WO2021037090A1 - 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用 - Google Patents

一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用 Download PDF

Info

Publication number
WO2021037090A1
WO2021037090A1 PCT/CN2020/111539 CN2020111539W WO2021037090A1 WO 2021037090 A1 WO2021037090 A1 WO 2021037090A1 CN 2020111539 W CN2020111539 W CN 2020111539W WO 2021037090 A1 WO2021037090 A1 WO 2021037090A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound
reaction
naphthylamine
versus
Prior art date
Application number
PCT/CN2020/111539
Other languages
English (en)
French (fr)
Inventor
徐学军
杨玉坡
杨争艳
Original Assignee
河南省锐达医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南省锐达医药科技有限公司 filed Critical 河南省锐达医药科技有限公司
Priority to US17/427,629 priority Critical patent/US20220098162A1/en
Publication of WO2021037090A1 publication Critical patent/WO2021037090A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia

Definitions

  • the invention belongs to the technical field of tumor raw drug research and development, and specifically relates to a naphthylamine compound and a biologically acceptable salt thereof, and a preparation method and application thereof.
  • STAT3-JAK signaling pathway has a positive regulatory effect on the growth of tumor cells.
  • STAT3 protein has been favored as a biological target for cancer treatment.
  • US FDA approved STAT3 signaling for clinical testing There are more than 30 leading compounds of pathway inhibitor anticancer drugs (Johnson D E, et al., Nature Reviews Clinical Oncology, 2018, 15(4): 234).
  • Anti-cancer targeted drugs based on STAT3 signal transduction have the characteristics of novel targets and broad anti-cancer spectrum. Recent clinical test results show that such drugs have huge development potential and broad market space in the future clinical treatment of tumors. Based on this, the present invention explores new compounds that can be used to prepare anti-cancer targeted drugs based on STAT3 signal transduction.
  • the present invention provides a naphthylamine compound and its biologically acceptable salt, its preparation method and application, and the naphthylamine compound and its biological Acceptable salts can bind to protein sites related to tumor diseases in organisms through functional groups in the structure, and have hydrogen bonds and hydrophobic interactions with receptors, so as to achieve the purpose of inhibiting tumor cell proliferation.
  • a naphthylamine compound the structural formula is as shown in general formula I:
  • R 1 , R 2 , R 3 , and R 4 are each independently selected from hydrogen, halogen, nitro, alkyl, cyano, and aryl;
  • p represents the number of X substituents, and P is 0 or 1;
  • X is -CH 2 -, -(CH 2 ) 2 -, -CO-, -CH 2 -CO- or -(CH 2 ) 2 -CO-;
  • n represents the number of Y substituents, and M is 0 or 1;
  • Y is -(CH 2 ) 2 -, -(CH 2 ) 3 -, -CO-, -CH 2 -CO- or -(CH 2 ) 2 -CO-
  • halogen refers to fluorine, chlorine, bromine or iodine, and the preferred halogen group is fluorine, chlorine or bromine.
  • the naphthylamine compound is specifically a compound with the following structure:
  • the preparation method of the naphthylamine compound includes the following steps:
  • E is -CH 2 -, -O- or -(CH 2 ) 2 -.
  • the specific preparation method is as follows:
  • the biologically acceptable salt of the naphthylamine compound is prepared by the following method: the naphthylamine compound is dissolved in a methanol solution of the corresponding acid, and reacted at room temperature. After the reaction is detected by TLC, it is obtained by post-processing. .
  • the present invention provides two preparation methods at the same time, as follows:
  • the naphthylamine compounds shown in structural formulas 1a to 2f can be synthesized by the route shown in Scheme 1.
  • the raw materials undergo a two-step nucleophilic substitution reaction to form an etherified intermediate, which is then hydrolyzed by a strong alkali solution to generate the corresponding carboxylic acid.
  • Carry out the acylation reaction to generate the corresponding acid chloride then synthesize the target compound precursor with a protective group in a basic environment, and finally deprotect it under acidic conditions to obtain the target compound.
  • the specific groups for X, Y, and E include the above-mentioned 1a, 1b, 1c, 1d, 1e, 1f, 2a, 2b, 2c, 2d, 2e, 2f corresponding groups but are not limited to these groups/compounds, but also It is easy for those skilled in the art to understand and think of compounds synthesized by using this scheme 1.
  • the compounds in the following scheme 2 have the same definitions for X, Y, and E as in the above cases, including but not limited to these specific compounds.
  • the conditions of the defined synthesis process/flow in the claims should be understood in the same way, and should not be regarded as a limitation, let alone a specific compound.
  • the naphthylamine compounds shown in structural formulas 3a to 4f can be synthesized by the route shown in Scheme 2.
  • the raw materials are reduced by lithium aluminum tetrahydroxide and thionyl chloride is used to obtain chlorinated hydrocarbon intermediates, which are then obtained by a two-step nucleophilic substitution reaction.
  • the protected target precursor is finally deprotected under acidic conditions to obtain the target compound.
  • the purpose of the present invention is to find new compounds with high STAT3 inhibitory effect and lower toxicity.
  • the present invention also relates to the preparation of the naphthylamine compound, its pharmaceutically acceptable salt, the solvent compound of the derivative, or the solvent compound of the salt for the treatment or adjuvant treatment and/or prevention of tumors in mammals.
