WO2021037177A1 - 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法 - Google Patents

巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法 Download PDF

Info

Publication number
WO2021037177A1
WO2021037177A1 PCT/CN2020/111922 CN2020111922W WO2021037177A1 WO 2021037177 A1 WO2021037177 A1 WO 2021037177A1 CN 2020111922 W CN2020111922 W CN 2020111922W WO 2021037177 A1 WO2021037177 A1 WO 2021037177A1
Authority
WO
WIPO (PCT)
Prior art keywords
crawler foot
leg
crawler
foot
joint
Prior art date
Application number
PCT/CN2020/111922
Other languages
English (en)
French (fr)
Inventor
赵富强
杜鹏阳
黄庆学
牛志刚
孙波
窦银科
常宝玉
吴红庆
Original Assignee
太原科技大学
太原理工大学
中国极地研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原科技大学, 太原理工大学, 中国极地研究中心 filed Critical 太原科技大学
Publication of WO2021037177A1 publication Critical patent/WO2021037177A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/022Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members consisting of members having both rotational and walking movements

Definitions

  • the invention relates to a gait planning method for a giant six-limb leg crawler foot polar scientific research vehicle crossing an ice fissure.
  • the ice in the Antarctic ice sheet moves from high to low under the action of gravity, resulting in glacier flow.
  • the flow speed will be different.
  • the bottom surface is convex, the ice on the surface of the ice sheet moves faster than the ice below, forming ice cracks.
  • the appearance of ice cracks poses a serious threat to the Antarctic ice sheet survey personnel and equipment.
  • Existing wheeled, crawler-type scientific research vehicles or all-terrain vehicles mainly run on flat ice. They cannot cross over ice cracks, and may fall into or fall into the ice cracks, causing safety accidents for personnel and vehicles.
  • the purpose of the present invention is to realize the huge six-legged crawler foot polar scientific research vehicle to cross over the ice cracks and avoid the occurrence of personnel and vehicle safety accidents. Aiming at a giant six-legged crawler foot polar scientific expedition vehicle, it needs a gait planning method that can cross the ice fissure and realizes the task of running in the polar regions. It provides a giant six-legged crawler foot polar scientific research vehicle. Gait planning method for test car crossing ice cracks.
  • the gait planning method of the giant six-legged crawler foot polar scientific research vehicle across the ice fissure includes the preparation gait across the ice fissure, the advanced state across the ice fissure and the recovery gait across the ice fissure.
  • step of preparing a gait across the ice fissure is:
  • right middle leg crawler foot D rotation support the right middle middle joint is locked and the right middle crawler foot drives the right middle crawler foot D to rotate forward with the right middle upper joint as the center to the right middle leg crawler foot D Support angle ⁇ 6 , the right middle leg crawler foot D support angle ⁇ 6 does not exceed 35 degrees, go to S3;
  • left middle leg crawler foot C rotation support the left middle middle joint is locked and the left middle crawler foot drives the left middle crawler foot C and rotates forward to the left middle upper joint and the left middle crawler foot C Support angle ⁇ 3 , the left middle leg crawler foot C support angle ⁇ 3 does not exceed 35 degrees, go to S5;
  • Adduction of right front upper limb leg B The right front upper limb leg is locked and the right front lower limb is driven by the right front lower limb to rotate 45 degrees to the inside of the examination vehicle around the right front middle joint, and perform S6;
  • the left middle crawler foot, the right middle crawler foot, the left front crawler foot and the right front crawler foot are rotated and reset at the same time: the left middle leg crawler foot C is locked and the left middle crawler is enough to rotate to the left middle crawler foot centered on the left middle and lower joint.
  • right middle leg crawler foot D is locked, right middle crawler is enough to rotate to right middle lower joint centered to right middle crawler foot reset angle ⁇ 6 ;
  • left front leg crawler foot A is locked and left front crawler enough Rotate the left front lower joint as the center to the left front crawler foot reset angle ⁇ 2 ;
  • the right front limb leg crawler foot B is locked, and the right front crawler is enough to rotate to the right front lower joint center to the right front crawler foot reset angle ⁇ 1 ;
  • right front crawler foot reset angle ⁇ 1 The left front crawler foot reset angle ⁇ 2 , the left middle crawler foot reset angle ⁇ 3 and the right middle crawler foot reset angle ⁇ 6 are not more than 90 degrees, go to S7;
  • left hind leg crawler foot E rotation support the left rear middle joint is locked and the left rear crawler foot drives the left hind leg crawler foot E to rotate forward to the left hind leg crawler foot E supporting angle ⁇ 4.
  • the left hind leg crawler foot E support angle ⁇ 4 does not exceed 35 degrees, go to S9;
  • right hind leg crawler foot F rotation support the right rear middle joint is locked and the right rear crawler foot drives the right hind leg crawler foot F to rotate forward to the right hind leg crawler foot F support angle ⁇ 5.
  • the right hind leg crawler foot F support angle ⁇ 5 does not exceed 35 degrees; the gait is ready to cross the ice fissure.
  • step of progressing through the ice fissure is as follows:
  • the right front leg crawler foot B swings across the ice crack: first, the right front upper joint is the center, the right front crawler foot B drives the right front crawler foot to rotate inward in the horizontal direction ⁇ , ⁇ does not exceed 120 degrees, and then the right front upper leg does not Move, the right front lower limb leg drives the right front crawler foot to swing out for a distance L 2 , across the ice crack, and execute S11;
  • the right front leg crawler foot B drives the right front crawler foot to rotate inward in the horizontal direction ⁇ is obtained by the following formula:
  • L 1 is the distance across the ice crack when the right front leg crawler foot B rotates ⁇
  • d is the distance between the right front crawler foot and the platform
  • L 2 is the distance that the right front lower extremity leg drives the right front crawler foot to swing outwards
  • b is the length of the right front lower extremity leg
  • h is the length of the right front crawler foot
  • is the angle required for the right front lower limb to swing out
  • does not exceed 120 degrees
  • the left front leg crawler foot A swings out across the ice crack: first, the left front upper joint is the center, the left front crawler foot A drives the left front crawler foot to rotate in the horizontal direction ⁇ , then the left front upper limb leg does not move, and the left front lower limb leg drives The left front crawler foot swings outward for a distance L 2 , across the ice crack, and execute S12;
  • leg crawler foot D preparation angle ⁇ 2 To the right middle leg crawler foot D preparation angle ⁇ 2 ; right foreleg leg crawler foot B support angle ⁇ 1 , left foreleg leg crawler foot A support angle ⁇ 2 , left middle leg crawler foot C preparation angle ⁇ 1 and right middle limb
  • the leg crawler foot D preparation angle ⁇ 2 does not exceed 35 degrees, go to S14;
