WO2021037285A1 - 一种测光调整方法、装置、设备和存储介质 - Google Patents

一种测光调整方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2021037285A1
WO2021037285A1 PCT/CN2020/123052 CN2020123052W WO2021037285A1 WO 2021037285 A1 WO2021037285 A1 WO 2021037285A1 CN 2020123052 W CN2020123052 W CN 2020123052W WO 2021037285 A1 WO2021037285 A1 WO 2021037285A1
Authority
WO
WIPO (PCT)
Prior art keywords
photographing device
frame image
information
camera
brightness
Prior art date
Application number
PCT/CN2020/123052
Other languages
English (en)
French (fr)
Inventor
姜德飞
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2021037285A1 publication Critical patent/WO2021037285A1/zh
Priority to US17/652,746 priority Critical patent/US20220236056A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/12Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
    • G01C11/14Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken with optical projection
    • G01C11/16Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken with optical projection in a common plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/02Picture taking arrangements specially adapted for photogrammetry or photographic surveying, e.g. controlling overlapping of pictures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • G01C11/12Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken
    • G01C11/26Interpretation of pictures by comparison of two or more pictures of the same area the pictures being supported in the same relative position as when they were taken using computers to control the position of the pictures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/64Computer-aided capture of images, e.g. transfer from script file into camera, check of taken image quality, advice or proposal for image composition or decision on when to take image
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Definitions