  • the use in the drug is mainly used in STAT3-mediated tumors or tumor cell proliferation and migration drugs driven by STAT3, and may also be drugs for diseases related to STAT3 cell signal transduction.
  • the mammal is Humanity.
  • One aspect of the present invention relates to the preparation of the above-mentioned novel naphthylamine compounds with the structure of formula I, pharmaceutically acceptable salts thereof, solvates of the derivatives, or solvates of the salts for treatment and/or Use in medicine for preventing diseases related to STAT3 cell signal transduction in mammals.
  • the mammal is a human.
  • the compounds of the present invention can be used to treat tumors caused by abnormally active STAT3 signal transduction or high protein expression.
  • STAT3-related tumors include lung cancer, breast cancer, colorectal cancer, leukemia, head and neck cancer, prostate cancer and all other cancers.
  • the present invention discloses a new type of naphthylamine compound synthesis and salt preparation method, as well as the application of this type of compound and its salt form as active ingredients in cell growth regulation mechanism and cancer treatment.
  • This naphthylamine compound and its salt due to its unique structural characteristics, can bind to protein sites related to tumor diseases in organisms through functional groups in the structure, and undergo hydrogen bonding and hydrophobic interaction with the receptor, thereby To achieve the purpose of inhibiting tumor cell proliferation.
  • such naphthylamine compounds such as SMY001 and SMY002 belong to STAT3 inhibitors. The mechanism of such compounds in inhibiting STAT3 activation is clear and the effect of inhibiting tumor cell growth is significant.
  • the biological activity test shows that the compound of the present invention has a significant inhibitory effect on the STAT3 cell signal transduction pathway in tumor cells. Specifically, it has a significant inhibitory effect on the activation of phosphorylated STAT3 protein and the expression of downstream genes, and has a significant inhibitory effect on lung cancer. , Breast cancer, colon cancer and other cancer cells have obvious antagonistic effects on the growth and reproduction. This shows that these compounds have potential significance and broad application prospects for tumor mechanism research and cancer clinical treatment.
  • Figure 1 is an MTT experiment of compounds SMY001(1a) and SMY002(3a) in inducing breast cancer cell MDA-MB-231 cell apoptosis.
  • the results of the MTT cell experiment in the figure are characterized by IC50 ( ⁇ mol/L) value;
  • Figure 2 is an MTT experiment of compounds SMY001 (1a) and SMY002 (3a) in inducing breast cancer cell MCF-7 cell apoptosis.
  • the results of the MTT cell experiment are characterized by IC50 ( ⁇ mol/L) value.
  • Figure 3 is an MTT experiment of compound SMY001 (1a) and SMY002 (3a) inducing apoptosis of colon cancer cell HCT-116 cells.
  • the results of the MTT cell experiment in the figure are characterized by IC50 ( ⁇ mol/L) value.
  • Figure 4 is an MTT experiment of compounds SMY001 (1a) and SMY002 (3a) in inducing lung cancer cell PC9-AR cell apoptosis.
  • the results of the MTT cell experiment in the figure are characterized by IC50 ( ⁇ mol/L) value.
  • Figure 5 is an MTT experiment of compounds SMY001 (1a) and SMY002 (3a) in inducing lung cancer cell PC9-GR cell apoptosis.
  • the results of the MTT cell experiment in the figure are characterized by IC50 ( ⁇ mol/L) value.
  • Figure 6 is an MTT experiment of compounds SMY001 (1a) and SMY002 (3a) in inducing lung cancer cell PC9 cell apoptosis.
  • the results of the MTT cell experiment are characterized by IC50 ( ⁇ mol/L) value.
  • Figure 7 is the result of Western blotting of compound SMY002 (3a).
  • FIG. 8 shows the results of the docking experiment.
  • the various raw materials used in the reaction can be prepared by those skilled in the art based on existing knowledge, or can be prepared by methods known in the literature, or can be commercially available of.
  • the intermediates, raw materials, reagents, reaction conditions, etc. used in the above reaction schemes can be appropriately changed according to the knowledge of those skilled in the art.
  • the temperature is expressed in degrees Celsius (°C), and the operation is carried out at room temperature; more specifically, the room temperature refers to 20-30°C;
  • the room temperature refers to 20-30°C;
  • commonly used organic solvents Drying method drying, using a rotary evaporator to evaporate the solvent under reduced pressure, the bath temperature is not higher than 50°C; the developing agent and eluent are in volume ratio;
  • the reaction process is tracked by thin layer chromatography (TLC);
  • TLC thin layer chromatography
  • the final product has satisfactory proton nuclear magnetic resonance (1H-NMR).
  • Compound 1a is named 4-(2-(piperidin-1-yl)ethoxy)benzoic acid-4-amino-1-naphthyl ester dihydrochloride, and its synthetic route is shown below:
  • reaction solution was cooled to room temperature, poured into water (50 mL), extracted with ethyl acetate (50 mL*3), the organic phases were combined and dried with anhydrous sodium sulfate, and then spin-dried to obtain a crude product.
  • the 1-tert-butoxycarbonylamino-4-hydroxy-naphthalene (2) (148mg, 0.57mmol, 1.0eq), 4-(2-bromoethoxy) benzoyl chloride (8) (150mg, 0.57mmol, 1.0 eq) and triethylamine (115mg, 1.12mmol, 2.0eq) were dissolved in tetrahydrofuran (5mL) and reacted at room temperature for 12 hours.