  • the left middle crawler foot, the right middle crawler foot, the left front crawler foot and the right front crawler foot are rotated and reset at the same time: the upper left middle joint, the left middle upper limb leg, the left middle middle joint and the left middle lower limb leg are locked, and the left middle crawler foot is sufficient Rotate the left middle and lower joint as the center to the left middle crawler foot reduction angle ⁇ 3 ; the right middle upper joint, right middle upper limb leg, right middle middle joint and right middle lower limb leg are locked in place, and the right middle crawler is sufficient for the right middle lower joint as the center Rotate to the right middle crawler foot reduction angle ⁇ 6 ; Left front upper joint, left front upper limb leg, left front middle joint and left front lower limb leg are locked and immobile, and the left front crawler is enough to rotate to the left front lower joint rotation to the left front crawler foot reset angle ⁇ 2 ; Right front upper The joints, the right front upper limb leg, the right front middle joint, and the right front lower limb leg are
  • right middle leg crawler foot D side swing right middle middle joint and right middle crawler foot are locked, right middle leg crawler foot D drives the right middle crawler foot to swing forward from the side to cross over with the right middle upper joint as the center In an ice crack, perform S17;
  • left middle leg crawler foot C side swing left middle middle joint and left middle crawler foot are locked, and left middle leg crawler foot C drives left middle crawler foot to swing forward from the side to cross over with the left middle upper joint as the center
  • left middle leg crawler foot C drives left middle crawler foot to swing forward from the side to cross over with the left middle upper joint as the center
  • left hind leg crawler foot E swing inward: First, the left hind upper joint is the center, the left hind leg crawler foot E drives the left rear crawler foot to rotate in the horizontal direction ⁇ , then the left hind upper limb leg does not move, and the left rear lower limb leg Drive the left rear crawler foot to swing inward for a distance L 2 to cross the ice crack; complete the advancement state across the ice crack.
  • step of restoring the gait across the ice fissure is:
  • left front crawler foot and right front crawler foot rotation reset left front upper limb leg, left front middle joint and left front lower limb leg are locked, the left front crawler is enough to rotate to the left front lower joint centered to the left front crawler foot reset angle ⁇ 2 ;
  • right front upper limb leg, right front The middle joint and the right front lower limb are locked and the right front crawler is enough to rotate to the right front lower joint as the center to the right front crawler foot reduction angle ⁇ 1 , perform S22;
  • the preparatory gait for crossing the ice fissure proposed in the present invention is that before the scientific research vehicle crosses the ice fissure, the scientific research vehicle prepares for crossing the ice fissure, which solves the problem of the scientific research vehicle adjusting to the posture of the ice fissure before crossing the ice fissure;
  • the progress state is that when the scientific research vehicle crosses the ice fissure, the six-limbed leg crawler foot cooperates, and the scientific research vehicle completes the crossing of the ice fissure, which solves the problem of the scientific research vehicle crossing the ice fissure; the gait recovery across the ice fissure is in the scientific research vehicle.
  • the scientific research vehicle drives away from the ice fissure, and at the same time, the six-limbed leg crawler foot returns to the state before crossing the ice fissure, which solves the problem that the scientific research vehicle returns to the original state after crossing the ice fissure; the invention solves the scientific research The problem of crossing the ice cracks during the driving process, and each limb is a single-leg movement to ensure smooth running across the ice cracks without overturning.
  • Figure 1 is a simplified model axial side view of the giant six-legged crawler foot polar scientific research vehicle of the present invention
  • Figure 2 is a simplified model top view of the giant six-legged crawler foot polar scientific research vehicle of the present invention crossing an ice fissure;
  • Figure 3 is a schematic diagram of the rotation angle of the six-limb leg and the crawler foot when the giant six-legged crawler foot polar scientific research vehicle of the present invention crosses an ice fissure;
  • FIG. 4 is a timing diagram of the gait preparation gait of the giant six-legged crawler foot polar scientific research vehicle crossing the ice fissure of the present invention
  • Fig. 5 is a time sequence diagram of the giant six-legged crawler foot polar scientific research vehicle of the present invention crossing an ice fissure when it travels across an ice fissure;
  • Figure 6 is a timing diagram of the gait recovery gait of the giant six-limbed leg crawler foot polar scientific research vehicle crossing the ice fissure of the present invention
  • FIG. 7 is a schematic diagram of the three-dimensional trajectory of the giant six-legged crawler foot polar scientific research vehicle of the present invention when the crawler foot B of the right foreleg leg crosses an ice fissure;
  • FIG. 8 is a schematic diagram of the rotation angle of the right foreleg crawler foot B of the giant six-legged crawler foot polar scientific research vehicle of the present invention when it crosses an ice fissure;
  • FIG. 9 is a schematic diagram of the outward swing angle of the right foreleg crawler foot B of the giant six-legged crawler foot polar scientific research vehicle of the present invention when it crosses an ice fissure;
  • ⁇ 1 -Right front leg crawler foot B support angle ⁇ 2 -left front leg crawler foot A support angle, ⁇ 3 -left middle leg crawler foot C support angle, ⁇ 4 -left hind leg crawler foot E support angle, ⁇ 5 -Right hind leg crawler foot F support angle, ⁇ 6 -right middle leg crawler foot D support angle, ⁇ 1 -right front crawler foot reset angle, ⁇ 2 -left front crawler foot reset angle, ⁇ 3 -left middle crawler foot reset Angle, ⁇ 4 -left rear crawler foot reset angle, ⁇ 5 -right rear crawler foot reset angle, ⁇ 6 -right middle crawler foot reset angle, ⁇ 1 -left middle leg crawler foot C preparation angle, ⁇ 2 -right middle D preparation angle of limbs, crawlers and feet.
  • the giant six-legged caterpillar foot polar scientific research vehicle in this embodiment is connected to the right front upper limb 4 and the right upper limb through the platform 25 through six upper joints 27, 28, 30, 33, 34, and 36, respectively.
  • the left front upper limb leg 5, the left middle upper limb leg 9, the left rear upper limb leg 16, the right rear upper limb leg 17 and the right middle upper limb leg 24 are connected;
  • the right front lower limb leg 2, the right front middle joint 3 and the right front upper limb leg 4 are connected to form the right front upper limb leg crawler Foot B
  • left front upper limb leg 5, left front middle joint 6 and left front lower limb leg 7 are connected to form a left front leg crawler foot A
  • left middle upper limb leg 9, left middle middle joint 10 and left middle lower limb leg 12 are connected to form a left middle leg crawler Foot C
  • left hind lower limb leg 14 left hind middle joint 15 and left hind upper limb leg 16 are connected to form a left hind limb pedlar foot E, right rear
  • the giant six-legged crawler foot polar scientific research vehicle in this embodiment is a method for gait planning across an ice fissure, which includes a preparation gait across an ice fissure, an advanced state across an ice fissure, and an ice fissure Restore gait.
  • the steps for preparing a gait across the ice fissure are:
  • the right middle leg crawler foot D rotation support the right middle middle joint 23 is locked and the right middle crawler foot 22 drives the right middle leg crawler foot D rotates forward to the right middle leg with the right middle upper joint 36 as the center Crawler foot D support angle ⁇ 6 , right middle leg Crawler foot D support angle ⁇ 6 does not exceed 35 degrees, go to S3;
