WO2021037253A1 - 传感器和换热器 - Google Patents

传感器和换热器 Download PDF

Info

Publication number
WO2021037253A1
WO2021037253A1 PCT/CN2020/112298 CN2020112298W WO2021037253A1 WO 2021037253 A1 WO2021037253 A1 WO 2021037253A1 CN 2020112298 W CN2020112298 W CN 2020112298W WO 2021037253 A1 WO2021037253 A1 WO 2021037253A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
wall
housing
channel
heat exchanger
Prior art date
Application number
PCT/CN2020/112298
Other languages
English (en)
French (fr)
Inventor
万霞
逯新凯
饶欢欢
黄隆重
黄宁杰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Publication of WO2021037253A1 publication Critical patent/WO2021037253A1/zh
Priority to US17/566,043 priority Critical patent/US20220120592A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/30Supports specially adapted for an instrument; Supports specially adapted for a set of instruments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators

Definitions

  • This application relates to the field of sensors, in particular, to sensors and heat exchangers.
  • Frosting of the heat exchanger will cause the heat transfer coefficient of the heat exchanger to decrease, and the air duct between the fins will be blocked, which will reduce the air volume, which directly affects the heat exchange efficiency of the heat exchanger of the heat pump system and the pressure drop on the air side. Therefore, it is necessary to detect the frosting of the heat exchanger.
  • a temperature and humidity sensor is used to detect the temperature and humidity of the heat exchanger.
  • the measurement accuracy of the sensors in the related art still needs to be improved.
  • a sensor includes a housing, a circuit board, and a sensor chip fixed to the circuit board;
  • the material of the housing is metal, the housing is provided with a housing cavity, and the housing is also provided with a first channel passing through the housing; the first channel communicates with the housing cavity and the outside of the sensor;
  • the circuit board is at least partially accommodated in the accommodating cavity; at least a part of the circuit board is bonded and fixed to the housing by thermally conductive glue;
  • the sensor chip is used for sensing at least one of a humidity signal and a temperature signal of the environment in the containing cavity.
  • the housing of the sensor is made of metal, and at least part of the circuit board is bonded and fixed to the housing by thermally conductive glue, which is beneficial to transfer the ambient temperature sensed by the metal housing to the circuit board through the thermally conductive glue, so that the transmission
  • the temperature of the environment where the sensor chip is located is close to the temperature of the housing, and the first channel facilitates the communication between the air in the accommodating cavity and the air outside the sensor.
  • it is more beneficial to ensure that the temperature and humidity environment where the sensor chip is located is closer to the surface temperature and humidity environment of the object to be detected, thereby improving the accuracy of the corresponding detection signal of the sensor chip.
  • a heat exchanger comprising the above-mentioned sensor
  • the heat exchanger is a multi-channel heat exchanger or a tube-fin heat exchanger
  • the sensor is fixed on the The outer surface of the heat exchanger and the sensor is in contact with at least part of the outer surface of the heat exchanger, the surface temperature of the heat exchanger sensed by the metal shell can be transferred to the circuit board through the thermally conductive glue, so that the sensor chip is The ambient temperature at the location is close to the temperature of the housing, and the first passage facilitates the communication between the air in the accommodating cavity and the air outside the sensor.
  • it is more beneficial to ensure that the temperature and humidity environment where the sensor chip is located is closer to the surface temperature and humidity environment of the heat exchanger, thereby improving the accuracy of the corresponding detection signal of the sensor chip.
  • Fig. 1 is a schematic structural diagram of a sensor according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of an exploded structure of the sensor in an embodiment of the present application in Fig. 1.
  • Fig. 3 is a schematic top view of the embodiment of the present application in Fig. 2.
  • Fig. 4 is a schematic cross-sectional view of the sensor of the embodiment in Fig. 3 along the A-A direction.
  • Fig. 5 is a schematic structural diagram of a sensor housing according to another embodiment of the present application.
  • FIG. 6 is a schematic diagram of an exploded structure of the sensor in another embodiment of the present application in FIG. 5.
  • FIG. 7 is a schematic top view of the embodiment of the present application in FIG. 6.
  • Fig. 8 is a schematic cross-sectional view of the sensor housing of another embodiment in Fig. 7 along the B-B direction.
  • Fig. 9 is a schematic structural diagram of a heat exchanger provided with a sensor according to an embodiment of the present application.
  • Fig. 10 is a schematic diagram of an exemplary heat exchange system of the present application.
  • Heat exchange system 1000 compressor 1; first sensor 2; throttling device 3; second sensor 4; reversing device 5.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, "a plurality of” means two or more than two, unless otherwise specifically defined.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be a connection between two elements or an interaction relationship between two elements.
  • connection should be understood according to specific circumstances.
  • the "above” or “below” of the first feature of the second feature may include direct contact between the first and second features, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the temperature of the outdoor heat exchanger When heating in winter, the temperature of the outdoor heat exchanger is always lower than the temperature of the ambient air. When it is lower than the dew point temperature of the ambient air, condensed water is generated on the surface of the heat exchanger's fins. When the heat exchanger temperature is further below 0°C, the condensed water turns into frost and adheres to the fin surface. When the frost is severe, the air ducts between the fins are partially or even occupied by frost, which causes the heat transfer coefficient of the heat exchanger to decrease, and the air ducts between the fins are blocked, which reduces the air volume, which directly affects the heat exchanger of the heat pump system. Heat transfer efficiency and pressure drop on the air side. Therefore, there is a possibility of frosting on the surface of the heat exchanger, and it is necessary to improve the accuracy of monitoring frosting, so that measures to avoid frosting are taken in advance to maintain the heat exchange efficiency of the heat pump air conditioning system.
  • some related technologies use a temperature sensor to determine whether the heat exchanger is frosted based on 0°C, but this method of using a temperature signal to determine whether the heat exchanger is frosted has errors.
  • the Yangtze River Basin has high humidity.
  • the ambient temperature T>0°C the surface of the heat exchanger has been frosted.
  • the northern area has low dry humidity.
  • the temperature T ⁇ 0°C there is no frost on the surface of the heat exchanger.
  • dew point temperature to determine frosting. Temperature and humidity sensors are required to detect ambient temperature and humidity and calculate dew point temperature.
  • the sensor used for the heat exchanger in the related art detects the temperature and humidity in the environment, and cannot accurately reflect the surface temperature and humidity of the heat exchanger.
  • the surface temperature of the heat exchanger is lower than the ambient temperature, and the humidity on the surface of the heat exchanger is greater than the ambient humidity.
  • the humidity sensor detects that the humidity is close to 100%, the surface of the heat exchanger has been frosted.
  • the sensor of the embodiment of the present application adopts a metal shell with good thermal conductivity, ceramic circuit boards such as aluminum nitride, and thermally conductive sealant, so that the temperature of the shell and the ceramic circuit board can be close to the surface temperature of the heat exchanger, so that the circuit
  • the humidity sensor on the board can more accurately detect the relative humidity on the surface of the sensor. There is no need to calculate the dew point temperature.
  • the humidity sensor detects that the current humidity signal is close to 100%, it indicates that the surface humidity (RH) of the heat exchanger is also close to 100%, so the surface of the heat exchanger will be frosted.
  • frosting information and controlling it frosting on the sensor surface can be delayed and prevented.
  • the embodiments of the present application provide sensors that can relatively improve the accuracy of temperature and/or humidity monitoring.
  • the use of the sensor in conjunction with the heat exchanger can improve the accuracy of temperature and/or humidity monitoring on or near the surface of the heat exchanger.
  • the accuracy of monitoring the frost or fog on the surface of the sensor can be relatively improved. It is easy to understand that in addition to being applied to heat exchangers and heat pump systems, the sensor can also be used in other occasions where temperature and/or humidity need to be monitored. There is no restriction here.
  • FIG. 1 is a schematic diagram of the structure of a sensor 10 according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of the sensor 10 in an embodiment of the present application in FIG. 1.
  • the sensor 10 includes a housing 11, which is a metal housing, so that it has good thermal conductivity.
  • the housing 11 is provided with a receiving cavity 110.
  • the housing 11 includes a bottom wall 111, a top wall 112, and a side wall 113.
  • the top wall 112 and the bottom wall 111 are located in the height direction of the sensor. (X direction in FIG.
  • the side wall 113 connects the top wall 112 and the bottom wall 111, and the accommodating cavity 110 is composed of the top wall 112, the bottom wall 111 and the side wall 113
  • the top wall 112 and the bottom wall 111 are provided at both ends of the accommodating cavity 110 in the height direction
  • the side wall 113 is provided on the peripheral side of the accommodating cavity 110
  • the side The wall 113 is connected to the top wall 112 and the bottom wall 111.
  • the sensor 10 described in the embodiment in FIG. 1 is generally rectangular, and the bottom wall 111 and the top wall 112 are generally square.
  • the structure of the sensor 10 may also be Cube, cylinder, etc., can be set as required, and there is no restriction here.
  • the senor 10 includes a circuit board 12, and the circuit board 12 is provided with at least one sensor chip 121, which can sense at least one of the humidity signal and the temperature signal of the air in the accommodating cavity 110 One kind.
  • the circuit board 12 is at least partially received in the receiving cavity 110, and the circuit 12 is fixed to the housing 11. Specifically, the circuit board 12 and the top wall 112 may be bonded and fixed by a thermally conductive glue 13. In some other embodiments, the circuit board 12 is directly or indirectly connected to the side wall 113.
  • the material of the main body of the circuit board 12 may be a ceramic material.
  • the ceramic material can be one or a mixture of aluminum nitride or aluminum oxide.
  • the thermally conductive adhesive 13 includes a polymer adhesive material and a thermally conductive material, and is prepared by filling the polymer adhesive material with the thermally conductive material.