  • the reaction solution was cooled to room temperature, poured into 20 mL of water, extracted three times with 60 mL of ethyl acetate (20 mL*3), and the organic phases were combined, dried over anhydrous sodium sulfate, and spin-dried.
  • reaction solution was spin-dried and taken 3 times with anhydrous toluene to obtain 45 mg of 4-(2-(piperidin-1-yl)ethoxy)benzoic acid-4-amino-1-naphthyl ester dihydrochloride (1a ), light yellow solid, yield 80%.
  • step 2 the synthesis method of 4-(2-bromoethoxy)benzoyl chloride (8) used is as follows:
  • Methyl 4-hydroxybenzoate (5) (1.00g, 6.57mmol, 1.0eq), 1,2-dibromoethane (4.94g, 26.3mmol, 4.0 eq), potassium carbonate (1.18g, 8.54mmol, 1.30eq) and potassium iodide (109mg, 0.66mol, 0.10eq) were dissolved in 15mL acetonitrile and heated to 80°C to react for 12 hours.
  • the reaction solution was cooled to room temperature, poured into 50 mL of water, extracted with 150 mL of ethyl acetate 3 times (50 mL*3), the organic phases were combined, dried with anhydrous sodium sulfate and spin-dried.
  • Methyl 4-(2-bromoethoxy) benzoate (6) (500mg, 1.93mmol, 1.0eq) was dissolved in 10mL of tetrahydrofuran and 2mL of water, and then lithium hydroxide monohydrate (162mg, 3.86mmol, 2.0 eq), the reaction solution was heated to 50° C. and reacted for 2 hours.
  • 4-(2-Bromoethoxy)benzoic acid (7) (140mg, 0.57mmol, 1.0eq) was dissolved in thionyl chloride (3mL), and the temperature was raised to 80°C to react for two hours. The reaction solution was spin-dried and stripped with dichloromethane three times (20 mL*3) to obtain 150 mg of 4-(2-bromoethoxy)benzoyl chloride (8), which was used directly in the next reaction without purification.
  • the hydrochloride synthesis method of compound 1b ⁇ 2f refer to Example 1.
  • the difference is: in the synthesis process of compound 1b and 1c, in step 3, morpholine and cycloheximide (ie homopiperidine) were used instead Piperidine, the rest are the same as in Example 1.
  • 1,3-dibromopropane is used instead of 1,2-dibromopropane, and the synthesis of compounds 1d, 1f
  • step 3 morpholine and cycloheximide (ie, homopiperidine) were used to replace piperidine, and the rest were the same as in Example 1.
  • step 5 3-cyano-4-hydroxy-methyl benzoate, 3-chloro-4 hydroxy-methyl benzoate, 3-nitro-4 hydroxy-methyl benzoate, 2-cyano-methyl 4-hydroxy-benzoic acid methyl ester, 2-chloro-4 hydroxy-benzoic acid methyl ester, 2-nitro-4 hydroxy-benzoic acid methyl ester instead of 4-hydroxy-benzoic acid methyl ester, the detailed preparation process is not here Go into details again.
  • compound 3a 4-(4-(2-(piperidin-1-yl)ethoxy)benzyloxy)-1-naphthylamine dihydrochloride, and its synthetic route is as follows:
  • Methyl 4-(2-bromoethoxy)benzoate (6) (450mg, 1.74mmol, 1.0eq) was dissolved in 20mL of anhydrous tetrahydrofuran, cooled to 0°C, and lithium tetrahydroaluminum (66mg, 1.74 mmol, 1.0eq), naturally warm to room temperature and react for 0.5 hours.
  • 4-(2-Bromoethoxy)benzyl alcohol (9) (340 mg, 1.47 mmol, 1.0 eq) was dissolved in thionyl chloride (10 mL), and the temperature was raised to 80° C. to react for two hours. The reaction solution was spin-dried, dissolved in 20 mL of dichloromethane, spin-dried again, and repeated three times to obtain 365 mg of 4-(2-bromoethoxy)benzyl chloride (10), which was directly used in the next reaction without purification.
  • reaction solution was cooled to room temperature, poured into 20 mL of water, extracted three times with 60 mL of ethyl acetate reaction solution (20 mL*3), and the organic phases were combined and dried with anhydrous sodium sulfate and spin-dried.
  • reaction solution was spin-dried, and stripped three times with anhydrous toluene to obtain 45 mg of 4-(4-(2-(piperidin-1-yl)ethoxy)benzyloxy)-1-naphthylamine dihydrochloride (2a ), brown oily liquid, yield 81.8%.
  • the synthesis methods of compounds 3b-4f refer to Example 2, the difference is: in the synthesis process of compounds 3b and 3c, in step 4, morpholine and homopiperidine are used instead of piperidine, and the rest are the same as in Example 2; In the synthesis process of 3d, 3e, and 3f, in step 5 of Example 2, 1,3-dibromopropane was used instead of 1,2-dibromopropane. In the synthesis process of compound 3d, 3f, in step 4, Use morpholine and homopiperidine instead of piperidine, and the rest are the same as in Example 2. In the synthesis process of compound 4a, 4b, 4c, 4d, 4e, 4f, in step 5 of Example 2, 3-cyano group is used respectively.