  • the left middle leg crawler foot C rotation support the left middle middle joint 10 is locked and the left middle crawler foot 11 drives the left middle leg crawler foot C to rotate forward to the left middle leg with the left middle upper joint 30 as the center Crawler foot C support angle ⁇ 3 , left middle leg crawler foot C support angle ⁇ 3 does not exceed 35 degrees, go to S5;
  • Adduction of the right front leg crawler foot B The right front upper limb leg 4 is locked and the right front crawler foot 1 drives the right front lower limb leg 2 to rotate 45 degrees to the inside of the examination vehicle around the right front middle joint 3, and execute S6;
  • the left middle crawler foot 11, the right middle crawler foot 22, the left front crawler foot 8 and the right front crawler foot 1 are rotated and reset at the same time: the left middle leg crawler foot C is locked and the left middle crawler foot 11 uses the left middle and lower joint 31 as The center rotates to the left middle crawler foot reset angle ⁇ 3 ; the right middle leg crawler foot D is locked and the right middle crawler foot 22 rotates around the right middle and lower joint 37 to the right middle crawler foot reset angle ⁇ 6 ; the left foreleg leg Crawler foot A is locked, the left front crawler foot 8 rotates around the left front lower joint 29 to the left front crawler foot reset angle ⁇ 2 ; the right front leg crawler foot B is locked and the right front crawler foot 1 rotates around the right front lower joint 26 To the right front crawler foot reset angle ⁇ 1 ; right front crawler foot reset angle ⁇ 1 , left front crawler foot reset angle ⁇ 2 , left middle crawler foot reset angle ⁇ 3 and right middle crawler foot reset angle
  • the left hind leg crawler foot E rotation support the left rear middle joint 15 is locked and the left rear crawler foot 13 drives the left hind leg crawler foot E to rotate forward to the left hind leg crawler foot E centered on the left upper rear joint 33
  • the support angle ⁇ 4 , the left hind leg crawler foot E support angle ⁇ 4 does not exceed 35 degrees, go to S9;
  • right hind leg crawler foot F rotation support the right rear middle joint 18 is locked and the right rear crawler foot 20 drives the right hind leg crawler foot F to rotate forward to the right rear upper joint 34 as the center to the right hind leg crawler foot F
  • the supporting angle ⁇ 5 , the right hind leg crawler foot F supporting angle ⁇ 5 does not exceed 35 degrees; the gait is ready to cross the ice fissure.
  • the right front leg crawler foot B swings across the ice crack: first, the right front upper joint 27 is the center, and the right front crawler foot B drives the right front crawler foot 1 to rotate inward ⁇ in the horizontal direction, ⁇ does not exceed 120 degrees, and then the right front upper limb Leg 4 does not move, the right front lower limb leg 2 drives the right front crawler foot 1 to swing outward for a distance L 2 , across the ice crack, the width of the ice crack is L, perform S11;
  • the right front leg crawler foot B drives the right front crawler foot 1 to rotate inward in the horizontal direction ⁇ is obtained by the following formula:
  • L 1 is the distance across the ice crack when the right front leg crawler foot B rotates ⁇
  • d is the distance between the right front crawler foot 1 and the platform 25;
  • L 2 is the distance that the right front lower limb leg 2 drives the right front crawler foot 1 to swing outwards
  • b is the length of the right front lower limb leg 2
  • h is the length of the right front crawler foot 1
  • is the right front lower limb leg 2 when it swings out.
  • the angle, ⁇ does not exceed 120 degrees, is obtained by the following formula:
  • the left front leg crawler foot A swings out across the ice crack: first, the left front upper joint 28 is the center, the left front crawler foot A drives the left front crawler foot 8 to rotate in the horizontal direction ⁇ , then the left front upper limb leg 5 does not move, and the left front The lower extremity leg 7 drives the left front crawler foot 8 to swing outward for a distance L 2 , across the ice crack, and execute S12;
  • the left middle crawler foot 11, the right middle crawler foot 22, the left front crawler foot 8 and the right front crawler foot 1 are simultaneously rotated and reset: left middle upper joint 30, left middle upper limb leg 9, left middle middle joint 10 and left middle lower limb leg 12 Locked, the left middle crawler foot 11 is rotated around the left middle lower joint 31 to the left middle crawler foot reset angle ⁇ 3 ; the right middle upper joint 36, the right middle upper limb leg 24, the right middle middle joint 23 and the right middle lower limb leg 21 is locked, the right middle crawler foot 22 is rotated around the right middle lower joint 37 to the right middle crawler foot reset angle ⁇ 6 ; the left front upper joint 28, the left front upper limb leg 5, the left front middle joint 6 and the left front lower limb leg 7 are not locked Move, the left front crawler foot 8 rotates around the left front lower joint 29 to the left front crawler foot reset angle ⁇ 2 ; the right front upper joint 27, the right front upper limb leg 4, the right front middle joint 3, the right front lower limb leg 2
  • right middle leg crawler foot D side swing right middle middle joint 23, right middle crawler foot 22 are locked, right middle leg crawler foot D is centered on right middle upper joint 36 to drive right middle crawler foot 22 from the side Swing forward to cross the ice fissure and execute S17;
  • left middle leg crawler foot C lateral swing left middle middle joint 10, left middle crawler foot 11 locked, left middle leg crawler foot C centered on left middle upper joint 30 and left middle crawler foot 11 from the side Swing forward to cross the ice fissure and execute S18;
  • the right hind leg crawler foot F swings inwardly: first, the right rear upper joint 34 is the center, the right hind leg crawler foot F drives the right rear crawler foot 20 to rotate inward in the horizontal direction ⁇ , and then the right rear upper leg 17 does not move, right The rear lower limb leg 19 drives the right rear crawler foot 20 to swing inward for a distance L 2 , across the ice crack, and execute S20;
  • the left hind leg crawler foot E swings inwardly: first, the left rear upper joint 33 is the center, the left hind leg crawler foot E drives the left rear crawler foot 13 to rotate inward in the horizontal direction ⁇ , and then the left rear upper leg 16 does not move, left
  • the rear lower limb leg 14 drives the left rear crawler foot 13 to swing inward for a distance L 2 , crossing the ice fissure, and completing the progress of crossing the ice fissure.
  • the left front crawler foot 8 and the right front crawler foot 1 are rotated and reset: the left front upper limb leg 5, the left front middle joint 6 and the left front lower limb leg 7 are locked, and the left front crawler foot 8 rotates around the left front lower joint 29 to the reset angle of the left front crawler foot ⁇ 2 ;
  • the right front upper limb leg 4, the right front middle joint 3 and the right front lower limb leg 2 are locked, and the right front crawler foot 1 is rotated around the right front lower joint 26 to the right front crawler foot reset angle ⁇ 1 , execute S22;
  • the left hind leg crawler foot E and the right hind leg crawler foot F are closed together: after the scientific research vehicle drives away from the ice crack, the left rear crawler foot 13 drives the left hind leg crawler foot E, and the right rear crawler foot 20 drives the right hind leg crawler. Foot F and close each other at the same time; complete the recovery gait across the ice crack.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Toys (AREA)
  • Handcart (AREA)