  • the thermal conductive material includes one or more of aluminum nitride, boron nitride, silicon nitride, aluminum oxide, magnesium oxide, and silicon oxide.
  • the thermal conductivity of the thermal conductive glue 13 is relatively strong, or the thermal resistance of the thermal conductive glue 13 is small, so when the sensor 10 is used to test the temperature of the heat exchanger surface, the temperature of the heat exchanger surface can be closer to the sensor. temperature.
  • the circuit board 12 of the sensor 10 and the top wall 112 are connected by the thermally conductive glue 13.
  • the side wall 113 and the top wall 112 may also be connected by the thermally conductive glue 13 or directly welded.
  • At least a part of the inner surface 114 of the housing 11 of the sensor 10 is coated with a coating 115, the coating 115 is a hydrophilic coating or a hydrophobic coating, and the coating 115 is conducive to the condensation of water in the housing 11 Drain, in other words, the condensed water will not condense on the coating area, or in other words, the condensed water will not form a wall in the sensor, which will affect the accuracy of the sensor's measurement of the surface humidity of the heat exchanger.
  • the inner surface 114 of the side wall 113 of the housing 11 of the sensor 10 is all coated with the coating 115, and the inner surface of the bottom wall 111 is also coated with the coating 115. ⁇ 115.
  • the inner surface 114 of the housing 11 of the sensor 10 facilitates the drainage of condensed water and facilitates the sensor 10 to measure the humidity on the surface of the heat exchanger or its vicinity.
  • the sensor 10 is provided with a first channel 141 through which air can enter and exit.
  • the first channel 141 penetrates the side wall 113 or the top wall 112.
  • the first channel 141 in this embodiment is provided at the side wall 113, the first channel 141 is a through hole, and the through hole
  • the diameter is 0.1 ⁇ m to 1 mm.
  • Such a setting facilitates air in and out and prevents dust and other debris from entering the accommodating cavity 110 of the sensor 10 and damaging the sensor 10.
  • the smaller the diameter of the through hole is 100 nm to 500 ⁇ m.
  • the first channel 141 may also have other shapes, as long as the need can be achieved, and there is no limitation.
  • the number of the first channels 141 may be one or more than two, as long as the test requirements are met, and there is no limitation here.
  • the sensor 10 is provided with a third channel 142, and the third channel 142 can be used for a wire (not shown in the figure) to enter and exit.
  • the wire is used to electrically connect the sensor 10 and other equipment, and the detection signal data of the sensor 10 can be imported into other data processing equipment or data collection equipment or other equipment through the wire.
  • the third channel 142 is disposed through the side wall 113 or the top wall 112, and the third channel 142 is staggered from the first channel 141.
  • the third channel 142 and the first channel 141 is arranged at different positions of the housing 11.
  • the axial direction of the third channel 142 may be parallel or coincide with the axial direction of the first channel 141.
  • the third channel 142 is provided through the side wall 113.
  • the third channel 142 may be a through hole. It should be noted that the aperture of the third channel 142 is adapted to the size of the wire passing through it, so that dust and other debris can be prevented from entering the housing of the sensor 10 The cavity 110 damages the sensor 10.
  • a sealant may be used to fix the wire and the housing 11 together to prevent the wire from being pulled by an external force and causing the wire to fall off.
  • the third channel 142 may also overlap the first channel 141, that is, the air inlet and outlet channels and the wire channels may be the same.
  • at least a part of the wall 1420 forming the third channel 142 is formed by extending the side wall 113 outward in a direction away from the receiving cavity 110, and the wall 1420 can be used
  • the wires are fixed firmly and to a certain extent to prevent the wires from falling off.
  • the wall 1420 may not be provided.
  • the sensor 10 is provided with a second channel 151 for discharging liquid water, and the second channel 151 penetrates the bottom wall 111 or the side wall 113.
  • the housing 11 is provided with a first opening 1511 and a second opening 1522.
  • the second channel 151 is formed between the first opening 1511 and the second opening 1522.
  • One of the first opening 1511 and the second opening 1522 is located on the inner surface of the housing 11, and the other opening is located on the outer surface of the housing 11.
  • the first opening 1511 is closer to the receiving cavity 110 than the second opening 1522 is.
  • the second opening 1522 and the circuit board 12 are respectively located on opposite sides of the first opening 1511.
  • the inner surface of the bottom wall 111 is a straight wall surface, and the included angle between the inner surface of the bottom wall 111 and the wall thickness direction of the side wall 113 is recorded as the first included angle, and the first included angle is greater than or equal to 0. °, and the first included angle is less than 90 degrees.
  • the bottom wall 111 may be in a vertical relationship with the side wall 113, that is, the first included angle between the inner surface of the bottom wall 111 and the wall thickness direction of the side wall 113 is 0°.
  • the second channel 151 may be provided at the middle position of the bottom wall 111.
  • the inner surface of the bottom wall 111 may have a certain angle with the thickness direction of the side wall 113, that is, the inner surface of the bottom wall 111 may be inclined upward or downward. In this way, the condensed water can flow along the inner surface of the bottom wall 111 under the action of gravity and finally be discharged from the second channel 151.
  • the second channel 151 is a through hole, and the through hole penetrates the bottom wall 111. In some other embodiments, the second channel 151 may be a gap or a gap. Two or more second channels 151 can also be provided, which can be set according to specific needs.
  • the housing 11 of the sensor 10 is further provided with a knife-stab portion 16 which is disposed at the side wall 113 and is away from the accommodating cavity from the side wall 113
  • the direction of 110 extends outward.
  • a number of protruding saw-tooth structures 161 are provided on the outer periphery of the stab portion 16, and the saw-tooth structures 161 can facilitate the use of the sensor 10 with other devices, such as a microchannel heat exchanger, through the saw-tooth structure 161
  • the sensor can be inserted between the fins of the microchannel heat exchanger and used in conjunction.
  • the sensor 10 does not need to be provided with the stabbing part 16, which is directly fixed to the position where the temperature or humidity needs to be monitored, and it can be set as required.
  • the exploded schematic view of the sensor 10 as shown in FIG. 2 includes the circuit board 12.
  • the circuit board 12 is provided with a temperature sensor element 121, a humidity sensor element 122 and a filter capacitor 123.
  • the temperature sensor element 121 can sense temperature
  • the humidity sensor element 122 can sense humidity
  • the filter capacitor 123 can reduce interference in the temperature or humidity measurement process.
  • the circuit board 12 is only provided with the temperature sensor element 121 or the humidity sensor element 122, in other words, the temperature sensor element 121 or the humidity sensor element 122 may be independent Setting or combination setting, there is no restriction here.
  • the circuit board 12 is provided with at least one sensor chip, and at least one sensor chip can sense temperature and/or humidity.
  • the circuit board is provided with two or more sensor chips, and the two or more sensor chips can monitor temperature and/or humidity.
  • the sensing area of the sensor chip is affixed with a waterproof and/or dustproof film, and the waterproof and dustproof film can be dustproof and waterproof, so that the measurement accuracy of the sensor is high, and the service life of the sensor can be relatively prolonged.
  • the waterproof and dustproof membrane can be IP67.
  • the circuit board is provided with a filter capacitor, and the filter capacitor can reduce the noise of monitoring and make the monitoring data more accurate.
  • FIG. 3 is a schematic top view of the sensor 10 according to an embodiment of the present application in FIG. 2.
  • Fig. 4 is a schematic cross-sectional view of the sensor 10 of the embodiment in Fig. 3 along the A-A direction.
  • the sensor 10 has the housing 11, and the housing 11 has the inner cavity 110, the bottom wall 111, the top wall 112 and the side wall 113.
  • the first channel 141 and the third channel 142 pass through the side wall 113.
  • the sensor 10 further has a stab portion 16 disposed on the side wall 113 and the stab portion 16 has a serrated portion 161, the tooth portion 161 has a plurality of teeth, and a plurality of the serrated portion 16
  • the portion 161 is convex so that the outer periphery of the stab portion 16 forms a serrated surface with different unevenness.
  • the sensor 10 further includes the circuit board 12, the circuit board 12 is fixed to the top wall 112 by the thermally conductive glue 13, and the circuit board 12 is provided with the humidity sensor element 122 and the temperature sensor element 121 and the filter capacitor 123, the sensing openings of the humidity sensing element 122 and the temperature sensing element 121 all face the inner cavity portion 110.
  • the sensing openings of the humidity sensing element 122 and the temperature sensing element 121 can be set downwards. Such a setting is not conducive to the adhesion of dust and the like to the sensing area and thus affect the sensing.
  • the accuracy of the element in addition, also facilitates the drainage of the condensed water by gravity, improves the test accuracy, and can extend the life of the sensing element and the sensor to a certain extent.
  • the circuit board 12 may also be disposed on the side wall 113, and the sensing opening may not face down completely, as long as the requirement can be met.
  • the second channel 151 is provided on the bottom wall 111.
  • all or part of the bottom wall 111 forms an inclined wall 101.
  • all the bottom walls are inclined walls.
  • the first end 1011 of the inclined wall 101 is connected to the first end 1131 of the side wall 113, and the second end 1012 of the inclined wall 101 extends from the first end 1011 in a direction away from the top wall 112
  • the bottom wall 111 further includes a mating portion 102 that protrudes from the end of the inclined wall 101 in a direction away from the top wall 112, and the second channel 151 is provided through the mating 102.
  • the mating portion 102 may be cylindrical, which is convenient for processing and manufacturing.
  • the bottom wall 111 does not need to have the matching portion 102, and the second end 1012 of the inclined wall 101 encloses the second channel 151 to achieve a drainage function. In this way, since the bottom wall 111 is generally funnel-shaped, it is advantageous for the condensed water to drain out of the sensor 10.
  • the bottom wall 111 may also have a part of a straight wall section, that is, a part of the bottom wall 111 is a straight wall section, and a part is an inclined wall 101, and the first end 1011 of the inclined wall 101 is connected to The straight wall sections of the bottom wall 111 are connected, and the second end 1012 of the inclined wall 101 extends from the first end 1011 in a direction away from the top wall 112.
