WO2021037093A1 - 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法 - Google Patents

蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法 Download PDF

Info

Publication number
WO2021037093A1
WO2021037093A1 PCT/CN2020/111566 CN2020111566W WO2021037093A1 WO 2021037093 A1 WO2021037093 A1 WO 2021037093A1 CN 2020111566 W CN2020111566 W CN 2020111566W WO 2021037093 A1 WO2021037093 A1 WO 2021037093A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
hydraulic
clamping
driving
monorail
Prior art date
Application number
PCT/CN2020/111566
Other languages
English (en)
French (fr)
Inventor
丁海港
刘永状
赵继云
张鹤
程刚
陈世其
赵亮
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2021037093A1 publication Critical patent/WO2021037093A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C11/00Trolleys or crabs, e.g. operating above runways
    • B66C11/02Trolleys or crabs, e.g. operating above runways with operating gear or operator's cabin suspended, or laterally offset, from runway or track
    • B66C11/04Underhung trolleys
    • B66C11/06Underhung trolleys running on monorails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C11/00Trolleys or crabs, e.g. operating above runways
    • B66C11/16Rope, cable, or chain drives for trolleys; Combinations of such drives with hoisting gear
    • B66C11/22Rope, cable, or chain drives for trolleys; Combinations of such drives with hoisting gear actuated pneumatically or hydraulically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control