Abstract

一种巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,包括跨冰裂隙准备步态、跨冰裂隙行进步态、跨冰裂隙复原步态;跨冰裂隙准备步态包括整体前移,左中肢腿履带足(C)、右中肢腿履带足(D)旋转支撑,左前肢腿履带足(A)内收,右前肢腿履带足(B)内收等共9步顺次分解动作;跨冰裂隙行进步态包括右前肢腿履带足(B)、左前肢腿履带足(A)外摆,整体前移,右中肢腿履带足(D)、左中肢腿履带足(C)侧摆,右后肢腿履带足(F)、左后肢腿履带足(E)内摆等共11步顺次分解动作;跨冰裂隙复原步态包括整体前移,左后肢腿履带足(E)、右后肢腿履带足(F)相向合拢等共3步顺次分解动作。实现巨型六肢腿履带足极地科考车跨越冰裂隙,避免造成人员车辆安全事故发生。

Description

巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法 技术领域
本发明涉及一种巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法。
背景技术
南极冰盖的冰在重力作用下由高向低运动,产生冰川流动,当遇到底面凹凸不平时会使流动的速度产生差异。在底面凸起时,冰盖表层的冰运动速度比下面的冰要快一些,形成了冰裂隙。冰裂缝的出现对南极冰盖考察人员和装备构成了严重的威胁。现有轮式、履带式科考车或全地形车主要是在平整后的冰面行驶,遇到冰裂隙不能跨越,会发生陷入或者跌落冰裂隙的现象,造成人员和车辆安全事故。
发明内容
本发明的目的是实现巨型六肢腿履带足极地科考车跨越冰裂隙,避免人员车辆安全事故的发生。针对一种巨型六肢腿履带足极地科考车要实现冰盖运行中,需要一种能跨越冰裂隙步态规划方法,实现在极地运行的任务,提供一种巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法。
为解决上述技术问题,本发明采用的技术方案是:
巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其包括跨冰裂隙准备步态、跨冰裂隙行进步态和跨冰裂隙复原步态。
进一步地,所述跨冰裂隙准备步态的步骤为:
S1,整体前移:科考车整体前移接近冰裂隙边缘,当科考车左前肢腿履带足A或右前肢腿履带足B距离冰裂隙不超过1米时,科考车停止前移,执行S2;
S2,右中肢腿履带足D旋转支撑:右中中关节锁定不动,右中履带足带动右中肢腿履带足D以右中上关节为中心向前旋转至右中肢腿履带足D支撑角度α 6,右中肢腿履带足D支撑角度α 6不超过35度,执行S3;
S3,左前肢腿履带足A内收:左前上肢腿锁定不动,左前履带足带动左前下肢腿绕左前中关节向科考车内侧旋转45度,执行S4;
S4,左中肢腿履带足C旋转支撑:左中中关节锁定不动,左中履带足带动左中肢腿履带足C以左中上关节为中心向前旋转至左中肢腿履带足C支撑角度α 3,左中肢腿履带足C支撑角度α 3不超过35度,执行S5;
S5,右前肢腿履带足B内收:右前上肢腿锁定不动,右前履带足带动右前下肢腿绕右前中关节向科考车内侧旋转45度,执行S6;
S6,左中履带足、右中履带足、左前履带足和右前履带足同时旋转复位:左中肢腿履带足C锁定不动,左中履带足以左中下关节为中心旋转至左中履带足复位角度β 3;右中肢腿履带足D锁定不动,右中履带足以右中下关节为中心旋转至右中履带足复位角度β 6;左前肢腿履带足A锁定不动,左前履带足以左前 下关节为中心旋转至左前履带足复位角度β 2;右前肢腿履带足B锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1;右前履带足复位角度β 1、左前履带足复位角度β 2、左中履带足复位角度β 3和右中履带足复位角度β 6不超过90度,执行S7;
S7,整体前移:科考车整体前移再次接近冰裂隙边缘,执行S8;
S8,左后肢腿履带足E旋转支撑:左后中关节锁定不动,左后履带足带动左后肢腿履带足E以左后上关节为中心向前旋转至左后肢腿履带足E支撑角度α 4,左后肢腿履带足E支撑角度α 4不超过35度,执行S9;
S9,右后肢腿履带足F旋转支撑:右后中关节锁定不动,右后履带足带动右后肢腿履带足F以右后上关节为中心向前旋转至右后肢腿履带足F支撑角度α 5,右后肢腿履带足F支撑角度α 5不超过35度;完成跨冰裂隙准备步态。
进一步地,所述跨冰裂隙行进步态的步骤为:
S10,右前肢腿履带足B外摆跨越冰裂隙:先以右前上关节为中心,右前肢腿履带足B带动右前履带足水平方向向内旋转θ,θ不超过120度,接着右前上肢腿不动,右前下肢腿带动右前履带足向外摆动距离L 2,跨越冰裂隙,执行S11;
所述右前肢腿履带足B带动右前履带足水平方向向内旋转θ由下列公式求得:
Figure PCTCN2020111922-appb-000001
式中:L 1为右前肢腿履带足B旋转θ时跨越冰裂隙距离,d为右前履带足与平台距离;
所述右前下肢腿带动右前履带足向外摆动距离L 2由下列公式求得:
Figure PCTCN2020111922-appb-000002
式中:L 2为右前下肢腿带动右前履带足向外摆动的距离,b为右前下肢腿的长度,h为右前履带足的长度,δ为右前下肢腿外摆时所需角度,δ不超过120度,由下式求得:
Figure PCTCN2020111922-appb-000003
S11,左前肢腿履带足A外摆跨越冰裂隙:先以左前上关节为中心,左前肢腿履带足A带动左前履带足水平方向向内旋转θ,接着左前上肢腿不动,左前下 肢腿带动左前履带足向外摆动距离L 2,跨越冰裂隙,执行S12;
S12,左后履带足和右后履带足旋转复位:左后上肢腿、左后中关节和左后下肢腿锁定不动,左后履带足以左后下关节为中心旋转至左后履带足复位角度β 4;右后上肢腿、右后中关节和右后下肢腿锁定不动,右后履带足以右后下关节为中心旋转至右后履带足复位角度β 5,左后履带足复位角度β 4和右后履带足复位角度β 5不超过90度,执行S13;
S13,整体前移、左前肢腿履带足A和右前肢腿履带足B旋转支撑、左中肢腿履带足C和右中肢腿履带足D旋转预备:科考车整体前移;左前中关节锁定不动,左前履带足以左前上关节为中心带动左前肢腿履带足A向后旋转至左前肢腿履带足A支撑角度α 2;右前中关节锁定不动,右前履带足以右前上关节为中心带动右前肢腿履带足B向后旋转至右前肢腿履带足B支撑角度α 1;左中中关节锁定不动,左中履带足以左中上关节为中心带动左中肢腿履带足C向冰裂隙的反方向旋转至左中肢腿履带足C预备角度γ 1;右中中关节锁定不动,右中履带足以右中上关节为中心带动右中肢腿履带足D向冰裂隙的反方向旋转至右中肢腿履带足D预备角度γ 2;右前肢腿履带足B支撑角度α 1、左前肢腿履带足A支撑角度α 2、左中肢腿履带足C预备角度γ 1和右中肢腿履带足D预备角度γ 2不超过35度,执行S14;
S14,左中履带足、右中履带足、左前履带足和右前履带足同时旋转复位:左中上关节、左中上肢腿、左中中关节和左中下肢腿锁定不动,左中履带足以左中下关节为中心旋转至左中履带足复位角度β 3;右中上关节、右中上肢腿、右中中关节和右中下肢腿锁定不动,右中履带足以右中下关节为中心旋转至右中履带足复位角度β 6;左前上关节、左前上肢腿、左前中关节和左前下肢腿锁定不动,左前履带足以左前下关节为中心旋转至左前履带足复位角度β 2;右前上关节、右前上肢腿、右前中关节、右前下肢腿锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1,执行S15;