  • the embodiments of the present invention relate to unmanned aerial vehicle technology, in particular to a photometric adjustment method, device, equipment and storage medium.
  • the light metering methods commonly used by cameras are either average metering or center metering.
  • the cameras on the unmanned aerial vehicle mostly use the central metering method.
  • the central metering method adopted, the overall exposure of most of the shooting pictures will not be overexposed or underexposed; if the spot metering method is used for shooting, due to the shooting scene of the drone The change is too fast, and there are sometimes bright areas and low dark areas in the scene.
  • spot metering is used, if the user does not manually change the metering position, the metering spot will stay there. In a certain area of a shooting picture, the shooting video appears overexposed or underexposed.
  • the present invention provides a photometric adjustment method, device, equipment and storage medium to avoid over-exposure or under-exposure in the image during video shooting.
  • an embodiment of the present invention provides a photometric adjustment method, including:
  • the light metering mode of the photographing device is adjusted.
  • an embodiment of the present invention also provides a photometric adjustment device, including:
  • the first acquisition module is used to acquire the brightness information of the current frame image and the previous frame image taken by the camera of the drone;
  • a judging module for judging whether the brightness information of the current frame image relative to the previous frame image has changed
  • the second acquisition module is configured to, if yes, acquire the motion state information of the photographing device
  • the first adjustment module is configured to adjust the light metering mode of the photographing device according to the motion state information of the photographing device.
  • an embodiment of the present invention also provides a light metering adjustment device, the light metering adjustment device including:
  • One or more processors are One or more processors;
  • Memory used to store one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the photometric adjustment method as described above.
  • a computer-readable storage medium has a computer program stored thereon, and when the program is executed by a processor, the photometric adjustment method as described above is implemented.
  • the present invention obtains the brightness information of the current frame image and the previous frame image taken by the camera of the drone; determines whether the brightness information of the current frame image relative to the previous frame image has changed; if so, obtains the motion state of the camera Information: According to the motion state information of the camera, adjust the metering method of the camera.
  • the embodiment of the present invention realizes real-time adjustment of the current metering mode of the shooting device according to the changes in the brightness information of the two frames before and after the image and the motion state information of the shooting device, so as to avoid the exposure of the image in the video during the shooting of the video by the shooting device.
  • the over and underexposure conditions ensure the accurate exposure of the video.
  • FIG. 1 is a flowchart of a photometric adjustment method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of the connection between a camera and a mobile terminal according to an embodiment of the present invention
  • FIG. 3 is a flowchart of a photometric adjustment method according to Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart of a photometric adjustment method provided by Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of a photometric adjustment method provided by Embodiment 4 of the present invention.
  • FIG. 6 is a structural block diagram of a light metering adjustment device provided by Embodiment 5 of the present invention.
  • FIG. 7 is a schematic diagram of the hardware structure of a light metering adjustment device according to the sixth embodiment of the present invention.
  • the embodiment of the present invention proposes a photometry adjustment method to adjust the current photometry mode of the camera in real time to ensure the clarity of the captured video.
  • the premise of the implementation of the embodiment of the present invention is that the current metering mode of the camera is the spot metering mode.
  • Figure 1 is a flow chart of a method for metering adjustment provided by the first embodiment of the present invention.
  • This embodiment is applicable to the situation where the current metering method of the photographing device is adjusted in real time according to the scene where the photographed image is located. It is executed by a light metering adjustment device, where the method can be implemented by hardware and/or software, and generally can be integrated in a light metering adjustment device.
  • the light metering adjustment device may be a photographing device (camera), or a flight controller or other processor in an unmanned aerial vehicle where the photographing device is located.
  • the photometric adjustment method can be executed by the camera, or by the flight controller or other processors.
  • the photographing device in the photometric adjustment method in this embodiment is applied to the field of aerial photography.
  • the shooting device is a video or image shooting device.
  • the shooting device may be a camera or other terminal equipment equipped with a camera.
  • the shooting device may be an aerial camera with a high resolution.
  • the method specifically includes the following steps:
  • the brightness information of the image can be obtained through real-time statistical acquisition of the image signal processing (ISP) chip embedded in the photographing device, or obtained through statistical acquisition of the application program (APP) associated with the photographing device .
  • ISP image signal processing
  • APP application program
  • the shooting device is equipped with an ISP chip for analyzing and processing the captured images. Specifically, after the image is captured by the imaging device, the ISP chip is used to analyze and process the image to determine the brightness information of the image.
  • the brightness information of the image can be exposure, brightness, and contrast, which are not limited, and it only needs to be able to determine whether the brightness of the image has changed according to the brightness information.
  • the light metering adjustment method is described.
  • the current frame image and the previous frame image can be understood as two frames of images taken by the photographing device.
  • FIG. 2 is a schematic diagram of the connection between a photographing device and a mobile terminal according to an embodiment of the present invention. Taking the mobile terminal as a notebook computer and the shooting device as a camera as an example, the connection relationship between the two is described. As shown in Figure 2, a wireless communication connection can be established between the notebook computer 101 and the camera 102. Of course, a wireless communication module must be configured in the camera 102 and the notebook computer 101. After the camera 102 collects the current frame image, the wireless communication is performed The current frame image is returned to the display screen of the notebook computer 101.
  • the APP installed on the notebook computer 101 can analyze and process the current frame image to obtain the brightness information of the current frame image. It can be understood that the images collected by the camera 102 will be transmitted in real time to the notebook computer 101 to which the connection is established, and displayed on the notebook computer 101.
  • the mobile terminal with which the camera 102 establishes a wireless communication connection is not limited to the notebook computer 101, and can also be any terminal equipped with a wireless communication module, such as an ipad and a smart phone.
  • the brightness information of the current frame image and the previous frame image are compared to determine whether the brightness information between the current frame image and the previous frame image has changed , And determine the change of the scene where the image captured by the camera is located according to the change of the brightness information of the two images before and after. Specifically, if the brightness information of the two frames before and after the image changes, it indicates that the scene where the image is taken by the camera may have changed; and if the brightness information of the two frames before and after the image does not change, it indicates the scene where the image is taken by the camera. No changes have occurred.
  • the motion state information is used to characterize the current state of the camera.
  • the motion state information may include: a motion state and a static state.
  • the motion state information of the camera can be determined according to the position information of the camera, that is, the position information of the camera corresponding to the current frame of image (denoted as current position information), and the position of the camera corresponding to the previous frame of image Compared with the information (recorded as the previous position information), if there is a change, it indicates that the motion state information of the camera is in a motion state; and if there is no change, it indicates that the motion state information of the camera is in a static state.
  • S140 Adjust the light metering mode of the shooting device according to the motion state information of the shooting device.
  • the light metering method of the photographing device may include a spot metering method, a center light metering method, and an average light metering method.
  • the spot metering method refers to the metering of a point, which depends on the weight range of the point, and can be metered at any position in the shooting screen;
  • the average metering method refers to all points in the entire shooting screen The metering is carried out according to the same weight;
  • the center metering method refers to the weighting of the fixed area in the center of the entire shooting screen.
  • the current metering method of the photographing device is the spot metering method.
  • the current metering method of the photographing device is the spot metering method.
  • the technical solution of this embodiment is to obtain the brightness information of the current frame image and the previous frame image taken by the drone's camera; determine whether the brightness information of the current frame image relative to the previous frame image has changed; if so, obtain The motion state information of the camera; according to the motion state information of the camera, adjust the metering method of the camera to realize the real-time adjustment of the current state of the camera according to the changes in the brightness information of the two frames before and after the image and the position of the camera.
  • the metering method avoids the overexposure and underexposure of the image in the video during the shooting of the video by the camera, thereby ensuring the accurate exposure mode of the video.
  • Fig. 3 is a flowchart of a photometric adjustment method according to the second embodiment of the present invention.
  • this embodiment provides a specific explanation for determining whether the brightness information of the current frame image has changed relative to the previous frame image.
  • the brightness information of the image may be exposure, brightness, and contrast.
  • the brightness information of the image is taken as an example to describe the light metering adjustment method.
  • the method specifically includes:
  • S210 Acquire brightness information of the current frame image and the previous frame image taken by the camera of the drone.
  • S220 Determine the brightness difference between the current frame of image and the previous frame of image.
  • the brightness difference refers to the value obtained by the difference between the brightness value of the current frame image and the brightness value of the previous frame image.
  • the brightness values of the current frame image and the previous frame image are differenced to obtain the current frame image and the previous frame image The brightness difference between.
  • the brightness threshold is a preset specific value of the brightness difference. It should be noted that the specific value of the brightness threshold can be set by the developer. At the same time, the specific value of the brightness threshold is related to the sensitivity of the shooting device. For example, if the sensitivity level of the shooting device is relatively high, the specific value of the brightness threshold can be set lower; on the contrary, if the sensitivity of the shooting device is relatively high, If the brightness level is relatively low, the specific value of the brightness threshold can be set higher.
  • the brightness threshold can be set to 2 candela/square meter (cd/m), that is, when the brightness difference between the current frame image and the previous frame image exceeds 2cd/m , It can be considered that the brightness information between the two frames of images has changed; for another example, if the sensitivity level of the shooting device is relatively low, the brightness threshold can be set to 8cd/m, that is, the brightness of the current frame image and the previous frame image When the difference exceeds 8cd/m, it is considered that the brightness information of the two frames of images has changed.
  • the setting of the brightness threshold can be adjusted according to the actual situation of the camera and the development requirements, which is not limited.
  • S250 Adjust the light metering mode of the shooting device according to the motion state information of the shooting device.
  • the technical solution of this embodiment uses the comparison result of the brightness difference of the two images before and after and the preset brightness threshold to determine that the brightness information of the two images before and after has changed, and then obtain The motion state information of the shooting device adjusts the light metering method of the shooting device according to the motion state information to avoid overexposure and underexposure of the image in the video during the shooting of the video by the shooting device, thereby ensuring an accurate exposure method.
  • Fig. 4 is a flowchart of a photometric adjustment method provided in the third embodiment of the present invention. This embodiment is on the basis of the above-mentioned embodiment, and further explains the determination of the current motion state of the photographing device according to the difference value between the current position and the previous position.
  • the method includes the following steps:
  • S320 Determine whether the brightness information of the current frame image relative to the previous frame image has changed, if yes, execute S330; if not, execute S310.
  • the location information of the camera at the current moment (denoted as the current location) is acquired. ) And the position information of the last moment (denoted as the last position information) to determine whether the position of the camera has changed.
  • the position information of the last moment (denoted as the last position information) to determine whether the position of the camera has changed.
  • the current position of the shooting device has not changed, it will also cause the brightness information of the current frame image and the previous frame image to change. It can be understood that, in order to ensure the clarity of the captured image, it is necessary to effectively adjust the current metering method of the camera according to the changes in the brightness information of the two images before and after and the position of the camera.
  • the method for determining the location information of the camera includes S10-S30:
  • the gyroscope is configured on the pan/tilt or the fuselage of the aircraft. It should be understood that a gyroscope is an instrument used to measure the rotational angular velocity of an object and can accurately determine the orientation of a moving object. In addition, the gyroscope will not change when the direction pointed by the axis of rotation of a rotating object is not affected by external forces. It is a device used to measure or maintain the direction.