  • FIG. 5 is a schematic structural diagram of a housing of a sensor 20 according to another embodiment of the present application.
  • Fig. 6 is an exploded schematic diagram of the sensor of the embodiment in Fig. 5.
  • Fig. 7 is a schematic top view of the housing of the sensor 20 of another embodiment in Fig. 6 or Fig. 5.
  • Fig. 8 is a schematic cross-sectional view of the sensor 20 in Fig. 7 along the B-B direction. As shown in FIGS. 5 to 8, the structure of the sensor 20 is the same as that of the sensor 10, which will not be repeated here.
  • the difference is that at least part of the bottom wall 111 forms a concave wall 103, the first end 1011 of the concave wall 103 is connected to the lower end 1131 of the side wall 113, and the concave wall 103 extends from the side wall toward the top wall 112. . That is, the center of the concave wall 103 is concave in a direction close to the top wall 112 relative to the edge of the concave wall 103.
  • the second channel 151 is closer to the side wall 113 than the center of the concave wall 103, and the second channel 151 is provided at the edge of the concave wall 103 close to the side wall 113. This arrangement facilitates the discharge of condensed water from the sensor 10.
  • Fig. 9 is a schematic structural diagram of a heat exchanger 100 provided with a sensor 10 according to an embodiment of the present application.
  • the heat exchanger 100 is a multi-channel heat exchanger. In some other embodiments, the heat exchanger may also be a tube-fin heat exchanger or other heat exchangers that need to monitor temperature or humidity, etc., which is not limited here.
  • the heat exchanger 100 of an embodiment of the present application may include a header 40, a plurality of heat exchange tubes 20 and fins 30.
  • the header 40 has an inner cavity (not shown in the figure) for the flow of the refrigerant, and its shape is a circular tube.
  • the length direction is the axial direction.
  • the header 40 has two headers, namely a first header 41 and a second header 42.
  • the first header 41 and the second header 42 are arranged substantially in parallel.
  • the heat exchanger 100 and the air generally only undergo heat exchange once, which is often referred to as a single-layer sensor in the industry.
  • the header 40 may also be a D-shaped or square tube, and its specific shape is not limited, as long as its bursting pressure meets the needs of the system.
  • the relative position of the header 40 is also not limited, as long as it meets the actual installation requirements.
  • the number of the header 40 can also be only one, as long as it meets the heat exchange requirement, and it is not limited here.
  • the header 40 in the embodiment of the present application is a round tube as an example.
  • the heat exchange tube 20 has a plurality of heat exchange tubes 20 each having a length direction, a width direction and a height direction.
  • the heat exchange tubes 20 are arranged along the axial direction of the collecting tube 10 and are arranged substantially in parallel.
  • Each of the plurality of heat exchange tubes 20 has a first end and a second end.
  • the heat exchange tube 20 includes a first heat exchange tube 21 and a second heat exchange tube 22 arranged side by side.
  • the first heat exchange tube 21 has a first end 211 and a second end 212, and the direction in which the first end 211 of the heat exchange tube 21 extends to the second end 212 is the length direction of the heat exchange tube (the X direction in the figure) .
  • the heat exchange tube 21 has a first top wall 213 and a first bottom wall 214, and the first top wall 213 and the first The bottom wall 214 is arranged substantially in parallel, wherein the height direction of the heat exchange tube 20 may also be referred to as the thickness direction of the heat exchange tube.
  • the first end 211 of the first heat exchange tube 21 is connected to the first header 11, and the second end 212 of the first heat exchange tube 21 is connected to the second header 12.
  • the second The first end 221 of the heat pipe 22 is connected with the first header 11, and the second end 222 of the second heat exchange tube 22 is connected with the second header 12.
  • the first heat exchange tube 21 and the second heat exchange tube 22 are arranged substantially in parallel.
  • the heat exchange tube 20 has an inner cavity (not shown in the figure) for the flow of refrigerant, and is connected so that the inner cavity of the heat exchange tube 20 communicates with the inner cavity of the header 40 to form a heat exchanger
  • the refrigerant circulation channel 100 (not marked in the figure), the refrigerant can circulate in the heat exchange channel, and the heat exchange is realized through the heat exchanger 100.
  • heat exchange tube 20 which is also called a flat tube in the industry, has an inner cavity for the flow of refrigerant inside.
  • the first header 41 and the second header 42 each have a tube wall 401, a heat exchange tube insertion hole 402 and an inner cavity (not numbered in the figure), which define the first header 41 and the second header.
  • the axial direction of the second header 42 is the length direction of the header 10 (ie, the Z direction in the figure).
  • the distribution structure in the embodiment of the present invention is not limited to single-layer heat exchangers, but can also be used in other multi-layer heat exchangers.
  • the multi-layer heat exchanger can be a heat exchanger with a bent heat exchange tube or
  • the heat exchangers, which connect the adjacent collector pipes through the connection module, have roughly the same structure, and will not be repeated here. It should be noted that when the multi-layer heat exchanger is a heat exchanger with a bent heat exchange tube, the length direction of the heat exchange tube is the extension direction of the heat exchange tube. In other words, the length direction is not limited to a straight line. direction.
  • the heat exchanger 100 of the embodiment of the present application includes fins 30.
  • the surface of the sensor in the related art is coated with functional materials, such as corrosion-resistant materials. Specifically, it is coated on all or part of the outer surface of the entire heat exchanger.
  • the functional material may be corrosion-resistant. Materials or moisture-absorbing materials, etc., can be set as required, so I won’t repeat them here.
  • the fin 30 is a window fin and has a wave crest part and a wave trough part. To illustrate, in other embodiments, the fins may also be fins without opening windows.
  • the shape of the fin can be roughly wavy or profiled.
  • the cross section of the fin can be a sine wave or an approximate sine wave, or a sawtooth wave, as long as it meets the requirements, and its specific structure is not limited.
  • the fin 30 can be coated with functional materials as required, which is not limited here.
  • the fin 30 in the embodiment of the present application is a corrugated fin.
  • the fin 30 has a crest portion 31, a trough portion 32 and a side wall portion 33 connecting the crest portion 31 and the trough portion 32.
  • the wave crest portion 31 and the wave trough portion 32 are arranged at intervals in the longitudinal direction of the fin 30, and the side wall portion 33 has a plurality of them.
  • the multiple in the present invention refers to two and more than two, unless otherwise specified.
  • the side wall portion 33 may be provided with or without window opening, and it may be provided according to heat exchange requirements.
  • the fin 30 is arranged between two adjacent heat exchange tubes 20, the crest portion 31 is at least partially in contact with the first heat exchange tube 21, and the trough portion 32 is at least partially in contact with the second heat exchange tube 22 To contact.
  • the extending direction of the wave crest portion 31 and the wave trough portion 32 defining the fin 30 at intervals is the length direction of the fin 30 (the X direction in the figure). It can be seen that the length direction of the fin 30 is the same as the length direction of the heat exchange tube 20 (the X direction in the figure), and the distance between the heat exchange tubes 20 is the height direction of the fin 30 (Z in the figure) direction).
  • At least a part of the housing of the sensor 10 is inserted into the fin 30 or the gap formed by the fin 30.
  • the sensor 10 can be fixed to the fin 30 by the stab portion 16, and the stab portion 16 can be clamped in the fin 30.
  • the housing of the sensor 10 is in contact with at least a part of the surface of the fin 30 and/or the surface of the heat exchange tube 20.
  • This arrangement is beneficial for the surface temperature of the fin 30 and/or the surface temperature of the heat exchange tube 20 to conduct heat through the metal shell of the sensor 10, so that the shell temperature of the sensor 10 is closer to the surface temperature of the heat exchanger 100, and the circuit
  • the temperature of the plate 12 is also closer to the surface temperature of the heat exchanger 100.
  • the temperature of the environment where the sensor chip 121 is located is close to the temperature of the heat exchanger 100, so that the sensor 10 is very close to the outer surface of the heat exchanger 100.
  • the temperature and/or humidity monitoring data is more accurate.
  • one of the first header 41 and the second header 42 is closer to the sensor 10 than the other header.
  • the temperature at different positions of the heat exchanger 100 may also be different in the length direction of the heat exchanger 20.
  • the initial frosting position of the heat exchanger 100 may be close to one of the two headers.
  • the frost layer can gradually spread upward from the bottom of the heat exchanger.
  • the sensor 10 is arranged closer to one of the headers. It is beneficial to combine the actual placement position of the heat exchanger to achieve a better fit to the temperature of the initial frosting position of the heat exchanger, so as to more accurately determine whether the heat exchanger is frosted based on the humidity information.
  • the heat exchange system 1000 at least includes a compressor 1, a first heat exchanger 2, a throttling device 3, and a second heat exchange system. ⁇ 4 ⁇ 5 ⁇ 4 and reversing device 5.
  • the compressor 1 of the heat exchange system 1000 may be a horizontal compressor or a vertical compressor.
  • the throttling device 3 may be an expansion valve.
  • the throttling device 3 may also be other components that have the function of reducing pressure and adjusting the flow rate of the refrigerant. This application does not specifically limit the types of throttling devices. It can be selected according to the actual application environment, and will not be repeated here.
  • the heat exchanger 100 described in the present invention can be used in the heat exchange system 1000 as the first heat exchanger 2 and/or the second heat exchanger 4.
  • the compressor 1 compresses the refrigerant, the temperature of the compressed refrigerant rises, and then enters the first heat exchanger 2, and transfers the heat to the first heat exchanger 2 through the heat exchange between the first heat exchanger 2 and the outside.
  • the refrigerant passing through the throttling device 3 becomes a liquid state or a gas-liquid two-phase state.
  • the temperature of the refrigerant decreases, and then the refrigerant with a lower temperature flows to the second heat exchanger 4, and in the second heat exchanger 4 After heat exchange with the outside, it enters the compressor 1 again to realize the refrigerant circulation.
  • the second heat exchanger 4 is used as an outdoor heat exchanger to exchange heat with the air, refer to the above-mentioned examples, and arrange the heat exchanger as needed.