  • Method Collect logarithmic growth phase MDA-MB-231, MCF-7, HCT-116, PC9-AR, PC9-GR, PC9 cells, count, adjust the cell suspension concentration to 50000 cells/mL, add 100ul to each well
  • the cell suspension is 5000 cells per well, and the above-mentioned cancer cells are treated with the hydrochloride salt of the naphthylamine compound of 1a and 3a of the present invention, so that the final concentration of the hydrochloride of the naphthylamine compound in the system is respectively 0.1, 0.3, 1, 3, 10, 30, 100, 300 ( ⁇ mol/L) several gradients, and continue to incubate for 48h; after drug treatment, add 50 ⁇ L of Thiazole Blue reagent (1mg/mL) to each well, and incubate at 37°C for 4h , Shake the plate to discard the liquid in the well, drain the water, absorb the remaining liquid with filter paper, then add 100 ⁇ L of dimethyl sulfoxide, and react on a
  • SMY001 and SMY002 are effective against breast cancer cell lines (MCF-7, MDA-MB-231), human colon cancer (HCT-116) and lung cancer cell lines (PC9, PC9AR and PC9GR) at low concentrations. It has a significant inhibitory effect.
  • SMY001 has a significant interaction with the phosphorylated tyrosine kinase region of the STAT3-SH2 functional domain.
  • the naphthylamine group of SMY001 (as a naphthylamine compound of formula I)
  • the public groups of participate in the polar and hydrophobic interactions with the key amino acids-lysine 591 and arginine 595, respectively.
  • the naphthylamine group of SMY001 is not only a common group of naphthylamine compounds of formula I, but also a key group involved in the interaction with protein molecules. It is inferred that the amino group of naphthylamine compounds of formula I and the SH2 functional domain of STAT3 protein The phosphorylated tyrosine interaction region has a strong interaction.
  • the naphthylamine compounds of formula I are all inhibitors of STAT3 acting on lysine 591, arginine 595 and arginine 609.
  • formula I naphthalene Amine compounds can inhibit the binding of STAT3 protein to upstream and downstream proteins in signal transduction, inhibit the phosphorylation of STAT3 protein, block the expression of downstream genes in STAT3 signal transduction, induce apoptosis of related tumor cells, and achieve the effect of controlling tumor growth. .
  • the cell supernatant is divided into two parts: take 5 ⁇ L and add it to a 1.5mL centrifuge tube for BCA to measure the protein content, and then add 45 ⁇ L of 1 ⁇ phosphate buffered saline (PBS) and mix well for use; the remaining cell supernatant is quantitatively taken out of 140 ⁇ L, Add 35 ⁇ L of 5 ⁇ SDS Loading Buffer, mix well, boil it in boiling water for 8min, centrifuge and store in the refrigerator at -20°C.
  • PBS phosphate buffered saline
  • PBS Phosphate Buffer Saline
  • B Preparation of BCA working fluid: According to the number of standard products and samples to be tested, calculate the total amount of A and B mixed working fluid required. Prepare the working solution according to the volume ratio of BCA reagent A to B at a volume ratio of 50:1, vortex and mix well for later use.
  • BSA bovine serum albumin
  • Figure 7 is the result of Western blotting of compound SMY002 (3a).
  • the result of western blotting experiment is to transfer the total cell protein after electrophoresis separation from the gel to the solid support membrane.
  • the corresponding protein expression is detected by STAT3, p-STAT3, and ⁇ -Actin antibodies respectively.
  • the results are shown in the figure. It can be seen that under the action of the drug, with the increase of drug concentration, HCC827 expresses the same amount of STAT3 and ⁇ -Actin protein, while the expression amount of p-STAT3 shows a downward trend.
  • the compound SMY002 (3a) obviously inhibits p-STAT3. expression.
  • FIG. 8 The virtual docking shows that SMY001(1a) interacts with the lysine 591 and arginine 595 of the STAT3-SH2 functional domain with Pi-Pi folding, and has a polar interaction with the main chain of lysine 591 .
  • the amino group of the naphthylamine compounds of formula I have a strong interaction with the phosphorylated tyrosine interaction region of the SH2 functional domain of the STAT3 protein, and the naphthylamine compounds of formula I are all STAT3 acting on lysine.
  • the compounds of the present invention can be applied to cancer treatment drugs related to abnormal signal conduction of STAT3 cells.