Definitions

  • the invention relates to a battery monorail hoisting electro-hydraulic compound driving system and a driving wheel adaptive clamping method, and is particularly suitable for a battery monorail hoisting electro-hydraulic compound driving system used for monorail hoisting and a driving wheel adaptive clamping method.
  • the monorail crane is an efficient auxiliary transportation equipment for coal mines. It is used for auxiliary transportation of personnel, materials, equipment, etc. underground in coal mines. It has the advantages of no sports cars, no falling off, and no impact on the floor. It has a broad range of auxiliary transportation systems in coal mines. Application prospects.
  • monorail cranes can be divided into three types: rope traction, diesel engine traction, and battery traction according to different traction power.
  • Rope traction monorail cranes use traction winches to haul monorail cranes, which are difficult to apply to multi-turn and long-distance transportation; diesel engine monorail cranes and battery monorail cranes mainly use friction drive, that is, rely on the friction between the driving wheel and the guide rail to drive the monorail crane walk.
  • the diesel monorail crane is currently the most widely used monorail crane. It is powered by a diesel engine and is driven by hydraulic pressure. It has a strong climbing ability (climbing angle of up to 30 degrees) through the links of diesel engine-variable pump-hydraulic motor-driving wheel.
  • the drive unit has the advantages of small size and multi-point drive coordination, but it also has the disadvantages of large noise, exhaust emissions, environmental pollution, high failure rate of variable pumps, and high cost; battery monorail crane is a new type of green coal mine auxiliary transportation equipment, which uses batteries as The power is driven by an electric motor, and has the advantages of low noise, no pollution, and low heat generation through the battery-motor-transmission box-driving wheel and other links.
  • the current battery monorail crane still has outstanding problems such as low traction, weak climbing ability (generally, the climbing inclination is less than 20 degrees), the large drive unit, and the uncoordinated multi-point drive, which limit its application range.
  • the walking drive of the monorail crane relies on the friction between the driving wheel and the guide rail, and the clamping force between the driving wheel and the guide rail determines the driving performance of the monorail crane.
  • a larger clamping force is often set.
  • the clamping force of the driving wheel is usually set at a constant value, and it is unable to adapt to light load/load, water/no water, and dust. / Less dust and other different environments, resulting in poor adaptability of the drive system to different working conditions.
  • a battery monorail hoisting electro-hydraulic composite driving system and a driving wheel adaptive clamping method with simple structure, good use effect, high driving capacity, good working condition adaptability, and low energy consumption are provided.
  • the battery monorail hoisting electro-hydraulic composite drive system of the present invention includes a variable frequency power unit, a closed drive unit, a proportional clamping unit and a measurement and control unit.
  • the variable frequency power unit is connected in series with the closed drive unit, which is a closed drive unit.
  • the drive unit provides power
  • the proportional clamping unit is connected in parallel between the high and low voltage circuits of the closed drive unit, and provides controllable clamping force for the drive wheel set;
  • the variable frequency power unit includes a battery, a frequency converter, and a speed-regulating motor connected in sequence by a cable.
  • the battery provides a DC power source, and the frequency converter inverts the DC power into a variable-frequency three-phase AC power to control the speed of the speed-regulating motor;
  • the closed drive unit includes a main quantitative pump, an auxiliary quantitative pump, a control valve group, and a hydraulic drive.
  • the speed regulating motor is mechanically connected with the main quantitative pump.
  • the main quantitative pump and the hydraulic drive are connected by pipelines.
  • the hydraulic drive includes a hydraulic motor and a hydraulic drive.
  • the drive wheel driven by it, and the hydraulic drive composed of hydraulic motor and drive wheel is arranged in pairs, the main quantitative pump and the hydraulic motor form a closed circuit, the oil outlet of the main quantitative pump is connected with the oil inlet of the hydraulic motor, and the main quantitative The oil inlet of the pump is connected with the oil outlet of the hydraulic motor, and the auxiliary quantitative pump is coaxially connected with the main quantitative pump to supply oil for the closed circuit.
  • the control valve group is connected in parallel between the high and low pipelines of the closed circuit, and the control valve group Composed of overflow valve and hydraulic control reversing valve;
  • the proportional clamping unit includes a shuttle valve, a proportional pressure reducing valve, and a clamping oil cylinder.
  • the input ends of the shuttle valve are respectively connected between the high and low pipelines of the closed loop, and the shuttle valve is connected to the two oil ports of the low pressure pipeline.
  • the middle oil port takes the high pressure from the two oil ports
  • the middle oil port of the shuttle valve is used as the output end to connect with the inlet of the proportional pressure reducing valve
  • the clamping oil cylinder is a single-acting oil cylinder
  • the rod cavity of the clamping oil cylinder is provided