Abstract

一种传感器(10),包括壳体(11)、电路板(12)及设置于电路板(12)的传感芯片(121),壳体(11)内设置有容纳腔(110),壳体(11)包括顶壁(112)、底壁(111)和侧壁(113),传感器(10)设有供液态水排出的第二通道(151),第二通道(151)贯穿设置于底壁(111)或侧壁(113)。当传感器(10)用于换热器(100)中并监测换热器(100)外表面附近处的温度和/或湿度时其监测精度可相对提高。

Description

传感器和换热器
相关申请的交叉引用
本专利申请要求于2019年8月29日提交的、申请号为201910810768.8、发明名称为“传感器、换热器和换热系统”的中国专利申请的优先权,此申请的全文以引用的方式并入本文中。
技术领域
本申请涉及传感器领域,具体而言,涉及传感器和换热器。
背景技术
换热器结霜会导致换热器的换热系数下降,以及翅片间的风道阻塞,使风量降低,这直接影响热泵系统换热器的换热效率以及空气侧压降。因此,需要对换热器结霜进行检测,相关技术中有采用温湿度传感器对换热器进行温度和湿度检测。但是相关技术中的传感器的测量精度仍有待改进。
发明内容
根据本申请的一个方面,提供一种传感器,所述传感器包括壳体、电路板以及固定于所述电路板的传感芯片;
所述壳体的材料为金属,所述壳体设有容纳腔,所述壳体还设有贯穿壳体的第一通道;所述第一通道连通容纳腔和传感器的外部;
所述电路板至少部分收容于所述容纳腔;所述电路板至少部分区域通过导热胶与所述壳体粘接固定;
所述传感芯片用于感测所述容纳腔内环境的湿度信号和温度信号中的至少一种。
本申请中,传感器的壳体为金属材质,电路板至少部分区域通过导热胶与所述壳体粘接固定,有利于将金属壳体感应到的环境温度通过导热胶传递给电路板,使得传感芯片所处的环境温度与壳体的温度接近,第一通道有利于容纳腔内空气与传感器外部空气相连通。相应的,更有利于保证感测芯片所处的温湿度环境更接近待检测物的表面温湿度环境,从而提高感测芯片相应检测信号的准确性。
根据本申请的另一个方面,提供一种换热器,所述换热器包含上述的传感器,所述换热器为多通道换热器或管翅式换热器,所述传感器固定于所述换热器的外表面且所述传感器与所述换热器的至少部分外表面接触,金属壳体感应到的换热器的表面温度可以通过导热胶传递给电路板,使得传感芯片所处的环境温度与壳体的温度接近,第一通道有利于容纳腔内空气与传感器外部空气相连通。相应的,更有利于保证感测芯片所处的温湿度环境更接近换热器的表面温湿度环境,从而提高感测芯片相应检测信号的准确性。
附图说明
图1是本申请一实施例传感器的结构示意图。
图2是图1中本申请一实施例传感器的爆炸结构示意图。
图3是图2中本申请实施例的俯视示意图。
图4是图3中实施例的传感器沿A-A方向的的截面示意图。
图5是本申请另一实施例传感器壳体的结构示意图。
图6是图5中本申请另一实施例传感器的爆炸结构示意图。
图7是图6中本申请实施例的俯视示意图。
图8是图7中另一实施例传感器壳体沿B-B方向的截面示意图。
图9是本申请一实施例设有传感器的换热器的结构示意图。
图10是本申请示例性的一种换热系统示意图。
附图标记:
传感器10、20;
换热器100;
换热管20、21、22;换热管第一端211、212;第二端212、221;
翅片30;波峰部31;波谷部32;侧壁33;
换热系统1000;压缩机1;第一传感器2;节流装置3;第二传感器4;换向装置5。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可 以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。下面结合附图,对本申请示例性实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互补充或相互组合。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
下面结合附图,对本申请示例性实施例进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
在冬季制热时,室外换热器的温度总是低于环境空气温度,当低于环境空气的露点温度时,换热器的翅片表面产生冷凝水。当换热器温度进一步低于0℃时,冷凝水就转变为霜附着在翅片表面。结霜严重时,翅片间的风道局部甚至全部被霜占据,导致换热器的换热系数下降,以及翅片间的风道阻塞,使风量降低,这直接影响热泵系统换热器的换热效率以及空气侧压降。因此,换热器表面有结霜的可能,需要提高监控结霜产生的精度,从而利于提前采取避免结霜的措施以保持热泵空调系统的换热效率。
为了监测换热器的结霜情况,一些相关技术采用温度传感器以0℃为基准判断换热器是否结霜,但这种采用温度信号判断结霜与否的方式存在误差。例如长江流域地区湿度大,虽然环境温度T>0℃,但换热器表面已结 霜。北方区域干燥湿度低,虽然温度T<0℃,但换热器表面没霜。还有一些相关技术采用露点温度判断结霜与否,需要温度和湿度传感器检测环境温度和湿度并计算露点温度,同时检测换热器温度并与露点温度比较,判断换热器是否有结霜,这种计算方式较复杂。根据Regnault原理,当一定体积的湿空气在恒定的总压力下被均匀降温,直到空气中的水汽达到饱和状态,该状态叫做露点。换言之,若将一个光洁的金属表面放到相对湿度低于100%的空气中并使之冷却,当温度降到某一数值时,靠近表面的相对湿度达到100%,这时将有露(或霜)在表面形成。相关技术中用于换热器的传感器检测的是环境中的温度和湿度,不能准确反映换热器的表面温度和湿度。实际上换热器表面温度比环境温度低,而换热器表面的湿度大于环境湿度,湿度传感器检测湿度接近100%时,换热器表面已经结霜。
本申请实施例的传感器通过采用具有导热性好的金属外壳、氮化铝等陶瓷电路板和导热密封胶,使外壳和陶瓷电路板板的温度可以与换热器的表面温度接近,从而使电路板板上的湿度传感器可以较准确地检测传感器表面的相对湿度。不需要计算露点温度,当湿度传感器检测到当前湿度信号接近100%,表明换热器表面湿度(RH)也接近100%,因此换热器的表面将要结霜。通过发送结霜信息并进行控制,可以延缓和预防传感器表面结霜。
本申请实施例提供可相对提高温度和/或湿度监测精确度的传感器。所述传感器与换热器配合使用可提高换热器表面或表面附近处温度和/或湿度监测的精度。当所述换热器与传感器配合后用于换热系统运行中时,可相对提高传感器表面结霜或结雾监测的精度。容易理解,本传感器除可以应用于换热器和热泵系统外,该传感器也可以用于其他需要监控温度和/或湿度的场合等。此处不作限制。
如图1和图2所示、必要时结合其它附图,对本申请传感器10的具体实施方式进行说明。图1是本申请一实施例传感器10的结构示意图。图2是图1中本申请一实施例传感器10的爆炸结构示意图。
如图1所示,所述传感器10包括壳体11,壳体11为金属壳体,从而具 有较好的导热性。所述壳体11内设有容纳腔110,一些实施方式中,所述壳体11包括底壁111、顶壁112和侧壁113,所述顶壁112和底壁111位于所述传感器高度方向(图9中X方向)的两端,所述侧壁113连接所述顶壁112和底壁111,所述容纳腔110由所述顶壁112、所述底壁111和所述侧壁113围合形成,换言之,所述顶壁112、所述底壁111设于所述容纳腔110高度方向的两端,所述侧壁113设于所述容纳腔110的周侧,且所述侧壁113与所述顶壁112、所述底壁111相连接。需要说明的是,图1中实施例所述的传感器10大体呈长方体,所述底壁111、所述顶壁112大体呈正方形,在其他一些实施例中,所述传感器10的结构也可以是正方体、圆柱体等,根据需要设置即可,此处不做限制。
如图2所示,所述传感器10包括电路板12,所述电路板12设有至少一个传感芯片121,传感芯片121能够感测容纳腔110内空气的湿度信号和温度信号中的至少一种。
电路板12至少部分收容于所述容纳腔110,且所述电路12与壳体11相固定。具体的,电路板12与所述顶壁112可以通过导热胶13粘结固定。在其他一些实施例中,所述电路板12与所述侧壁113直接或间接连接。所述电路板12其板本体部的材质可以为陶瓷材料。陶瓷材料可以为氮化铝或氧化铝中的一种或几种的混合。