S15,整体前移:科考车整体前移,位于冰裂隙上方,执行S16;
S16,右中肢腿履带足D侧摆:右中中关节、右中履带足锁定不动,右中肢腿履带足D以右中上关节为中心带动右中履带足由侧面向前摆动跨越冰裂隙,执行S17;
S17,左中肢腿履带足C侧摆:左中中关节、左中履带足锁定不动,左中肢 腿履带足C以左中上关节为中心带动左中履带足由侧面向前摆动跨越冰裂隙,执行S18;
S18,整体前移、同时左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车整体前移,左后履带足带动左后肢腿履带足E、右后履带足带动右后肢腿履带足F,同时相向合拢,执行S19;
S19,右后肢腿履带足F内摆:先以右后上关节为中心,右后肢腿履带足F带动右后履带足水平方向向内旋转θ,接着右后上肢腿不动,右后下肢腿带动右后履带足向内摆动距离L 2,跨越冰裂隙,执行S20;
S20,左后肢腿履带足E内摆:先以左后上关节为中心,左后肢腿履带足E带动左后履带足水平方向向内旋转θ,接着左后上肢腿不动,左后下肢腿带动左后履带足向内摆动距离L 2,跨越冰裂隙;完成跨冰裂隙行进步态。
进一步地,所述跨冰裂隙复原步态的步骤为:
S21,左前履带足和右前履带足旋转复位:左前上肢腿、左前中关节和左前下肢腿锁定不动,左前履带足以左前下关节为中心旋转至左前履带足复位角度β 2;右前上肢腿、右前中关节和右前下肢腿锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1,执行S22;
S22,整体前移:科考车整体前移,驶离冰裂隙,执行S23;
S23,左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车驶离冰裂隙后,左后履带足带动左后肢腿履带足E、右后履带足带动右后肢腿履带足F,同时相向合拢;完成跨冰裂隙复原步态。
本发明的有益效果是:
本发明提出的跨冰裂隙准备步态是在科考车跨越冰裂隙之前,科考车进行跨越冰裂隙准备工作,解决了跨越冰裂隙前科考车调整到跨冰裂隙姿态的问题;跨冰裂隙行进步态是在科考车跨越冰裂隙过程中,六肢腿履带足协同配合,科考车完成跨越冰裂隙,解决了科考车跨越冰裂隙的问题;跨冰裂隙复原步态是在科考车跨越冰裂隙之后,科考车驶离冰裂隙,同时六肢腿履带足恢复跨冰裂隙前状态,解决了科考车跨越冰裂隙后恢复到原始状态的问题;本发明解决了科考车行进过程中跨越冰裂隙的难题,且各肢腿为单腿动作,确保跨越冰裂隙运行平稳且不倾覆。
附图说明
图1为本发明巨型六肢腿履带足极地科考车的简化模型轴侧图;
图2为本发明巨型六肢腿履带足极地科考车跨越冰裂隙的简化模型俯视图;
图3为本发明巨型六肢腿履带足极地科考车跨越冰裂隙时六肢腿及履带足的旋转角度示意图;
图4为本发明巨型六肢腿履带足极地科考车跨越冰裂隙的跨冰裂隙准备步态时序图;
图5为本发明巨型六肢腿履带足极地科考车跨越冰裂隙的跨冰裂隙行进步态时序图;
图6为本发明巨型六肢腿履带足极地科考车跨越冰裂隙的跨冰裂隙复原步态时序图;
图7为本发明巨型六肢腿履带足极地科考车右前肢腿履带足B跨越冰裂隙时的三维轨迹示意图;
图8为本发明巨型六肢腿履带足极地科考车右前肢腿履带足B跨越冰裂隙时的旋转角度示意图;
图9为本发明巨型六肢腿履带足极地科考车右前肢腿履带足B跨越冰裂隙时的外摆角度示意图;
图中:A-左前肢腿履带足,B-右前肢腿履带足,C-左中肢腿履带足,D-右中肢腿履带足,E-左后肢腿履带足,F-右后肢腿履带足;
1-右前履带足,2-右前下肢腿,3-右前中关节,4-右前上肢腿,5-左前上肢腿,6-左前中关节,7-左前下肢腿,8-左前履带足,9-左中上肢腿,10-左中中关节,11-左中履带足,12-左中下肢腿,13-左后履带足,14-左后下肢腿,15-左后中关节,16-左后上肢腿,17-右后上肢腿,18-右后中关节,19-右后下肢腿,20-右后履带足,21-右中下肢腿,22-右中履带足,23-右中中关节,24-右中上肢腿,25-平台,26-右前下关节,27-右前上关节,28-左前上关节,29-左前下关节,30-左中上关节,31-左中下关节,32-左后下关节,33-左后上关节,34-右后上关节,35-右后下关节,36-右中上关节,37-右中下关节;
α 1-右前肢腿履带足B支撑角度,α 2-左前肢腿履带足A支撑角度,α 3-左中肢腿履带足C支撑角度,α 4-左后肢腿履带足E支撑角度,α 5-右后肢腿履带足F支撑角度,α 6-右中肢腿履带足D支撑角度,β 1-右前履带足复位角度,β 2-左前履带足复位角度,β 3-左中履带足复位角度,β 4-左后履带足复位角度,β 5-右后履带足复位角度,β 6-右中履带足复位角度,γ 1-左中肢腿履带足C预备角度,γ 2-右中肢腿履带足D预备角度。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
如图1和2所示,本实施例中的巨型六肢腿履带足极地科考车,由平台25通过六个上关节27、28、30、33、34、36分别与右前上肢腿4、左前上肢腿5、左中上肢腿9、左后上肢腿16、右后上肢腿17和右中上肢腿24连接;右前下肢腿2、右前中关节3和右前上肢腿4连接构成右前肢腿履带足B,左前上肢腿5、左前中关节6和左前下肢腿7连接构成左前肢腿履带足A,左中上肢腿9、左中中关节10和左中下肢腿12连接构成左中肢腿履带足C,左后下肢腿14、左后中关节15和左后上肢腿16连接构成左后肢腿履带足E,右后上肢腿17、右后中关节18和右后下肢腿19连接构成右后肢腿履带足F,右中下肢腿21、右中中关节23和右中上肢腿24连接构成右中肢腿履带足D;右前下肢腿2与右前履带 足1的右前下关节26连接,左前下肢腿7与左前履带足8的左前下关节29连接,左中下肢腿12与左中履带足11的左中下关节31连接,左后下肢腿14与左后履带足13的左后下关节32连接,右后下肢腿19与右后履带足20的右后下关节35连接,右中下肢腿21与右中履带足22的右中下关节37连接。
如图1~9所示,本实施例中的巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其包括跨冰裂隙准备步态、跨冰裂隙行进步态和跨冰裂隙复原步态。
如图4所示,所述跨冰裂隙准备步态的步骤为:
S1,整体前移:科考车整体前移接近冰裂隙边缘,当科考车左前肢腿履带足A或右前肢腿履带足B距离冰裂隙不超过1米时,科考车停止前移,执行S2;
S2,右中肢腿履带足D旋转支撑:右中中关节23锁定不动,右中履带足22带动右中肢腿履带足D以右中上关节36为中心向前旋转至右中肢腿履带足D支撑角度α 6,右中肢腿履带足D支撑角度α 6不超过35度,执行S3;
S3,左前肢腿履带足A内收:左前上肢腿5锁定不动,左前履带足8带动左前下肢腿7绕左前中关节6向科考车内侧旋转45度,执行S4;
S4,左中肢腿履带足C旋转支撑:左中中关节10锁定不动,左中履带足11带动左中肢腿履带足C以左中上关节30为中心向前旋转至左中肢腿履带足C支撑角度α 3,左中肢腿履带足C支撑角度α 3不超过35度,执行S5;
S5,右前肢腿履带足B内收:右前上肢腿4锁定不动,右前履带足1带动右前下肢腿2绕右前中关节3向科考车内侧旋转45度,执行S6;