  • There is a spring and the driving wheel is pressed against the guide rail (106) through the clamping oil cylinder to generate friction for driving the monorail hoist.
  • the output end of the proportional pressure reducing valve is connected with the rodless cavity of the clamping oil cylinder.
  • the measurement and control unit includes a controller, a rotational speed encoder, a tensile force sensor, and a linear velocity sensor; the input ends of the controller are respectively connected with the output ends of the rotational speed encoder, tensile force sensor, and linear velocity sensor, and the output end of the controller is connected to the proportional
  • the pressure reducing valve is connected, and the controller is also connected to the inverter through the CAN bus;
  • the rotational speed encoder is installed on the output shaft between the hydraulic motor and the driving wheel to measure the rotation speed of the driving wheel; the tension sensor is connected in series between the driving part of the monorail crane and the tie rod to measure the traction of the driving part; linear speed sensor Set on the monorail crane driving part to measure the traveling speed of the monorail crane; the controller is connected with the inverter through the CAN bus to control the output frequency of the inverter, and the controller is connected with the proportional pressure reducing valve through the cable; the controller is based on the received operation The command adjusts the operating speed of the monorail crane, and the controller adjusts the clamping force of the clamping cylinder according to the load.
  • the controller model is PLC1200.
  • An adaptive clamping method for driving wheels of a battery monorail hoisting electro-hydraulic composite driving system which includes the following steps:
  • Speed-regulating operation Upon receipt of the monorail crane operating speed command, the inverter changes the output frequency to control the speed of the speed-regulating motor and the main quantitative pump, thereby changing the output flow of the main quantitative pump, and finally adjusting the rotational speed of the hydraulic motor and the driving wheel Control the operating speed of the monorail crane;
  • the controller outputs the control signal to the proportional pressure reducing valve after the operation speed error value is calculated by the PID, where P is the proportion, I is the integral, and D is the derivative.
  • the control signal increases with the increase of the error index. If the speed error exceeds the setting error, increase the clamping force. If the speed error is within the setting error, adjust the clamping force of the clamping cylinder 210 further. , The existing clamping force is kept unchanged, so as to realize the adaptive adjustment of the clamping force of the driving wheel 105().
  • the electro-hydraulic composite drive system for battery monorail cranes provided by the present invention combines the advantages of the hydraulic drive system of diesel engine monorail cranes and the electric drive system of battery monorail cranes, and has the advantages of large driving capacity, small size, and multi-point coordination of hydraulic drive systems.
  • the control strategy combined with fine adjustment can improve the response speed of the clamping force adjustment and reduce the over-adjustment of the clamping force.
  • Figure 1 is a schematic diagram of the electric monorail suspension system of the present invention
  • Figure 2 is a schematic diagram of the driving part of the present invention.
  • Figure 3 is a hydraulic schematic diagram of the electro-hydraulic hybrid drive system of the battery traction monorail crane of the present invention
  • Fig. 5 is a flow chart of self-adaptive clamping of the driving wheel of the present invention.
  • the diesel monorail crane mainly includes a cab 101, a power unit 102, and a driving part 103.
  • the driving parts are connected by a tie rod 104, and the driving part 103 mainly includes a hydraulic motor 208, driving wheels 105, and clamping In the oil cylinder 210, the driving wheel 105 is driven by a hydraulic motor 208. Under the action of the tightening force of the tightening oil cylinder 210, the driving wheel 105 presses the guide rail 106 and generates friction to draw the entire monorail crane to run along the guide rail 106.
  • the present invention provides an electro-hydraulic hybrid drive system for monorail crane with battery, which has hydraulic driving system and The advantages of the electric drive system of the battery monorail crane.
  • the electro-hydraulic hybrid drive system of the battery monorail crane of the present invention includes a variable frequency power unit, a closed drive unit, a proportional clamping unit, and a measurement and control unit.
  • the variable frequency power unit is connected in series with the closed drive unit, which is closed.
  • the drive unit provides power
  • the proportional clamping unit is connected in parallel between the high and low voltage circuits of the closed drive unit, and provides controllable clamping force for the drive wheel set;
  • the variable frequency power unit includes a battery 201, a frequency converter 202, and a speed-regulating motor 203 that are connected in sequence by a cable.
  • the battery 201 provides a DC power source.
  • the frequency converter 202 inverts the DC power into a variable-frequency three-phase AC power to control the speed-regulating motor. 203 speed;
  • the closed drive unit includes a main quantitative pump 204, an auxiliary quantitative pump 205, a control valve group 206, and a hydraulic drive.
  • the speed regulating motor 203 is mechanically connected to the main quantitative pump 204, and the main quantitative pump 204 is connected to the hydraulic drive through a pipeline.