  • one or more gyroscopes are configured on the fuselage of the unmanned aerial vehicle or on the pan/tilt (where the camera is mounted on the pan/tilt), which can accurately give position information of angular velocity and movement azimuth.
  • the gyroscope can be installed on the UAV fuselage or the gimbal, or a gyroscope can be installed on the UAV fuselage and the gimbal.
  • aerial photography drones it is better to install the gyroscope on the pan/tilt, and the camera will directly read the data from the gyroscope mounted on the pan/tilt.
  • the gimbal is installed on the machine.
  • the gyroscope can be directly installed on the body of the industrial machine, and the camera can directly read data from the gyroscope installed on the body of the industrial machine.
  • the photographing device is a camera.
  • S20 Determine the coordinate position information of the gimbal or the fuselage of the aircraft according to the angular velocity and the movement direction.
  • the coordinate position information of the pan/tilt or the fuselage of the aircraft is calculated through the angular velocity and the movement direction monitored by the gyroscope in real time.
  • the calculation process of obtaining the coordinate position information from the angular velocity and the motion azimuth can refer to the introduction of the gyroscope in the prior art, which will not be repeated here.
  • the camera is configured on the pan/tilt or the aircraft body.
  • the installation position of the camera on the unmanned aerial vehicle is the same as the installation position of the gyroscope, which is also the gimbal or the aircraft body.
  • the coordinate position information of the pan/tilt or aircraft fuselage determined by the angular velocity and movement direction of the gyroscope is the position information of the camera.
  • the position information at the current moment is the position information where the camera is currently located; and the previous position refers to the position information where the camera is before moving to the current position.
  • the difference between the two position information is calculated to obtain the offset difference between the current position and the previous position.
  • the current motion state of the camera is determined according to the offset difference.
  • the current state of motion may include the state in motion and the state of rest.
  • the offset difference between the current position and the previous position exceeds the preset offset range, it is determined that the current motion state of the camera is in motion; if the current position and the previous position are If the offset difference between the two positions of a position does not exceed the preset offset range, it is determined that the current motion state of the camera is a stationary state.
  • S350 may include steps S3501-S3502:
  • the current position information and the previous position information of the camera are determined by the angular velocity and the motion orientation detected by the gyroscope in real time
  • the current position information and the previous position information are differentiated to obtain the difference between the two positions The offset difference.
  • the preset threshold is a preset offset threshold, which can be set by the developer according to development requirements. It should be noted that the specific numerical setting of the preset threshold may also be related to the sensitivity level of the camera, that is, the higher the sensitivity level of the camera, the greater the preset threshold. For a specific explanation, refer to the description of the setting relationship between the brightness threshold and the brightness difference in the foregoing embodiment, which will not be repeated here.
  • the offset difference between the two positions of the camera is compared with a preset threshold, and if the offset difference exceeds the preset threshold, it indicates that the motion state information of the camera is in motion; If the offset difference does not exceed the preset threshold, it indicates that the motion state information of the camera is a stationary state.
  • the movement status information is in motion, adjust the metering method of the camera from the spot metering method to the center metering method or the average metering method to ensure an accurate exposure method and avoid the camera from being aggregated during the shooting process , There are overexposure and underexposure.
  • S350 may include: when the position of the photographing device changes, adjusting the light metering method of the photographing device to a center light metering method or an average light metering method.
  • the position information of the camera at the current time when the position information of the camera at the current time is different from the position information at the previous time, it indicates that the position of the camera has changed, and the current metering mode of the camera can be adjusted. It should be noted that as long as the position of the photographing device changes, the light metering method of the photographing device is adjusted without considering whether the offset difference of the photographing device reaches the preset threshold.
  • the metering method of the camera is still the spot metering method.
  • the technical solution of this embodiment determines the position information of the shooting device through the installation position of the gyroscope on the unmanned aerial vehicle, which realizes the accurate calculation of the position information of the shooting device, thereby ensuring the adjustment of shooting The accuracy of the current metering method of the device.
  • Fig. 5 is a flowchart of a photometric adjustment method according to the fourth embodiment of the present invention. This embodiment is actually on the basis of the above-mentioned embodiment, taking the photographing device as the camera, and the camera is configured on the fuselage or the pan/tilt of the unmanned aerial vehicle to collect the image, and adjust the current metering in real time according to the scene captured by the camera the way. Specifically, as shown in Figure 5, the method includes:
  • the real-time images of two frames before and after are the current frame image and the previous frame image in the foregoing embodiment.
  • the angular velocity and direction changes of the camera are detected in real time by the gyroscope, and the current coordinate position information of the pan/tilt or the fuselage is calculated in real time, denoted as f(x1, x2, x3). Then the camera can read the coordinate position information f(x1, x2, x3) of the gyroscope in real time. When the previous position of the gimbal or the body is A, the camera obtains the coordinates of position A (z1, z2) from the gyroscope in real time. , Z3).
  • the camera calculates the offset difference between the previous position A and the current position f, denoted as (z1-x1, z2-x2, z3-x3), and then determines whether the offset difference is Within the offset range preferably set by the camera, if the offset difference is greater than the offset range set by the camera, the spot metering method of the camera will be unlocked to the default center metering method or average metering method in the camera; if If the offset difference is less than the offset range set by the camera, the camera will continue to maintain the current spot metering method.
  • the offset range is the offset threshold in the above embodiment.
  • the offset difference set by the camera is (o1, o2, o3), if
  • the user can set the offset range through the App, or the flight control system of the UAV or the camera itself can set the offset range.
  • the photometric adjustment method in the foregoing embodiment may be executed by a camera, or may be executed by a flight controller or other processor in an unmanned aerial vehicle.
  • the flight controller or other processor reads the position information from the gyroscope in real time, and calculates in real time whether the position offset of the gimbal or fuselage is within the set offset range. If it is greater than the offset range, then The camera is unlocked by spot metering toward center metering or average metering.
  • the user when the user currently uses spot metering for image shooting and the scene where the image is taken is changed, it can be adjusted according to the changes in the brightness parameters of the two images before and after and the position of the camera.
  • the spot metering method of the camera is unlocked as the center metering method or the average metering method to avoid overexposure or underexposure in the video shooting process, and to ensure the accurate exposure mode of the video.
  • Fig. 6 is a structural block diagram of a metering adjustment device provided by the fifth embodiment of the present invention.
  • the device is suitable for real-time adjustment of the current metering method of the shooting device when the image shooting scene changes.
  • the device can be configured by hardware/ Realized by software, and generally can be integrated in the metering adjustment equipment. As shown in FIG. 6, the device includes: a first acquisition module 510, a judgment module 520, a second acquisition module 530, and a first adjustment module 540.
  • the first obtaining module 510 is used to obtain the brightness information of the current frame image and the previous frame image taken by the camera of the drone;
  • the judging module 520 is configured to judge whether the brightness information of the current frame image relative to the previous frame image has changed;
  • the second acquisition module 530 is configured to, if yes, acquire the motion state information of the photographing device
  • the first adjustment module 540 is configured to adjust the light metering mode of the photographing device according to the motion state information of the photographing device.
  • the technical solution of this embodiment is to obtain the brightness information of the current frame image and the previous frame image taken by the camera of the drone; determine whether the brightness information of the current frame image has changed relative to the previous frame image; if so, obtain The motion state information of the camera; according to the motion state information of the camera, the metering method of the camera is adjusted to realize the real-time adjustment of the current state of the camera according to the changes in the brightness information of the two frames before and after the image and the motion state information of the camera.
  • the metering method avoids the overexposure and underexposure of the images in the video during the shooting of the video by the camera, thereby ensuring the accurate exposure mode of the video.
  • the judgment module includes:
  • the first determining unit is used to determine the brightness difference between the current frame image and the previous frame image
  • the second determining unit is configured to determine that the brightness information of the current frame of image relative to the previous frame of image has changed if the brightness difference exceeds the preset brightness threshold.
  • the second acquisition module includes:
  • the first acquiring unit is used to acquire the location information of the camera at the current time and the location information at the previous time;
  • the third determining unit is configured to determine whether the position of the photographing device has changed according to the position information of the current moment and the position information of the previous moment.
  • the first adjustment module includes:
  • the first adjusting unit is used for adjusting the light metering mode of the photographing device when the position of the photographing device changes.
  • the first adjustment unit includes:
  • the first determining subunit is used to determine the offset difference between the position information at the current time and the position information at the previous time;
  • the first adjustment subunit is used for adjusting the light metering mode of the photographing device when the offset difference is greater than the preset threshold.
  • the first adjustment unit includes:
  • the second adjustment subunit is used to adjust the light metering mode of the photographing device to the center light metering method or the average light metering method when the position of the photographing device changes.
  • the light metering adjustment device further includes:
  • the second adjustment module is used to keep the light metering method of the photographing device unchanged when the position of the photographing device does not change, wherein the light metering method of the photographing device is a spot metering method.
  • the method for determining the position information of the photographing device is specifically used for:
  • the coordinate position information of the gimbal or the aircraft body is used as the position information of the camera.
  • the above-mentioned light metering adjustment device can execute the light metering adjustment method provided by any embodiment of the present invention, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 7 is a schematic diagram of the hardware structure of a light metering adjustment device according to the sixth embodiment of the present invention.
  • the photometric adjustment device in the sixth embodiment of the present invention is described by taking a camera as an example.
  • the camera provided in the sixth embodiment of the present invention includes a processor 610, a memory 620, an input device 630, and an output device 640.
  • processors 610 there may be one or more processors 610 in the camera.
  • One processor 610 is taken as an example in FIG. 7.
  • the processor 610, memory 620, input device 630 and output device 640 in the camera may be connected by a bus or other means. In Figure 7, the bus connection is taken as an example.
  • the memory 620 in the camera is used as a computer-readable storage medium and can be used to store one or more programs.
  • the programs can be software programs, computer-executable programs, and modules, as described in the first to fourth embodiments of the present invention.
  • Program instructions/modules corresponding to the adjustment method include: a first acquisition module 510, a judgment module 520, a second acquisition module 530, and a first adjustment module 540).
  • the processor 610 executes various functional applications and data processing of the camera by running software programs, instructions, and modules stored in the memory 620, that is, realizing the photometric adjustment method in the foregoing method embodiment.
  • the memory 620 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid state storage devices.
  • the memory 620 may further include a memory remotely provided with respect to the processor 610, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 630 may be used to receive numeric or character information input by the user to generate key signal input related to user settings and function control of the terminal device.
  • the output device 640 may include a display device such as a display screen.
  • the above-mentioned light metering adjustment device can execute the light metering adjustment method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for the execution method.
  • the seventh embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the photometric adjustment method provided in the embodiment of the present invention is implemented, and the method includes:
  • the computer storage medium of the embodiment of the present invention may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination of the above.
  • computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory Erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, RF, etc., or any suitable combination of the above.
  • the computer program code used to perform the operations of the present invention can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional procedural programming languages. Programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (for example, using an Internet service provider to pass Internet connection).
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)