  • the acceptable acid is formed into a salt or mixed with a pharmaceutical carrier to prepare an antitumor drug.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明针对现有技术中抗癌靶向药物的缺乏,提供一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用,本发明所提供的萘胺类化合物及其生物学可接受的盐可以通过结构中的功能基团与生物体内肿瘤疾病相关的蛋白位点相结合,并与受体发生氢键和疏水相互作用,从而达到抑制肿瘤细胞增殖的目的。

Description

一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用 技术领域
本发明属于肿瘤原药研发技术领域,具体涉及一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用。
背景技术
2017年国家癌症中心发布的中国最新癌症数据显示,在中国,每年新发癌症病例达429万,占全球新发病例的20%,死亡281万例(中国肿瘤临床与康复,2017(5):574-574)。2017年中国CFDA批复上市的5个抗癌新药没有一个创新靶点,中国原创的靶向新药寥寥无几,总体反映了国内靶向原创药物的研发水平落后于欧美。如何在药物研发方面做到“双创”(疾病相关的首次用于临床治疗的新靶点和全新化合物)是考验我们中国医药研发实力的试金石。寻求新的靶点和有潜力的药物先导化合物,在特定的肿瘤治疗领域有所突破,是医药研发科研人员的当务之急。STAT3-JAK信号传导通路对肿瘤细胞的生长有正向调控的作用,近十年来,STAT3蛋白作为治疗癌症的生物学靶点备受青睐,截止2017年,美国FDA批准在临床测试的STAT3信号传导通路抑制类抗癌药物先导化合物有30余种(Johnson D E,et al.,Nature Reviews Clinical Oncology,2018,15(4):234)。基于STAT3信号传导的抗癌靶向药物有靶点新和抗癌谱宽等特点,近期的临床测试结果显示了此类药物在未来肿瘤临床治疗方面具有巨大的开发潜力和广阔的市场空间。本发明正基于此,探索新的能够用于制备基于STAT3信号传导的抗癌靶向药物的化合物。
发明内容
本发明针对现有技术中抗癌靶向药物的缺乏,提供一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用,本发明所提供的萘胺类化合物及其生物学可接受的盐可以通过结构中的功能基团与生物体内肿瘤疾病相关的蛋白位点相结合,并与受体发生氢键和疏水相互作用,从而达到抑制肿瘤细胞增殖的目的。
本发明采用如下技术方案:
一种萘胺类化合物,结构式如通式I所示:
Figure PCTCN2020111539-appb-000001
其中,R 1、R 2、R 3、R 4各自独立地选自氢、卤素、硝基、烷基、氰基、芳基;
p代表X取代基的个数,P为0或1;
X为-CH 2-、-(CH 2) 2-、-CO-、-CH 2-CO-或-(CH 2) 2-CO-;
m代表Y取代基的个数,M为0或1;
Y为-(CH 2) 2-、-(CH 2) 3-、-CO-、-CH 2-CO-或-(CH 2) 2-CO-
A为
Figure PCTCN2020111539-appb-000002
其中n=0、1、2、3。
本发明所用的术语“卤素”是指氟、氯、溴或碘,优选的卤素基团为氟、氯或溴。所述的萘胺类化合物具体为如下结构的化合物:
Figure PCTCN2020111539-appb-000003
Figure PCTCN2020111539-appb-000004
所述的萘胺类化合物与乙酸、二氢乙酸、苯甲酸、柠檬酸、山梨酸、丙酸、草酸、富马 酸、马来酸、盐酸、苹果酸、磷酸、亚硫酸、硫酸、香草酸、酒石酸、抗坏血酸、硼酸、乳酸和乙二胺四乙酸中的至少一种形成的生物学可接受的盐。
所述的萘胺类化合物的制备方法,包括以下步骤:
(1)将摩尔比为1:1的
Figure PCTCN2020111539-appb-000005
Figure PCTCN2020111539-appb-000006
溶解于有机溶剂中,并加入碱,TLC检测反应结束后,后处理得到
Figure PCTCN2020111539-appb-000007
(2)然后将摩尔比为1:3的
Figure PCTCN2020111539-appb-000008
Figure PCTCN2020111539-appb-000009
通过亲核取代反应生成
Figure PCTCN2020111539-appb-000010
其中,E为-CH 2-、-O-或-(CH 2) 2-。
进一步地,所述
Figure PCTCN2020111539-appb-000011
通过以下方法制备得到:将摩尔比为1:4的
Figure PCTCN2020111539-appb-000012
Figure PCTCN2020111539-appb-000013
通过亲核取代反应得到
Figure PCTCN2020111539-appb-000014
然后
Figure PCTCN2020111539-appb-000015
通过反应转换为
Figure PCTCN2020111539-appb-000016
继而将
Figure PCTCN2020111539-appb-000017
与氯化剂发生卤化反应,得到所述
Figure PCTCN2020111539-appb-000018
进一步地,所述
Figure PCTCN2020111539-appb-000019
包括
Figure PCTCN2020111539-appb-000020
Figure PCTCN2020111539-appb-000021
的具体制备方法如下:
将所述
Figure PCTCN2020111539-appb-000022
溶解于四氢呋喃和水的混合溶剂中,然后加入氢氧化锂,20~50℃反应,TLC检测反应完成后,旋蒸除去四氢呋喃,残余物用盐酸调节至pH=1~3,析出得到的固体即为
Figure PCTCN2020111539-appb-000023
Figure PCTCN2020111539-appb-000024
的具体制备方法如下:
Figure PCTCN2020111539-appb-000025
溶解于四氢呋喃中,加入四氢铝锂,室温反应,TLC检测反应完成后,将反应液倒入水中,用盐酸调节至pH=1~3,乙酸乙酯萃取并收集有机相,过滤后旋蒸即得。
