染色剤及び抗体の浸透を改善するための方法がいくつかある。例えば、固定した組織の細孔を拡げる透過処理が脱脂処理、脱水処理、緩い固定処理及びプロテアーゼによる部分的な分解等で試みられている。浸透中の染色剤及び抗体の結合親和性を調整するために尿素又はSDSが使用されている。また、電気泳動及び圧力等の物理的な方法がアクリルアミドに包埋された試料に適用されている。
 特許文献1には、所定の濃度の尿素と免疫染色用抗体とを含む抗体組成物を、生物材料に接触させる免疫染色法が開示されている。また、非特許文献1及び2には、免疫染色法として、メタノール処理又はジメチルスルホキシド(DMSO)処理した試料を、グリシン及びDMSO等を含む透過溶液でインキュベートし、ブロッキング処理を施してから、ヘパリン、DMSO及びロバ血清等を含む溶液中で一次抗体と反応させ、続いて二次抗体と反応させるiDISCO法が開示されている。
国際公開第2014/010633号
Nicolas Renier、外5名、「iDISCO:a simple,rapid method to immunolabel large tissue samples for volume imaging.」、Cell、2014年、159、896-910 Nicolas Renier、外15名、「Mapping of brain activity by automated volume analysis of immediate early genes.」、Cell、2016年、165,1789-1802
 上記特許文献1に開示された抗体組成物、上記非特許文献1及び2に開示されたiDISCO法を含む上述の染色剤及び抗体の浸透を改善するための方法でも、十分な浸透効率は未だに達成されていない。厚みのある標本の組織染色の場合、染色対象の複雑な物理化学的環境のために、低分子である染色剤でさえも組織内部にあまり浸透しないことがある。
 さらに、上記非特許文献1及び2に開示されたiDISCO法では、GFP(Green Fluorescent Protein)等の蛍光タンパク質の褪色の他、脱水及び透明化処理における試料の収縮が起こることがある。このため、特に蛍光タンパク質を発現させた生体組織の解析にiDISCO法は使用しづらい面がある。
 本発明は、上記実情に鑑みてなされたものであり、幅広い生体組織に適用可能で、かつ染色剤及び抗体を十分に浸透させることができる生体組織染色試薬、生体組織染色キット及び生体組織染色方法を提供することを目的とする。
 固定され脱脂処理された生体組織が架橋したポリペプチドから主に構成されるアニオンチャージの電解質ゲルとして特徴づけられ、その生体組織の化学的性質が電解質ゲルとして定義可能であることを発明者は見出した。発明者は、当該電解質ゲルへの染色剤又は免疫染色用抗体の浸透と、染色剤又は抗体を含む緩衝液の塩濃度及び組成、並びに実験条件との関係に着目して試行錯誤を繰り返し、本発明を完成させた。
 本発明の第1の観点に係る生体組織染色試薬は、
 1%より高濃度の非イオン性界面活性剤と、
 200mM以上の塩と、
 を含む。
 この場合、上記本発明の第1の観点に係る生体組織染色試薬は、
 中性緩衝液をさらに含む、
 こととしてもよい。
 また、上記本発明の第1の観点に係る生体組織染色試薬は、
 ブロッキング試薬をさらに含む、
 こととしてもよい。
 また、上記本発明の第1の観点に係る生体組織染色試薬は、
 下記の一般式(1)に示す尿素又は尿素誘導体を除く芳香族アミン、脂肪族アミド類、ニコチンアミド類、スルファミド類、スルホン酸塩、アミノアルコール、アルコール、スルフィン酸類、チオ尿素類及びカルボン酸類の化合物から選択される少なくとも1種の添加剤をさらに含む、
 こととしてもよい。
Figure JPOXMLDOC01-appb-C000002
 (一般式(1)において、R、R、R、Rは、互いに独立に水素原子、ハロゲン原子又は炭化水素基であり、炭化水素基を構成する炭素原子が複数個ある場合には当該炭素原子の一部が、窒素原子、酸素原子、硫黄原子等のヘテロ原子により置換されていてもよい。炭化水素基には、鎖状炭化水素基及び環状炭化水素基が含まれる。)
 また、上記本発明の第1の観点に係る生体組織染色試薬は、
 染色剤をさらに含む、
 こととしてもよい。
 また、上記本発明の第1の観点に係る生体組織染色試薬は、
 免疫染色用抗体をさらに含む、
 こととしてもよい。
 本発明の第2の観点に係る生体組織染色キットは、
 上記本発明の第1の観点に係る生体組織染色試薬と、
 染色剤と、
 を備える。
 本発明の第3の観点に係る生体組織染色キットは、
 上記本発明の第1の観点に係る生体組織染色試薬と、
 免疫染色用抗体と、
 を備える。
 この場合、上記本発明の第3の観点に係る生体組織染色キットは、
 弱酸性緩衝液をさらに備える、
 こととしてもよい。
 また、上記本発明の第3の観点に係る生体組織染色キットは、
 1%より高濃度の非イオン性界面活性剤、200mM以上の塩及び中性緩衝液を含む洗浄緩衝液をさらに備える、
 こととしてもよい。
 また、上記本発明の第2の観点及び第3の観点に係る生体組織染色キットは、
 水と相分離する相分離誘導試薬をさらに備える、
 こととしてもよい。
 本発明の第4の観点に係る生体組織染色方法は、
 上記本発明の第1の観点に係る生体組織染色試薬を使用した生体組織染色方法であって、
 前記免疫染色用抗体を含む弱酸性緩衝液に、脱脂された生体組織を暴露する前処理ステップと、
 前記生体組織染色試薬に前記生体組織を暴露する免疫染色ステップと、
 を含む。
 本発明の第5の観点に係る生体組織染色方法は、
 染色剤と、免疫染色用抗体と、を含む上記本発明の第1の観点に係る生体組織染色試薬に生体組織を暴露する同時染色ステップを含む。
 本発明の第6の観点に係る生体組織染色方法は、
 染色剤及び免疫染色用抗体の少なくとも一方を含む上記本発明の第1の観点に係る生体組織染色試薬と、生体組織と、相分離誘導試薬と、を混合する染色ステップを含む。
 本発明によれば、幅広い生体組織に適用可能で、かつ染色剤及び抗体を十分に浸透させることができる。
本発明に係る実施の形態における代表的な添加剤を示す図である。(A)は中性のpHを有する添加剤を示す図である。(B)はアルカリ性のpHを有する添加剤を示す図である。 本発明に係る実施の形態の生体組織染色方法の各ステップを時間軸とともに示す図である。(A)は実施の形態に係る生体組織染色方法の一例を示す図である。(B)は図1(A)に示す生体組織染色方法に酵素処理ステップを加えた生体組織染色方法を示す図である。(C)は図1(A)に示す生体組織染色方法に前処理ステップを加えた生体組織染色方法を示す図である。 本発明に係る別の実施の形態の生体組織染色方法の各ステップを時間軸とともに示す図である。 実施例1において染色剤で3D染色したマウス大脳半球から作製した凍結切片の画像を示す図である。 実施例2において染色剤で3D染色したマウス小脳半球から作製した凍結切片の画像を示す図である。(A)及び(B)は、それぞれヨウ化プロピジウム(以下“PI”とする)及びSYTO(商標) 16(以下“SYTO 16”とする)で3D染色したマウス小脳半球から作製した凍結切片の画像を示す図である。(A)及び(B)中のスケールバーはいずれも1mmに相当する。 実施例3において染色剤で3D染色したマウス小脳半球から作製した凍結切片の画像を示す図である。スケールバーは1mmに相当する。 実施例4において染色剤で3D染色したマウス大脳半球から作製した凍結切片の画像を示す図である。(A)及び(B)は、それぞれ尿素を含まない染色剤染色用緩衝液及び尿素を含む染色剤染色用緩衝液で3D染色したマウス大脳半球から作製した凍結切片の画像を示す図である。 実施例5において3D免疫染色したマウス大脳半球の約3mm厚断片から作製した凍結切片の画像を示す図である。 実施例6において免疫染色したマウス脳凍結切片の画像を示す図である。(A)及び(B)は、非イオン性界面活性剤の濃度がそれぞれ0.1重量%及び5重量%の免疫染色用緩衝液で免疫染色した凍結切片の画像を示す図である。 実施例6において免疫染色したマウス脳凍結切片の画像を示す図である。(A)及び(B)は、非イオン性界面活性剤の濃度がそれぞれ5重量%及び10重量%の免疫染色用緩衝液で免疫染色した凍結切片の画像を示す図である。 実施例7において免疫染色したマウス脳凍結切片の画像を示す図である。上段左端の矢状方向の切片全体を示す画像において「1」で示された部分を拡大した画像が上段中央及び上段右端に示されている。上段左端の画像において「2」で示された部分を拡大した画像が下段中央及び下段右端に示されている。矢状方向の切片全体を示す画像中のスケールバーは1mmに相当する。拡大した画像中のスケールバーは100μmに相当する。 実施例8に係る3D透明化染色方法の各ステップを時間軸とともに示す図である。 図12に示す3D透明化染色方法に基づいて3D免疫染色したマウス半脳から作製した凍結切片の画像を示す図である。左側の矢状方向の切片全体を示す画像におけるスケールバーは1mmに相当する。右側の拡大した画像におけるスケールバーは50μmに相当する。 実施例9において3D核染色及び3D免疫染色したマウス全脳の画像を示す図である。(A)は、SYTOX(商標)-Green(以下“SYTOX-G”とする)及びNeuNのシグナルの画像と、これらの画像をマージした画像とを示す図である。“L”は“左”、“R”は“右”を示す。(A)におけるスケールバーは2mmに相当する。(B)は、(A)に示された全脳の矢状面及び冠状面におけるSYTOX-G及びNeuNのシグナルの画像を示す図である。(B)におけるスケールバーは100μmに相当する。 実施例10において3D核染色及び3D免疫染色したマウス全脳の画像を示す図である。BOBO(商標)-1ヨウ化物(462/481)(以下“BOBO-1”とする)のシグナルとともにパーブアルブミン(PV)、ソマトスタチン(Sst)及びグルタミン酸デカルボキシラーゼ(Gad)67のシグナルをそれぞれ示すb、c及びdにおけるスケールバーは2mmに相当する。PV、Sst及びGad67のシグナルを示すeにおけるスケールバーは2mmに相当する。水平面(x-y)で脳の一部を拡大した画像を示すf及びgにおけるスケールバーは0.5mmに相当する。eに示された部分の冠状面(x-z)の画像を示すhにおけるスケールバーは2mmに相当する。hに示された部分を拡大した画像を示すi及びjにおけるスケールバーは0.1mmに相当する。 実施例11において3D免疫染色したマウス全脳の画像を示す図である。黄色蛍光タンパク質(YFP)シグナルとともにコリンアセチルトランスフェラーゼ(ChAT)及びドーパミントランスポーター(Dat)のシグナルを示すkにおけるスケールバーは2mmに相当する。kに“l”で示された部分の拡大した画像を示すlにおけるスケールバーは0.5mmに相当する。脳の一部の水平面の画像を示すmにおけるスケールバーは0.5mmに相当する。mに“n”で示された部分の拡大した画像を示すnにおけるスケールバーは0.5mmに相当する。kに“o-q”で示された部分に係る再構築された矢状面の画像を示すo、p及びqにおけるスケールバーはいずれも0.5mmに相当する。 実施例13に係るマウス小脳における抗体のシグナルを示す図である。 実施例14に係るブタの大脳皮質領域の組織の凍結切片の画像及びピークボトム比を示す。(A)及び(B)はそれぞれ添加剤なしの免疫染色用緩衝液で免疫染色した場合及び添加剤ありの免疫染色用緩衝液で免疫染色した場合を示す図である。 実施例15に係る各化合物のピークボトム比を示す図である。 実施例16において3D免疫染色したマウス大脳半球から作製した凍結切片の画像を示す図である。(A)、(B)、(C)及び(D)は、それぞれSynaptophysin、Gad67、Dat及びThに対する抗体で染色した凍結切片の画像を示す図である。 実施例17において添加剤なし又は添加剤ありの条件で、染色剤で3D染色したマウス半脳から作製した凍結切片の画像を示す図である。(A)及び(B)は、それぞれRedDot2及びSYTOX-Gのシグナルの画像を示す図である。 実施例18において染色剤及び抗体で3D染色したマウス大脳半球から作製した凍結切片の画像を示す図である。(A)はNeuNのシグナルの画像を示す図である。図22(B)はSYTOX-Gのシグナルの画像を示す図である。(C)はNeuNのシグナルを示す画像及びSYTOX-Gのシグナルを示す画像をマージした画像を示す図である。 実施例19において相分離なし及び相分離ありの条件で3D免疫染色したマウス小脳半球から作製した凍結切片の画像を示す図である。 実施例20において3D核染色及び3D免疫染色を同時に行ったマウス全脳の画像を示す図である。(A)はGFAP及びSYTOX-Gのシグナルを示す3次元再構成画像を示す図である。(B)はGFAPのシグナルの画像を示す図である。(C)はDat及びSYTOX-Gのシグナルを示す3次元再構成画像を示す図である。(D)Datのシグナルの画像を示す図である。
 本発明に係る実施の形態について説明する。なお、本発明は下記の実施の形態によって限定されるものではない。なお、本明細書において特に示さない限り、“%”は重量%を意味する。
 (実施の形態1)
 本実施の形態に係る生体組織染色試薬は生体組織の染色に好適な試薬である。当該生体組織染色試薬は、非イオン性界面活性剤と、塩と、を含む。より具体的には、当該生体組織染色試薬は、上述の非イオン性界面活性剤及び塩を含む溶液、好ましくは緩衝液であってもよい。溶液又は緩衝液の主溶媒は、例えば水である。水のみが溶媒として用いられてもよい。
 非イオン性界面活性剤として、例えば、脂肪酸系界面活性剤、高級アルコール系界面活性剤及びアルキルフェノール系の界面活性剤が挙げられる。脂肪酸系界面活性剤としては、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート及びポリオキシエチレンソルビタンモノオレエート等が例示される。高級アルコール系界面活性剤としてはポリビニルアルコール等が例示される。アルキルフェノール系界面活性剤としては、ポリオキシエチレンオクチルフェニルエーテルが例示される。
 好ましくは、非イオン性界面活性剤は、Triton X-100及びTriton X-140等のTriton X(商標)シリーズ、Tween-20、Tween-40、Tween-60及びTween-80等のTween(商標)シリーズ並びにNP-40(商品名)からなる群より選択される少なくとも一種である。非イオン性界面活性剤は、必要に応じて、二種以上を混合して使用することもできる。
 本実施の形態に係る生体組織染色試薬における非イオン性界面活性剤は1%より高濃度である。生体組織染色試薬における非イオン性界面活性剤の濃度は、例えば、2~30%、3~20%、4~15%又は5~12%である。好ましくは、生体組織染色試薬における非イオン性界面活性剤の濃度は5%又は10%である。