S6,左中履带足11、右中履带足22、左前履带足8和右前履带足1同时旋转复位:左中肢腿履带足C锁定不动,左中履带足11以左中下关节31为中心旋转至左中履带足复位角度β 3;右中肢腿履带足D锁定不动,右中履带足22以右中下关节37为中心旋转至右中履带足复位角度β 6;左前肢腿履带足A锁定不动,左前履带足8以左前下关节29为中心旋转至左前履带足复位角度β 2;右前肢腿履带足B锁定不动,右前履带足1以右前下关节26为中心旋转至右前履带足复位角度β 1;右前履带足复位角度β 1、左前履带足复位角度β 2、左中履带足复位角度β 3和右中履带足复位角度β 6不超过90度,执行S7;
S7,整体前移:科考车整体前移再次接近冰裂隙边缘,执行S8;
S8,左后肢腿履带足E旋转支撑:左后中关节15锁定不动,左后履带足13带动左后肢腿履带足E以左后上关节33为中心向前旋转至左后肢腿履带足E支撑角度α 4,左后肢腿履带足E支撑角度α 4不超过35度,执行S9;
S9,右后肢腿履带足F旋转支撑:右后中关节18锁定不动,右后履带足20 带动右后肢腿履带足F以右后上关节34为中心向前旋转至右后肢腿履带足F支撑角度α 5,右后肢腿履带足F支撑角度α 5不超过35度;完成跨冰裂隙准备步态。
如图5所示,所述跨冰裂隙行进步态的步骤为:
S10,右前肢腿履带足B外摆跨越冰裂隙:先以右前上关节27为中心,右前肢腿履带足B带动右前履带足1水平方向向内旋转θ,θ不超过120度,接着右前上肢腿4不动,右前下肢腿2带动右前履带足1向外摆动距离L 2,跨越冰裂隙,冰裂隙宽L,执行S11;
所述右前肢腿履带足B带动右前履带足1水平方向向内旋转θ由下列公式求得:
Figure PCTCN2020111922-appb-000004
式中:L 1为右前肢腿履带足B旋转θ时跨越冰裂隙距离,d为右前履带足1与平台25距离;
所述右前下肢腿2带动右前履带足1向外摆动距离L 2由下列公式求得:
Figure PCTCN2020111922-appb-000005
式中:L 2为右前下肢腿2带动右前履带足1向外摆动的距离,b为右前下肢腿2的长度,h为右前履带足1的长度,δ为右前下肢腿2外摆时所需角度,δ不超过120度,由下式求得:
Figure PCTCN2020111922-appb-000006
右前肢腿履带足B旋转时跨越冰裂隙距离L 1与右前肢腿履带足B外摆时跨越冰裂隙距离L 2之和大于等于冰裂隙宽L,即:L 1+L 2≥L
整合上述公式可得右前肢腿履带足B旋转时角度θ、外摆时角度δ与冰裂隙宽L之间关系为:
Figure PCTCN2020111922-appb-000007
左前肢腿履带足A外摆跨越冰裂隙时,旋转时角度、旋转时跨越冰裂隙距离、外摆时角度、向外摆动距离的表达式分别同右前肢腿履带足B外摆跨越冰裂隙时,旋转时角度θ、旋转θ时跨越冰裂隙距离L 1、外摆时角度δ、向外摆动距离L 2的表达式一致;
左后肢腿履带足E、右后肢腿履带足F内摆跨越冰裂隙时,旋转时角度、 旋转跨越冰裂隙距离、内摆时角度、向内摆动距离的表达式分别同右前肢腿履带足B外摆跨越冰裂隙时,旋转时角度θ、旋转θ时跨越冰裂隙距离L 1、外摆时角度δ、向外摆动距离L 2的表达式一致。
S11,左前肢腿履带足A外摆跨越冰裂隙:先以左前上关节28为中心,左前肢腿履带足A带动左前履带足8水平方向向内旋转θ,接着左前上肢腿5不动,左前下肢腿7带动左前履带足8向外摆动距离L 2,跨越冰裂隙,执行S12;
S12,左后履带足13和右后履带足20旋转复位:左后上肢腿16、左后中关节15和左后下肢腿14锁定不动,左后履带足13以左后下关节32为中心旋转至左后履带足复位角度β 4;右后上肢腿17、右后中关节18和右后下肢腿19锁定不动,右后履带足20以右后下关节35为中心旋转至右后履带足复位角度β 5,左后履带足复位角度β 4和右后履带足复位角度β 5不超过90度,执行S13;
S13,整体前移、左前肢腿履带足A和右前肢腿履带足B旋转支撑、左中肢腿履带足C和右中肢腿履带足D旋转预备:科考车整体前移;左前中关节6锁定不动,左前履带足8以左前上关节28为中心带动左前肢腿履带足A向后旋转至左前肢腿履带足A支撑角度α 2;右前中关节3锁定不动,右前履带足1以右前上关节27为中心带动右前肢腿履带足B向后旋转至右前肢腿履带足B支撑角度α 1;左中中关节10锁定不动,左中履带足11以左中上关节30为中心带动左中肢腿履带足C向冰裂隙的反方向旋转至左中肢腿履带足C预备角度γ 1;右中中关节23锁定不动,右中履带足22以右中上关节36为中心带动右中肢腿履带足D向冰裂隙的反方向旋转至右中肢腿履带足D预备角度γ 2;右前肢腿履带足B支撑角度α 1、左前肢腿履带足A支撑角度α 2、左中肢腿履带足C预备角度γ 1和右中肢腿履带足D预备角度γ 2不超过35度,执行S14;
S14,左中履带足11、右中履带足22、左前履带足8和右前履带足1同时旋转复位:左中上关节30、左中上肢腿9、左中中关节10和左中下肢腿12锁定不动,左中履带足11以左中下关节31为中心旋转至左中履带足复位角度β 3;右中上关节36、右中上肢腿24、右中中关节23和右中下肢腿21锁定不动,右中履带足22以右中下关节37为中心旋转至右中履带足复位角度β 6;左前上关节28、左前上肢腿5、左前中关节6和左前下肢腿7锁定不动,左前履带足8以左前下关节29为中心旋转至左前履带足复位角度β 2;右前上关节27、右前上肢腿4、右前中关节3、右前下肢腿2锁定不动,右前履带足1以右前下关节26为中心旋转至右前履带足复位角度β 1,执行S15;
S15,整体前移:科考车整体前移,位于冰裂隙上方,执行S16;
S16,右中肢腿履带足D侧摆:右中中关节23、右中履带足22锁定不动,右中肢腿履带足D以右中上关节36为中心带动右中履带足22由侧面向前摆动跨越冰裂隙,执行S17;
S17,左中肢腿履带足C侧摆:左中中关节10、左中履带足11锁定不动,左中肢腿履带足C以左中上关节30为中心带动左中履带足11由侧面向前摆动跨越冰裂隙,执行S18;
S18,整体前移、同时左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车整体前移,左后履带足13带动左后肢腿履带足E、右后履带足20带动右后肢腿履带足F,同时相向合拢,执行S19;
S19,右后肢腿履带足F内摆:先以右后上关节34为中心,右后肢腿履带足F带动右后履带足20水平方向向内旋转θ,接着右后上肢腿17不动,右后下肢腿19带动右后履带足20向内摆动距离L 2,跨越冰裂隙,执行S20;
S20,左后肢腿履带足E内摆:先以左后上关节33为中心,左后肢腿履带足E带动左后履带足13水平方向向内旋转θ,接着左后上肢腿16不动,左后下肢腿14带动左后履带足13向内摆动距离L 2,跨越冰裂隙;完成跨冰裂隙行进步态。
如图6所示,所述跨冰裂隙复原步态的步骤为:
S21,左前履带足8和右前履带足1旋转复位:左前上肢腿5、左前中关节6和左前下肢腿7锁定不动,左前履带足8以左前下关节29为中心旋转至左前履带足复位角度β 2;右前上肢腿4、右前中关节3和右前下肢腿2锁定不动,右前履带足1以右前下关节26为中心旋转至右前履带足复位角度β 1,执行S22;
S22,整体前移:科考车整体前移,驶离冰裂隙,执行S23;
S23,左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车驶离冰裂隙后,左后履带足13带动左后肢腿履带足E、右后履带足20带动右后肢腿履带足F,同时相向合拢;完成跨冰裂隙复原步态。