所述导热胶13包括高分子粘结材料和导热材料,在所述高分子粘结材料中填充所述导热材料制备而成。可选的,所述导热材料包括氮化铝、氮化硼、氮化硅、氧化铝、氧化镁、氧化硅中的一种或几种。导热胶13的导热性能较强,或者说所述导热胶13的热阻较小,如此在所述传感器10用于测试换热器表面的温度时,能够使得换热器表面的温度更接近传感器的温度。本实施例中的传感器10的电路板12与所述顶壁112通过所述导热胶13连接。本实施例中所述侧壁113与所述顶壁112也可通过所述导热胶13连接或直接焊接。
所述传感器10的壳体11的至少部分内表面114涂覆有涂层115,所述涂层115为亲水涂层或者疏水涂层,所述涂层115利于壳体11内的冷凝水的 排出,换言之,冷凝水不会凝结在所述涂覆区域,或者说,所述冷凝水不会在所述传感器内形成挂壁,进而影响传感器对换热器表面湿度测量的准确性。
如图1或图2所示,所述传感器10的壳体11的侧壁113的内表面114全部涂覆有所述涂层115,所述底壁111的内表面也涂覆有所述涂层115。如此设置,所述传感器10的壳体11的内表面114利于冷凝水的排出,利于所述传感器10对所述换热器表面或其附近处湿度测量。
所述传感器10设有第一通道141,所述第一通道141可供空气进出,所述第一通道141贯穿所述侧壁113或所述顶壁112设置。本如图1或2并结合图3、图4所示,本实施例中的所述第一通道141设置于所述侧壁113处,所述第一通道141为通孔,所述通孔的直径为0.1μm~1mm,如此设置,利于空气的进出且能避免灰尘等杂物进入所述传感器10的容纳腔110而损坏所述传感器10。理论上,所述通孔的直径越小越好,但是由于工艺及成本限制,满足实际需要即可。在其他一些实施例中,所述通孔的直径为100nm~500μm。在其他一些实施例中,所述第一通道141也可以是其他形状,只要能够实现需要即可,不做限制。所述第一通道141的数量可以是一个或两个以上,只要满足测试需要即可,此处也不限制。
所述传感器10设有第三通道142,所述第三通道142可供导线(图中未示出)进出。其中导线用于电性连接所述传感器10和其他设备,所述传感器10的检测信号数据可通过所述导线导入其他数据处理设备或数据收集设备或其他设备。所述第三通道142贯穿所述侧壁113或所述顶壁112设置,所述第三通道142与所述第一通道141错开设置,换言之,所述第三通道142与所述第一通道141设置于所述壳体11的不同位置,一些实施方向中,第三通道142的轴向可以与第一通道141的轴向平行或者重合。
如图1、图2和图4所示,所述第三通道142贯穿所述侧壁113设置。所述第三通道142只有一个,且所述第三通道142与所述第一通道141设置于所述侧壁113的相反两侧。在其他一些实施例中,所述第三通道142可以有两个以上,根据需要设置即可。所述第三通道142可以为通孔,需要说明 一点,所述第三通道142的孔径与穿过其的所述导线的尺寸相适应,如此可避免灰尘等杂物进入所述传感器10的容纳腔110而损坏所述传感器10。一些实施方式中,可以用密封胶把导线和壳体11固定在一起,避免外力扯动导线,导致导线脱落。在另外一些实施例中,所述第三通道142也可以和所述第一通道141重合,即空气的进出通道与导线的通道可以为同一个。说明一点,如图1至图8中所示的传感器,形成第三通道142的至少部分壁部1420由侧壁113向远离容纳腔110的方向向外延伸而成,所述壁部1420能够用于固定导线,使得导线固定牢靠,一定程度上避免导线脱落。在其他一些实施例中,可以不设壁部1420。
在一些湿度较大,温度较低的环境中,传感器的壳体内可能会有冷凝水的产生,如果冷凝水不能及时排出则会导致测试的结果不准确,严重的会导致电子元器件的损坏而损坏传感器。在本申请中,所述传感器10设有供液态水排出的第二通道151,第二通道151贯穿设置于所述底壁111或所述侧壁113。壳体11开设有第一开口1511和第二开口1522。第二通道151形成于第一开口1511和第二开口1522之间,第一开口1511和第二开口1522中的一个开口位于壳体11的内表面,另一个开口位于壳体11的外表面。例如,第一开口1511比第二开口1522更靠近容纳腔110。并且第二开口1522和电路板12分别位于第一开口1511的相反两侧。
在一些实施例中,所述底壁111的内表面为平直壁面,底壁111的内表面与侧壁113的壁厚方向的夹角记为第一夹角,第一夹角大于等于0°,且第一夹角小于90度。例如底壁111可以与侧壁113呈垂直关系,即底壁111的内表面与侧壁113的壁厚方向的第一夹角为0°。第二通道151可以设于底壁111的中间位置。当然,底壁111的内表面可以与侧壁113的壁厚方向具有呈一定的夹角,即底壁111的内表面可以向上或者向下倾斜。这样冷凝水可以在重力的作用下沿底壁111的内表面流动并最终从第二通道151排出。所述第二通道151为通孔,所述通孔贯穿所述底壁111设置。在其他一些实施例中,所述第二通道151可以是缝隙或缺口。所述第二通道151也可以设 置两个以上,根据具体需要设置即可。
如图1或2所示,所述传感器10的壳体11还设有刀刺部16,所述刀刺部16设置于所述侧壁113处,其自所述侧壁113向远离容纳腔110的方向向外延伸形成。所述刀刺部16的外周设置有若干外凸的锯齿状结构161,所述锯齿状结构161可利于所述传感器10与其他设备配合使用,比如微通道换热器,通过所述锯齿状结构161可将所述传感器插置与所述微通道换热器的翅片之间并配合使用。当然,所述传感器10也可不设置刀刺部16,其直接固定于需要监测温度或湿度的位置,根据需要设置即可。
如图2中所示的传感器10的爆炸示意图包含所述电路板12。所述电路板12设有温度传感元件121、湿度传感元件122、滤波电容123。所述温度传感元件121能够感测温度,所述湿度传感元件122能够感测湿度,所述滤波电容123能够降低温度或湿度测量过程中的干扰。在其他一些实施例中,所述电路板12仅设有所述温度传感元件121或所述湿度传感元件122,换言之,所述温度传感元件121或所述湿度传感元件122可以单独设置或组合设置,此处不做限制。可选的,所述电路板12设有至少一个传感芯片,至少一个所述传感芯片可以感应温度和/或湿度。可选的,所述电路板设有两个以上传感芯片,所述两个以上传感器芯片能够监测温度和/或湿度。所述传感芯片的感应区域贴有防水和/或防尘膜,所述防水防尘膜能够防尘防水,使得所述传感器的测量精度较高,且能够相对延长所述传感器的使用寿命。其中,所述防水防尘膜可选用IP67。可选的,所述电路板设有滤波电容,所述滤波电容可降低监测的噪声,使得监测数据更加精准。可选的,所述滤波电容具有多个。
如图3是图2中本申请一实施例传感器10的俯视示意图。如图4是图3中实施例的传感器10沿A-A方向的截面示意图。如图4和图3所示,所述传感器10具有所述壳体11,所述壳体11具有所述内腔110、所述底壁111、所述顶壁112和所述侧壁113。所述第一通道141、所述第三通道142贯穿所述侧壁113设置。所述传感器10还具有刀刺部16,所述刀刺部16设置于所 述侧壁113且所述刀刺部16具有锯齿部161,所述齿部161具有多个,多个所述锯齿部161外凸使得刀刺部16的外周形成凹凸不同的锯齿表面。所述传感器10还包括所述电路板12,所述电路板12通过所述导热胶13固定于所述顶壁112,所述电路板12设置有所述湿度传感元件122、温度传感元件121和滤波电容123,所述湿度传感元件122和所述温度传感元件121的感应开口均朝向所述内腔部110。当所述传感器10实际应用的时候,所述湿度传感元件122和所述温度传感元件121的感应开口可以朝下设置,如此设置,不利于灰尘等粘接在所述感应区域进而影响感应元件的精度,另外的,也利于冷凝水受重力作用排出,提高测试精度,一定程度上能延长所述传感元件及传感器的寿命。在其他一些实施例中,所述电路板12也可以设置于侧壁113,所述感应开口可不完全朝下,只要能满足需要即可。
如图4所示,第二通道151设置于所述底壁111。具体的,所述底壁111的全部或部分形成倾斜壁101。如图4所示,所述底壁全部为倾斜壁。所述倾斜壁101的第一端1011与所述侧壁113的第一端1131连接,所述倾斜壁101的第二端1012为自所述第一端1011朝向远离所述顶壁112方向延伸的末端,所述底壁111还包括配合部102,配合部102自所述倾斜壁101的末端向远离所述顶壁112的方向凸伸,所述第二通道151贯穿所述配合102设置。配合部102可以为圆筒状,这样便于加工和制造。当然,底壁111也可以不具有配合部102,所述倾斜壁101的第二端1012围成所述第二通道151也可以实现排水功能。这样,由于所述底壁111大体呈漏斗状,从而利于冷凝水排出所述传感器10。