 塩は、酸由来のアニオンと塩基由来のカチオンとがイオン結合した化合物である。塩は、酸と塩基との中和反応によって生じる化合物で、酸の水素イオンを金属で置換した化合物であってもよい。塩は好ましくは正塩で、例えば、その水溶液が中性となる塩化ナトリウム(NaCl)、塩化カルシウム(CaCl)、塩化リチウム(LiCl)及び塩化カリウム(KCl)等である。
 本実施の形態に係る生体組織染色試薬における塩の濃度は200mM以上である。塩の濃度は、例えば、200~2000mM、200~1500mM、200~1000mM、200~800mM、200~600mM又は200~500mMである。好適には、生体組織染色試薬における塩の濃度は200mM又は500mMである。
 本実施の形態に係る生体組織染色試薬は、生体組織を染色剤で染色する場合であっても、免疫反応を介して抗体で染色する場合であっても使用できる。生体組織を染色する染色剤は、生体組織の染色で使用される公知の染色剤が好適に使用できる。好ましくは、染色剤は生体組織を構成する所定の分子等に結合する小分子化合物又は低分子化合物である。染色剤は、例えば核酸への結合を介して組織を染色するタイプの染色剤であってもよい。染色剤としては、PI、SYTO 16、DAPI、SYTOX-G、BOBO-1、RedDot(商標)2 Far-Red Nuclear Stain(以下“RedDot2”とする)及びNeuroTrace(商標) Fluorescent Nissl Stain(以下“NeuroTrace”とする)等が挙げられる。例えば、染色剤は核染色剤又は核酸染色剤であってもよい。
 生体組織染色試薬を免疫染色に用いる場合、抗体は、例えば、免疫染色用抗体、又はハイブリドーマ培養上清、脾内免疫を行なった動物の腹水、抗血清、抗血漿若しくは鳥類の卵の漿液に由来する免疫グロブリンである。当該生体組織染色試薬は、生体組織を抗体で染色する場合、蛍光色素等の色素で標識した一次抗体、又は一次抗体と色素で標識したFab断片抗体との複合体を使用する1ステップでの免疫染色に使用されるのが好ましい。好ましい抗体は、例えば、下記表1及び表2に例示される。抗体を標識する色素としては、Alexa Fluor(商標)色素、FITC(Fluorescein Isothiocyanate)及びCy色素等の色素が挙げられる。
 生体組織染色試薬を免疫染色に用いる場合、好ましくは、本実施の形態に係る生体組織染色試薬は中性緩衝液をさらに含む。中性緩衝液とは、pHが6~8、好ましくは7.2~7.8、より好ましくは7.4~7.6、特に好ましくは7.5の緩衝液をいう。中性緩衝液は、具体的には、リン酸緩衝液、トリス緩衝液、HEPES緩衝液、酢酸緩衝液、炭酸緩衝液及びクエン酸緩衝液等を挙げることができる。また、それらの生理食塩水であるPBS、D-PBS、トリス緩衝生理食塩水及びHEPES緩衝生理食塩水を中性緩衝液として用いてもよい。中性緩衝液として、HEPES緩衝液が特に好ましく、その濃度は、5~30mM又は8~20mM、好ましくは8~12mM又は10mMである。
 さらに、生体組織染色試薬を免疫染色に用いる場合、好ましくは、生体組織染色試薬はブロッキング試薬をさらに含む。ブロッキング試薬は、抗体の非特異的結合を防止するために使用されるものであれば特に限定されない。ブロッキング試薬は、例えば、スキムミルク、ウシ血清アルブミン(BSA)、フィッシュゼラチン、ウマ血清、ウシ胎仔血清(FBS)及びカゼイン等である。好適には、ブロッキング試薬はカゼインである。生体組織染色試薬におけるブロッキング試薬の濃度は、適宜設定されるが、例えば0.1~3%、0.2~2%、0.3~1%又は0.4~0.8%、好ましくは0.5%である。
 本実施の形態に係る生体組織染色試薬は、上述の成分の他に、染色剤又は抗体の生体組織への浸透を促進させる添加剤をさらに含んでもよい。例えば、添加剤は染色剤又は抗体の生体組織への浸透を促進させる化合物である。当該化合物は、下記実施例に示すように、生体組織の染色剤又は抗体による染色において、生体組織への染色剤又は抗体の浸透効率を評価することで選択できる。
 例えば、添加剤は、下記の一般式(1)に示す尿素又は尿素誘導体を除く芳香族アミン、脂肪族アミド類、ニコチンアミド類、スルファミド類、スルホン酸塩、アミノアルコール、アルコール、スルフィン酸類、チオ尿素類又はカルボン酸類の化合物である。なお、一般式(1)において、R、R、R、Rは、互いに独立に水素原子、ハロゲン原子又は炭化水素基であり、炭化水素基を構成する炭素原子が複数個ある場合には当該炭素原子の一部が、窒素原子、酸素原子、硫黄原子等のヘテロ原子により置換されていてもよい。炭化水素基には、鎖状炭化水素基及び環状炭化水素基が含まれる。
Figure JPOXMLDOC01-appb-C000003
 また、添加剤は、一般式(1)に示す尿素又は尿素誘導体を除く環状アミン、環状アミド、鎖状アミン、鎖状アミド、スルフォ基、又はこれらを組み合わせて有する化合物であってもよい。
 好ましくは、添加剤はアミノアルコールである。アミノアルコールは、例えば、N,N,N’,N’-テトラキス(2-ヒドロキシプロピル)エチレンジアミン(以下“Quadrol”とする)、トリエタノールアミン、トリイソプロパノールアミン、2-アミノ-1,3-プロパンジオール、3-メチルアミノ-1,2-プロパンジオール、3-アミノ-1,2-プロパンジオール、N,N,N,N-テトラキス(2-ヒドロキシエチル)エチレンジアミン及びN-ブチルジエタノールアミン等である。染色対象の生体組織が蛍光タンパク質を含む場合、アミノアルコールとしては、Quadrol、トリエタノールアミン、トリイソプロパノールアミン、2-アミノ-1,3-プロパンジオール及びN-ブチルジエタノールアミンが特に好ましい。
 さらに具体的に例示される添加剤は、ピリダジン、2-シアノアセトアミド、5-メチル-2-ピロリドン、メタクリルアミド、ニコチンアミド、N,N-ビス(2-シアノエチル)ホルムアミド、ニコチン酸ヒドラジド、4-シアノピリジン、ブチルアミド、4-メチルピリジン N-オキシド、イソニコチンアミド、1,5-ペンタメチレンテトラゾール、2,5-ジメチルピラジン、チオモルホリン、2-ピロリドン、2-ピリジンカルボン酸ヒドラジド、4-(2-アミノエチル)モルホリン、o-スルホベンズイミドナトリウム二水和物、4-アクリロイルモルホリン、ε-カプロラクタム、カルバミン酸メチル、グルタロニトリル、4-アセトアミドシクロヘキサノール、2-[2-(ジメチルアミノ)エトキシ]エタノール、1,3-ビス[トリス(ヒドロキシメチル)メチルアミノ]プロパン、2-ピコリンアミド、4-クロロベンゼンスルホン酸ナトリウム、デヒドロコール酸ナトリウム、4-クロロベンゼンスルフィン酸ナトリウム、N,N-ジエチルプロピオンアミド、2-ピペリドン、2,2,2-トリフルオロエタノール、N,N-ジエチルニコチンアミド、1,3-ジメチルチオ尿素、N-メチルニコチンアミド、3-ジメチルアミノプロピオニトリル、N,N-ジメチルメタクリルアミド、テトラヒドロチオフェン 1,1-ジオキシド、ニコチン、2,5-ジクロロスルファニル酸ナトリウム、安息香酸ベンジル、2,4-ジメチルベンゼンスルホン酸ナトリウム一水和物、アセトオキシム、ジアセトンアクリルアミド、1,2-シクロヘキサンジオール、3-ピコリルアミン、2,3-ジメチル-1-フェニル-5-ピラゾロン、N,N,N’,N’-テトラメチルエチレンジアミン、馬尿酸ナトリウム、N-エチルこはく酸イミド、プロピオンアミド、1-[2-(2-ヒドロキシエトキシ)エチル]ピペラジン、3-エチル-3-オキセタンメタノール、N,N-ジメチルエチルアミン、2-アミノピラジン、モルホリン、1,2-ビス(2-アミノエトキシ)エタン、1-ブチル-4-メチルピリジニウムクロリド、3-アセトアミドピペリジン、N,N-ジエチルホルムアミド、N,N-ジメチルエチレンジアミン、2-(2-アミノエトキシ)エタノール、N-メチルカルバミン酸エチル、2-メチルチアゾール、ジフェニルスルホン-4,4’-ジクロロ-3,3’-ジスルホン酸二ナトリウム、1-(3-アミノプロピル)イミダゾール、ヘプタン酸ナトリウム、N,N-ジメチルアクリルアミド、2,2’-ジアミノ-N-メチルジエチルアミン、テトラヒドロフルフリルアミン、3-ヒドロキシ-1-メチルピペリジン、メチルグリオキシム、1-(2-ヒドロキシエチル)-4-(3-ヒドロキシプロピル)ピペリジン、ジメチルスルホン、ジメチルアセトアミド、1-アミノ-2-ブタノール、DL-2-アミノ-1-ブタノール、3-スルホプロピルメタクリラートカリウム塩、ピラジン、N-メチルホルムアミド、4-ヒドロキシ-2-ブタノン、N,N-ジエチルアクリルアミド、1,4-ベンゼンジメタノール、キナルジン酸ナトリウム、2-アミノ-2-メチル-1,3-プロパンジオール、2-メチルイミダゾール、2,4-ジアミノピリミジン、n-オクタン酸ナトリウム、N-メチルチオ尿素、エタノール、1-ナフタレン酢酸ナトリウム、2-エチルイミダゾール、ベンゼンスルフィン酸ナトリウム二水和物、N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン、ビス(2-ヒドロキシエチル)アミノトリス(ヒドロキシメチル)メタン、1-ブチル-4-メチルピリジニウムブロミド、4-ホルミルモルホリン、トリエチレンテトラミン、3-アミノ-5-メチルチオ-1H-1,2,4-トリアゾル、ピリジン-3-スルホン酸ナトリウム、2,4-ジクロロフェノキシ酢酸ナトリウム一水和物、1-(2-ジメチルアミノエチル)-4-メチルピペラジン、1-ペンタンスルホン酸ナトリウム、N-ニトロソジエチルアミン、イソニペコタミド、ヒドラジン一水和物、2-ナフタレンスルホン酸ナトリウム、マルチトール、1-ブタンスルホン酸ナトリウム、4-(4-ヒドロキシブチル)チオモルホリン1,1-ジオキシド、4-tert-ブチル-1-(3-スルホプロピル)ピリジニウムヒドロキシド分子内塩水和物、ベンゼンスルホン酸ナトリウム、2,6-ピリジンジメタノール、N,N-ジエチルイソニコチンアミド、ベラトリルアルコール、N,N’-ジアセチルエチレンジアミン、イミダゾール、4-エチルベンゼンスルホン酸ナトリウム、2-スルホベンズアルデヒドナトリウム、1-ブタノール、テトラヒドロフラン、アジピン酸ジヒドラジド、テトラブチルアンモニウムブロミド、3,3’-イミノジプロピオニトリル、スルファミド、ビス(2-メトキシエチル)アミン、エチレンシアノヒドリン、ピペラジン六水和物、ラクトアミド、N,N-ジメチルベンズアミド、N,N,N’,N’’,N’’-ペンタキス(2-ヒドロキシプロピル)ジエチレントリアミン、p-トルエンスルホン酸ナトリウム、2-シクロヘキシルアミノエタンスルホン酸、1,6-ヘキサンジオール、N-tert-ブチル-2-メトキシエチルアミン、N-メチルアセトアミド、アセトアミド、1-メチルピペラジン、1-メチルピリジニウムクロリド、1-(2-ピリミジル)ピペラジン、2-ヒドロキシエチルメチルスルホン、エチレンシアノヒドリン、クロロコリンクロリド、ベンジルトリメチルアンモニウムブロミド、2-(2-アミノエチルアミノ)エタノール、N-イソプロピルアクリルアミド、イソニコチン酸ナトリウム、アミルアミン、1-アミノ-2-プロパノール、(+)-3-ブロモカンファ-8-スルホン酸アンモニウム、3-アミノ-1,2-プロパンジオール、N-メチルジエタノールアミン及びリン酸イソプロパノールアミンからなる群から選択される。
 図1(A)の4種の化合物はpHが中性である添加剤の代表例である。図1(B)の2種の化合物はpHがアルカリ性である添加剤の代表例である。複数種の化合物を組み合わせても添加剤としてもよい。上述の化合物の1種以上を任意に組み合わせて添加剤としてよい。添加剤として好ましい組み合わせは、図1(A)に示すニコチン酸ヒドラジド(#0854)及びピラジン(#1086)からなる組み合わせ1、N,N-ジエチルニコチンアミド(#0609)及びピラジン(#1086)からなる組み合わせ2、ニコチン酸ヒドラジド(#0854)、ピラジン(#1086)及び図1(B)に示す2-[2-(ジメチルアミノ)エトキシ]エタノール(#0146)からなる組み合わせ3、並びにN,N-ジエチルニコチンアミド(#0609)、ピラジン(#1086)及び2-[2-(ジメチルアミノ)エトキシ]エタノール(#0146)からなる組み合わせ4である。
 生体組織染色試薬における添加剤の濃度は限定されないが、例えば、0.1~10重量%、0.5~8重量%、1~7重量%、2~6重量%又は2.5~5重量%である。添加剤が上述の化合物の1種以上を成分として含む場合、各成分の濃度は0.1~10重量%、0.5~8重量%、1~7重量%、2~6重量%又は2.5~5重量%であって、生体組織染色試薬における各成分の濃度は同じであっても異なっていてもよい。
 本実施の形態に係る生体組織染色試薬は、上述の染色剤を含んでもよい。生体組織染色試薬における染色剤の濃度は、特に限定されず、染色対象の生体組織の体積、種類及び実験条件等に応じて設定される。染色剤の濃度は、例えば1~10μg/mL、2~8μg/mL又は3~5μg/mLである。
 また、本実施の形態に係る生体組織染色試薬は、上述の抗体を含んでもよい。生体組織染色試薬における抗体の濃度は、特に限定されず、染色対象の生体組織の体積、種類及び実験条件等に応じて設定される。抗体の濃度は、例えば、0.05~50μg/mL、好ましくは3~40μg/mL、特に好ましくは5~20μg/mLである。
 当該試薬による染色の対象となる生体組織は、例えば、動物由来の試料又は植物由来の試料である。当該動物としては、魚類、両生類、爬虫類、鳥類及び哺乳類等の動物が挙げられる。生体組織としては哺乳類の生体組織が好ましい。哺乳類は特に限定されず、例えばマウス、ラット、ウサギ、モルモット、マーモセット、イヌ、ネコ、フェレット、ブタ、ウシ、ウマ、サル及びチンパンジー及びヒト等が挙げられる。
 生体組織は、生きているヒトを除く個体そのものであってもよいし、多細胞生物の個体から得られる器官、組織、細胞塊又は細胞であってもよい。好ましくは、生体組織は、例えば、脳全体又は大脳半球等の脳の一部である。
 生体組織は、特に顕微鏡観察のために固定化処理された試料であってもよい。好ましくは、生体組織は、ホルムアルデヒド(FA)又はパラホルムアルデヒド(PFA)等を用いて公知の方法で固定化される。固定化処理後に、例えばリン酸緩衝食塩水(PBS)に浸漬する処理を行うことが好ましい。
 生体組織は、例えば、蛍光性化学物質を注入した生体組織、蛍光性化学物質で染色を行った生体組織、蛍光タンパク質を発現した細胞を移植した生体組織及び蛍光タンパク質を発現した遺伝子改変動物の生体組織等であってもよい。
 次に、本実施の形態に係る生体組織染色試薬の使用方法について説明する。ここでは、生体組織染色試薬が染色剤をあらかじめ含有するものとする。生体組織としての上述のように固定化され脱脂されたサンプルを染色剤で染色する。サンプルを脱脂するには、例えば、CUBIC-L(10重量% N-ブチルジエタノールアミン及び10重量% Triton X-100を含む水)、CUBIC-1(15重量% Triton X-100、25重量% Quadrol、25重量% 尿素を含む水)又はCUBIC-1A(10重量% Triton X-100、5重量% Quadrol、10重量% 尿素及び25mM NaClを含む水)にサンプルを37℃で数日から数週間、浸漬すればよい。