  • the hydraulic drive includes a hydraulic motor 208 and a drive wheel 105 driven by it.
  • the hydraulic drive composed of the hydraulic motor 208 and the drive wheel 105 is arranged in pairs.
  • the main quantitative pump 204 and the hydraulic motor 208 form a closed circuit.
  • the output of the main quantitative pump 204 The oil port is connected to the oil inlet of the hydraulic motor 208, the oil inlet of the main quantitative pump 204 is connected to the oil outlet of the hydraulic motor 208, and the speed of the main quantitative pump 204 is controlled by the speed regulating motor 203 to change the flow of the main quantitative pump 204, Thereby adjusting the rotational speed of the hydraulic motor 208 and the rotational speed of the driving wheel 105, thereby adjusting the walking speed of the monorail crane; the auxiliary quantitative pump 205 is coaxially connected with the main quantitative pump 204 to supply oil for the closed circuit, and the control valve group 206 is connected in parallel to the closed circuit Between the high and low pipelines, it has the function of safety protection and heat exchange to ensure the normal operation of the closed circuit.
  • the control valve group 206 is composed of an overflow valve and a hydraulically controlled reversing valve;
  • the proportional clamping unit includes a shuttle valve 207, a proportional pressure reducing valve 209, and a clamping cylinder 210.
  • the input ends of the shuttle valve 207 are respectively connected between the high and low pipelines of the closed loop.
  • 207 is arranged in parallel with the two oil ports of the low-pressure pipeline.
  • the middle oil port takes the high pressure from the two oil ports.
  • the middle oil port of the shuttle valve 207 is used as the output port to connect with the inlet of the proportional pressure reducing valve 209, and the cylinder 210 is clamped. It is a single-acting oil cylinder.
  • a spring is provided in the rod cavity of the clamping oil cylinder 210.
  • the driving wheel 105 is pressed against the guide rail 106 by the clamping oil cylinder 210 to generate friction for driving the monorail crane.
  • the output end of the proportional pressure reducing valve 209 is connected with The rodless cavity of the clamping oil cylinder 210 is connected, and the proportional pressure reducing valve 209 is used to control the oil pressure entering the clamping oil cylinder 210 to adjust the clamping force of the driving wheel 105 to adapt to different loads and working conditions.
  • the measurement and control unit includes a controller 211, a rotational speed encoder 212, a tensile force sensor 213, and a linear velocity sensor 214; the input end of the controller 211 is respectively corresponding to the output ends of the rotational speed encoder 212, tensile force sensor 213, and linear velocity sensor 214.
  • the output terminal of the controller 211 is connected to the proportional pressure reducing valve 209, and the controller 211 is also connected to the frequency converter 202 through the CAN bus;
  • the speed encoder 212 is arranged on the output shaft between the hydraulic motor 208 and the driving wheel 105, It is used to measure the rotation speed of the driving wheel 105;
  • the tension sensor 213 is connected in series between the driving part 103 and the tie rod 104 of the monorail crane to measure the traction force of the driving part 103;
  • the linear speed sensor 214 is arranged on the monorail crane driving part 103 for Measure the traveling speed of the monorail crane;
  • the controller 211 is connected to the inverter 202 through the CAN bus to control the output frequency of the inverter, and the controller 211 is connected with the proportional pressure reducing valve 209 through a cable;
  • the controller 211 adjusts the monorail crane according to the received operating instructions
  • the controller 211 adjusts the clamping force of the clamping cylinder 210 according to the load, and the
  • an adaptive clamping method for driving wheels of a battery monorail crane the specific steps are as follows:
  • Speed-regulating operation Upon receipt of the monorail crane operating speed command, the inverter 202 changes the output frequency to control the speed of the speed-regulating motor 203 and the main quantitative pump 204, thereby changing the output flow of the main quantitative pump 204, and finally adjusting the speed of the hydraulic motor 208 And the rotation speed of the driving wheel 105 control the running speed of the monorail crane;
  • Measuring speed error the actual operating speed of the monorail crane is measured by the linear velocity sensor 214, the rotating speed of the driving wheel 105 is measured by the speed encoder 212, and then converted into the theoretical operating speed of the monorail crane according to the diameter of the driving wheel 105, The theoretical operating speed is compared with the actual operating speed of the monorail crane and finally the operating speed error value is obtained;
  • the controller 211 outputs a control signal to the proportional pressure reducing valve 209 after the operation speed error value is calculated by the PID, where P is the proportion, I is the integral, and D is the derivative.
  • the control signal increases with the error index Increase, decrease and decrease.
  • On the basis of the basic clamping force further adjust the clamping force of the clamping cylinder 210. If the speed error exceeds the setting error, increase the clamping force. If the speed error is within the setting error Within this, the existing clamping force is kept unchanged, so as to realize the adaptive adjustment of the clamping force of the driving wheel 105.