Abstract

本发明公开了一种测光调整方法、装置、设备和存储介质,该方法包括:获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。本发明技术方案实现了根据前后两帧图像的亮度信息的变化情况和拍摄装置的位置变化情况,实时调整拍摄装置的当前测光方式,避免拍摄装置在拍摄视频过程中,视频中的图像出现曝光过度和曝光不足的情况,进而保证了视频准确的曝光方式。

Description

一种测光调整方法、装置、设备和存储介质 技术领域
本发明实施例涉及无人机技术,尤其涉及一种测光调整方法、装置、设备和存储介质。
背景技术
现有技术中,相机通常使用的测光方式都是平均测光或中心测光的方式。在无人机的航拍领域,无人机上的相机较多采用中心测光方式。
在不同场景变化过程中,若采用中心测光方式,大部分拍摄画面的整体曝光都不会存在过度曝光或曝光不足的情况;若采用点测光方式进行拍摄,由于无人机的拍摄画面场景变化太快,并且,场景中会时有高亮区,时有低暗区,在采用点测光方式时,若在用户不对测光位置进行手动改变的情况下,会使得测光点一直停留在一个拍摄画面的某个区域,从而使得拍摄视频出现曝光过度或曝光不足的情况。
发明内容
有鉴于此,本发明提供一种测光调整方法、装置、设备和存储介质,避免在拍摄视频过程中,图像出现曝光过度或曝光不足的情况。
第一方面,本发明实施例提供了一种测光调整方法,包括:
获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;
判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化;
若是,则获取所述拍摄装置的运动状态信息;
根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式。
第二方面,本发明实施例还提供了一种测光调整装置,包括:
第一获取模块,用于获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;
判断模块,用于判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化;
第二获取模块,用于若是,则获取所述拍摄装置的运动状态信息;
第一调整模块,用于根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式。
第三方面,本发明实施例还提供了一种测光调整设备,该测光调整设备包括:
一个或多个处理器;
存储器,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如上述任一所述的测光调整方法。
第四方面,一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述任一所述的测光调整方法。
本发明通过获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。本发明实施例实现了根据前后两帧图像的亮度信息的变化情况和 拍摄装置的运动状态信息,实时调整拍摄装置的当前测光方式,避免拍摄装置在拍摄视频过程中,视频中的图像出现曝光过度和曝光不足的情况,进而保证了视频准确的曝光方式。
附图说明
图1是本发明实施例一提供的一种测光调整方法的流程图;
图2是本发明实施例提供的一种拍摄装置与移动终端的连接示意图;
图3是本发明实施例二提供的一种测光调整方法的流程图;
图4是本发明实施例三提供的一种测光调整方法的流程图;
图5是本发明实施例四提供的一种测光调整方法的流程图;
图6是本发明实施例五提供的一种测光调整装置的结构框图;
图7是本发明实施例六提供的一种测光调整设备的硬件结构示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。
在此需要说明的是,虽然大部分拍摄装置(比如,相机)默认采用的测光方式为平均测光或中心测光方式,但在场景中明暗对比强烈的时候,或者是被拍摄物体进行正确测光的情况下,需采用点测光方式进行拍摄。但在采用点测光方式进行拍摄的过程中,需根据拍摄场景,对相机的当前测光方式进行实时 调整,以避免拍摄视频出现曝光过度或曝光不足的情况。本发明实施例,针对这个情况,提出了一种测光调整方法,以实时调整相机的当前测光方式,保证拍摄视频的清晰度。当然,可以理解为,本发明实施例执行的前提是,相机的当前测光方式为点测光方式。
实施例一
图1是本发明实施例一提供的一种测光调整方法的流程图,本实施例可适用于根据拍摄图像所在场景发生变化时,实时调整拍摄装置的当前测光方式的情况,该方法可以由测光调整装置来执行,其中,该方法可由硬件和/或软件的方式实现,并一般可集成在测光调整设备中。需要理解的是,测光调整设备可以为拍摄装置(相机),也可以为拍摄装置所在的无人飞行器中的飞行控制器或其它处理器。换句话说,测光调整方法可以由相机执行,也可以由飞行控制器或其它处理器执行。
在此需要说明的是,本实施例中的测光调整方法中的拍摄装置应用于航拍领域。可以理解为,拍摄装置为视频或图像拍摄设备,比如,拍摄装置可以为相机,也可以为配置有相机的其它终端设备。当然,在航拍这种高空作业的场景下,为了保证所拍摄视频的清晰度,可选地,拍摄装置可以为具有高分辨率的航拍相机。
如图1所示,该方法具体包括如下步骤:
S110、获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息。
在实施例中,图像的亮度信息可以通过拍摄装置中内嵌的图像信号处理(Image Signal Processing,ISP)芯片实时统计获取得到,或通过拍摄装置所关联的应用程序(Application,APP)统计获取得到。可以理解为,拍摄装 置中配置有对所拍摄到的图像进行分析处理的ISP芯片。具体的,在拍摄装置拍摄到图像之后,利用ISP芯片对图像进行分析处理,以确定图像的亮度信息。
其中,图像的亮度信息可以为曝光度、亮度和对比度,对此并不进行限定,只需根据亮度信息能够确定图像的亮度是否发生变化即可。可选地,以图像的亮度信息为亮度为例,对测光调整方法进行说明。在实施例中,当前帧图像和上一帧图像,可以理解为拍摄装置拍摄的前后两帧图像。
当然,也可通过拍摄装置所建立有通信连接的移动终端中的APP对图像进行分析处理,以得到该图像的亮度信息。图2是本发明实施例提供的一种拍摄装置与移动终端的连接示意图。以移动终端为笔记本电脑和拍摄装置为相机为例,对两者之间的连接关系进行说明。如图2所示,笔记本电脑101和相机102之间可以建立无线通信连接,当然,需在相机102和笔记本电脑101中配置有无线通信模块,在相机102采集到当前帧图像之后,通过无线通信将当前帧图像返回至笔记本电脑101的显示屏上,此时,笔记本电脑101上所安装的APP可对当前帧图像进行分析处理,以得到当前帧图像的亮度信息。可以理解为,相机102采集到的图像均会实时的传输至所建立连接的笔记本电脑101上,并在笔记本电脑101上显示。当然,相机102所建立无线通信连接的移动终端并不仅仅限于笔记本电脑101,还可以为ipad、智能手机等具备无线通信模块的任意终端。
S120、判断当前帧图像相对于上一帧图像的亮度信息是否发生变化,若是,则执行S130,若否,则执行S110。
在实施例中,在通过拍摄装置拍摄得到当前帧图像之后,将当前帧图像和上一帧图像的亮度信息进行比对,以确定当前帧图像和上一帧图像之间的亮度 信息是否发生变化,并根据前后两帧图像的亮度信息的变化情况,确定拍摄装置所拍摄图像所在场景的变化情况。具体的,若前后两帧图像的亮度信息发生变化,则表明拍摄装置拍摄图像所在的场景可能发生变化;而若前后两帧图像的亮度信息未发生变化,则表明拍摄装置所拍摄图像所在的场景未发生变化。
S130、获取拍摄装置的运动状态信息。
其中,运动状态信息用来表征拍摄装置当前所处的状态。在实施例中,运动状态信息可以包括:运动状态和静止状态。需要说明的是,可根据拍摄装置的位置信息来确定其运动状态信息,即在当前帧图像所对应拍摄装置的位置信息(记为当前位置信息),与上一帧图像所对应拍摄装置的位置信息(记为上一位置信息)相比,若发生变化,则表明拍摄装置的运动状态信息为运动状态;而若未发生变化,则表明拍摄装置的运动状态信息为静止状态。
S140、根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。
在实施例中,拍摄装置的测光方式可以包括点测光方式、中心测光方式和平均测光方式。其中,点测光方式指的是对一个点进行测光,依赖于该点的权重范围,并可以在拍摄画面中的任意位置进行测光;平均测光方式指的是整个拍摄画面所有的点都是按照相同的权重进行测光;中心测光方式指的是对整个拍摄画面中心固定的区域分配权重进行测光。