 サンプルを染色剤で染色する染色ステップでは、生体組織染色試薬にサンプルを暴露する。暴露する時間はサンプル内部まで生体組織染色試薬が浸潤する時間であれば特に限定されない。例えば、染色ステップでは、サンプルを37℃で2~5日間、生体組織染色試薬に浸漬する。なお、サンプルの脱脂後、サンプルをPBS等で洗浄してから染色ステップを行うのが好ましい。染色ステップの後、サンプルをPBS等で洗浄してもよい。
 サンプルが染色されているか否かは、染色剤を検出し得る光学顕微鏡等を用いた公知の方法で確認できる。蛍光顕微鏡等で染色剤を検出する場合、サンプルから公知の方法で凍結切片を作製し、凍結切片を光学顕微鏡等で観察してもよい。サンプルの観察は、あらゆる種類の光学顕微鏡を用いて行うことができる。例えば、サンプルを、三次元超分解顕微鏡技術(例えば、STED、3D PALM、FPALM、3D STORM及びSIM)で観察してもよい。また、サンプルは、多光子励起型の光学顕微鏡技術を適用して観察してもよい。また、サンプルは、1光子共焦点顕微鏡又はライトシート蛍光顕微鏡(LSFM)を用いて観察してもよい。
 続いて、本実施の形態に係る生体組織染色試薬を用いた免疫染色の方法について説明する。ここでは、生体組織染色試薬が抗体をあらかじめ含有するものとする。サンプルを抗体で染色する免疫染色ステップでは、染色ステップと同様に、生体組織染色試薬にサンプルを暴露する。例えば、免疫染色ステップでは、サンプルを23~37℃又は28~34℃、好ましくは32℃で生体組織染色試薬に浸漬する。免疫染色ステップにおける暴露する時間はサンプル内部まで生体組織染色試薬が浸潤する時間であれば特に限定されず、1日~8週間、2日~7週間、3日~6週間、4日~5週間又は1~4週間である。
 本実施の形態に係る生体組織染色試薬によれば、同一のサンプルに対して染色剤による染色と、抗体による免疫染色とを行うことができる。図2は、マウスの全脳であるサンプルに対して核染色及び免疫染色を行う場合の生体組織染色方法を構成する各ステップを所要時間と温度とともに例示する。図2(A)に示す生体組織染色方法は、サンプルを固定化する固定ステップと、サンプルを脱脂する脱脂ステップと、サンプルの核を染色する核染色ステップと、免疫染色ステップと、後固定ステップと、屈折率(RI)調整ステップと、を含む。RI調整ステップでは、サンプルを光学顕微鏡で3次元的に観察するためにサンプルのRIを調整し、透明化する。RI調整ステップでは、必要に応じてゲル等にサンプルを包埋してもよい。好ましくは、当該生体組織染色方法では、サンプルをPBS等で洗浄する洗浄ステップがステップ間に行われる。
 図2(B)に例示する生体組織染色方法には、核染色ステップと免疫染色ステップとの間に、サンプルを酵素で処理する酵素処理ステップが含まれる。酵素処理ステップでは、ヒアルロニダーゼ又はコラゲナーゼ-P等でサンプルを部分的に消化することで、抗体のサンプルの端部への結合を抑制して内部へ浸透しやすくする。
 図2(C)に例示する生体組織染色方法には、核染色ステップと免疫染色ステップとの間に、抗体を含む弱酸性緩衝液に、脱脂されたサンプルを暴露する前処理ステップが含まれる。脱脂したサンプルの化学的性質がアニオンチャージの電解質ゲルと類似するため、サンプルと抗体とを弱酸性条件に保持すると、等電点より酸性側となってカチオンチャージを有する抗体が電気的相互作用によってサンプルと可逆的な複合体を形成する(下記実施例13参照)。これにより、サンプルでの抗体の濃縮及び浸透性を向上させることができる。
 弱酸性緩衝液は公知の任意のものが使用できる。弱酸性緩衝液のpHは、例えば4~6、4.5~5.5又は4.8~5.2である。好ましくは弱酸性緩衝液のpHは5である。より具体的には、弱酸性緩衝液は、例えばクエン酸緩衝液及び酢酸緩衝液である。弱酸性緩衝液には、所定の濃度、例えば100~500mM、100~300mM又は100~200mMの塩を含有させてもよい。なお、弱酸性緩衝液は、抗体の生体組織への浸透を促進する化合物等をさらに含んでもよい。
 なお、本実施の形態に係る生体組織染色方法では、酵素処理ステップと、前処理ステップを併用してもよい。この場合、例えば、酵素処理ステップの後にサンプルを洗浄後、前処理ステップを行えばよい。
 本実施の形態に係る生体組織染色試薬は、下記実施例11に示すように、蛍光タンパク質を含む生体組織であっても、蛍光タンパク質を褪色させることなく3D染色が可能である。よって、当該生体組織染色試薬は、幅広い生体組織に適用可能である。また、当該生体組織染色試薬は、下記実施例1~4に示すように、多様な染色剤を脱脂された生体組織に十分に、かつ均一に浸透させることができる。これにより、生体組織の標的をより確実に標識することができる。
 また、本実施の形態に係る生体組織染色試薬は、下記実施例5、6、9に示すように、抗体であっても脱脂された生体組織に十分に、かつ均一に浸透させることができる。さらに、本実施の形態に係る生体組織染色試薬は、下記実施例7に示すように、良好なシグナル-バックグラウンド比(SBR)が得られるため、例えば染色した生体組織の画像解析において、より正確な情報を得ることができる。
 本実施の形態に係る生体組織染色試薬は、下記実施例8に示すように、既存の3D透明化染色方法に組み込みが可能で、しかもサンプル内部まで抗体を浸透させることができる。また、当該生体組織染色試薬は、下記実施例9、10に示すように、同一のサンプルにおける染色剤と抗体との併用又は複数の種類の抗体であっても交差せずに標的を確実に標識することができる。さらに、当該生体組織染色試薬は、下記実施例12に示すように多種の抗体に適用が可能である。
 本実施の形態に係る生体組織染色方法では、抗体を含む弱酸性緩衝液に、脱脂された生体組織を暴露する前処理ステップを含んでもよいこととした。これにより、抗体の組織での濃縮及び組織への浸透性が改善されるため、組織における標的を確実に標識できる。もちろん、当該生体組織染色方法では、図2(A)及び図2(B)に示すように、核染色ステップの後に前処理ステップを行わずに免疫染色ステップを行っても組織における標的を確実に標識できる。
 なお、本実施の形態に係る生体組織染色試薬及び生体組織染色方法は、3D染色はもちろんのこと、組織切片を染色する、いわゆる2D染色にも適用できる。
 また、本実施の形態に係る生体組織染色試薬及び生体組織染色方法によれば、脱脂された生体組織に十分に、かつ均一に染色剤及び抗体を浸透させることができる。このため、例えばc-Fos等の神経関連のマーカーを染色することで、細胞レベルの解像度で機能的な神経回路及びニューロン反応等を解析することができる。
 また、本実施の形態に係る生体組織染色試薬は、上記の添加剤を含有することで、染色剤及び抗体のサンプルへの浸透を促進する。これにより、サンプル内部の染色性が高まり、サンプル全体を均質に染色することができる(主に下記実施例16~18、20参照)。なお、上記の添加剤は、本実施の形態に係る生体組織染色試薬に限らず、従来の染色用緩衝液でサンプルを染色する場合であっても、染色剤及び抗体のサンプルへの浸透を促進する。
 別の実施の形態では生体組織染色キットが提供される。生体組織染色キットは、上記の生体組織染色試薬と、染色剤と、を備える。当該生体組織染色キットは、上記の生体組織染色試薬と、抗体と、を備えてもよい。この場合、当該生体組織染色キットは、上述の弱酸性緩衝液をさらに備えてもよい。また、当該生体組織染色キットは、1%より高濃度の非イオン性界面活性剤、200mM以上の塩及び中性緩衝液を含む洗浄緩衝液をさらに備えてもよい。洗浄緩衝液は、上述の免疫染色後のサンプルの洗浄に好適である。なお、免疫染色ステップの後、4℃で一晩保管したサンプルを洗浄緩衝液で洗浄してもよい。
 なお、当該生体組織染色キットは、取扱説明書又は指示書をさらに備えてもよい。取扱説明書又は指示書には、例えば、生体組織染色試薬の組成、上述の生体組織染色方法に係るプロトコルが記載される。また、上記の生体組織染色試薬は、上記の成分以外にpH調整剤、浸透圧調整剤、防腐剤及びサンプルの乾燥抑制剤等のその他の添加物を含んでもよい。当該添加物は、生体組織染色試薬とは別に生体組織染色キットに含まれていてもよい。
 なお、生体組織染色キットは、成分等の特定の材料を内包する容器を備えた包装である。生体組織染色キットは、その複数の構成要素を同一の容器に混合して備えていても別々の容器に備えていてもよい。取扱説明書又は指示書は、紙又は磁気テープ、コンピュータで読み取り可能なディスク、テープ若しくはCD-ROM等の電子媒体等の記録媒体に記録されてもよい。生体組織染色キットは、希釈剤、溶媒、洗浄液又はその他の試薬を内包した容器を備えていてもよい。さらに、生体組織染色キットは、キットの用途を実現するための手順を実行するために必要な器具及び試薬を備えていてもよい。
 より具体的に、生体組織染色キットの構成が次に例示される。
  [染色剤用染色キット]
  (構成)
  1.染色剤染色用緩衝液 n回分(4mL/マウス全脳)
  2.プロトコルが記録された記録媒体
  (仕様)
  染色剤3D染色緩衝液:10% Triton X-100、5% Quadrol及び500mM NaCl
  [免疫染色用染色キット]
  (構成)
  1.免疫染色用緩衝液(1×又は2×濃度) n回分(1×濃度で15.5mL/マウス全脳)
  2.免疫染色添加剤(10×濃度) n回分(最大100μL(final 2×/マウス全脳)
  3.染色用チューブ
  4.免疫染色洗浄緩衝液 n回分(30mL(15mL×2回分)/マウス全脳)
  5.免疫染色後固定剤 n回分(0.2mL/マウス全脳)
  6.プロトコルが記録された記録媒体
  (仕様)
  免疫染色用緩衝液:(1×)10mM HEPES(pH7.5)、10% Triton X-100、200mM NaCl、0.5%カゼイン
  免疫染色添加剤:(10×)25% Quadrol
  染色用チューブ:15mL染色チューブ
  免疫染色洗浄緩衝液:10mM HEPES(pH7.5)、10% Triton X-100及び500mM NaCl
  免疫染色後固定剤:飽和FA(37~38%)/メタノール
   免疫染色後固定剤は染色用チューブで免疫染色洗浄緩衝液中に1%に希釈して使用
 (実施の形態2)
 染色剤及び抗体に応じて、適切な上記添加剤を使用することで、同一の生体組織に対して染色剤による染色と、抗体による免疫染色とを同時に行うことができる。以下では、本実施の形態に係る生体組織染色方法に関して、上記実施の形態1と異なる点について主に説明する。本実施の形態に係る生体組織染色方法は、染色剤と、免疫染色用抗体と、添加剤と、を含む生体組織染色試薬にサンプルを暴露する同時染色ステップを含む。染色ステップと同様に、生体組織染色試薬にサンプルを暴露する。例えば、同時染色ステップでは、サンプルを23~37℃又は28~34℃、好ましくは32℃で生体組織染色試薬に浸漬する。なお、同時染色ステップでは、サンプルを第1の温度に維持した後、第1の温度より低い第2の温度にサンプルを維持してもよい。この場合、第1の温度に維持する時間は、第2の温度に維持する時間より長くてもよいし、同じであってもよいし、短くてもよい。好ましくは、第1の温度が23~37℃で、第2の温度が2~6℃である。
 同時染色ステップにおける暴露する時間はサンプル内部まで生体組織染色試薬が浸潤する時間であれば特に限定されず、例えば3週間、2週間、1週間又は2~6日間、サンプルが生体組織染色試薬に浸漬される。
 図3は、マウスの全脳であるサンプルに対して核染色及び免疫染色を同時に行う場合の生体組織染色方法を構成する各ステップを例示する。図3に示す生体組織染色方法では、核染色ステップと免疫染色ステップとを同時に施行するため、核染色及び免疫染色に要する期間を、核染色及び免疫染色を同時に行わない場合よりも短縮できる。また、図2(A)に示す抗体の浸透性を向上させるための酵素反応ステップが図3に示す生体組織染色方法では不要となる。
 本実施の形態に係る生体組織染色方法によれば、サンプルに対する染色剤による染色及び抗体による免疫染色を同時に行うので、下記実施例18に示されるようにサンプルの染色に要する時間を大幅に短縮できる。
 本実施の形態に係る生体組織染色方法に好適な生体組織染色キットの構成が次に例示される。
  [生体組織染色キット]
  (構成)
 1.染色用緩衝液(1×又は2×濃度)
 2.添加剤
  (仕様1)
  染色用緩衝液(1×又は2×濃度):(1×)10mM HEPES(pH7.5)、10% Triton X-100、500mM NaCl、0.5%(又は1%)カゼイン
  添加剤:(2×)5% ニコチン酸ヒドラジド、10% ピラジン
  (仕様2)
  染色用緩衝液(1×又は2×濃度):(1×)10mM HEPES(pH7.5)、10% Triton X-100、500mM NaCl、0.5%(又は1%)カゼイン
  添加剤:(2×)5% ピラジン、10% N,N-ジエチルニコチンアミド
  (仕様3)
  染色用緩衝液(1×又は2×濃度):(1×)10mM HEPES(pH7.5)、10% Triton X-100、500mM NaCl、0.5%(又は1%)カゼイン
  添加剤:(2×)5% ニコチン酸ヒドラジド、10% ピラジン、(2×)2~3% 2-[2-(ジメチルアミノ)エトキシ]エタノール
  (仕様4)
  染色用緩衝液(1×又は2×濃度):(1×)10mM HEPES(pH7.5)、10% Triton X-100、500mM NaCl、0.5%(又は1%)カゼイン
  添加剤:(2×)5% ピラジン、10% N,N-ジエチルニコチンアミド、(2×)2~3% 2-[2-(ジメチルアミノ)エトキシ]エタノール
  (仕様5)
  染色用緩衝液(1×又は2×濃度):(1×)10mM HEPES(pH7.5)、10% Triton X-100、500mM NaCl、0.5%(又は1%)カゼイン
  添加剤:(2×)2~3% 2-[2-(ジメチルアミノ)エトキシ]エタノール
 (実施の形態3)
 生体組織染色試薬にサンプルを暴露する際の生体組織染色試薬における抗体及び染色剤の初期濃度は、抗体及び染色剤を3次元的にサンプルに浸透させる上で極めて重要である。ローコストで抗体及び染色剤の高い初期濃度を確保するためには、抗体又は染色剤を非常に少量の生体組織染色試薬中に含有させる必要がある。しかし、少量の生体組織染色試薬ではサンプル全体を浸漬させることができない。そこで、本実施の形態に係る生体組織染色方法では、生体組織染色試薬にサンプルを暴露する染色ステップにおいて、水と相分離する相分離誘導試薬を使用する。以下では、本実施の形態に係る生体組織染色方法に関して、上記実施の形態1と異なる点について主に説明する。
 相分離誘導試薬は、生体組織染色試薬の主成分である水と相分離するものであれば、液相、気相及び固相のいずれであってもよい。例えば、相分離誘導試薬は、水と混合しないミネラルオイル等のオイルである。好ましくは、相分離誘導試薬は、生体組織染色試薬に含まれる界面活性剤と混合しにくく、その比重が生体組織染色試薬の比重に近く、その粘性が過度に高くないものである。この条件を満たすものとして、例えばジメチルシリコーンオイルの1つであるKF-96(信越シリコーン社製、粘度50)が挙げられる。