在一些其他实施例中,底壁111也可以具有一部分平直的壁段,即底壁111的一部分为平直的壁段,一部分为倾斜壁101,所述倾斜壁101的第一端1011与所述底壁111的平直壁段衔接,所述倾斜壁101的第二端1012自所述第一端1011朝向远离所述顶壁112方向延伸。
图5是本申请另一实施例传感器20壳体的结构示意图。图6是图5中实施例的传感器的爆炸示意图。图7是图6或图5中另一实施例传感器20壳体 的俯视示意图。如图8所示为图7中传感器20沿B-B方向的截面示意图。如图5至图8所示,所述传感器20与所述传感器10的结构相同,在此不再赘述。不同之处在于,底壁111至少部分区域形成凹壁103,凹壁103的第一端1011与所述侧壁113的下端1131连接,凹壁103自侧壁朝向靠近所述顶壁112方向延伸。也即凹壁103的中心相对于凹壁103的边缘朝向靠近顶壁112的方向内凹。
第二通道151相比凹壁103的中心更靠近侧壁113,凹壁103靠近侧壁113的边缘处设有第二通道151。如此设置,利于冷凝水排出所述传感器10。
如图9是本申请一实施例设有传感器10的换热器100的结构示意图。所述换热器100为多通道换热器。在其他一些实施例中,所述换热器也可以是管翅式换热器或其他需要监测温度或湿度的换热器等,此处不做限制。本申请一实施例换热器100可包括集流管40、多个换热管20以及翅片30。所述集流管40具有供冷媒流动的内腔(图中未标示),其形状为圆管。其长度方向即为轴向方向。所述集流管40具有两个,即第一集流管41和第二集流管42,所述第一集流管41和所述第二集流管42大致平行设置。说明一点,所述换热器100和空气一般只经过一次换热,业内常称之为单层传感器。当然,在其他一些实施例中,所述集流管40也可以是D型或者方形管,其具体形状不受限制,只要其爆破压力满足系统需要即可。所述集流管40的相对位置也不受限制,满足实际安装需要即可。所述集流管40的数量也可以只有一个,只要其满足换热需要即可,此处不受限制。本申请实施例中的集流管40以圆管为例。
所述换热管20具有多个,所述换热管20均具有长度方向、宽度方向和高度方向,多个换热管20沿所述集流管10的轴向排布且大致平行设置。多个换热管20均具有第一端和第二端。如图7所示,换热管20包括并列设置的第一换热管21和第二换热管22。所述第一换热管21具有第一端211和第二端212,界定换热管21的第一端211向第二端212延伸的方向为换热管的长度方向(图中X方向)。沿所述换热管厚度方向(如图中Z方向)的两端, 所述换热管21具有第一顶壁213和第一底壁214,所述第一顶壁213和所述第一底壁214大致平行设置,其中所述换热管20的高度方向也可以称为换热管的厚度方向。
第一换热管21的第一端211与第一集流管11相连接,第一换热管21的第二端212与所述第二集流管12相连接,同样的,第二换热管22的第一端221与第一集流管11相连接,第二换热管22的第二端222与所述第二集流管12相连接。第一换热管21和第二换热管22大致相平行设置。所述换热管20具有供冷媒流动的内腔(图中未标示),如此连接,使得所述换热管20的内腔与所述集流管40的内腔相连通,形成换热器100的冷媒流通通道(图中未标示),冷媒可在换热通道内进行流通,并通过换热器100实现换热。
需要说明的是,所述换热管20,业内也称为扁管,其内部具有供冷媒流动的内腔。
所述第一集流管41和所述第二集流管42均具有管壁401、换热管插孔402和内腔(图中未标号),界定所述第一集流管41和第二集流管42的轴向方向为所述集流管10的长度方向(即图中Z方向)。
本发明实施例中的分配结构不仅限于用于单层换热器,在其他多层换热器中也可以使用,多层换热器可以是换热管折弯的换热器,也可以是通过连接模块将相邻的集流管连接起来的换热器器,结构大致相同,在此不再赘述。需要说明一点,当多层换热器为换热管折弯的换热器时,所述换热管的长度方向即为换热管的延伸方向,换言之,所述长度方向并局限于为直线方向。
本申请实施例的换热器100包括翅片30。值得注意的是,相关技术中的传感器表面涂覆有功能材料,如耐腐蚀材料等,具体的,是在整个换热器的外表面的全部或部分涂覆,所述功能材料可以是耐腐蚀材料或吸湿材料等,根据需要设置即可,在此不做赘述。所述翅片30为窗型翅片且具有波峰部和波谷部。说明一点,在其他实施例中,翅片也可以是不开窗翅片。翅片的形状可以是大致呈波形,也可以是型材,翅片的截面可以是正弦波或近似正弦 波,也可以是锯齿波,只要满足需要即可,其具体结构不受限制。当然,翅片30可以根据需要涂覆功能材料,在此不予限制。
本申请实施例中的翅片30为波形翅片,所述翅片30具有波峰部31、波谷部32以及连接所述波峰部31和所述波谷部32的侧壁部33。所述波峰部31、波谷部32在所述翅片30的长度方向一一间隔设置,所述侧壁部33具有多个。说明一点,本发明中所述的多个指的是两个以及两个以上,除非另有说明。所述侧壁部33可设置开窗或者不设置开窗,根据换热需要设置即可。
所述翅片30设置于相邻的两个换热管20之间,所述波峰部31至少部分与第一换热管21相接触,所述波谷部32至少部分与第二换热管22相接触。界定翅片30的波峰部31和波谷部32一一间隔设置的延伸方向为翅片30的长度方向(如图中的X方向)。如此可知,所述翅片30的长度方向与所述换热管20的长度方向相同(图中X方向),换热管20之间的间距即为翅片30的高度方向(附图中Z方向)。
传感器10的至少部分壳体插设于翅片30或者翅片30所形成的缝隙,具体的,传感器10可通过刀刺部16与翅片30相固定,刀刺部16可以卡设于所述翅片30。传感器10的壳体与翅片30的表面和/或换热管20的表面至少部分区域相接触。如此设置,有利于翅片30的表面温度和/或换热管20的表面温度通过传感器10的金属壳体进行热传导,从而传感器10的壳体温度与换热器100的表面温度更接近,电路板12的温度也更加接近换热器100的表面温度,相应的,传感芯片121所处的环境温度与换热器100的温度接近,这样传感器10对所述换热器100外表面附近处的温度和/或湿度的监测数据更加准确。
参考图9,在沿换热管20的长度方向上,第一集流管41和第二集流管42中的一个集流管相较另一个集流管更靠近传感器10。基于换热器100在实际应用环境中的具体摆放位置以及不同的工况条件,在换热器20的长度方向上,换热器100的不同位置温度也可能不相同。换热器100的初始结霜位置可能会靠近两个集流管中的一个,例如霜层可以从换热器底部逐渐向上蔓延, 这样,将传感器10更靠近其中一个集流管进行设置,有利于结合实际换热器的摆放位置,实现更贴合换热器初始结霜位置的温度,从而更准确的基于湿度信息判断换热器是否结霜。
如图10所示,是本申请一示例性实施例示出的一种换热系统1000,该换热系统1000至少包括压缩机1、第一换热器2、节流装置3、第二换热器4以及换向装置5。可选的,该换热系统1000的压缩机1可以是卧式压缩机或立式压缩机。可选的,节流装置3可以是膨胀阀,此外,节流装置3还可以是其它对冷媒具有降压及调节流量作用的零部件,本申请文件对节流装置的种类不做具体限制,可根据实际应用环境进行选取,在此不再赘述。需要说明的是,在有些系统中,可以没有换向装置5。本发明中所述的换热器100可以用于该换热系统1000中作为第一换热器2和/或第二换热器4。在该换热系统1000中,压缩机1对冷媒进行压缩,压缩后的冷媒温度升高,而后进入第一换热器2中,经过第一换热器2和外界的热交换将热量传递给外界,之后经过节流装置3的冷媒变成液态或气液两相的状态,此时冷媒的温度降低,而后较低温度的冷媒流向第二换热器4,并在第二换热器4与外界热交换后再次进入压缩机1中,实现冷媒循环。当第二换热器4作为室外换热器与空气发生热交换使用时,参照上述事实例,根据需要布置所述换热器。
以上所述仅是本申请的较佳实施例而已,并非对本申请做任何形式上的限制,虽然本申请已以较佳实施例揭露如上,然而并非用以限定本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本申请技术方案的内容,依据本申请的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本申请技术方案的范围内。