在此需要说明的是,在对拍摄装置的当前测光方式进行调整之前,拍摄装置的当前测光方式为点测光方式。在图像的拍摄过程中,若拍摄装置所拍摄的前后两帧图像的亮度信息发生变化,并且拍摄装置的位置信息也发生变化,即确定拍摄装置处于运动中状态。换句话说,在运行状态信息为运动中状态时,将拍摄装置的当前测光方式调整为中心测光方式或平均测光方式;在当前运动 状态为静止状态时,将拍摄装置的当前测光方式保持为点测光方式,以避免拍摄装置所拍摄图像出现曝光过度或曝光不足的情况。
本实施例的技术方案,通过获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式,实现了根据前后两帧图像的亮度信息的变化情况和拍摄装置的位置变化情况,实时调整拍摄装置的当前测光方式,避免拍摄装置在拍摄视频过程中,视频中的图像出现曝光过度和曝光不足的情况,进而保证了视频准确的曝光方式。
实施例二
图3是本发明实施例二提供的一种测光调整方法的流程图。本实施例在上述实施例的基础上,对判断当前帧图像相对于上一帧图像的亮度信息是否发生变化作具体解释。其中,图像的亮度信息可以为曝光度、亮度和对比度,可选地,在实施例中,以图像的亮度信息为亮度为例,对测光调整方法进行说明。如图3所示,该方法具体包括:
S210、获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息。
S220、确定当前帧图像和上一帧图像之间的亮度差值。
其中,亮度差值指的是当前帧图像的亮度值和上一帧图像的亮度值作差所得到的数值。在实施例中,通过ISP芯片或APP得到当前帧图像和上一帧图像的亮度值之后,对当前帧图像和上一帧图像的亮度值进行作差,以得到当前帧图像和上一帧图像之间的亮度差值。
S230、若亮度差值超过预设的亮度阈值,则确定当前帧图像相对于上一帧图像的亮度信息发生变化。
其中,亮度阈值为一个预先设定的亮度差值的具体数值。在此需要说明的是,亮度阈值的具体数值可以由开发人员进行设定。同时,亮度阈值的具体数值的大小与拍摄装置的敏感度有关,比如,拍摄装置的敏感度级别比较高,则可将亮度阈值的具体数值设定的较低;相反的,若拍摄装置的敏感度级别比较低,则可将亮度阈值的具体数值设定的较高。
在实施例中,判断当前帧图像和上一帧图像之间的亮度差值是否超过亮度阈值,若两帧图像的亮度差值超过预先设定的亮度阈值,则两帧图像之间的亮度信息发生变化;若两帧图像的亮度差值没有超过预先设定的亮度阈值,则两帧图像的亮度信息未发生变化。示例性地,假设拍摄装置的敏感度级别比较高,则可将亮度阈值设置为2坎德拉/平方米(cd/m),即当前帧图像和上一帧图像的亮度差值超过2cd/m时,就可认为两帧图像之间的亮度信息发生变化;又如,假设拍摄装置的敏感度级别比较低,则可将亮度阈值设置为8cd/m,即当前帧图像和上一帧图像的亮度差值超过8cd/m时,才认为两帧图像的亮度信息发生变化。当然,对亮度阈值的设置,可根据拍摄装置以及开发需求的实际情况进行调整,对此并不进行限定。
S240、获取拍摄装置的运动状态信息。
S250、根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。
本实施例的技术方案,在上述实施例的基础上,通过前后两帧图像的亮度差值,与预先设定的亮度阈值的比对结果,确定前后两帧图像的亮度信息发生变化,然后获取拍摄装置的运动状态信息,则根据运动状态信息调整拍摄装置 的测光方式,避免拍摄装置在拍摄视频过程中,视频中的图像出现曝光过度和曝光不足的情况,进而保证了准确的曝光方式。
实施例三
图4是本发明实施例三提供的一种测光调整方法的流程图。本实施例是在上述实施例的基础上,对根据当前位置和上一位置之间的差异值确定拍摄装置的当前运动状态作进一步的说明。
如图4所示,该方法包括如下步骤:
S310、获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息。
S320、判断当前帧图像相对于上一帧图像的亮度信息是否发生变化,若是,则执行S330;若否,则执行S310。
S330、获取拍摄装置当前时刻的位置信息和上一时刻的位置信息。
在实施例中,在确定当前帧图像和上一帧图像的亮度差值超过亮度阈值,即两帧图像之间的亮度信息发生变化时,获取拍摄装置的当前时刻的位置信息(记为当前位置)以及上一时刻的位置信息(记为上一位置信息),以确定拍摄装置的位置是否发生变化。需要理解的是,由于拍摄装置应用于航拍领域,在拍摄过程中,可能会受到外界的自然影响,在拍摄装置的当前位置未发生变化时,也存在造成当前帧图像和上一帧图像的亮度信息发生变化的情况。比如,在拍摄装置拍摄上一帧图像时,天气为晴天;而在拍摄装置拍摄当前帧图像时,天气变成阴天。虽然拍摄装置的当前位置未发生变化,但也会造成当前帧图像和上一帧图像的亮度信息发生变化。可以理解为,为了保证所拍摄图像的清晰度,需同时根据前后两帧图像的亮度信息的变化情况和拍摄装置的位置变化情 况,有效调整拍摄装置的当前测光方式。
其中,拍摄装置的位置信息的确定方式,包括S10-S30:
S10、通过陀螺仪实时检测角速度和运动方位。
在实施例中,陀螺仪配置于云台或飞行器机身。需要理解的是,陀螺仪是一种用来对物体旋转式的角速度进行测量,且能够准确确定运动物体方位的仪器。并且,陀螺仪在一个旋转物体的旋转轴所指的方向不受外力影响时,是不会改变的,它是用于测量或维持方向的设备。
其中,在无人飞行器机身上或云台(其中,相机会挂载在云台上)上均配置一颗或多颗陀螺仪,能够准确给出角速度和运动的方位的位置信息。当然,陀螺仪可以安装在无人飞行器机身或者云台上,也可以在无人飞行器机身上和云台上分别安装一个陀螺仪。对于航拍无人机来说,把陀螺仪安装在云台上,拍摄装置直接从安装在云台上的陀螺仪读取数据的方案会更优;而对于一些行业机来说,不需要在行业机上安装云台,此时,可以直接将陀螺仪安装在行业机机身上,拍摄装置直接从安装在行业机机身上的陀螺仪中读取数据。其中,拍摄装置为相机。
S20、根据角速度和运动方位确定云台或飞行器机身的坐标位置信息。
在实施例中,通过陀螺仪实时监测的角速度和运动方位,计算出云台或飞行器机身的坐标位置信息。其中,由角速度和运动方位得到坐标位置信息的计算过程可参见现有技术中关于陀螺仪的介绍,在此不再赘述。
S30、将云台或飞行器机身的坐标位置信息作为拍摄装置的位置信息。
其中,拍摄装置配置于云台或飞行器机身。需要理解的是,拍摄装置在无人飞行器上的安装位置与陀螺仪的安装位置相同,也是云台或飞行器机身。可 以理解为,通过陀螺仪的角速度和运动方位确定的云台或飞行器机身的坐标位置信息,即为拍摄装置的位置信息。
S340、根据当前时刻的位置信息和上一时刻的位置信息,确定拍摄装置的位置是否发生变化,若是,则执行S350;若否,则执行S360。
在实施例中,当前时刻的位置信息为拍摄装置当前所处的位置信息;而上一位置指的是拍摄装置在移动至当前位置之前所处的位置信息。在实施例中,在得到拍摄装置的当前位置和上一位置的位置信息之后,对这两个位置信息进行作差,以计算得到当前位置和上一位置之间的偏移量差值,以根据偏移量差值确定拍摄装置的当前运动状态。其中,当前运动状态可以包括运动中状态和静止状态。具体的,若当前位置和上一位置这两个位置之间的偏移量差值超过预先设定的偏移量范围,则确定拍摄装置的当前运动状态为运动中状态;若当前位置和上一位置这两个位置之间的偏移量差值未超过预先设定的偏移量范围,则确定拍摄装置的当前运动状态为静止状态。
S350、当拍摄装置的位置发生变化时,调整拍摄装置的测光方式。
在一实施例中,S350可以包括步骤S3501-S3502:
S3501、确定当前时刻的位置信息和上一时刻的位置信息之间的偏移量差值。
在实施例中,在通过陀螺仪实时检测的角速度和运动方位确定拍摄装置的当前位置信息和上一位置信息之后,将当前位置信息和上一位置信息进行作差,以得到两个位置之间的偏移量差值。
S3502、当偏移量差值大于预设阈值时,调整拍摄装置的测光方式。
其中,预设阈值为预先设定的偏移量阈值,其可以由开发人员根据开发需求设定的。需要说明的是,预设阈值的具体数值的设定,也可以与拍摄装置的 敏感度级别有关,即拍摄装置的敏感度级别越高,则预设阈值也就越大。具体的解释,参见上述实施例中对亮度阈值与亮度差值之间的设置关系的描述,在此不再赘述。
具体的,将拍摄装置的两个位置之间的偏移量差值与预设阈值进行比对,若偏移量差值超过预设阈值,则表明拍摄装置的运动状态信息为运动中状态;若偏移量差值未超过预设阈值,则表明拍摄装置的运动状态信息为静止状态。在运动状态信息为运动中状态的情况下,将拍摄装置的测光方式从点测光方式调整为中心测光方式或平均测光方式,以保证准确的曝光方式,避免拍摄装置在拍摄过程汇总,出现曝光过度和曝光不足的情况。
在一实施例中,S350可以包括:当拍摄装置的位置发生变化时,将拍摄装置的测光方式调整为中心测光方式或平均测光方式。
在实施例中,在拍摄装置的当前时刻的位置信息与上一时刻的位置信息不同时,表明拍摄装置的位置发生变化,可调整拍摄装置的当前测光方式。需要说明的是,只要拍摄装置的位置发生变化,就对拍摄装置的测光方式进行调整,而无需考虑拍摄装置的偏移量差值是否达到预设阈值。
S360、当拍摄装置的位置未发生变化时,保持拍摄装置的测光方式不变,其中,拍摄装置的测光方式为点测光方式。