 本実施の形態に係る生体組織染色方法における染色ステップでは、抗体及び染色剤の少なくとも一方を含む上記実施の形態に係る生体組織染色試薬と、サンプルと、相分離誘導試薬と、を混合する。相分離誘導試薬は、水と相分離するため、サンプル及び生体組織染色試薬の外側が相分離誘導試薬で覆われる。サンプルは相分離誘導試薬から分離した生体組織染色試薬に暴露され、抗体及び染色剤の少なくとも一方がサンプルに浸透する。相分離誘導試薬を併用することで、相分離誘導試薬を使用しない場合と抗体及び染色剤の量が同じでも、生体組織染色試薬における染色剤又は抗体を濃縮することができる。
 本実施の形態に係る生体組織染色試薬における染色剤の濃度は、染色剤の濃度は、例えば10~100μg/mL、20~80μg/mL又は30~50μg/mLである。本実施の形態に係る生体組織染色試薬における抗体の濃度は、例えば、0.5~500μg/mL、好ましくは30~400μg/mL、特に好ましくは50~200μg/mLである。
 なお、相分離誘導試薬を使用する本実施の形態に係る生体組織染色方法は、上記実施の形態1に係る生体組織染色試薬に限らず、従来の染色用緩衝液にサンプルを暴露する場合に抗体又は染色剤の初期濃度を高めるのに有効である。例えば、染色用緩衝液として非イオン性界面活性剤を含むPBSを用いる場合、抗体及び染色剤の少なくとも一方を含む当該染色用緩衝液と、サンプルと、相分離誘導試薬と、を混合すればよい。
 本実施の形態に係る生体組織染色方法によれば、相分離誘導試薬によって、同量の抗体又は染色剤で相分離誘導試薬を使用しない場合と比較して、サンプルが暴露される生体組織染色試薬における抗体又は染色剤の初期濃度を高くすることができる。このため、ローコストでサンプルに効率よく抗体又は染色剤を浸透させることができる(下記実施例19参照)。
 なお、別の実施の形態では、染色用緩衝液と、上記相分離誘導試薬と、を備える生体組織染色キットが提供される。当該生体組織染色キットにおける染色用緩衝液は、好ましくは、上記実施の形態1に係る生体組織染色試薬である。また、他の実施の形態では、水と相分離する物質を含む生体組織染色補助材が提供される。
 また、本実施の形態に係る相分離誘導試薬は、上記実施の形態2における同時染色ステップに適用してもよい。これにより、サンプルの染色に要する時間をさらに大幅に短縮できる(下記実施例20参照)。
 本実施の形態に係る生体組織染色方法に好適な生体組織染色キットの構成には、例えば、上記実施の形態1に係る生体組織染色キットに、相分離誘導試薬が追加される。相分離誘導試薬の仕様の例は、ミネラルオイル又はジメチルシリコーンオイル(KF-96(粘度50)、信越シリコーン社製)である。
 以下の実施例により、本発明をさらに具体的に説明するが、本発明は当該実施例によって限定されるものではない。
 以下の実施例で使用する脱脂処理、染色剤染色用緩衝液及び免疫染色用緩衝液の組成を以下に示す。
 CUBIC-L:
  10重量% N-ブチルジエタノールアミン(東京化成工業社製 #B0725)
  10重量% Triton X-100(ナカライテスク社製 #12967-45)
  二段蒸留水
 TS:
  10重量% Triton X-100
  500mM NaCl
  0.05重量% NaN
 CUBIC-1A:
  10重量% Triton X-100
  5重量% Quadrol(東京化成工業社製 #T0781)
  10重量% 尿素(ナカライテスク社製 #35904-45)
  25mM NaCl(ナカライテスク社製 #31319-45)
  二段蒸留水
 H-S:
  10mM HEPES(pH7.5)(ナカライテスク社製 #17514-15)
 染色剤染色用緩衝液A:
  10重量% Triton X-100
  500mM NaCl
  5重量% Quadrol
  二段蒸留水
 染色剤染色用緩衝液B:
  10重量% Triton X-100
  500mM NaCl
  5重量% Quadrol
  10重量% 尿素
  二段蒸留水
 免疫染色用緩衝液A:
  10mM HEPES(pH7.5)
  10重量% Triton X-100
  200mM NaCl
  0.05重量% NaN
 免疫染色用緩衝液B:
  10mM HEPES(pH7.5)
  0.1重量%又は5重量% Triton X-100
  200mM アルギニン-HCl
  0.5%(w/v) カゼイン(和光純薬工業社製 #030-01505)
  0.05重量% NaN
 免疫染色用緩衝液C:
  10mM HEPES(pH7.5)
  5重量%又は10重量% Triton X-100
  200mM NaCl
  0.5%(w/v) カゼイン
  0.05重量% NaN
 免疫染色用緩衝液D:
  10mM HEPES(pH7.5)
  10重量% Triton X-100
  200mM NaCl
  0.5(w/v) カゼイン
  2.5重量% Quadrol
  0.05重量% NaN
 免疫染色用緩衝液E:
  10mM HEPES(pH7.5)
  10重量% Triton X-100
  200mM NaCl
  0.5(w/v) カゼイン
  0.05重量% NaN
 染色用緩衝液F:
  10mM HEPES(pH7.5)
  10重量% Triton X-100
  500mM NaCl
  0.5%(w/v) カゼイン
  0.05重量% NaN
 実施例1:高い濃度の塩及び界面活性剤での3D核染色
 (サンプルの調製)
 5ヶ月齢のICRマウス(日本クレア社製)を過剰量(腹腔内に>100mg/kg)のペントバルビタール(ペントバルビタールナトリウム塩(ナカライテスク社製、#02095-04))で安楽死させ、~10U/mLのヘパリンを含む10mLのリン酸緩衝食塩水(PBS)に続いて4%PFAを含む20~30mLのPBSで経心的に灌流固定した。次に、頭部から全脳を摘出し、4%PFAを含むPBSで8~24時間、4℃でさらに全脳を固定した。固定した全脳をCUBIC-Lに37℃で5日間浸漬することで脱脂処理した全脳を得た。脱脂した当該全脳から切り取った脱脂された大脳半球をサンプルとした。
 (核染色)
 5μg/mLでPI(Molecular Probes社製、#P21493)を含むTS中にサンプルを浸漬し、37℃で2日間染色した。染色後のサンプルの外側から2、3及び4mmの位置で50μm厚の凍結切片を作製した。
 (画像取得及び画像処理)
 対物レンズ(UPlanSApo 4×、N.A.=0.16)、フィルタ、当該フィルタに適合する二色性反射鏡及びsCMOSカメラ(ORCA-Flash4.0、浜松ホトニクス社製)を備える蛍光顕微鏡(BX51、オリンパス社製)で凍結切片を観察した。電動x-yステージ(PRIOR社製)及びソフトウェア(cellSens Dimension 1.18、オリンパス社製)を用いて、凍結切片全体を包含する16ビットの画像を得た。画像に対するコンピュータ処理にはFiji/ImageJを用いた。
 (結果)
 図4は、外側から2、3及び4mmの位置での凍結切片それぞれの核染色画像を示す。凍結切片全体で均一な核染色像が得られた。
 実施例2:異なる塩濃度での3D核染色
 (サンプルの調製)
 実施例1と同様に固定した8週齢のC57BL/6マウス(日本SLC社製)の全脳をCUBIC-1Aに37℃で約10日間浸漬することで脱脂処理した全脳を得た。脱脂した当該全脳から切り取った脱脂された大脳半球をサンプルとした。
 (核染色)
 2μg/mLのPI若しくはSYTO 16(1:150、Thermo Fisher Scientific社製、#S7578)を含むH-S又は2μg/mLのPI若しくはSYTO 16(1:150)を混合したCUBIC-1A中にサンプルを浸漬し、32℃で24時間染色した。なお、NaClの濃度の影響を調べるため、CUBIC-1AのNaClの濃度を25mM又は500mMとし、H-SにNaClを5mM又は500mMとなるように添加した。サンプルをPBSで洗浄し、40重量%のスクロースを含むPBSに浸漬した。得られたサンプルから凍結切片を作製した。ポスト2D染色のために、DAPI(1:500、Dojindo Molecular Technologies社製、#D0523)を含むPBS中に室温で30分間浸漬した。得られた凍結切片を実施例1と同様に蛍光顕微鏡で観察した。
 (結果)
 図5(A)及び図5(B)は、それぞれPI及びSYTO 16で3D染色したサンプルの凍結切片の核染色画像を示す。イオン化染色剤であるPI及びイオン化かつ脂溶性染色剤であるSYTO 16いずれにおいても、NaClの濃度が高いH-S及びCUBIC-1Aの条件で、凍結切片全体でより均一な核染色像が得られた。また、DAPIによるポスト2D染色でも核を検出できることが確認できた。
 実施例3:様々な染色剤による3D核染色
 (サンプルの調製)
 実施例2と同様に固定した全脳をCUBIC-1Aに37℃で約10日間浸漬することで脱脂処理し、切り取った小脳半球をサンプルとして得た。
 (核染色)
 NaClの濃度を500mMにしたCUBIC-1A中にサンプルを浸漬し、32℃で2日間染色した。用いた染色剤は、DAPI(1:400)、SYTOX-G(1:2500、Thermo Fisher Scientific社製、#S7020)、RedDot2(1:150、Biotium社製、#40061)又はNeuroTrace(1:150、Thermo Fisher Scientific社製、#N21483)である。以降、実施例2と同様にサンプルから凍結切片を作製した。得られた凍結切片を実施例1と同様に蛍光顕微鏡で観察した。
 (結果)
 図6は、DAPI、SYTOX-G、RedDot2及びNeuroTraceで染色したサンプルの凍結切片の核染色画像を示す。いずれの染色剤でも凍結切片全体で均一な核染色像が得られた。これにより、塩の濃度を高めたCUBIC-1Aによって、種々の染色剤で均一な3D核染色ができることが示された。
 実施例4:染色剤染色用緩衝液での3D核染色
 (サンプルの調製)
 8週齢のC57BL/6マウスを用いる点を除いて、実施例1と同様に脱脂処理した大脳半球サンプルを得た。
 (核染色)
 SYTOX-G(1:2500)を混合した染色剤染色用緩衝液A中にサンプルを浸漬し、37℃で3日間染色した。一方で、染色剤染色用緩衝液Aに尿素をさらに混合した染色剤染色用緩衝液Bでも同様にサンプルを染色した。上記実施例1と同様にサンプルから凍結切片を作製し、凍結切片を観察した。
 (結果)
 図7(A)及び図7(B)は、それぞれ染色剤染色用緩衝液A及び染色剤染色用緩衝液Bで染色したサンプルの凍結切片の核染色画像を示す。尿素の有無にかかわらず、凍結切片全体で均一な核染色像が得られた。尿素を含む染色剤染色用緩衝液Bと比較して、尿素を含まない染色剤染色用緩衝液Aの方が全体的に強いシグナルが得られた。
 実施例5:中濃度の塩及び界面活性剤での3D免疫染色
 (サンプルの調製)
 実施例1と同様に脱脂処理した大脳半球から冠状断で約3mm厚のサンプルを得た。
 (免疫染色)
 蛍光色素Alexa488で標識したマウス抗NeuN抗体(Anti-NeuN-A488抗体、Merck Millipore社製、MAB377X)を10μg/mLの濃度で混合した免疫染色用緩衝液A中にサンプルを浸漬し、32℃で4日間染色した。NeuNは神経細胞核のマーカーである。染色後のサンプルから冠状断面の50μm厚の凍結切片を作製し、上記実施例1と同様に凍結切片を観察した。
 (結果)
 図8は、凍結切片の免疫染色画像を示す。凍結切片全体で均一な神経核染色像が得られた。
 実施例6:異なる濃度の界面活性剤での免疫染色
 (サンプルの調製)
 実施例1と同様に固定した8週齢のC57BL/6マウスの全脳をCUBIC-1Aに37℃で約10日間浸漬することで脱脂処理した全脳をサンプルとして得た。当該サンプルから50μm厚の全脳矢状断の凍結切片を作製し、染色に使用した。
 (免疫染色)
 1μg/mLの抗Sst抗体(Merck Millipore社製、#MAB354)と、蛍光色素Alexa594で標識したFab-抗ラット(Fab-anti-rat-A594、Jackson ImmunoResearch laboratories社製、#112-587-008)とを重量比1:0.7から1:3で混合した免疫染色用緩衝液B又は免疫染色用緩衝液C中に凍結切片を浸漬し、32℃で一晩染色した。染色後の凍結切片を上記実施例1と同様に観察した。
 (結果)
 図9(A)及び図9(B)は、免疫染色用緩衝液Bで染色した凍結切片の免疫染色画像を示す。Triton X-100の濃度が高いほうで強いシグナルが得られた。図10(A)及び図10(B)は、免疫染色用緩衝液Cで染色した凍結切片の免疫染色画像を示す。Triton X-100の濃度が10重量%の場合、5重量%よりもさらに強いシグナルが得られた。
 実施例7:免疫染色用緩衝液とPBST緩衝液との比較
 (サンプルの調製)
 実施例1と同様に固定した8週齢のC57BL/6マウス全脳をCUBIC-Lに3日間浸漬することで脱脂処理したサンプルを得た。当該サンプルから50μm厚の全脳矢状断の凍結切片を作製し、染色に使用した。
 (免疫染色)
 1μg/mLのマウス抗NeuN抗体と、Fab-anti-mouse IgG-A594とを重量比約1:0.75で混合した免疫染色用緩衝液E中に凍結切片を浸漬し、32℃で24時間染色した。染色後のサンプルから凍結切片を作製した。比較対象としてPBST緩衝液(0.1%(v/v) Triton X-100及び3%ロバ血清(Sigma-Aldrich社製、#D9663))でも同様に凍結切片を染色し、染色後の凍結切片を上記実施例1と同様に観察した。
 (結果)
 図11は、免疫染色用緩衝液Eで染色した凍結切片及びPBST緩衝液で染色した凍結切片のそれぞれサンプルの神経核染色像を示す。上段左端において「1」及び「2」で示す部分を拡大した画像によって、PBST緩衝液よりも免疫染色用緩衝液Eでの染色によってシグナルノイズ比が改善されることが示された。
 実施例8:他の3D透明化染色方法との比較
 既に報告されている3D透明化染色方法であるAbScale(Hiroshi Hama、外10名、「ScaleS:an optical clearing palette for biological imaging」、Nat.Neurosci.、2015年、18、1518-1529)、上記非特許文献2に開示されたiDISCO+(2016年12月版 https://idisco.info/idisco-protocol/)及び上記免疫染色用緩衝液Eを用いた染色方法について、実施例1と同様に固定した8週齢のC57BL/6マウスの大脳半球をCUBIC-Lに37℃で3日間浸漬することで脱脂処理したサンプルに対する抗体の浸透の程度を比較した。