Claims (15)

  1. 一种传感器,其特征在于,所述传感器包括壳体、电路板以及固定于所述电路板的传感芯片;
    所述壳体的材料为金属,所述壳体设有容纳腔,所述壳体还设有贯穿壳体的第一通道;所述第一通道连通容纳腔和传感器的外部;
    所述电路板至少部分收容于所述容纳腔;所述电路板至少部分区域通过导热胶与所述壳体粘接固定;
    所述传感芯片用于感测所述容纳腔内环境的湿度信号和温度信号的至少一种。
  2. 根据权利要求1所述的传感器,其特征在于,所述壳体的材料包括铝、不锈钢和铜中的至少一种;所述导热胶的材料包括氮化铝、氮化硼、氮化硅、氧化铝、氧化镁和氧化硅中的至少一种;所述电路板的材质包括氮化铝和/或氧化铝。
  3. 根据权利要求2所述的传感器,其特征在于,所述壳体设有第一开口和第二开口,所述第一开口和所述第二开口之间形成贯穿壳体的第二通道,所述第二通道用于供液态水排出壳体之外;
    所述第一开口比所述第二开口靠近所述容纳腔,所述第二开口和所述电路板分别位于第一开口相反两侧。
  4. 根据权利要求3所述的传感器,其特征在于,所述壳体包括顶壁、底壁和侧壁,所述侧壁设于所述容纳腔的外周侧且所述侧壁连接所述顶壁和底壁;
    所述电路板通过所述导热胶固定于所述侧壁或与所述顶壁;所述第二通道贯穿所述底壁或侧壁设置;所述第一通道贯穿所述侧壁或所述顶壁设置;
  5. 根据权利要求4所述的传感器,其特征在于,所述传感器还设有第三通道,所述第三通道可供导线进出,所述第三通道贯穿所述侧壁或所述顶壁设置;所述第三通道与所述第一通道均设于所述壳体的侧壁的不同位置。
  6. 如权利要求3所述的传感器,其特征在于,所述第二通道为通孔、缝隙或缺口中的一种或几种。
  7. 如权利要求4所述的传感器,其特征在于,所述底壁包括倾斜壁和配合部,所述倾斜壁相对于所述侧壁的壁厚方向朝向远离所述顶壁方向倾斜设置;所述配合部自所述倾斜壁的末端向远离所述顶壁的方向凸伸;所述第二通道贯穿所述配合部设置。
  8. 根据权利要求7所述的传感器,其特征在于,所述倾斜壁至少部分区域与所述侧壁的下端连接,所述第二通道为贯穿所述配合部的圆形通孔。
  9. 根据权利要求4所述的传感器,其特征在于,所述底壁至少部分区域形成凹壁,所述凹壁的中心相对于所述凹壁的边缘朝向靠近所述顶壁方向内凹;所述第二通道相比所述凹壁的中心更靠近所述侧壁。
  10. 根据权利要求4所述的传感器,其特征在于,所述底壁的内表面为平直壁面,且所述内表面与所述侧壁的壁厚方向的夹角记为第一夹角,所述第一夹角大于等于0°且所述第一夹角小于90°。
  11. 如权利要求1权利要求所述的传感器,其特征在于,所述壳体的内表面至少部分区域涂覆有亲水涂层或者疏水涂层。
  12. 如权利要求1所述的传感器,其特征在于,所述传感芯片为集成湿度检测功能和温度检测功能的集成芯片。
  13. 根据权利要求4所述的传感器,其特征在于,所述传感器的壳体还设有刀刺部,所述刀刺部自所述侧壁向远离所述容纳腔的一侧延伸;所述刀刺部的外周设有若干外凸的锯齿状结构。
  14. 一种换热器,其特征在于,所述换热器包含如权利要求1~13任一所述的传感器,所述换热器包括至少一个集流管、多个换热管以及至少一个翅片,所述换热管与所述集流管相固定,所述换热管的内腔与所述集流管的内腔连通;所述翅片位于相邻的两个换热管之间;
    所述传感器与所述翅片固定,所述传感器的壳体与所述翅片的表面和/或换热管的表面至少部分区域相接触。
  15. 根据权利要求14所述的换热器,其特征在于,所述换热器包括第一集流管和第二集流管,所述换热管包括位于换热管长度方向相反两端的第一端和第二端,所述第一端与第一集流管相连,所述第二端与第二集流管相连,所述换热管的内腔连通第一集流管的内腔与第二集流管的内腔;
    在沿所述换热管长度方向上,所述第一集流管和所述第二集流管中的一个集流管相较另一个集流管更靠近所述传感器。
PCT/CN2020/112298 2019-08-29 2020-08-29 传感器和换热器 WO2021037253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/566,043 US20220120592A1 (en) 2019-08-29 2021-12-30 Sensor and heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910810768.8A CN112444282A (zh) 2019-08-29 2019-08-29 传感器、换热器和换热系统
CN201910810768.8 2019-08-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/566,043 Continuation US20220120592A1 (en) 2019-08-29 2021-12-30 Sensor and heat exchanger