Abstract

一种蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法,适用于单轨吊上使用。该蓄电池单轨吊电液复合驱动系统包括变频动力单元、闭式驱动单元、比例夹紧单元和测控单元,其中变频动力单元与闭式驱动单元串联,为闭式驱动单元提供动力,比例夹紧单元并联于闭式驱动单元的高低压回路之间,为驱动轮组提供可控的夹紧力。该驱动轮的自适应夹紧方法,可根据不同工况调节驱动轮的夹紧力,可有效提高蓄电池单轨吊的驱动能力及驱动效率,减少驱动轮的磨损,并提高驱动系统的适应性。

Description

蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法 技术领域
本发明涉及一种蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法,尤其适用于单轨吊上使用的蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法。
背景技术
单轨吊车是一种高效的煤矿辅助运输设备,用于煤矿井下人员、材料、设备等的辅助运输,具有不跑车、不掉道、不受底板影响等优点,在煤矿辅助运输系统中有着广阔的应用前景。
目前,单轨吊按牵引动力不同可分为绳牵引、柴油机牵引、蓄电池牵引三种形式。绳牵引单轨吊使用牵引绞车来牵引单轨吊行走,难以应用于多道岔、长距离的运输;柴油机单轨吊及蓄电池单轨吊主要采用摩擦驱动,即依靠驱动轮与导轨间的摩擦力来驱动单轨吊行走。柴油机单轨吊是目前应用最广泛的单轨吊,其以柴油发动机为动力,采用液压驱动,经过柴油机-变量泵-液压马达-驱动轮等环节,具有爬坡能力强(爬坡倾角可达30度),驱动单元体积小、多点驱动协调的优点,但也存在噪音大、尾气排放污染环境、变量泵故障率高且成本高等缺点;蓄电池单轨吊是新型绿色煤矿辅助运输装备,其以蓄电池为动力,采用电动机驱动,经过蓄电池-电动机-传动箱-驱动轮等环节,具有噪声低、无污染、发热量小等优点。但目前蓄电池单轨吊还存在牵引力小、爬坡能力弱(一般爬坡倾角小于20度)、驱动单元体积大、多点驱动不协调等突出问题,限制了其应用范围。
单轨吊的行走驱动依靠驱动轮与导轨之间的摩擦力,而驱动轮与导轨之间的夹紧力决定了单轨吊驱动性能。目前,为使单轨吊在各种工况下均具有足够的驱动力,往往设置较大的夹紧力,其一方面导致驱动轮磨损严重,需要频繁更换驱动轮,造成较高的维护成本;另一方面造成较大的驱动力,导致系统的驱动效率低下,能耗过高;另外,驱动轮的夹紧力通常恒定设置,无法自适应轻载/装载、有水/无水、多尘/少尘等不同环境,导致驱动系统对不同工况的适应性较差。
发明内容
针对上述技术中的不足之处,提供一种结构简单,使用效果好,驱动能力高,工况适应性好,能耗低的蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法。
为达到上述目的,本发明的蓄电池单轨吊电液复合驱动系统,它包括变频动力单元、闭式驱动单元、比例夹紧单元和测控单元,其中变频动力单元与闭式驱动单元串联,为闭式驱动单元提供动力,比例夹紧单元并联于闭式驱动单元的高低压回路之间,并为驱动轮组提供可控夹紧力;
所述的变频动力单元包括通过电缆顺序连接的蓄电池、变频器和调速电机,蓄电池提供直流电源,变频器将直流电逆变为频率可变的三相交流电以控制调速电机的转速;
所述的闭式驱动单元包括主定量泵、辅助定量泵、控制阀组以及液压驱动器,调速电机与主定量 泵机械连接,主定量泵与液压驱动器通过管路连接,液压驱动器包括液压马达和受其驱动的驱动轮,且液压马达和驱动轮组成的液压驱动器成对设置,主定量泵与液压马达组成闭式回路,主定量泵的出油口与液压马达的进油口相连,主定量泵的进油口与液压马达的出油口相连,辅助定量泵与主定量泵同轴连接,为闭式回路补油,控制阀组并联于闭式回路的高低管路之间,控制阀组由溢流阀、液控换向阀组成;
所述的比例夹紧单元包括梭阀、比例减压阀和夹紧油缸,其中梭阀的输入端分别连接闭式回路的高低管路之间,梭阀与管低压管路的两个油口并联设置,中间油口取两个油口中的高压,梭阀的中间油口作为输出端与比例减压阀的进口相连接,夹紧油缸为单作用油缸,夹紧油缸的有杆腔内设有弹簧,通过夹紧油缸使驱动轮挤压导轨(106)从而产生驱动单轨吊行走的摩擦力,比例减压阀的输出端与夹紧油缸的无杆腔相连接。
所述的测控单元包括控制器、转速编码器、拉力传感器、线速度传感器;控制器的输入端分别与转速编码器、拉力传感器和线速度传感器的输出端相连接,控制器的输出端与比例减压阀相连接,控制器还通过CAN总线与变频器连接;
转速编码器设置在液压马达与驱动轮之间的输出轴上用以测量驱动轮的旋转速度;拉力传感器串联在单轨吊的驱动部与拉杆之间用以测量驱动部的的牵引力;线速度传感器设置在单轨吊驱动部上用以测量单轨吊的行驶速度;控制器通过CAN总线与变频器连接控制变频器的输出频,控制器通过电缆与比例减压阀连接;控制器根据收到的操作指令调节单轨吊的运行速度,控制器根据负载大小调节夹紧油缸的夹紧力,控制器型号为PLC1200。
一种蓄电池单轨吊电液复合驱动系统的驱动轮自适应夹紧方法,其包括以下步骤:
1)调速运行:收到根据单轨吊运行速度指令,变频器改变输出频率控制调速电机和主定量泵的转速,从而改变主定量泵的输出流量,最终调节液压马达转速和驱动轮的转速控制单轨吊的运行速度;
2)确定基本夹紧力:利用拉力传感器测量驱动部的牵引力,然后将测量到的牵引力输入牵引力与夹紧力关系的函数模型,以确定基本夹紧力;
3)测量速度误差:通过线速度传感器测量单轨吊的实际运行速度,通过转速编码器测量驱动轮的转速,再根据驱动轮直径换算成单轨吊的理论运行速度,将单轨吊的理论运行速度和单轨吊的实际运行速度进行比较最终得出运行速度误差值;
4)微调夹紧力:运行速度误差值经过运算PID后由控制器输出控制信号至比例减压阀,其中P为比例、I为积分、D为微分,控制信号随误差指的增大而增大,减小而减小,在基本夹紧力的基础上进一步调节夹紧油缸210的夹紧力,若速度误差超过设定误差则增大夹紧力,如果速度误差在设定误差之内,则保持现有夹紧力不变,从而实现驱动轮105()夹紧力的自适应调节。