 AbScale(オリジナル)では、図12に示す順に固定後のサンプルをScaleS0、ScaleA2、AcaleB4及びScaleA2の順に浸漬し、サンプルを洗浄後、Alexa488で標識したマウス抗NeuN抗体(5μg/mL)を混合した1.6mLのAbScale溶液(0.33M尿素及び0.5%(w/v) Triton X-100を含むPBS)中にサンプルを浸漬し、37℃で染色した。なお、ScaleS0は、20%(w/v) D-(-)-ソルビトール(ナカライテスク社製、#32021-95)、5%(w/v)グリセロール(ナカライテスク社製、#17018-25)、1mM メチル-β-シクロデキストリン(東京化成工業製、#M1356)、1mM γ-シクロデキストリン(和光純薬工業社製、#037-10643)、1%(w/v) N-アセチル-L-ヒドロキシプロリン(サンタクルーズバイオテクノロジー社製、#sc-237135)、3%(v/v)ジメチルスルホキシド(ナカライテスク社製、#35624-15)をPBS中に溶解したものである。ScaleA2は、10%(w/v)グリセロール、4M 尿素、0.1%(w/v)Triton X-100を蒸留水に溶解したものである。ScaleB4は、8M 尿素を蒸留水に溶解したものである。
 iDISCO+(オリジナル)では、図12に示す順に固定後のサンプルを20%、40%、60%、80%及び100%のメタノールで順次処理してサンプルを脱水し、66%ジクロロメタン(DCM)/33%メタノール中でサンプルを一晩振とうした。続いてサンプルを100%のメタノールで洗浄し、5%過酸化水素を含むメタノール中で一晩処理した。そして、80%、60%、40%及び20%のメタノールで順次サンプルを再脱水し、サンプルを洗浄した。さらに、サンプルを透過溶液及びブロッキング溶液で処理した。
 iDISCO+(オリジナル)における一次抗体による染色では、マウス抗NeuN(10μg/mL)を混合した1.6mLの一次染色緩衝液(5%DMSO、3%ロバ血清、0.2%(v/v)Tween-20、10μg/mL ヘパリンを含むPBS)を用いて37℃でサンプルを染色した。二次抗体による染色では抗マウス二次IgG(A488)(10μg/mL)を混合した二次染色緩衝液(3%ロバ血清、0.2%(v/v)Tween-20、10μg/mL ヘパリンを含むPBS)を用いて37℃でサンプルを染色した。
 免疫染色用緩衝液Eを用いた染色では、図12に示す順にサンプルを50%CUBIC-L及び100%CUBIC-Lに浸漬し、洗浄後、マウスモノクローナル抗NeuN IgG(10μg/mL)及びA488で標識した抗マウス二次Fab(Jackson ImmunoResearch laboratories社製、#115-547-185)を重量比1:1で混合した免疫染色用緩衝液E中にサンプルを浸漬し、32℃で染色した。
 一方で、図12に示すように、AbScale(オリジナル)及びiDISCO+(オリジナル)における染色を、免疫染色用緩衝液Eを用いた染色条件に置換してサンプルを染色した。
 (結果)
 各サンプルの凍結切片の画像を示す図13によれば、AbScale(オリジナル)及びiDISCO+(オリジナル)での染色の場合、サンプルの内部の神経核染色像が完全には得られなかったが、本実施例に係る免疫染色用緩衝液Eを用いた染色ではサンプルの内部の神経核染色像が良好に得られた。AbScale及びiDISCO+は、免疫染色用緩衝液Eを用いて染色することで明らかにサンプルの内部の神経核染色像が改善した。これにより、既存の3D透明化染色方法と組み合わせても免疫染色用緩衝液Eによって生体組織に抗体を十分に浸透させることができることが示された。本実施例に係る免疫染色用緩衝液Eを用いた染色方法では、免疫染色用緩衝液Eの使用に加え、抗体の濃度、Fab抗体の使用及び染色の際の温度等を調整することによって、サンプルへの抗体の浸透効率を改善することができた。
 実施例9:全脳の2色3D染色
 以下の実施例に係る3D組織染色及び画像解析のために多用途に適用可能なプロトコル(以下「CUBIC-HV」とする)を図2(A)に図示する。CUBIC-HVにおける核染色では、上記の染色剤染色用緩衝液Bを用いた。CUBIC-HVにおける免疫染色では、上記の免疫染色用緩衝液Eを用いた。なお、図2(B)に示すように、CUBIC-HVに酵素処理を任意に追加した。
 (サンプルの調製)
 実施例1と同様に固定した8週齢のC57BL/6マウスの全脳をCUBIC-Lに37℃で3日間浸漬することで脱脂処理したサンプルを得た。
 (核染色)
 サンプルをPBSで洗浄し、0.05%のNaNを含むPBS中でサンプルを4℃で使用まで保管した。SYTOX-G(1:2500)を混合した染色剤染色用緩衝液B中にサンプルを浸漬し、37℃で5日間染色した。
 (酵素処理)
 サンプルを洗浄後、酵素処理した。酵素処理では、ヒアルロニダーゼ(シグマ・アルドリッチ社製、#H4272又はH3884、3mg/mL)を含むCAPSO緩衝液(10mM CAPSO(シグマ・アルドリッチ社製、#C2278)及び150mM NaClを含み、pH10)でサンプルを37℃で24時間処理した。
 (免疫染色)
 酵素処理後、サンプルをPBSで洗浄し、10μg/mLのマウス抗NeuN抗体(Merck Millipore社製、MAB377)と、Alexa594で標識したFab-抗マウス IgG(Fab-anti-mouse IgG-A594、Jackson ImmunoResearch laboratories社製、#115-587-185、マウス抗NeuN抗体と重量比で約1:0.5になる量を添加)を混合し、さらに2.5重量%Quadrolを添加した免疫染色用緩衝液E中にサンプルを浸漬し、32℃で7日間、続いて4℃で5日間染色した。染色後のサンプルをCUBIC-Rで透明化した(RI調整)。CUBIC-Rは、45重量%のアンチピリン及び30重量%のニコチンアミドを含む二段蒸留水で、0.5%(v/w)N-ブチルジエタノールアミンで緩衝化(pH~10)されたものである。サンプルをPBSで洗浄後、1%ホルムアルデヒド(FA)で室温にて5時間、サンプルを後固定した。透明化のために、水で1:1の割合で希釈したCUBIC-Rに、室温で1日、サンプルを浸漬した。続いて希釈していないCUBIC-Rに室温で2~3日、サンプルを浸漬した。最後に、CUBIC-Rに溶解した2%(w/v)アガロースで調製したゲルにサンプルを包埋した。
 (画像取得及び画像処理)
 左右のシート照明ユニット(オリンパス社製)とサンプルの前側及び後側に配置された2個のマクロズーム顕微鏡(MVX10、オリンパス社製)を備えるライトシート顕微鏡(LSFM)でサンプルを3D観察した。左右のシート照明パスを切り換えるために、ファイバーで連結したダイオード又はDPSSレーザー(Omicron、λ=488、532、594及び642nmを有するSOLE-6)をコリメータ及びビーム反射鏡を介してシート照明ユニットに接続した。シート照明は円柱レンズを有するシート照明ユニットで発生させた。シート照明の厚みはメカニカルスリットで約5~10μmの範囲に調節した。本実施例におけるLSFM観察では、0.63×対物レンズ(MVPLAPO0.63X N.A.=0.15、WD=87mm、オリンパス社製)、MVX10の光学ズーム(1.25×)、488nm及び590nmレーザー、φ32シングルバンドパスフィルタ(520/44nm及び641/75nm、Semrock社製)、チューブレンズ(MVX-TV XC、オリンパス社製)及びsCMOSカメラ(Zyla 5.5、Andor社製)を用いた。サンプル画像取得のため、サンプルホルダ及びゲルに包埋した透明化サンプルを、電動式x-y-zステージ(x及びyステージがThorlabs社製のMTS50/M-Z8E、zステージがPhysik instrumente社製のM-112.1DG)に接続し、HIVAC-F4及び鉱油からなるRI調整油混合物(RIは約1.51)で満たされた、照射及び画像化ウインドウを有するサンプルチャンバー内に配置した。z方向に9μmのステップサイズでサンプルをスキャンし、16ビット画像を得た。ビームウエストの共焦点パラメータがタイリング後の各x-y画像のサンプル全体を包括するように、シート照明の焦点を動かすことで複数のz-スタックデータを取得した。すべての電子機器はLabVIEWソフトウェア(National Instruments社製)で制御した。
 LSFMで得られた脳の画像を、Fiji/ImageJを使用して次のように処理した。まず、各z位置でシート照明の焦点を動かした6個の画像(3箇所×左及び右からの光照射)をタイリングして1個の画像を構築した。タイリングの端のx位置はサンプル中央部のz位置でライトシートの焦点位置を動かした画像を収集し、各画像のシグナルコントラストを比較して決定した。タイリングの前に、各zステップにおいてライトシートの焦点位置を動かして得られた画像間の平均強度を均等化した。タイリング後、得られた16ビット画像を8ビットに変換し、ブランク領域を除外した。続いてノイズのシグナルを次のフィルタで除外した。1)脳の領域外のノイズピクセルを強度閾値で選択し、ImageJの“remove outlier”機能を適用する。2)強度閾値が染色シグナルより大きいノイズピクセルを選択し、ImageJの“remove outlier”機能を適用するか強度を0に置換する。3)強度閾値及び手動選択を組み合わせてノイズピクセルを選択し、ImageJの“clear”機能を適用する。必要に応じて、異なるチャネル間のx-y位置を手動で一致させた。
 LSFMで得られ、上記のように処理されたz-スタックデータをImarisソフトウェア(version8.4、Bitplane社製)で再構成し、疑似カラー画像として可視化した。疑似カラー画像の明るさ及びコントラストを調整した。
 (結果)
 図14(A)には、左からSYTOX-Gのシグナルを示す画像、NeuNのシグナルを示す画像及びこれらの画像をマージした画像が示されている。LSFMによって、ほぼ等方性のボクセルサイズ(8.3×8.3×9μm)でサンプルを包含するz-スタック画像が得られた。図14(B)には、図14(A)に示すデータの矢状面(y-z)又は冠状面(x-z)の画像を示す。ほぼ等方性の細胞レベルの解像度で均質な染色及び画像が取得できた。
 実施例10:全脳の多色3D染色
 組織染色は、遺伝学的手法よりも、1つの標本における複数の標的の染色及び可視化が容易である。本実施例では、BOBO-1と、GABAニューロンに関連する3つの異なる抗体でマウス全脳をCUBIC-HVに従って以下のように3D染色した。
 実施例1と同様に固定した8週齢のC57BL/6マウスの全脳をCUBIC-Lに3日間浸漬することで脱脂処理したサンプルを得た。サンプルをPBSで洗浄し、0.05%のNaNを含むPBS中でサンプルを4℃で使用まで保管した。BOBO-1(1:400)を混合した染色剤染色用緩衝液B中にサンプルを浸漬し、37℃で5日間染色した。サンプルを洗浄後、実施例9と同様にヒアルロニダーゼで酵素処理した。
 酵素処理後、サンプルをPBSで洗浄し、マウスモノクローナル抗PV IgG/Fab-Cy3(1:50、Swant社製、#PV235)、ラットモノクローナル抗Sst IgG2b/Fab-A594(1:10、Millipore社製、#MAB354)及びマウスモノクローナル抗Gad67 IgG2a/Fab-A647(1:75、Millipore社製、#MAB5406)を混合した免疫染色用緩衝液E中にサンプルを浸漬し、室温で7週間、続いて4℃で5日間染色した。サンプルをPBSで洗浄後、1%FAで室温にて5時間、サンプルを後固定した。サンプルを洗浄後、CUBIC-RでRI調整を行い、LSFMを用いて上述のように3D画像を得た。
 (結果)
 図15は、BOBO-1のチャネルとともにPV(b)、Sst(c)及びGad67(d)に係るチャネルの画像を示す。ボクセルサイズは8.3×8.3×9μmであった。これら4つのチャネルを重ね合わせた画像が図15のeに示されている。図15のf及び図15のgは、脳の一部を拡大した水平面(x-y)の画像を示す。図15のhは、図15のeに示された部分の冠状面(x-z)の画像を示す。図15のi及び図15のjは、それぞれ図15のhに示された部分を拡大した画像を示す。適切な抗体の種類(ホストの種及びアイソタイプ)及び染色剤、励起光及びバンドパス放射フィルタによって、異なる蛍光チャネルからシグナルを識別できることが示された。
 実施例11:蛍光タンパク質を発現させた全脳の多色3D染色
 本実施例では、蛍光タンパク質で標識された全脳を2種類の抗体を用いてCUBIC-HVに従って以下のように3D染色した。
 8週齢のThy1-YFP-Hトランスジェニックマウス(Feng,G.P.,et al.外8名、「Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP」、Neuron、2000年、28、41-51)に関して、実施例1と同様に固定した全脳をCUBIC-Lに3日間浸漬することで脱脂処理したサンプルを得た。サンプルを洗浄後、実施例9と同様にヒアルロニダーゼで酵素処理した。Thy1-YFP-Hトランスジェニックマウスの脳にはYFPが発現する。
 酵素処理後、サンプルをPBSで洗浄し、マウスモノクローナル抗Dat IgG/Fab-A594(1:100、Abcam社製、#ab128848)及びヤギポリクローナル抗ChAT IgG/Fab-A647(1:20、Millipore社製、#AB144)を混合し、さらに2.5重量%Quadrolを添加した免疫染色用緩衝液E中にサンプルを浸漬し、32℃で15日間、続いて4℃で5日間染色した。サンプルをPBSで洗浄後、1%FAで室温にて5時間、サンプルを後固定した。サンプルを洗浄後、CUBIC-R+(M)でRI調整を行い、LSFMを用いて上述のように3D画像を得た。CUBIC-R+(M)は、45重量%のアンチピリン及び30重量%のN-メチルニコチンアミド(東京化成工業社製 #M0374)を含む二段蒸留水で、0.5%(v/w)N-ブチルジエタノールアミンで緩衝化(pH~10)されたものである。
 (結果)
 図16のkは、ChAT、Dat及びYFPのチャネルを重ね合わせた画像を示す。ボクセルサイズは8.3×8.3×9μmであった。図16のlは、図16のkに“l”で示された部分を拡大した画像を示す。図16のmは、脳の一部の水平面の画像を示す。図16のnは、図16のmに示された部分を拡大した画像を示す。YFPで標識された皮質脊髄路の像及びDat免疫染色されたドーパミン作動性ニューロンの投射経路の像が隣接していることが確認できる。図16のo~qは、図16のkに“o-q”で示された部分に係る再構築された矢状面の画像を示す。図16のk~qにおける“*”はサンプルの不十分な灌流による非特異的な血管のシグナルを示す。
 図16に示すように、YFPのシグナルが免疫染色されたDat及びChATのシグナルとともに強い強度で鮮明に観察された。このため、本実施例に係る免疫染色用緩衝液Eを使用したCUBIC-HVによって、脳に発現するFPのシグナルを低減させることなく、標的それぞれを別の色素で標識してそれぞれの標的の局在を識別可能な画像を得ることができることが示された。