当然,在拍摄装置的位置未发生变化时,无需调整拍摄装置的当前测光方式,即拍摄装置的测光方式仍为点测光方式。
本实施例的技术方案,在上述实施例的基础上,通过陀螺仪在无人飞行器上的安装位置确定拍摄装置的位置信息,实现了对拍摄装置的位置信息的精准计算,进而保证了调整拍摄装置的当前测光方式的准确性。
实施例四
图5是本发明实施例四提供的一种测光调整方法的流程图。本实施例实在上述实施例的基础上,以拍摄装置为相机,并且,该相机配置于无人飞行器的机身或云台上,对图像进行采集,并根据相机所拍摄场景实时调整当前测光方式。具体的,如图5所示,该方法包括:
S410、获取相机前后两帧的实时图像。
在实施例中,前后两帧的实时图像即为上述实施例中的当前帧图像和上一帧图像。
S420、判断两帧图像的亮度信息是否发生变化,若是,则执行步骤S430;若否,则执行步骤S460。
S430、获取相机的当前位置信息。
在实施例中,通过陀螺仪实时检测相机的角速度和方向变化,并实时计算出云台或者机身当前的坐标位置信息,记为f(x1,x2,x3)。然后相机可以实时去读取陀螺仪的坐标位置信息f(x1,x2,x3),当云台或者机身的上一位置为A时,相机从陀螺仪实时获取位置A的坐标(z1,z2,z3)。
S440、判断相机的位置是否发生变化,若是,则执行步骤S450;若否,则执行步骤S460。
在实施例中,通过相机计算上一位置A与当前位置f之间的偏移量差值,记为(z1-x1,z2-x2,z3-x3),然后判断该偏移量差值是否在相机优选设置的偏移量范围内,若偏移量差值大于相机设置的偏移量范围,则相机的点测光方式解锁为相机中默认的中心测光方式或平均测光方式;若偏移量差值小于相机设 置的偏移量范围,则拍摄装置继续保持当前的点测光方式。其中,偏移量范围即为上述实施例中的偏移量阈值。示例性地,假设相机设置的偏移量差值为(o1,o2,o3),如果|(z1-x1,z2-x2,z3-x3)|>|(o1,o2,o3)|,则表明云台或者机身的偏移量差值大于相机预先设置的偏移量范围,则相机由点测光方式向中心测光方式或平均测光方式解锁。
当然,在实际操作过程中,用户可以通过App设置该偏移量范围,也可以由无人飞行器的飞控系统或者相机自身来设置该偏移量范围。
S450、将点测光方式解锁为相机默认的中心测光方式或平均测光方式。
S460、保持当前点测光方式。
在此需要说明的是,上述实施例中的测光调整方法可以由相机来执行,也可以由无人飞行器中的飞行控制器或者其它的处理器来执行。其中,飞行控制器或者其它的处理器从陀螺仪实时读取位置信息,并实时计算云台或者机身的位置偏移量是否在设置的偏移量范围内,如果大于偏移量范围,则相机由点测光向中心测光方式或平均测光方式解锁。
本实施例的技术方案,在用户当前采用点测光方式进行图像拍摄,并且图像的拍摄画面所在的场景发生变化时,可根据前后两帧图像的亮度参数变化情况和相机的位置变化情况,将相机的点测光方式解锁为中心测光方式或平均测光方式,避免视频在拍摄过程中,出现曝光过度或曝光不足的情况,保证了视频准确的曝光方式。
实施例五
图6是本发明实施例五提供的一种测光调整装置的结构框图,该装置适用 于根据图像拍摄场景发生变化时,实时调整拍摄装置的当前测光方式的情况,该装置可以由硬件/软件实现,并一般可集成在测光调整设备中。如图6所示,该装置包括:第一获取模块510、判断模块520、第二获取模块530和第一调整模块540。
其中,第一获取模块510,用于获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;
判断模块520,用于判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化;
第二获取模块530,用于若是,则获取所述拍摄装置的运动状态信息;
第一调整模块540,用于根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式。
本实施例的技术方案,通过获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式,实现了根据前后两帧图像的亮度信息的变化情况和拍摄装置的运动状态信息,实时调整拍摄装置的当前测光方式,避免拍摄装置在拍摄视频过程中,视频中的图像出现曝光过度和曝光不足的情况,进而保证了视频准确的曝光方式。
在上述实施例的基础上,判断模块,包括:
第一确定单元,用于确定当前帧图像和上一帧图像之间的亮度差值;
第二确定单元,用于若亮度差值超过预设的亮度阈值,则确定当前帧图像相对于上一帧图像的亮度信息发生变化。
在上述实施例的基础上,第二获取模块,包括:
第一获取单元,用于获取拍摄装置当前时刻的位置信息和上一时刻的位置信息;
第三确定单元,用于根据当前时刻的位置信息和上一时刻的位置信息,确定拍摄装置的位置是否发生变化。
在上述实施例的基础上,第一调整模块,包括:
第一调整单元,用于当拍摄装置的位置发生变化时,调整拍摄装置的测光方式。
在上述实施例的基础上,第一调整单元,包括:
第一确定子单元,用于确定当前时刻的位置信息和上一时刻的位置信息之间的偏移量差值;
第一调整子单元,用于当偏移量差值大于预设阈值时,调整拍摄装置的测光方式。
在上述实施例的基础上,第一调整单元,包括:
第二调整子单元,用于当拍摄装置的位置发生变化时,将拍摄装置的测光方式调整为中心测光方式或平均测光方式。
在上述实施例的基础上,测光调整装置还包括:
第二调整模块,用于当拍摄装置的位置未发生变化时,保持拍摄装置的测光方式不变,其中,拍摄装置的测光方式为点测光方式。
在上述实施例的基础上,拍摄装置的位置信息的确定方式,具体用于:
通过陀螺仪实时检测角速度和运动方位;
根据角速度和运动方位确定云台或飞行器机身的坐标位置信息;
将云台或飞行器机身的坐标位置信息作为拍摄装置的位置信息。
上述测光调整装置可执行本发明任意实施例所提供的测光调整方法,具备执行方法相应的功能模块和有益效果。
实施例六
图7是本发明实施例六提供的一种测光调整设备的硬件结构示意图。本发明实施例六中的测光调整设备以相机为例进行说明。如图7所示,本发明实施例六提供的相机,包括:处理器610和存储器620、输入装置630和输出装置640。该相机中的处理器610可以是一个或多个,图7中以一个处理器610为例,相机中的处理器610、存储器620、输入装置630和输出装置640可以通过总线或其他方式连接,图7中以通过总线连接为例。
该相机中的存储器620作为一种计算机可读存储介质,可用于存储一个或多个程序,程序可以是软件程序、计算机可执行程序以及模块,如本发明实施例一至实施例四所提供测光调整方法对应的程序指令/模块(例如,图6所示的测光调整装置中的模块,包括:第一获取模块510、判断模块520、第二获取模块530和第一调整模块540)。处理器610通过运行存储在存储器620中的软件程序、指令以及模块,从而执行相机的各种功能应用以及数据处理,即实现上述方法实施例中测光调整方法。
存储器620可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固 态存储器件。在一些实例中,存储器620可进一步包括相对于处理器610远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置630可用于接收用户输入的数字或字符信息,以产生与终端设备的用户设置以及功能控制有关的键信号输入。输出装置640可包括显示屏等显示设备。
并且,当上述相机所包括一个或者多个程序被一个或者多个处理器610执行时,程序进行如下操作:
获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。
上述测光调整设备可执行本发明任意实施例所提供的测光调整方法,具备执行方法相应的功能模块和有益效果。
实施例七
本发明实施例七还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明实施例提供的测光调整方法,该方法包括:
获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;判断当前帧图像相对于上一帧图像的亮度信息是否发生变化;若是,则获取拍摄装置的运动状态信息;根据拍摄装置的运动状态信息,调整拍摄装置的测光方式。
本发明实施例的计算机存储介质,可以采用一个或多个计算机可读的介质 的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是--但不限于--电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算 机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里的特定实施例,对本领域技术人员来说能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (18)