Claims (4)

  1. 一种巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其特征在于,包括跨冰裂隙准备步态、跨冰裂隙行进步态和跨冰裂隙复原步态。
  2. 根据权利要求1所述的巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其特征在于,所述跨冰裂隙准备步态的步骤为:
    S1,整体前移:科考车整体前移接近冰裂隙边缘,当科考车左前肢腿履带足A或右前肢腿履带足B距离冰裂隙不超过1米时,科考车停止前移,执行S2;
    S2,右中肢腿履带足D旋转支撑:右中中关节锁定不动,右中履带足带动右中肢腿履带足D以右中上关节为中心向前旋转至右中肢腿履带足D支撑角度α 6,右中肢腿履带足D支撑角度α 6不超过35度,执行S3;
    S3,左前肢腿履带足A内收:左前上肢腿锁定不动,左前履带足带动左前下肢腿绕左前中关节向科考车内侧旋转45度,执行S4;
    S4,左中肢腿履带足C旋转支撑:左中中关节锁定不动,左中履带足带动左中肢腿履带足C以左中上关节为中心向前旋转至左中肢腿履带足C支撑角度α 3,左中肢腿履带足C支撑角度α 3不超过35度,执行S5;
    S5,右前肢腿履带足B内收:右前上肢腿锁定不动,右前履带足带动右前下肢腿绕右前中关节向科考车内侧旋转45度,执行S6;
    S6,左中履带足、右中履带足、左前履带足和右前履带足同时旋转复位:左中肢腿履带足C锁定不动,左中履带足以左中下关节为中心旋转至左中履带足复位角度β 3;右中肢腿履带足D锁定不动,右中履带足以右中下关节为中心旋转至右中履带足复位角度β 6;左前肢腿履带足A锁定不动,左前履带足以左前下关节为中心旋转至左前履带足复位角度β 2;右前肢腿履带足B锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1;右前履带足复位角度β 1、左前履带足复位角度β 2、左中履带足复位角度β 3和右中履带足复位角度β 6不超过90度,执行S7;
    S7,整体前移:科考车整体前移再次接近冰裂隙边缘,执行S8;
    S8,左后肢腿履带足E旋转支撑:左后中关节锁定不动,左后履带足带动左后肢腿履带足E以左后上关节为中心向前旋转至左后肢腿履带足E支撑角度α 4,左后肢腿履带足E支撑角度α 4不超过35度,执行S9;
    S9,右后肢腿履带足F旋转支撑:右后中关节锁定不动,右后履带足带动右后肢腿履带足F以右后上关节为中心向前旋转至右后肢腿履带足F支撑角度α 5, 右后肢腿履带足F支撑角度α 5不超过35度;完成跨冰裂隙准备步态。
  3. 根据权利要求1所述的巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其特征在于,所述跨冰裂隙行进步态的步骤为:
    S10,右前肢腿履带足B外摆跨越冰裂隙:先以右前上关节为中心,右前肢腿履带足B带动右前履带足水平方向向内旋转θ,θ不超过120度,接着右前上肢腿不动,右前下肢腿带动右前履带足向外摆动距离L 2,跨越冰裂隙,执行S11;
    所述右前肢腿履带足B带动右前履带足水平方向向内旋转θ由下列公式求得:
    Figure PCTCN2020111922-appb-100001
    式中:L 1为右前肢腿履带足B旋转θ时跨越冰裂隙距离,d为右前履带足与平台距离;
    所述右前下肢腿带动右前履带足向外摆动距离L 2由下列公式求得:
    Figure PCTCN2020111922-appb-100002
    式中:L 2为右前下肢腿带动右前履带足向外摆动的距离,b为右前下肢腿的长度,h为右前履带足的长度,δ为右前下肢腿外摆时所需角度,δ不超过120度,由下式求得:
    Figure PCTCN2020111922-appb-100003
    S11,左前肢腿履带足A外摆跨越冰裂隙:先以左前上关节为中心,左前肢腿履带足A带动左前履带足水平方向向内旋转θ,接着左前上肢腿不动,左前下肢腿带动左前履带足向外摆动距离L 2,跨越冰裂隙,执行S12;
    S12,左后履带足和右后履带足旋转复位:左后上肢腿、左后中关节和左后下肢腿锁定不动,左后履带足以左后下关节为中心旋转至左后履带足复位角度β 4;右后上肢腿、右后中关节和右后下肢腿锁定不动,右后履带足以右后下关节为中心旋转至右后履带足复位角度β 5,左后履带足复位角度β 4和右后履带足复位角度β 5不超过90度,执行S13;
    S13,整体前移、左前肢腿履带足A和右前肢腿履带足B旋转支撑、左中肢腿履带足C和右中肢腿履带足D旋转预备:科考车整体前移;左前中关节锁定 不动,左前履带足以左前上关节为中心带动左前肢腿履带足A向后旋转至左前肢腿履带足A支撑角度α 2;右前中关节锁定不动,右前履带足以右前上关节为中心带动右前肢腿履带足B向后旋转至右前肢腿履带足B支撑角度α 1;左中中关节锁定不动,左中履带足以左中上关节为中心带动左中肢腿履带足C向冰裂隙的反方向旋转至左中肢腿履带足C预备角度γ 1;右中中关节锁定不动,右中履带足以右中上关节为中心带动右中肢腿履带足D向冰裂隙的反方向旋转至右中肢腿履带足D预备角度γ 2;右前肢腿履带足B支撑角度α 1、左前肢腿履带足A支撑角度α 2、左中肢腿履带足C预备角度γ 1和右中肢腿履带足D预备角度γ 2不超过35度,执行S14;
    S14,左中履带足、右中履带足、左前履带足和右前履带足同时旋转复位:左中上关节、左中上肢腿、左中中关节和左中下肢腿锁定不动,左中履带足以左中下关节为中心旋转至左中履带足复位角度β 3;右中上关节、右中上肢腿、右中中关节和右中下肢腿锁定不动,右中履带足以右中下关节为中心旋转至右中履带足复位角度β 6;左前上关节、左前上肢腿、左前中关节和左前下肢腿锁定不动,左前履带足以左前下关节为中心旋转至左前履带足复位角度β 2;右前上关节、右前上肢腿、右前中关节、右前下肢腿锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1,执行S15;
    S15,整体前移:科考车整体前移,位于冰裂隙上方,执行S16;
    S16,右中肢腿履带足D侧摆:右中中关节、右中履带足锁定不动,右中肢腿履带足D以右中上关节为中心带动右中履带足由侧面向前摆动跨越冰裂隙,执行S17;
    S17,左中肢腿履带足C侧摆:左中中关节、左中履带足锁定不动,左中肢腿履带足C以左中上关节为中心带动左中履带足由侧面向前摆动跨越冰裂隙,执行S18;
    S18,整体前移、同时左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车整体前移,左后履带足带动左后肢腿履带足E、右后履带足带动右后肢腿履带足F,同时相向合拢,执行S19;
    S19,右后肢腿履带足F内摆:先以右后上关节为中心,右后肢腿履带足F带动右后履带足水平方向向内旋转θ,接着右后上肢腿不动,右后下肢腿带动右后履带足向内摆动距离L 2,跨越冰裂隙,执行S20;
    S20,左后肢腿履带足E内摆:先以左后上关节为中心,左后肢腿履带足E带动左后履带足水平方向向内旋转θ,接着左后上肢腿不动,左后下肢腿带动左后履带足向内摆动距离L 2,跨越冰裂隙;完成跨冰裂隙行进步态。
  4. 根据权利要求1所述的巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法,其特征在于,所述跨冰裂隙复原步态的步骤为:
    S21,左前履带足和右前履带足旋转复位:左前上肢腿、左前中关节和左前下肢腿锁定不动,左前履带足以左前下关节为中心旋转至左前履带足复位角度β 2;右前上肢腿、右前中关节和右前下肢腿锁定不动,右前履带足以右前下关节为中心旋转至右前履带足复位角度β 1,执行S22;
    S22,整体前移:科考车整体前移,驶离冰裂隙,执行S23;
    S23,左后肢腿履带足E和右后肢腿履带足F相向合拢:科考车驶离冰裂隙后,左后履带足带动左后肢腿履带足E、右后履带足带动右后肢腿履带足F,同时相向合拢;完成跨冰裂隙复原步态。
PCT/CN2020/111922 2019-08-28 2020-08-27 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法 WO2021037177A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910804077.7A CN110481665B (zh) 2019-08-28 2019-08-28 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法
CN201910804077.7 2019-08-28