 実施例12:3D染色のための抗体の選択
 実施例1又は実施例2と同様にCUBIC-L又はCUBIC-1Aで脱脂処理した8週齢のC57BL/6マウスの半脳を用いて、上記のCUBIC-HVに従って種々の抗体を染色した。画像解析においてシグナル強度、SBR、酵素処理との適合性及び浸透効率を検討し、CUBIC-HVによる3D染色に好ましい抗体を同定した(表1及び表2参照)。
 なお、酵素処理では、上記のヒアルロニダーゼでの処理のほか、抗体によってはコラゲナーゼ-P(シグマ・アルドリッチ社製、#11213857001、1mg/mL)を含む、150mM NaCl及び25~100μM EDTAを添加してpH10にした炭酸塩緩衝液(50mM 炭酸カルシウム(ナカライテスク社製、#31310-35)及び50mM 炭酸水素ナトリウム(ナカライテスク社製、#31213-15を含む))でサンプルを37℃で18~24時間処理した。また、免疫染色用緩衝液Eには、シグナル強度、SBR、浸透効率を向上させるため、Quadrol及び尿素を適宜添加した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例13:電気的相互作用による抗体-組織間の可逆的複合体形成
 CUBIC-HVでは、組織における標的を確実に標識するために、免疫染色に用いる抗体の組織での濃縮及び組織への浸透性向上を図る前処理を適用することが想定される。ポリグルタミン酸等のアニオンチャージのポリマーと抗体とを弱酸性条件でインキュベートすると、等電点より酸性側となり、カチオンチャージを有する抗体が電気的相互作用によってポリマーと可逆的な複合体を形成する。本実施例では、電気的相互作用による抗体と組織との複合体形成を確認した。
 実施例1と同様に固定した8週齢のC57BL/6マウスの大脳半球をCUBIC-Lに37℃で3日間浸漬することで脱脂処理したサンプルを得た。Alexa488で標識した抗マウスIgG抗体を、所定の濃度のNaClを含む10mMのクエン酸バッファー(pH5)に混合した液中で、サンプルを37℃で一晩インキュベートした。なお、抗原抗体反応を介した組織染色でのシグナルを否定するため、組織と抗原抗体反応を原理上起こさない抗体を使用した。青色光イルミネーターでサンプルを照射し、橙フィルタを搭載したデジタルカメラで撮影後、Fiji/ImageJで色ごとにチャネルを分離した。
 (結果)
 図17に示すように、組織表面に緑色のシグナルが確認された。よって、弱酸性の緩衝液による抗原抗体反応に依存しない抗体-組織の複合体形成が示された。
 実施例14:抗体の浸透効率の評価系の構築
 (サンプルの調製)
 4%PFAで約5日間固定したブタ脳スライスから、径1.5mmの生検パンチャーを用いて大脳皮質領域の小カラムをサンプルとして作製した。CUBIC-Lに37℃で約2日間浸漬することで脱脂処理したサンプルを染色に使用した。
 (染色)
 脱脂処理後、サンプルをPBSで洗浄し、マウスモノクローナル抗Synaptophysin抗体(医学生物学研究所社製、#D073-3、20μg/mL)と、Alexa594で標識したFab-抗マウス IgG(上記抗Synaptophysin抗体と重量比で約1:1になる量を添加)と、2.5重量%Quadrol又は同量の蒸留水と、を添加した免疫染色用緩衝液E中にサンプルを浸漬し、32℃で1日間染色した。染色後、サンプルをPB-Triton及びPBで洗浄し、サンプル中央部分の凍結切片を作製した。染色後の凍結切片を上記実施例1と同様に観察した。
 (結果)
 図18(A)及び(B)は、それぞれ蒸留水及びQuadrolを添加した免疫染色用緩衝液Eで染色したサンプルの凍結切片の画像を示す。Quadrolを添加していない図18(A)と比較すると、図18(B)に示すように、Quadrolの添加によってサンプル内部の染色性が上昇し、抗体の浸透上昇効果が反映されていた。定量のため、顕微鏡撮影画像を用いてカラムの左右がほぼ均等に染色されている代表的な領域を選択し、輝度値のグラフを作製した。グラフ中の左右の最大輝度(ピーク)とサンプル中の最低輝度(ボトム)の比(ピークボトム比)が、Quadrolを添加していないサンプルで高く、Quadrolを添加したサンプルでは内部の染色性の上昇によって低くなった。よって、当該ピークボトム比を、抗体の組織への浸透性の定量的指標として次のように化合物を探索した。
 実施例15:抗体の組織への浸透効率を向上させる化合物の探索
 リストアップした426種の化合物それぞれを、2.5重量%で免疫染色用緩衝液Eに添加し、実施例14と同様に染色を実施した。また、一次抗体を抗Synaptophysin抗体から抗ニューロフィラメント抗体(Anti-phospho-neurofilament SMI31、Biolegend社製、#801601、20μg/mL)に代えて、別にリストアップした137種の化合物それぞれについて同様に染色を実施した。凍結切片の顕微鏡画像から、24時間での抗体浸透度をピークボトム比で評価した。
 (結果)
 抗Synaptophysin抗体を用いた場合の各化合物のピークボトム比を図19に示す。図19において、化合物として水を免疫染色用緩衝液Eに添加した場合のピークボトム比が矢印で示されている。ピークボトム比が約2.8であったQuadrolより小さなピークボトム比を示した化合物を表3~表7に示す。抗ニューロフィラメント抗体を用いた場合のピークボトム比がQuadrolより小さなピークボトム比を示し、かつ明確な浸透上昇効果が染色像より得られた化合物を表8に示す。これらの化合物の大部分は、環状アミン、環状アミド、鎖状アミン、鎖状アミド、スルフォ基、又はこれらを組み合わせて有する化合物である。同定されたこれらの化合物から、特に抗体の染色を強く阻害しない化合物、及び他の複数の抗体でも浸透上昇効果が得られる化合物を選択し、以下の実施例で添加剤として使用した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 実施例16:添加剤の代表的な組み合わせでの3D免疫染色
 実施例1と同様に脱脂処理した大脳半球を、免疫染色用緩衝液Eに浸漬し、32℃で3日間から4日間染色した。免疫染色用緩衝液Eは、一次抗体として、抗Synaptophysin抗体(#D073-3、20μg/mL)、マウスモノクローナル抗Gad67 IgG2a(Merck Millipore社製、#MAB5406、10μg/mL)、マウスモノクローナル抗Dat IgG(abcam社製、#ab128848、10μg/mL)又はマウスモノクローナル抗Th抗体(abcam社製、#13786、10μg/mL)と、各一次抗体に対するAlexa594で標識したFab-抗マウス又はラビットIgG(Jackson ImmunoResearch laboratories社製、Fab-anti-mouse IgG-A594(#115-587-185)、Fab-anti-mouse IgG2a-A594(#115-587-186)、Fab-anti-rabbit IgG-A594(#111-587-008)、各一次抗体と重量比で約1:0.75になる量を添加)と、所定の濃度の添加剤(図1(A)に記載の#0854、#1086、#0609及び図1(B)に記載の#0146から2種又は3種)と、を含む。染色後に作製した凍結切片を上記実施例1と同様に観察した。
 (結果)
 Synaptophysin、Gad67、Dat又はThに対する抗体で染色した各サンプルの凍結切片の画像をそれぞれ示す図20(A)、(B)、(C)及び(D)によれば、各添加剤の組み合わせによってサンプル内部の染色性が上昇した。添加剤による抗体の浸透促進効果が示された。特に抗Th抗体の染色例に示されたように、添加剤#0146の使用により、さらに強い浸透促進効果が得られた。
 実施例17:添加剤の代表的な組み合わせでの3D核染色
 実施例1と同様に脱脂処理した半脳を、250μLの染色用緩衝液Fに浸漬し、37℃で2日間又は3日間染色した。染色用緩衝液Fは、RedDot2(1:50)又はSYTOX-G(1:500)と、所定の濃度の添加剤(図1(A)に記載の#0854、#1086及び#0609から2種)と、を含む。染色後、実施例2と同様にサンプルから凍結切片を作製した。得られた凍結切片を実施例1と同様に蛍光顕微鏡で観察した。
 (結果)
 RedDot2又はSYTOX-Gで染色した各サンプルの凍結切片の核染色画像をそれぞれ示す図21(A)及び(B)によれば、各添加剤の組み合わせによってサンプル内部の染色性が上昇した。染色性の上昇は特に小脳部位で顕著であった。本実施例によって、添加剤による染色剤の浸透促進効果が示された。
 実施例18:添加剤の代表的な組み合わせでの3D核染色及び3D免疫染色の同時実施
 (サンプルの調製)
 実施例1と同様に固定した8週齢のC57BL/6マウスの全脳をCUBIC-Lに37℃で3日間浸漬することで脱脂処理したサンプルを得た。サンプルをPBSで洗浄し、0.05%のNaNを含むPBS中で、4℃で保管した。
 (3D核染色及び3D免疫染色)
 SYTOX-G(1:500)、10μg/mLのマウス抗NeuN抗体、Alexa594で標識したFab-抗マウス IgG(#115-587-185、マウス抗NeuN抗体と重量比で約1:0.75になる量を添加)、2.5重量%ニコチン酸ヒドラジド(#0854)及び5重量%ピラジン(#1086)を添加した500μLの染色用緩衝液F中にサンプルを浸漬し、32℃で6日間染色後、4℃で1日間さらに染色した。染色後のサンプルを実施例9と同様にCUBIC-Rで透明化し(RI調整)、CUBIC-Rに溶解した2%(w/v)アガロースで調製したゲルにサンプルを包埋し、LSFMで3D観察した。LSFMで得られた脳の画像を、Fiji/ImageJを使用して実施例9と同様にタイリングした。得られたz-スタックデータをImarisソフトウェアで再構成し、疑似カラー画像として可視化した。なお、本実施例では、実施例9における酵素処理は行わなかった。
 (結果)
 図22(A)は、NeuNのシグナルを示す画像である。図22(B)は、SYTOX-Gのシグナルを示す画像である。図22(C)は、NeuNのシグナルを示す画像及びSYTOX-Gのシグナルを示す画像をマージした画像である。当該画像は、LSFMによって得られたz-スタックデータから抜き出した染色剤の浸透性が評価可能なサンプル中央部分のスタックに対応する。図22(A)~(C)に示すように、均質に染色された細胞レベルの解像度の画像が取得できた。添加剤の使用によって核染色と免疫染色とをマウス全脳で施行できることが示された。
 実施例19:相分離を使用した3D免疫染色
 実施例1と同様に脱脂処理した小脳半球から得られたサンプルを相分離なし及び相分離ありのそれぞれで、免疫染色用緩衝液E、あるいは0.1% Triton X-100を混合したPBS(以下、「PBST」とする)に浸漬し、32℃で2日間染色した。染色後に作製した凍結切片を蛍光顕微鏡で観察した。
 免疫染色用緩衝液E及びPBSTはそれぞれ、マウスモノクローナル抗NeuN IgG(10μg/mL又は100μg/mL)及びAlexa594で標識したFab-抗マウス IgG(#115-587-185、マウス抗NeuN抗体と重量比で約1:0.75になる量を添加)を含む。相分離なしの条件では、免疫染色用緩衝液E及びPBSTの用量はそれぞれ150μLとした。一方、相分離ありの条件では、免疫染色用緩衝液E及びPBSTの用量はそれぞれ15μLとし、シリコーンオイルKF-96(粘度50)中でサンプルと免疫染色用緩衝液E又はPBSTを相分離させた。
 (結果)
 各サンプルの凍結切片の画像を図23に示す。相分離なし及び相分離ありのいずれの条件でも、初期濃度及び総抗体量に依存して抗体浸透度が上昇し、シグナルが向上した。マウス全脳あたりの総抗体量が5μgである、相分離なしで抗体濃度が10μg/mLの条件と、相分離ありで抗体濃度が100μg/mLの条件との比較によって、相分離によって初期濃度を高くすることで、抗体浸透度が上昇し、シグナルが向上することが示された。相分離を利用することで、同じ総抗体量、すなわち同じコストで、抗体浸透度を上昇させてシグナルを向上させることができた。
 実施例20:添加剤及び相分離を使用した3D核染色及び3D免疫染色の同時実施
 (サンプルの調製)
 実施例1と同様に脱脂処理したマウス全脳サンプルをPBSで洗浄し、0.05%のNaNを含むPBS中でサンプルを4℃で使用まで保管した。
 (3D核染色及び3D免疫染色)
 SYTOX-G(1:50)、マウスモノクローナル抗GFAP抗体(医学生物学研究所社製、#D097-3、100μg/mL)又はマウスモノクローナル抗Dat抗体(abcam社製、#ab128848、100μg/mL)、Alexa594で標識したFab-抗マウス IgG(一次抗体と重量比で約1:0.75になる量)、2.5重量%ニコチン酸ヒドラジド(#0854)及び5重量%ピラジン(#1086)を添加した50μLの染色用緩衝液F中にサンプルを浸漬した。これらをミネラルオイル中で相分離させ、32℃で5日間染色後、4℃で1日間さらに染色した。染色後のサンプルを実施例9と同様にCUBIC-Rで透明化し(RI調整)、CUBIC-Rに溶解した2%(w/v)アガロースで調製したゲルにサンプルを包埋し、LSFMで3D観察した。LSFMで得られた脳の画像を、Fiji/ImageJを使用して実施例9と同様にタイリングした。得られたz-スタックデータをImarisソフトウェアで再構成し、疑似カラー画像として可視化した。なお、本実施例では、実施例9における酵素処理は行わなかった。
 (結果)
 図24(A)は、GFAP及びSYTOX-Gのシグナルを示す3次元再構成画像を示す。図24(B)は、内部染色性を示すためサンプル中央部のz-スタックを抽出し最大輝度値(MAX)で重ね合わせたGFAPのシグナルの画像を示す。図24(C)は、Dat及びSYTOX-Gのシグナルを示す3次元再構成画像を示す。図24(D)は、サンプル中央部のz-スタックを抽出し最大輝度値(MAX)で重ね合わせたDatのシグナルの画像を示す。添加剤及び相分離による抗体と染色剤の濃縮の双方を利用することで均質な核染色及び免疫染色を1週間以内に完了できることが示された。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等な発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本出願は、2019年8月30日に出願された日本国特許出願2019-157984号及び2020年3月18日に出願された日本国特許出願2020-47552号に基づく。本明細書中に日本国特許出願2019-157984号及び日本国特許出願2020-47552号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
 本発明は、生体組織の染色に好適である。