  1. 一种测光调整方法,其特征在于,包括:
    获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;
    判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化;
    若是,则获取所述拍摄装置的运动状态信息;
    根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式。
  2. 根据权利要求1所述的方法,其特征在于,所述判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化,包括:
    确定所述当前帧图像和所述上一帧图像之间的亮度差值;
    若所述亮度差值超过预设的亮度阈值,则确定所述当前帧图像相对于所述上一帧图像的亮度信息发生变化。
  3. 根据权利要求1或2所述的方法,其特征在于,所述获取所述拍摄装置的运动状态信息,包括:
    获取所述拍摄装置当前时刻的位置信息和上一时刻的位置信息;
    根据所述当前时刻的位置信息和所述上一时刻的位置信息,确定所述拍摄装置的位置是否发生变化。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式,包括:
    当所述拍摄装置的位置发生变化时,调整所述拍摄装置的测光方式。
  5. 根据权利要求4所述的方法,其特征在于,所述当所述拍摄装置的位置发生变化时,调整所述拍摄装置的测光方式,包括:
    确定所述当前时刻的位置信息和所述上一时刻的位置信息之间的偏移量差值;
    当所述偏移量差值大于预设阈值时,调整所述拍摄装置的测光方式。
  6. 根据权利要求4所述的方法,其特征在于,当所述拍摄装置的位置发生变化时,调整所述拍摄装置的测光方式,包括:
    当所述拍摄装置的位置发生变化时,将所述拍摄装置的测光方式调整为中心测光方式或平均测光方式。
  7. 根据权利要求3所述的方法,其特征在于,该方法还包括:
    当所述拍摄装置的位置未发生变化时,保持所述拍摄装置的测光方式不变,其中,所述拍摄装置的测光方式为点测光方式。
  8. 根据权利要求3所述的方法,其特征在于,所述拍摄装置的位置信息的确定方式,包括:
    通过陀螺仪实时检测角速度和运动方位;
    根据所述角速度和运动方位确定云台或飞行器机身的坐标位置信息;
    将所述云台或飞行器机身的坐标位置信息作为所述拍摄装置的位置信息。
  9. 一种测光调整装置,其特征在于,包括:
    第一获取模块,用于获取无人机的拍摄装置拍摄的当前帧图像和上一帧图像的亮度信息;
    判断模块,用于判断所述当前帧图像相对于所述上一帧图像的亮度信息是否发生变化;
    第二获取模块,用于若是,则获取所述拍摄装置的运动状态信息;
    第一调整模块,用于根据所述拍摄装置的运动状态信息,调整所述拍摄装置的测光方式。
  10. 根据权利要求9所述的装置,其特征在于,所述判断模块,包括:
    第一确定单元,用于确定所述当前帧图像和所述上一帧图像之间的亮度差值;
    第二确定单元,用于若所述亮度差值超过预设的亮度阈值,则确定所述当前帧图像相对于所述上一帧图像的亮度信息发生变化。
  11. 根据权利要求9或10所述的装置,其特征在于,所述第二获取模块,包括:
    第一获取单元,用于获取所述拍摄装置当前时刻的位置信息和上一时刻的位置信息;
    第三确定单元,用于根据所述当前时刻的位置信息和所述上一时刻的位置信息,确定所述拍摄装置的位置是否发生变化。
  12. 根据权利要求11所述的装置,其特征在于,所述第一调整模块,包括:
    第一调整单元,用于当所述拍摄装置的位置发生变化时,调整所述拍摄装置的测光方式。
  13. 根据权利要求12所述的装置,其特征在于,所述第一调整单元,包括:
    第一确定子单元,用于确定所述当前时刻的位置信息和所述上一时刻的位置信息之间的偏移量差值;
    第一调整子单元,用于当所述偏移量差值大于预设阈值时,调整所述拍摄装置的测光方式。
  14. 根据权利要求12所述的装置,其特征在于,所述第一调整单元,包括:
    第二调整子单元,用于当所述拍摄装置的位置发生变化时,将所述拍摄装置的测光方式调整为中心测光方式或平均测光方式。
  15. 根据权利要求11所述的装置,其特征在于,该装置还包括:
    第二调整模块,用于当所述拍摄装置的位置未发生变化时,保持所述拍摄装置的测光方式不变,其中,所述拍摄装置的测光方式为点测光方式。
  16. 根据权利要求11所述的装置,其特征在于,所述拍摄装置的位置信息的确定方式,具体用于:
    通过陀螺仪实时检测角速度和运动方位;
    根据所述角速度和运动方位确定云台或飞行器机身的坐标位置信息;
    将所述云台或飞行器机身的坐标位置信息作为所述拍摄装置的位置信息。
  17. 一种测光调整设备,其特征在于,所述测光调整设备包括:
    一个或多个处理器;
    存储器,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-8中任一所述的测光调整方法。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的测光调整方法。
PCT/CN2020/123052 2019-08-28 2020-10-23 一种测光调整方法、装置、设备和存储介质 WO2021037285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/652,746 US20220236056A1 (en) 2019-08-28 2022-02-28 Metering adjustment method, apparatus and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910804195.8A CN110493524B (zh) 2019-08-28 2019-08-28 一种测光调整方法、装置、设备和存储介质
CN201910804195.8 2019-08-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/652,746 Continuation US20220236056A1 (en) 2019-08-28 2022-02-28 Metering adjustment method, apparatus and device and storage medium