有益效果
本发明提供的蓄电池单轨吊的电液复合驱动系统,将柴油机单轨吊的液压驱动系统和蓄电池单轨吊的电驱动系统的优势结合,既具有液压驱动系统的驱动能力大、体积小、多点协同驱动的优势,又具有电驱动系统的无尾气排放、环保清洁的优势;利用调速电机+定量泵代替变量泵,提高了泵控的可靠性;通过比例减压阀控制夹紧力,实现了驱动轮夹紧力的连续调节;采用自适应控制方法将夹紧力控制在合理范围内,减少了驱动轮的磨损,提高了驱动效率,并使驱动系统可适应不同的工况,同时粗调与微调相结合的控制策略,可提高夹紧力调节的响应速度,减少夹紧力的超调。
附图说明
图1是本发明的电动单轨吊系统示意图;
图2是本发明的驱动部示意图;
图3是本发明的蓄电池牵引单轨吊的电液复合驱动系统的液压原理图;
图4是本发明的测控单元结构示意图;
图5是本发明的驱动轮自适应夹紧的流程。
图中:101-驾驶室,102-动力机组,103-驱动部,104-拉杆,105-驱动轮,106-导轨,201-蓄电池,202-变频器,203-调速电机,204-主定量泵,205-辅助定量泵,206-控制阀组,207-梭阀,208-液压马达,209-比例减压阀,210-夹紧油缸,211-控制器,212-转速编码器,213-拉力传感器,214-线速度传感器
具体实施方案
下面结合附图中的实施例对本发明做进一步的说明:
如图1和2所示,柴油机单轨吊主要包括驾驶室101,动力机组102,驱动部103,驱动部之间通过拉杆104连接,而驱动部103主要包括液压马达208、驱动轮105、夹紧油缸210,其中驱动轮105由液压马达208驱动,在加紧油缸210加紧力的作用下,驱动轮105压紧导轨106并产生摩擦力,以牵引整个单轨吊沿导轨106运行。
在柴油机单轨吊液压驱动系统的基础上,以蓄电池为动力,采用变频液压技术及比例控制技术,本发明提供一种蓄电池单轨吊的电液复合驱动系统,其具有柴油机单轨吊的液压驱动系统和蓄电池单轨吊的电驱动系统的优势。
如图3所示,本发明的蓄电池单轨吊的电液复合驱动系统,包括变频动力单元、闭式驱动单元、比例夹紧单元和测控单元,其中变频动力单元与闭式驱动单元串联,为闭式驱动单元提供动力,比例夹紧单元并联于闭式驱动单元的高低压回路之间,并为驱动轮组提供可控夹紧力;
所述的变频动力单元包括通过电缆顺序连接的蓄电池201、变频器202和调速电机203,蓄电池201提供直流电源,变频器202将直流电逆变为频率可变的三相交流电以控制调速电机203的转速;
所述的闭式驱动单元包括主定量泵204、辅助定量泵205、控制阀组206以及液压驱动器,调速电机203与主定量泵204机械连接,主定量泵204与液压驱动器通过管路连接,液压驱动器包括液压马达208和受其驱动的驱动轮105,且液压马达208和驱动轮105组成的液压驱动器成对设置,主定量泵204与液压马达208组成闭式回路,主定量泵204的出油口与液压马达208的进油口相连,主定量泵204的进油口与液压马达208的出油口相连,通过调速电机203控制主定量泵204的转速改变主定量泵204的流量,从而调节液压马达208转速和驱动轮105的转速,进而调节单轨吊的行走速度;辅助定量泵205与主定量泵204同轴连接,为闭式回路补油,控制阀组206并联于闭式回路的高低管路之间,具有安全保护、热交换的作用,以保证该闭式回路能够正常运行,控制阀组206由溢流阀、液控换向阀组成;
如图4所示,所述的比例夹紧单元包括梭阀207、比例减压阀209和夹紧油缸210,其中梭阀207的输入端分别连接闭式回路的高低管路之间,梭阀207与管低压管路的两个油口并联设置,中间油口取两个油口中的高压,梭阀207的中间油口作为输出端与比例减压阀209的进口相连接,夹紧油缸210为单作用油缸,夹紧油缸210的有杆腔内设有弹簧,通过夹紧油缸210使驱动轮105挤压导轨106从而产生驱动单轨吊行走的摩擦力,比例减压阀209的输出端与夹紧油缸210的无杆腔相连接,利用比例减压阀209控制进入夹紧油缸210的油压,从而调节驱动轮105的夹紧力,以适应不同的负载和工况。所述的测控单元包括控制器211、转速编码器212、拉力传感器213、线速度传感器214;其中控制器211的输入端分别与转速编码器212、拉力传感器213和线速度传感器214的输出端相连接,控制器211的输出端与比例减压阀209相连接,控制器211还通过CAN总线与变频器202连接;转速编码器212设置在液压马达208与驱动轮105之间的输出轴上,用以测量驱动轮105的旋转速度;拉力传感器213串联在单轨吊的驱动部103与拉杆104之间用以测量驱动部103的的牵引力;线速度传感器214设置在单轨吊驱动部103上用以测量单轨吊的行驶速度;控制器211通过CAN总线与变频器202连接控制变频器的输出频,控制器211通过电缆与比例减压阀209连接;控制器211根据收到的操作指令调节单轨吊的运行速度,控制器211根据负载大小调节夹紧油缸210的夹紧力,控制器型号为PLC1200。
如图5所示,一种蓄电池单轨吊的驱动轮自适应夹紧方法,具体步骤如下:
1)调速运行:收到根据单轨吊运行速度指令,变频器202改变输出频率控制调速电机203和主定量泵204的转速,从而改变主定量泵204的输出流量,最终调节液压马达208转速和驱动轮105的转速控制单轨吊的运行速度;
2)确定基本夹紧力:利用拉力传感器213测量驱动部103的牵引力,然后将测量到的牵引力输入牵引力与夹紧力关系的函数模型,以确定基本夹紧力;
3)测量速度误差:通过线速度传感器214测量单轨吊的实际运行速度,通过转速编码器212测量驱动轮105的转速,再根据驱动轮105直径换算成单轨吊的理论运行速度,将单轨吊的理论运行速度和单轨吊的实际运行速度进行比较最终得出运行速度误差值;
4)微调夹紧力:运行速度误差值经过运算PID后由控制器211输出控制信号至比例减压阀209,其中P为比例、I为积分、D为微分,控制信号随误差指的增大而增大,减小而减小,在基本夹紧力的基础上进一步调节夹紧油缸210的夹紧力,若速度误差超过设定误差则增大夹紧力,如果速度误差在设定误差之内,则保持现有夹紧力不变,从而实现驱动轮105夹紧力的自适应调节。