Claims (14)

  1.  1%より高濃度の非イオン性界面活性剤と、
     200mM以上の塩と、
     を含む、生体組織染色試薬。
  2.  中性緩衝液をさらに含む、
     請求項1に記載の生体組織染色試薬。
  3.  ブロッキング試薬をさらに含む、
     請求項1又は2に記載の生体組織染色試薬。
  4.  下記の一般式(1)に示す尿素又は尿素誘導体を除く芳香族アミン、脂肪族アミド類、ニコチンアミド類、スルファミド類、スルホン酸塩、アミノアルコール、アルコール、スルフィン酸類、チオ尿素類及びカルボン酸類の化合物から選択される少なくとも1種の添加剤をさらに含む、請求項1から3のいずれか一項に記載の生体組織染色試薬。
    Figure JPOXMLDOC01-appb-C000001
     (一般式(1)において、R、R、R、Rは、互いに独立に水素原子、ハロゲン原子又は炭化水素基であり、炭化水素基を構成する炭素原子が複数個ある場合には当該炭素原子の一部が、窒素原子、酸素原子、硫黄原子等のヘテロ原子により置換されていてもよい。炭化水素基には、鎖状炭化水素基及び環状炭化水素基が含まれる。)
  5.  染色剤をさらに含む、
     請求項1から4のいずれか一項に記載の生体組織染色試薬。
  6.  免疫染色用抗体をさらに含む、
     請求項1から5のいずれか一項に記載の生体組織染色試薬。
  7.  請求項1から4のいずれか一項に記載の生体組織染色試薬と、
     染色剤と、
     を備える、生体組織染色キット。
  8.  請求項1から4のいずれか一項に記載の生体組織染色試薬と、
     免疫染色用抗体と、
     を備える、生体組織染色キット。
  9.  弱酸性緩衝液をさらに備える、
     請求項8に記載の生体組織染色キット。
  10.  1%より高濃度の非イオン性界面活性剤、200mM以上の塩及び中性緩衝液を含む洗浄緩衝液をさらに備える、
     請求項8又は9に記載の生体組織染色キット。
  11.  水と相分離する相分離誘導試薬をさらに備える、
     請求項7から10のいずれか一項に記載の生体組織染色キット。
  12.  請求項6に記載の生体組織染色試薬を使用した生体組織染色方法であって、
     前記免疫染色用抗体を含む弱酸性緩衝液に、脱脂された生体組織を暴露する前処理ステップと、
     前記生体組織染色試薬に前記生体組織を暴露する免疫染色ステップと、
     を含む、生体組織染色方法。
  13.  染色剤と、免疫染色用抗体と、を含む請求項4に係る生体組織染色試薬に生体組織を暴露する同時染色ステップを含む、
     生体組織染色方法。
  14.  染色剤及び免疫染色用抗体の少なくとも一方を含む請求項1~4のいずれか一項に記載の生体組織染色試薬と、生体組織と、相分離誘導試薬と、を混合する染色ステップを含む、
     生体組織染色方法。
PCT/JP2020/031840 2019-08-30 2020-08-24 生体組織染色試薬、生体組織染色キット及び生体組織染色方法 WO2021039716A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/635,778 US20220326125A1 (en) 2019-08-30 2020-08-24 Biological tissue staining reagent, biological tissue staining kit and biological tissue staining method
JP2021542888A JP7197941B2 (ja) 2019-08-30 2020-08-24 生体組織染色試薬、生体組織染色キット及び生体組織染色方法
EP20859017.4A EP4001888B1 (en) 2019-08-30 2020-08-24 Biological tissue staining reagent, biological tissue staining kit and biological tissue staining method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019157984 2019-08-30
JP2019-157984 2019-08-30
JP2020047552 2020-03-18
JP2020-047552 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021039716A1 true WO2021039716A1 (ja) 2021-03-04