Publications (1)

Publication Number Publication Date
WO2021037177A1 true WO2021037177A1 (zh) 2021-03-04

Family

ID=68555217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111922 WO2021037177A1 (zh) 2019-08-28 2020-08-27 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法

Country Status (2)

Country Link
CN (1) CN110481665B (zh)
WO (1) WO2021037177A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110481665B (zh) * 2019-08-28 2021-05-28 太原科技大学 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857533A (en) * 1994-04-29 1999-01-12 Alvsjo Data Ab Vehicle carried and driven by articulated legs
CN202115613U (zh) * 2011-04-22 2012-01-18 华磊 一种自主越障六足机器人
CN105128973A (zh) * 2015-07-27 2015-12-09 徐金鹏 一种火星探测车底盘
CN105480320A (zh) * 2014-10-09 2016-04-13 无锡津天阳激光电子有限公司 一种基于stm32控制的六足十八自由度的探险机器人
CN109501884A (zh) * 2019-01-02 2019-03-22 太原科技大学 一种巨型极地科考用越壑车
CN109533082A (zh) * 2019-01-07 2019-03-29 太原理工大学 一种巨型六肢腿履带足极地科考车
CN110481666A (zh) * 2019-08-28 2019-11-22 太原科技大学 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法
CN110481665A (zh) * 2019-08-28 2019-11-22 太原科技大学 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857533A (en) * 1994-04-29 1999-01-12 Alvsjo Data Ab Vehicle carried and driven by articulated legs
CN202115613U (zh) * 2011-04-22 2012-01-18 华磊 一种自主越障六足机器人
CN105480320A (zh) * 2014-10-09 2016-04-13 无锡津天阳激光电子有限公司 一种基于stm32控制的六足十八自由度的探险机器人
CN105128973A (zh) * 2015-07-27 2015-12-09 徐金鹏 一种火星探测车底盘
CN109501884A (zh) * 2019-01-02 2019-03-22 太原科技大学 一种巨型极地科考用越壑车
CN109533082A (zh) * 2019-01-07 2019-03-29 太原理工大学 一种巨型六肢腿履带足极地科考车
CN110481666A (zh) * 2019-08-28 2019-11-22 太原科技大学 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法
CN110481665A (zh) * 2019-08-28 2019-11-22 太原科技大学 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA PEISUN, YU HAI: "Ditch-Crossing Gait Analysis for Quadruped Walking Vehicle", ROBOT, 1 May 1990 (1990-05-01), pages 30 - 34, XP055786044, [retrieved on 20210316], DOI: 10.13973/j.cnki.robot.1990.05.009 *

Also Published As

Publication number Publication date
CN110481665A (zh) 2019-11-22
CN110481665B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2021037177A1 (zh) 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法
DE1923787A1 (de) Gelenkiger Motor-Planierer
CN104787134A (zh) 一种轮履复合移动机器人平台
CN107045552A (zh) 一种基于正弦对角步态与快速查表法的四足机器人运动控制方法及控制装置
CN113102484A (zh) 一种往复移动式多深度土壤污染治理用修复装置
CN108371820A (zh) 一种变形机器人及其变形方法和组合舵机自动复位方法
CN103863434B (zh) 一种形态变换式越障行走装置
CN207829911U (zh) 一种隧道衬砌台车的分体台车装置
CN203819345U (zh) 一种可折腰自救式多功能水田管理机
CN206749956U (zh) 一种带轮机器人腿部机构
CN106677019A (zh) 建筑工程用除尘式压路机
JPS62253568A (ja) 移動装置
CN107310648A (zh) 一种可实现轮、履替换的变形机器人
CN106864618A (zh) 轮腿式行走机构
CN114132406B (zh) 一种周转式轮腿机器人
US1448372A (en) Creeping-traction mounting for railway-type excavators
CN212570166U (zh) 一种铣刨机实训教学设备
CN204641922U (zh) 一种适用于轮履复合式底盘的翻转臂机构
RU149803U1 (ru) Автогрейдер
CN207060202U (zh) 一种可实现轮、履替换的变形机器人
CN209051505U (zh) 一种多功能越障机器人系统
CN113499558A (zh) 一种消防用防后倾机器人及使用方法
CN206031559U (zh) 履带底盘用行走助推装置及运管机
CN206926735U (zh) 适用于全地形的机器人行走机构
DE2240872A1 (de) Vortriebsmaschine fuer den tunneloder stollenvortrieb od. dgl

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859102

Country of ref document: EP

Kind code of ref document: A1