进一步地,当结构式为1a至2f的化合物时,此时Y为-(CH 2) 2-或-(CH 2) 3-,其具体制备方法如下:
(1)将
Figure PCTCN2020111539-appb-000026
Figure PCTCN2020111539-appb-000027
溶解于四氢呋喃中,并加入三乙胺,室温下反应,TLC检测反应结束后,后处理得到
Figure PCTCN2020111539-appb-000028
其中,所述
Figure PCTCN2020111539-appb-000029
Figure PCTCN2020111539-appb-000030
以及三乙胺的摩尔比为1:1:2;
(2)然后将
Figure PCTCN2020111539-appb-000031
Figure PCTCN2020111539-appb-000032
溶解于四氢呋喃中,并加入碘化钾,回流反应结束后,后处理即得;
其中,
Figure PCTCN2020111539-appb-000033
Figure PCTCN2020111539-appb-000034
以及碘化钾的摩尔比为1:3:0.1。
进一步地,当结构式为3a至4f的化合物时,此时Y为-(CH 2) 2-或-(CH 2) 3-,其具体制备方法如下:
(1)将
Figure PCTCN2020111539-appb-000035
Figure PCTCN2020111539-appb-000036
溶解于乙腈中,并加入碳酸钾,60-80℃下反应,TLC检测反应结束后,后处理得到
Figure PCTCN2020111539-appb-000037
其中,
Figure PCTCN2020111539-appb-000038
Figure PCTCN2020111539-appb-000039
以及碳酸钾的摩尔比为1:1:1.2;
(2)然后将
Figure PCTCN2020111539-appb-000040
Figure PCTCN2020111539-appb-000041
溶解于四氢呋喃中,并加入碘化钾,回流反应结束后,后处理即得;
其中,
Figure PCTCN2020111539-appb-000042
Figure PCTCN2020111539-appb-000043
以及碘化钾的摩尔比为1:3:0.1。
所述的萘胺类化合物的生物学可接受的盐,通过以下方法制备:将所述萘胺类化合物溶于对应酸的甲醇溶液中,室温下反应,TLC检测反应结束后,后处理即得。
根据上述式I萘胺类化合物的结构差异,本发明同时提供了两种制备方法,如下:
结构式如1a至2f所示的萘胺类化合物可以由流程1所示路线合成,原料经过两步亲核取代反应形成醚化中间体,再经强碱溶液水解生成对应羧酸,羧酸纯化后进行酰化反应生成对应酰氯,之后在碱的环境中合成带保护基的目标化合物前体,最后在酸性条件下脱保护得到目标化合物。
流程1
Figure PCTCN2020111539-appb-000044
对于结构式如1a至2f所示的萘胺类化合物,上述取代基具体为:
1a:X=-CO-,Y=-(CH 2) 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
1b:X=-CO-,Y=-(CH 2) 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
1c:X=-CO-,Y=-(CH 2) 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
1d:X=-CO-,Y=-(CH 2) 3-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
1e:X=-CO-,Y=-(CH 2) 3-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
1f:X=-CO-,Y=-(CH 2) 3-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
2a:X=-CO-,Y=-(CH 2) 2-,E=-CH 2-,R 1=H,R 2=CN,R 3=H,R 4=H
2b:X=-CO-,Y=-(CH 2) 2-,E=-O-,R 1=H,R 2=Cl,R 3=H,R 4=H
2c:X=-CO-,Y=-(CH 2) 2-,E=-(CH 2) 2-,R 1=H,R 2=NO 2,R 3=H,R 4=H
2d:X=-CO-,Y=-(CH 2) 3-,E=-(CH 2) 2-,R 1=CN,R 2=H,R 3=H,R 4=H
2e:X=-CO-,Y=-(CH 2) 3-,E=-CH 2-,R 1=Cl,R 2=H,R 3=H,R 4=H
2f:X=-CO-,Y=-(CH 2) 3-,E=-O-,R 1=NO 2,R 2=H,R 3=H,R 4=H
对于X、Y和E的具体基团包括上述1a,1b,1c,1d,1e,1f,2a,2b,2c,2d,2e,2f对应的基团但不限于这些基团/化合物,还可以是其他的本领域技术人员容易理解想到采用该流程1进行合成的化合物。以下流程2中的化合物对于X、Y、E的限定与上述情况相同,包括但不限于这些具体的化合物。对于权利要求书中的限定的合成工艺/流程的情况应作同样的理解,不应 被视为限定,更不能限定为具体的化合物。
结构式如3a至4f所示的萘胺类化合物可以由流程2所示路线合成,原料经过四氢铝锂还原,氯化亚砜作用得到氯代烃中间体,再经两步亲核取代反应得到带保护的目标前体,最后在酸性条件下脱保护得到目标化合物。
流程2
Figure PCTCN2020111539-appb-000045
对于结构式如3a至4f所示的萘胺类化合物,上述取代基具体为:
3a:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
3b:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
3c:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
3d:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
3e:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
3f:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
4a:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-CH 2-,R 1=H,R 2=CN,R 3=H,R 4=H