Claims (9)

  1. 一种蓄电池单轨吊电液复合驱动系统,其特征在于:它包括变频动力单元、闭式驱动单元、比例夹紧单元和测控单元,其中变频动力单元与闭式驱动单元串联,为闭式驱动单元提供动力,比例夹紧单元并联于闭式驱动单元的高低压回路之间,并为驱动轮组提供可控夹紧力。
  2. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:所述的变频动力单元包括通过电缆顺序连接的蓄电池(201)、变频器(202)和调速电机(203),蓄电池(201)提供直流电源,变频器(202)将直流电逆变为频率可变的三相交流电以控制调速电机(203)的转速。
  3. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:所述的闭式驱动单元包括主定量泵(204)、辅助定量泵(205)、控制阀组(206)以及液压驱动器,调速电机(203)与主定量泵(204)机械连接,主定量泵(204)与液压驱动器通过管路连接,液压驱动器包括液压马达(208)和受其驱动的驱动轮(105),且液压马达(208)和驱动轮(105)组成的液压驱动器成对设置,主定量泵(204)与液压马达(208)组成闭式回路,主定量泵(204)的出油口与液压马达(208)的进油口相连,主定量泵(204)的进油口与液压马达(208)的出油口相连,辅助定量泵(205)与主定量泵(204)同轴连接,为闭式回路补油,控制阀组(206)并联于闭式回路的高低管路之间,控制阀组(206)由溢流阀、液控换向阀组成。
  4. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:所述的比例夹紧单元包括梭阀(207)、比例减压阀(209)和夹紧油缸(210),其中梭阀(207)的输入端分别连接闭式回路的高低管路之间,梭阀(207)与管低压管路的两个油口并联设置,中间油口取两个油口中的高压,梭阀(207)的中间油口作为输出端与比例减压阀(209)的进口相连接,夹紧油缸(210)为单作用油缸,夹紧油缸(210)的有杆腔内设有弹簧,通过夹紧油缸(210)使驱动轮(105)挤压导轨(106)从而产生驱动单轨吊行走的摩擦力,比例减压阀(209)的输出端与夹紧油缸(210)的无杆腔相连接。
  5. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:所述的测控单元包括控制器(211)、转速编码器(212)、拉力传感器(213)、线速度传感器(214);控制器(211)的输入端分别与转速编码器(212)、拉力传感器(213)和线速度传感器(214)的输出端相连接,控制器(211)的输出端与比例减压阀(209)相连接,控制器(211)还通过CAN总线与变频器(202)连接。
  6. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:转速编码器(212)设置在液压马达(208)与驱动轮(105)之间的输出轴上用以测量驱动轮(105)的旋转速度;拉力传感器(213)串联在单轨吊的驱动部(103)与拉杆(104)之间用以测量驱动部(103)的的牵引力;线速 度传感器(214)设置在单轨吊驱动部(103)上用以测量单轨吊的行驶速度。
  7. 根据权利要求1所述的蓄电池单轨吊电液复合驱动系统,其特征在于:控制器(211)通过CAN总线与变频器(202)连接控制变频器的输出频,控制器(211)通过电缆与比例减压阀(209)连接;控制器(211)根据收到的操作指令调节单轨吊的运行速度,控制器(211)根据负载大小调节夹紧油缸(210)的夹紧力,控制器型号为PLC1200。
  8. 一种使用权利要求1所述蓄电池单轨吊电液复合驱动系统的驱动轮自适应夹紧方法,其特征在于包括以下步骤:调速运行、确定基本夹紧力、测量速度误差和微调夹紧力。
  9. 根据权利要求8所述的蓄电池单轨吊电液复合驱动系统的驱动轮自适应夹紧方法,其特征在于,驱动轮自适应夹紧方法具体步骤台下:
    1)调速运行:收到根据单轨吊运行速度指令,变频器(202)改变输出频率控制调速电机(203)和主定量泵(204)的转速,从而改变主定量泵(204)的输出流量,最终调节液压马达(208)转速和驱动轮(105)的转速控制单轨吊的运行速度;
    2)确定基本夹紧力:利用拉力传感器(213)测量驱动部(103)的牵引力,然后将测量到的牵引力输入牵引力与夹紧力关系的函数模型,以确定基本夹紧力;
    3)测量速度误差:通过线速度传感器(214)测量单轨吊的实际运行速度,通过转速编码器(212)测量驱动轮(105)的转速,再根据驱动轮(105)直径换算成单轨吊的理论运行速度,将单轨吊的理论运行速度和单轨吊的实际运行速度进行比较最终得出运行速度误差值;
    4)微调夹紧力:运行速度误差值经过运算PID后由控制器(211)输出控制信号至比例减压阀(209),其中P为比例、I为积分、D为微分,控制信号随误差指的增大而增大,减小而减小,在基本夹紧力的基础上进一步调节夹紧油缸(210)的夹紧力,若速度误差超过设定误差则增大夹紧力,如果速度误差在设定误差之内,则保持现有夹紧力不变,从而实现驱动轮(105)夹紧力的自适应调节。
PCT/CN2020/111566 2019-08-30 2020-08-27 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法 WO2021037093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910813180.8 2019-08-30
CN201910813180.8A CN110436343B (zh) 2019-08-30 2019-08-30 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法

Publications (1)

Publication Number Publication Date
WO2021037093A1 true WO2021037093A1 (zh) 2021-03-04

Family

ID=68438478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111566 WO2021037093A1 (zh) 2019-08-30 2020-08-27 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法

Country Status (2)

Country Link
CN (1) CN110436343B (zh)
WO (1) WO2021037093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022120983A1 (de) 2022-08-19 2024-02-22 Smt Scharf Gmbh Verfahren zum Betreiben eines Reibradanpressystems einer hydraulisch angetriebenen Einschienenhängebahn