Publications (1)

Publication Number Publication Date
WO2021037253A1 true WO2021037253A1 (zh) 2021-03-04

Family

ID=74683593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112298 WO2021037253A1 (zh) 2019-08-29 2020-08-29 传感器和换热器

Country Status (3)

Country Link
US (1) US20220120592A1 (zh)
CN (1) CN112444282A (zh)
WO (1) WO2021037253A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174344A (ja) * 1992-12-07 1994-06-24 Sanden Corp ヒートポンプ式空気調和装置の室外熱交換器の着霜検知方法
CN1208461A (zh) * 1996-02-06 1999-02-17 石塚电子株式会社 结霜探测器
CN101225272A (zh) * 2008-01-31 2008-07-23 中国科学院化学研究所 防冰霜涂料及其使用方法
CN101761976A (zh) * 2008-12-23 2010-06-30 浙江三花股份有限公司 一种空调
CN101849173A (zh) * 2007-10-01 2010-09-29 株式会社吾土电子 用于检测车辆的有雾气的窗户的设备
CN201772940U (zh) * 2010-06-25 2011-03-23 西安铁路信号工厂 一种钢轨温度传感器
CN202383124U (zh) * 2012-01-04 2012-08-15 厦门巨益科技有限公司 湿度传感器
CN202885994U (zh) * 2012-10-17 2013-04-17 广东美的暖通设备有限公司 温度传感器固定装置
CN203404868U (zh) * 2013-07-19 2014-01-22 广州华凌制冷设备有限公司 用于空调器室外机的测温组件及具有其的空调器室外机
CN104048548A (zh) * 2014-05-26 2014-09-17 杭州三花微通道换热器有限公司 可调节的制冷剂分配装置和具有它的换热器
KR20170002995A (ko) * 2015-06-30 2017-01-09 주식회사 아모텍 차량용 온도 습도 검출장치

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4107058B2 (ja) * 2002-11-13 2008-06-25 株式会社デンソー 熱交換器用温度センサ
JP4251086B2 (ja) * 2004-01-28 2009-04-08 株式会社デンソー 温度センサ
CN100432633C (zh) * 2004-04-16 2008-11-12 恩德斯+豪斯流量技术股份有限公司 用于在线测量仪表的温度控制的热交换器
JP2005326367A (ja) * 2004-05-17 2005-11-24 Denso Corp フィン温度センサ
JP2005345015A (ja) * 2004-06-03 2005-12-15 Denso Corp センサ取付け装置
JP2006017406A (ja) * 2004-07-02 2006-01-19 Denso Corp 車両用熱交換器のセンサ取付構造
US20120247179A1 (en) * 2011-04-01 2012-10-04 Ti Group Automotive Systems, Llc Sensor housing and latching mechanism for sensor housing
JP5532523B2 (ja) * 2012-01-27 2014-06-25 株式会社デンソー 温度センサ支持装置
JP5853948B2 (ja) * 2012-12-27 2016-02-09 株式会社デンソー 熱交換器
JP2016033430A (ja) * 2014-07-31 2016-03-10 株式会社ケーヒン 熱交換器に装着されるセンサの取付クリップ
CN104533761A (zh) * 2014-12-25 2015-04-22 无锡智数商务信息咨询有限公司 空压机用具有自动排水功能的储气罐
CN205803958U (zh) * 2016-07-01 2016-12-14 睢宁县华信服饰有限公司 一种服装烘干装置
CN106352396A (zh) * 2016-11-14 2017-01-25 湖北海联技术咨询有限公司 一种粘接式带装饰套全铜散热器
US10401229B2 (en) * 2016-11-22 2019-09-03 Honeywell International Inc. Systems and methods for icing resistant total air temperature probes
CN208282860U (zh) * 2018-04-28 2018-12-25 曲阜天博汽车零部件制造有限公司 一种防水进气压力温度传感器及其所应用的发动机
CN208227554U (zh) * 2018-05-04 2018-12-11 杭州三花家电热管理系统有限公司 换热设备及换热系统
CN208187567U (zh) * 2018-06-01 2018-12-04 佛山市顺德区美的电热电器制造有限公司 传感器的壳体组件、传感器和电加热器

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174344A (ja) * 1992-12-07 1994-06-24 Sanden Corp ヒートポンプ式空気調和装置の室外熱交換器の着霜検知方法
CN1208461A (zh) * 1996-02-06 1999-02-17 石塚电子株式会社 结霜探测器
CN101849173A (zh) * 2007-10-01 2010-09-29 株式会社吾土电子 用于检测车辆的有雾气的窗户的设备
CN101225272A (zh) * 2008-01-31 2008-07-23 中国科学院化学研究所 防冰霜涂料及其使用方法
CN101761976A (zh) * 2008-12-23 2010-06-30 浙江三花股份有限公司 一种空调
CN201772940U (zh) * 2010-06-25 2011-03-23 西安铁路信号工厂 一种钢轨温度传感器
CN202383124U (zh) * 2012-01-04 2012-08-15 厦门巨益科技有限公司 湿度传感器
CN202885994U (zh) * 2012-10-17 2013-04-17 广东美的暖通设备有限公司 温度传感器固定装置
CN203404868U (zh) * 2013-07-19 2014-01-22 广州华凌制冷设备有限公司 用于空调器室外机的测温组件及具有其的空调器室外机
CN104048548A (zh) * 2014-05-26 2014-09-17 杭州三花微通道换热器有限公司 可调节的制冷剂分配装置和具有它的换热器
KR20170002995A (ko) * 2015-06-30 2017-01-09 주식회사 아모텍 차량용 온도 습도 검출장치

Also Published As

Publication number Publication date
US20220120592A1 (en) 2022-04-21
CN112444282A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
CN202581982U (zh) 热交换器及安装有该热交换器的空气调节机
CN102472599B (zh) 翼片管热交换器
US20080296008A1 (en) Heat Transfer Fin for Heat Exchanger
RU2509969C1 (ru) Теплообменник и оснащенный им кондиционер
US20100071868A1 (en) Hvac units, heat exchangers, buildings, and methods having slanted fins to shed condensation or for improved air flow
WO2019218429A1 (zh) 换热器及换热设备
US20160054065A1 (en) Fin-and-tube heat exchanger and refrigeration cycle device
EP2037203A2 (en) Condenser assembly
WO2021037253A1 (zh) 传感器和换热器
EP3321598A1 (en) Heat exchanger
JP2005195192A (ja) 内面溝付伝熱管
JP2011069543A (ja) 熱交換器及びそれを搭載した空気調和機
WO2018040036A1 (zh) 微通道换热器及风冷冰箱
WO2018040037A1 (zh) 微通道换热器及风冷冰箱
CN212458020U (zh) 一种微通道换热器
CN215983191U (zh) 一种换热器及空调器
WO2023016286A1 (zh) 散热板、散热板组件、散热组件、电控盒和空调器
CN218834079U (zh) 一种除湿装置
CN219572091U (zh) 一种空调器
CN113701338A (zh) 一种换热器及空调器
WO2018040035A1 (zh) 微通道换热器及风冷冰箱
CN216644376U (zh) 空调换热器和空调器
WO2018040034A1 (zh) 微通道换热器及风冷冰箱
KR100498303B1 (ko) 열교환기의 응축수 배출장치
CN219640746U (zh) 换热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857427

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20857427

Country of ref document: EP

Kind code of ref document: A1