4b:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-O-,R 1=H,R 2=Cl,R 3=H,R 4=H
4c:X=-CH 2-,Y=-(CH 2) 2-,Z=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=NO 2,R 3=H,R 4=H
4d:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-(CH 2) 2-,R 1=CN,R 2=H,R 3=H,R 4=H
4e:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-CH 2-,R 1=Cl,R 2=H,R 3=H,R 4=H
4f:X=-CH 2-,Y=-(CH 2) 3-,Z=-CH 2-,E=-O-,R 1=NO 2,R 2=H,R 3=H,R 4=H
本发明的目的是寻找具有高STAT3抑制作用且具有较低毒性的新化合物。
本发明还涉及所述萘胺类化合物、其药学上可接受的盐、所述衍生物的溶剂化合物、或 者所述盐的溶剂化合物在制备用于治疗或辅助治疗和/或预防哺乳动物的肿瘤的药物中的用途,主要是由STAT3介导的肿瘤或由STAT3驱动的肿瘤细胞增殖和迁移药物中的用途,也可以是与STAT3细胞信号传导相关疾病的药物,具体地,所述哺乳动物为人类。
本发明一个方面涉及上述的具有式I结构的新型萘胺类化合物、其药学上可接受的盐、所述衍生物的溶剂合物、或者所述盐的溶剂合物制备用于治疗和/或预防哺乳动物中与STAT3细胞信号传导相关疾病的药物中的用途。具体地,所述哺乳动物为人类。
根据本发明,完全可以预期本发明化合物可用于治疗STAT3信号传导异常活跃或蛋白高表达而引起的肿瘤。STAT3相关的肿瘤包括肺癌、乳腺癌、结直肠癌、白血病、头颈癌以及前列腺癌等其他所有癌症。
本发明的有益效果如下:
本发明公开了一类全新萘胺类化合物的合成和成盐制备方法,以及将此类化合物及其成盐形态作为活性成分在细胞生长调控机制和癌症治疗方面的应用。此萘胺类化合物及其盐因其独特的结构特征,可以通过结构中的功能基团与生物体内与肿瘤疾病相关的蛋白位点相结合,并与受体发生氢键和疏水相互作用,从而达到抑制肿瘤细胞增殖的目的。例如SMY001和SMY002等此类萘胺化合物属于STAT3抑制剂,该类化合物抑制STAT3活化的机制清晰、抑制肿瘤细胞生长的效果显著。通过生物活性测试表明,本发明涉及的化合物对肿瘤细胞内STAT3细胞信号传导通路有显著的抑制作用,具体表现在,对磷酸化STAT3蛋白的活化和下游基因的表达有显著抑制作用,并且对肺癌、乳腺癌和结肠癌等多种癌细胞的生长和繁殖有明显的拮抗效果。由此表明,此类化合物对肿瘤机制研究及癌症的临床治疗有潜在的重要意义和开阔的应用前景。
附图说明
图1是化合物SMY001(1a)和SMY002(3a)诱导乳腺癌细胞MDA-MB-231细胞凋亡MTT实验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征;
图2是化合物SMY001(1a)和SMY002(3a)诱导乳腺癌细胞MCF-7细胞凋亡MTT实验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征。
图3是化合物SMY001(1a)和SMY002(3a)诱导结肠癌细胞HCT-116细胞凋亡MTT实验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征。
图4是化合物SMY001(1a)和SMY002(3a)诱导肺癌细胞PC9-AR细胞凋亡MTT实验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征。
图5是化合物SMY001(1a)和SMY002(3a)诱导肺癌细胞PC9-GR细胞凋亡MTT实 验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征。
图6是化合物SMY001(1a)和SMY002(3a)诱导肺癌细胞PC9细胞凋亡MTT实验,图中MTT细胞实验的结果以IC50(μmol/L)值进行表征。
图7是化合物SMY002(3a)蛋白免疫印迹的结果。
图8是docking实验结果。
具体实施方式
为了使本发明的技术目的、技术方案和有益效果更加清楚,下面结合附图和具体实施例对本发明的技术方案作出进一步的说明。
在本发明合成式I化合物的方法中,反应所用的各种原材料是本领域技术人员根据已有知识可以制备得到的,或者是可以通过文献公知的方法制得的,或者是可以通过商业购得的。以上反应方案中所用的中间体、原材料、试剂、反应条件等均可以根据本领域技术人员已有知识做适当改变的。
在本发明中,除非另外说明,其中:(i)温度以摄氏度(℃)表示,操作在室温环境下进行;更具体地,所述室温是指20-30℃;(ii)有机溶剂用常用干燥方法干燥,溶剂的蒸发使用旋转蒸发仪减压蒸发,浴温不高于50℃;展开剂和洗脱剂均为体积比;(iii)反应过程用薄层色谱(TLC)跟踪;(iv)终产物具有满意的质子核磁共振(1H-NMR)。
实施例1:化合物1a-2f的合成
参照流程1
Figure PCTCN2020111539-appb-000046
1a:X=-CO-,Y=-(CH 2) 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
1b:X=-CO-,Y=-(CH 2) 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
1c:X=-CO-,Y=-(CH 2) 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
1d:X=-CO-,Y=-(CH 2) 3-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
1e:X=-CO-,Y=-(CH 2) 3-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
1f:X=-CO-,Y=-(CH 2) 3-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
2a:X=-CO-,Y=-(CH 2) 2-,E=-CH 2-,R 1=H,R 2=CN,R 3=H,R 4=H
2b:X=-CO-,Y=-(CH 2) 2-,E=-O-,R 1=H,R 2=Cl,R 3=H,R 4=H