Publications (1)

Publication Number Publication Date
WO2021037285A1 true WO2021037285A1 (zh) 2021-03-04

Family

ID=68553649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123052 WO2021037285A1 (zh) 2019-08-28 2020-10-23 一种测光调整方法、装置、设备和存储介质

Country Status (3)

Country Link
US (1) US20220236056A1 (zh)
CN (1) CN110493524B (zh)
WO (1) WO2021037285A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493524B (zh) * 2019-08-28 2021-05-28 深圳市道通智能航空技术股份有限公司 一种测光调整方法、装置、设备和存储介质
WO2022067490A1 (zh) * 2020-09-29 2022-04-07 深圳市大疆创新科技有限公司 数码变焦的测光方法、装置、拍摄设备、可移动平台
WO2022126378A1 (zh) * 2020-12-15 2022-06-23 深圳市大疆创新科技有限公司 相机的控制方法及装置
CN112689100B (zh) * 2020-12-25 2022-08-02 北京灵汐科技有限公司 图像检测方法、装置、设备和存储介质
CN114827462B (zh) * 2022-04-15 2024-04-16 深圳市道通智能航空技术股份有限公司 对焦方法、对焦装置、电子设备及无人机
CN117560576B (zh) * 2023-11-13 2024-05-07 四川新视创伟超高清科技有限公司 一种焦平面区域的曝光方法及曝光系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115023A (ja) * 2003-10-08 2005-04-28 Nikon Corp 測光モードブラケティングが可能なカメラ
CN104168425A (zh) * 2014-09-02 2014-11-26 厦门美图之家科技有限公司 一种防止手持拍照抖动或对焦模糊的拍照方法与移动终端
CN104994297A (zh) * 2015-07-09 2015-10-21 厦门美图之家科技有限公司 全景拍照的对焦测光锁定方法和系统
CN105578062A (zh) * 2014-10-14 2016-05-11 宏碁股份有限公司 测光模式的选择方法与其图像获取装置
CN105791673A (zh) * 2015-01-09 2016-07-20 佳能株式会社 曝光控制设备及其控制方法和摄像设备
CN107749955A (zh) * 2017-10-26 2018-03-02 深圳岚锋创视网络科技有限公司 全景相机姿态自适应测光调整方法、系统及便携式终端
CN110493524A (zh) * 2019-08-28 2019-11-22 深圳市道通智能航空技术有限公司 一种测光调整方法、装置、设备和存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045648A (ja) * 2003-07-24 2005-02-17 Sony Corp 撮像装置の露出制御方法
JP4289259B2 (ja) * 2004-08-31 2009-07-01 カシオ計算機株式会社 撮像装置及び露出制御方法
JP4868791B2 (ja) * 2005-08-12 2012-02-01 キヤノン株式会社 撮像装置及びその制御方法
JP4306752B2 (ja) * 2007-03-19 2009-08-05 ソニー株式会社 撮像装置、測光方法、輝度算出方法、プログラム
JP5221931B2 (ja) * 2007-10-31 2013-06-26 キヤノン株式会社 撮像装置及びその制御方法
KR20100091846A (ko) * 2009-02-11 2010-08-19 삼성전자주식회사 촬상 장치 및 촬상 방법
JP5395512B2 (ja) * 2009-05-26 2014-01-22 オリンパスイメージング株式会社 撮影装置
KR101183781B1 (ko) * 2009-12-22 2012-09-17 삼성전자주식회사 실시간 카메라 모션 추정을 이용한 물체 검출/추적 방법 및 단말
CN102314044A (zh) * 2010-07-02 2012-01-11 原相科技股份有限公司 距离测量系统及其方法
JP5822492B2 (ja) * 2011-03-15 2015-11-24 キヤノン株式会社 撮像装置及び制御方法
KR101918760B1 (ko) * 2012-10-30 2018-11-15 삼성전자주식회사 촬상 장치 및 제어 방법
US9648249B2 (en) * 2013-11-20 2017-05-09 Canon Kabushiki Kaisha Image capturing apparatus, method of controlling the same, and storage medium
JP6214421B2 (ja) * 2014-02-18 2017-10-18 オリンパス株式会社 撮像装置、撮像方法
CN105323496B (zh) * 2015-02-13 2019-01-11 维沃移动通信有限公司 自动曝光方法、拍照装置及移动终端
CN105744116A (zh) * 2016-02-25 2016-07-06 广东欧珀移动通信有限公司 检测方法、控制方法、检测装置、控制装置及电子装置
CN107517345B (zh) * 2016-06-17 2019-06-18 华为终端有限公司 拍摄预览方法及拍摄设备
CN105959593B (zh) * 2016-06-30 2019-04-12 宇龙计算机通信科技(深圳)有限公司 一种拍照设备的曝光方法及拍照设备
CN105959594B (zh) * 2016-06-30 2019-05-21 北京小米移动软件有限公司 摄影设备的测光方法及装置
CN108513641A (zh) * 2017-05-08 2018-09-07 深圳市大疆创新科技有限公司 无人机拍摄控制方法、无人机拍摄方法、控制终端、无人机控制装置和无人机
CN107592468B (zh) * 2017-10-23 2019-12-03 维沃移动通信有限公司 一种拍摄参数调整方法及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005115023A (ja) * 2003-10-08 2005-04-28 Nikon Corp 測光モードブラケティングが可能なカメラ
CN104168425A (zh) * 2014-09-02 2014-11-26 厦门美图之家科技有限公司 一种防止手持拍照抖动或对焦模糊的拍照方法与移动终端
CN105578062A (zh) * 2014-10-14 2016-05-11 宏碁股份有限公司 测光模式的选择方法与其图像获取装置
CN105791673A (zh) * 2015-01-09 2016-07-20 佳能株式会社 曝光控制设备及其控制方法和摄像设备
CN104994297A (zh) * 2015-07-09 2015-10-21 厦门美图之家科技有限公司 全景拍照的对焦测光锁定方法和系统
CN107749955A (zh) * 2017-10-26 2018-03-02 深圳岚锋创视网络科技有限公司 全景相机姿态自适应测光调整方法、系统及便携式终端
CN110493524A (zh) * 2019-08-28 2019-11-22 深圳市道通智能航空技术有限公司 一种测光调整方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN110493524B (zh) 2021-05-28
CN110493524A (zh) 2019-11-22
US20220236056A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021037285A1 (zh) 一种测光调整方法、装置、设备和存储介质
US11089207B2 (en) Imaging processing method and apparatus for camera module in night scene, electronic device and storage medium
CN109218628B (zh) 图像处理方法、装置、电子设备及存储介质
US11532076B2 (en) Image processing method, electronic device and storage medium
CN111479072B (zh) 高动态范围图像合成方法、装置、图像处理芯片及航拍相机
US8305452B2 (en) Remote determination of image-acquisition settings and opportunities
CN112311965B (zh) 虚拟拍摄方法、装置、系统及存储介质
CN110072078B (zh) 监控摄像机、监控摄像机的控制方法和存储介质
WO2019037088A1 (zh) 一种曝光的控制方法、装置以及无人机
WO2013172335A1 (ja) 画像撮影システム
US20090290761A1 (en) Upper troposphere and lower stratosphere wind direction, speed, and turbidity monitoring using digital imaging and motion tracking
CN109361853B (zh) 图像处理方法、装置、电子设备及存储介质
CN106708070B (zh) 一种航拍控制方法和装置
US10602064B2 (en) Photographing method and photographing device of unmanned aerial vehicle, unmanned aerial vehicle, and ground control device
WO2021035744A1 (zh) 可移动平台的图像采集方法、设备及存储介质
WO2018214838A1 (zh) 监控抓拍方法、装置及系统
CN113473010A (zh) 抓拍方法、装置、存储介质及电子装置
WO2021109409A1 (zh) 图像拍摄方法、装置、设备及存储介质
CN114449130B (zh) 一种多摄像头的视频融合方法及系统
US11727716B2 (en) Information processing apparatus, imaging apparatus, which determines exposure amount with respect to face detection and human body detection
WO2022016340A1 (zh) 确定主摄像装置曝光参数的方法、系统、可移动平台及存储介质
WO2022160294A1 (zh) 曝光控制方法、装置及计算机可读存储介质
WO2020215274A1 (zh) 无人机及其拍摄控制方法
CN113132645B (zh) 图像采集方法、装置、设备及存储介质
WO2022000974A1 (zh) 红外图像处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857649

Country of ref document: EP

Kind code of ref document: A1