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436343B (zh) * 2019-08-30 2020-06-16 中国矿业大学 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法
CN113515076B (zh) * 2021-04-15 2022-09-09 淮北浚程机电设备有限公司 蓄电池单轨吊用隔爆兼本质安全型调速控制箱控制系统
CN113233325A (zh) * 2021-06-11 2021-08-10 浙江大学山东工业技术研究院 一种矿用单轨吊
CN116750656B (zh) * 2023-06-14 2023-11-21 弗兰克(徐州)智能科技有限公司 一种电液复合驱动的组合式单轨吊主动干预控制系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055350A1 (de) * 1997-06-04 1998-12-10 Bräutigam Ruhrthaler Transporttechnik Gmbh Batteriebetriebene triebkatze
DE19925507A1 (de) * 1999-06-04 2000-12-07 Rag Ag Vorrichtung zum Transport schwerer Lasten vor Ort im untertägigen Berg- und Tunnelbau
CN202729600U (zh) * 2012-05-28 2013-02-13 山东新沙单轨运输装备有限公司 矿用小型单轨吊车
CN105217504A (zh) * 2015-10-27 2016-01-06 中国矿业大学 一种矿用液压绞车电液比例控制系统
CN105217469A (zh) * 2015-10-23 2016-01-06 徐州华东机械有限公司 一种新能源液压直驱单轨吊机车
CN108679021A (zh) * 2018-08-15 2018-10-19 尤洛卡(山东)矿业科技有限公司 一种单轨吊机车及其行走液压系统
CN109139098A (zh) * 2018-11-17 2019-01-04 山东省田庄煤矿有限公司 一种无极绳牵引单轨吊系统
CN208935082U (zh) * 2018-08-15 2019-06-04 尤洛卡(山东)矿业科技有限公司 一种蓄电池单轨吊机车及其液压站
CN110436343A (zh) * 2019-08-30 2019-11-12 中国矿业大学 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ199082A (en) * 1981-11-26 1986-05-09 New Zealand Dev Finance Gantry crane:linear hydraulic motors in support structure provide traverse and fleet
CN202500842U (zh) * 2012-03-17 2012-10-24 江苏中机矿山设备有限公司 双阀控制单轨吊液压回路系统
CN103588096B (zh) * 2013-09-26 2015-08-26 尤洛卡矿业安全工程股份有限公司 一种单轨吊机车控制系统
CN203497947U (zh) * 2013-10-09 2014-03-26 安徽中捷矿山运输设备有限责任公司 单轨吊机车液压控制系统
CN208565101U (zh) * 2018-08-15 2019-03-01 尤洛卡(山东)矿业科技有限公司 一种单轨吊机车及其行走液压系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998055350A1 (de) * 1997-06-04 1998-12-10 Bräutigam Ruhrthaler Transporttechnik Gmbh Batteriebetriebene triebkatze
DE19925507A1 (de) * 1999-06-04 2000-12-07 Rag Ag Vorrichtung zum Transport schwerer Lasten vor Ort im untertägigen Berg- und Tunnelbau
CN202729600U (zh) * 2012-05-28 2013-02-13 山东新沙单轨运输装备有限公司 矿用小型单轨吊车
CN105217469A (zh) * 2015-10-23 2016-01-06 徐州华东机械有限公司 一种新能源液压直驱单轨吊机车
CN105217504A (zh) * 2015-10-27 2016-01-06 中国矿业大学 一种矿用液压绞车电液比例控制系统
CN108679021A (zh) * 2018-08-15 2018-10-19 尤洛卡(山东)矿业科技有限公司 一种单轨吊机车及其行走液压系统
CN208935082U (zh) * 2018-08-15 2019-06-04 尤洛卡(山东)矿业科技有限公司 一种蓄电池单轨吊机车及其液压站
CN109139098A (zh) * 2018-11-17 2019-01-04 山东省田庄煤矿有限公司 一种无极绳牵引单轨吊系统
CN110436343A (zh) * 2019-08-30 2019-11-12 中国矿业大学 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022120983A1 (de) 2022-08-19 2024-02-22 Smt Scharf Gmbh Verfahren zum Betreiben eines Reibradanpressystems einer hydraulisch angetriebenen Einschienenhängebahn

Also Published As

Publication number Publication date
CN110436343A (zh) 2019-11-12
CN110436343B (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2021037093A1 (zh) 蓄电池单轨吊电液复合驱动系统及驱动轮自适应夹紧方法
CN113183736B (zh) 一种装载机油电液混合动力系统及其控制方法
CN103030064B (zh) 一种工程机械设备的控制系统及控制方法
CN108679021A (zh) 一种单轨吊机车及其行走液压系统
CN208329024U (zh) 一种装载机泵控混合动力液压系统
CN203612840U (zh) 一种矿用液压单轨吊车
CN110655000A (zh) 一种双向防失速起升绞车液压控制系统
CN109027063B (zh) 风力发电机组的变压力偏航制动液压系统及其控制方法
CN115402928A (zh) 一种柴油机单轨吊机车驱动夹紧自动控制系统
CN208565101U (zh) 一种单轨吊机车及其行走液压系统
CN103693562B (zh) 起重机穿绳卷扬的控制方法、装置、系统及穿绳设备
CN108708423B (zh) 一种液电混合驱动的多执行器回路
CN110526152A (zh) 多通道防冲击智能恒减速液压制动系统
CN114873461A (zh) 一种单轨吊机车起吊梁液压控制系统及其工作方法
CN104695852A (zh) 具有混合动力装置及多电机驱动的煤层气钻机
CN104817027A (zh) 一种气液张力补偿系统
CN112623643B (zh) 一种带式输送机张紧系统
CN105060137B (zh) 一种履带起重机无防爆阀的起升系统
CN112357472B (zh) 电-液复合式带式输送机自动张紧装置及张紧控制方法
CN211946037U (zh) 双向防失速起升绞车液压控制系统
CN210915009U (zh) 电牵引单轨吊多部电驱起吊梁控制系统
CN211416981U (zh) 一种用于消防车的电动轮装置
CN116750656B (zh) 一种电液复合驱动的组合式单轨吊主动干预控制系统
CN103486098B (zh) 闭式液压系统以及起重机
CN207320707U (zh) 一种张力架线液力牵引机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856533

Country of ref document: EP

Kind code of ref document: A1