Family

ID=74684185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031840 WO2021039716A1 (ja) 2019-08-30 2020-08-24 生体組織染色試薬、生体組織染色キット及び生体組織染色方法

Country Status (4)

Country Link
US (1) US20220326125A1 (ja)
EP (1) EP4001888B1 (ja)
JP (1) JP7197941B2 (ja)
WO (1) WO2021039716A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071029A1 (ja) * 2022-09-30 2024-04-04 学校法人金沢医科大学 透明化生体標本作製方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024068987A1 (en) * 2022-09-30 2024-04-04 Deep Piction Gmbh Methods for large tissue labeling, clearing and imaging using antibodies
WO2024091509A1 (en) * 2022-10-24 2024-05-02 Definitive Biotechnologies Llc Rapid, microfluidic diagnostic device and method for biological sex determination

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003066035A (ja) * 2001-08-06 2003-03-05 Anse Ko 水溶性組織清澄溶液
US20040137475A1 (en) * 1999-04-30 2004-07-15 Haugland Richard P. Aza-benzazolium containing cyanine dyes
KR20110121876A (ko) * 2010-05-03 2011-11-09 동국대학교 경주캠퍼스 산학협력단 면역세포화학법에 의한 핵 성 항원의 검증방법
CN102589955A (zh) * 2012-01-15 2012-07-18 中国人民解放军第四军医大学 一种检测体液细胞中结核杆菌的染色试剂盒
WO2014010633A1 (ja) 2012-07-10 2014-01-16 独立行政法人理化学研究所 抗体組成物、抗体組成物調製用キット、及び免疫染色方法
WO2015022883A1 (ja) * 2013-08-14 2015-02-19 独立行政法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
JP2019157984A (ja) 2018-03-13 2019-09-19 大同メタル工業株式会社 内燃機関のクランク軸の軸受装置
JP2020047552A (ja) 2018-09-21 2020-03-26 東芝ライテック株式会社 ヒータ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111876A1 (en) * 2010-03-12 2011-09-15 Riken Clearing reagent for biological material, and use thereof
EP3273218A4 (en) * 2015-03-18 2018-12-26 Riken Method for observing biological material and clearing method
JP7219451B2 (ja) * 2016-04-28 2023-02-08 国立研究開発法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
JP7160350B2 (ja) * 2017-07-06 2022-10-25 公立大学法人大阪 生体組織透明化法及びその試薬
WO2019180874A1 (ja) * 2018-03-22 2019-09-26 オリンパス株式会社 生体組織透明化材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040137475A1 (en) * 1999-04-30 2004-07-15 Haugland Richard P. Aza-benzazolium containing cyanine dyes
JP2003066035A (ja) * 2001-08-06 2003-03-05 Anse Ko 水溶性組織清澄溶液
KR20110121876A (ko) * 2010-05-03 2011-11-09 동국대학교 경주캠퍼스 산학협력단 면역세포화학법에 의한 핵 성 항원의 검증방법
CN102589955A (zh) * 2012-01-15 2012-07-18 中国人民解放军第四军医大学 一种检测体液细胞中结核杆菌的染色试剂盒
WO2014010633A1 (ja) 2012-07-10 2014-01-16 独立行政法人理化学研究所 抗体組成物、抗体組成物調製用キット、及び免疫染色方法
WO2015022883A1 (ja) * 2013-08-14 2015-02-19 独立行政法人理化学研究所 光透過性に優れた生物材料を調製するための組成物およびその利用
JP2019157984A (ja) 2018-03-13 2019-09-19 大同メタル工業株式会社 内燃機関のクランク軸の軸受装置
JP2020047552A (ja) 2018-09-21 2020-03-26 東芝ライテック株式会社 ヒータ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FENG, G. P.: "Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP", NEURON, vol. 28, 2000, pages 41 - 51, XP002353211, DOI: 10.1016/S0896-6273(00)00084-2
HIROSHI HAMA: "ScaleS: an optical clearing palette for biological imaging", NAT. NEUROSCI., vol. 18, 2015, pages 1518 - 1529, XP055508121, DOI: 10.1038/nn.4107
NICOLAS RENIER: "iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging", CELL, vol. 159, 2014, pages 896 - 910, XP029095128, DOI: 10.1016/j.cell.2014.10.010
NICOLAS RENIER: "Mapping of brain activity by automated volume analysis of immediate early genes", CELL, vol. 165, 2016, pages 1789 - 1802, XP029612942, DOI: 10.1016/j.cell.2016.05.007

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071029A1 (ja) * 2022-09-30 2024-04-04 学校法人金沢医科大学 透明化生体標本作製方法

Also Published As

Publication number Publication date
EP4001888B1 (en) 2023-10-04
EP4001888A4 (en) 2022-09-14
JPWO2021039716A1 (ja) 2021-03-04
EP4001888A1 (en) 2022-05-25
US20220326125A1 (en) 2022-10-13
EP4001888C0 (en) 2023-10-04
JP7197941B2 (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021039716A1 (ja) 生体組織染色試薬、生体組織染色キット及び生体組織染色方法
JP6433901B2 (ja) 光透過性に優れた生物材料を調製するための組成物およびその利用
CN110139922B (zh) 用于澄清组织的组合物和方法
JP7281230B2 (ja) 光透過性に優れた生物材料を調製するための組成物およびその利用
Joshi et al. Immunofluorescence
JPH11323173A (ja) 二本鎖dnaの高感度検出用染料
JP2017502272A (ja) 普遍的な抗原の賦活化化合物とその使用の方法
EP1627224A1 (en) Differential analysis of cell surface proteins on closed membrane structures by labelling with dyes in the presence of an internal standard
JP6950922B2 (ja) 染色方法、染色剤、及び染色キット
JP6161074B2 (ja) 抗体組成物、抗体組成物調製用キット、及び免疫染色方法
US20120294808A1 (en) Fluorescent Analogs of Neurotransmitters, Compositions Containing the Same and Methods of Using the Same
US11802822B2 (en) Multiplexed expansion (MultiExM) pathology
JP6966435B2 (ja) 断層撮影の結像方法
JP2016513794A (ja) H&e染色された生体試料を分析する方法
Carraro et al. Immunolocalization of PIN and ABCB transporters in plants
JP5301206B2 (ja) 界面活性剤を使用した組織の染色方法
Hwang et al. Sensitive phosphoprotein detection in SDS‐PAGE via Anthracene Chrome Red A stain
WO2024125179A1 (en) Chaotropes-assisted deep immunostaining
Frei Photoactivatable Silicon Rhodamines for Super-Resolution Microscopy
JP2004317297A (ja) 染色剤及び当該染色剤を用いた染色方法
Zhang et al. Advances in neuroscience using transmission electron microscopy: a historical perspective
US20200011771A1 (en) Method for reducing intracellular non-specific staining caused by metal complex
CN114402060A (zh) 用于组织透明化的组合物和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859017

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542888

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020859017

Country of ref document: EP

Effective date: 20220221

NENP Non-entry into the national phase

Ref country code: DE