2c:X=-CO-,Y=-(CH 2) 2-,E=-(CH 2) 2-,R 1=H,R 2=NO 2,R 3=H,R 4=H
2d:X=-CO-,Y=-(CH 2) 3-,E=-(CH 2) 2-,R 1=CN,R 2=H,R 3=H,R 4=H
2e:X=-CO-,Y=-(CH 2) 3-,E=-CH 2-,R 1=Cl,R 2=H,R 3=H,R 4=H
2f:X=-CO-,Y=-(CH 2) 3-,E=-O-,R 1=NO 2,R 2=H,R 3=H,R 4=H
具体合成方法,以化合物1a为例,结构式如下:
Figure PCTCN2020111539-appb-000047
化合物1a名称为4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-氨基-1-萘酯二盐酸盐,其合成路线如下所示:
Figure PCTCN2020111539-appb-000048
步骤1. 1-叔丁氧羰氨基-4-羟基-萘(2)
将4-氨基-1-萘酚(1)(2.00g,12.6mmol,1.0eq),Boc 2O(二碳酸二叔丁酯,3.29g,15.1mmol,1.2eq),4-二甲氨基吡啶(153mg,1.26mmol,0.1eq)和三乙胺(2.80g,27.6mmol,2.20eq)溶于四氢呋喃(20mL),并升温到78℃反应2小时。TLC(石油醚:乙酸乙酯=1:1,R f/化合物1=0.30,R f/化合物2=0.75)显示原料反应完毕。将反应液冷却到室温,倒入水中(50mL),用乙酸乙酯萃取(50mL*3),将有机相合并并用无水硫酸钠干燥,然后旋干得到粗品。粗产物用柱层析纯化(石油醚/乙酸乙酯=5:1~3:1)得到2.60g 1-叔丁氧羰氨基-4-羟基-萘(2),棕色油状液体,产率79.8%。
1H NMR(CDCl 3,300MHz)δ:7.90(d,J=6.0Hz,1H),7.78(d,J=6.0Hz,1H),7.54-7.45(m,2H),7.11(d,J=9.0Hz,1H),6.67(d,J=9.0Hz,1H),3.80(brs,2H),1.59(s,9H)
步骤2. 4-(2-溴乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(3)
将1-叔丁氧羰氨基-4-羟基-萘(2)(148mg,0.57mmol,1.0eq),4-(2-溴乙氧基)苯甲酰氯(8) (150mg,0.57mmol,1.0eq)和三乙胺(115mg,1.12mmol,2.0eq)溶于四氢呋喃(5mL),室温反应12小时。TLC(石油醚:乙酸乙酯=2:1,R f/化合物2=0.60,R f/化合物3=0.75)显示原料消耗完。将反应液倒入20mL水中,用乙酸乙酯萃取3次(20mL*3),有机相合并,用无水硫酸钠干燥之后旋干,并用柱层析纯化(石油醚:乙酸乙酯=10:1~3:1).得到154mg 4-(2-溴乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(3),浅黄色固体,产率55.6%。
1H NMR(DMSO-d 6,300MHz)δ:10.32(s,1H),8.85(d,J=9.0Hz,2H),8.02(d,J=8.0Hz,1H),7.86(d,J=8.0Hz,1H),7.67-7.58(m,3H),7.42(d,J=8.0Hz,1H),7.13(d,J=9.0Hz,2H),4.45(t,J=8.0Hz,2H),3.86(t,J=8.0Hz,2H),1.55(s,9H).
步骤3. 4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(4)
将4-(2-溴乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(3)(154mg,0.32mmol,1.0eq),哌啶(80.9mg,0.94mmol,3.0eq)和碘化钾(5.26mg,0.032mmol,0.1eq)溶于5mL四氢呋喃并升温至78℃反应12小时。TLC(二氯甲烷:甲醇=10:1,R f/化合物3=0.95,R f/化合物4=0.30)显示原料反应完毕。将反应液降到室温,倒入20mL水中,用60mL乙酸乙酯萃取三次(20mL*3),合并有机相并用无水硫酸钠干燥,旋干。粗品经柱层析纯化(二氯甲烷:甲醇=100:1~20:1)得到60mg 4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(4),浅黄色固体,产率38.8%。
步骤4. 4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-氨基-1-萘酯二盐酸盐(化合物1a的盐酸盐)
将4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-(叔丁氧羰基)氨基-1-萘酯(4)(60.0mg,0.122mmol,1.0eq)溶于2mL甲醇,慢慢滴入2mL HCl/甲醇溶液(6mol/L),室温反应12小时。TLC(二氯甲烷:甲醇=10:1,R f/化合物4=0.30,R f/1a=0.15)显示原料反应完毕并有一个新点生成。将反应液旋干,并用无水甲苯带3次,得到45mg 4-(2-(哌啶-1-基)乙氧基)苯甲酸-4-氨基-1-萘酯二盐酸盐(1a),浅黄色固体,产率80%。
1H NMR(DMSO-d 6,300MHz)δ:10.16(brs,1H),10.0(brs,1H),8.17(d,J=9.0Hz,1H),8.04(d,J=9.0Hz,2H),7.81(d,J=9.0Hz,1H),7.48(m,2H),7.29(d,J=8.0Hz,1H),7.07(d,J=9.0Hz,2H),6.88(d,J=8.0Hz,1H),4.18(t,J=8.0Hz,2H),2.73(t,J=8.0Hz,2H),2.53(m,4H),1.55-1.53(m,4H),1.41(m,2H).
其中,步骤2中,所用4-(2-溴乙氧基)苯甲酰氯(8)的合成方法如下:
(i)4-(2-溴乙氧基)苯甲酸甲酯(6)
将4-羟基苯甲酸甲酯(5)(1.00g,6.57mmol,1.0eq),1,2-二溴乙烷(4.94g,26.3mmol,4.0 eq),碳酸钾(1.18g,8.54mmol,1.30eq)和碘化钾(109mg,0.66mol,0.10eq)溶于15mL乙腈并升温到80℃反应12小时。TLC(石油醚:乙酸乙酯=3:1,R f/化合物5=0.40,R f/化合物6=0.75)显示大部分原料消耗,少量原料剩余并有新点产生。将反应液冷却到室温,倒入50mL水中,用150mL乙酸乙酯萃取3次(50mL*3),将有机相合并,用无水硫酸钠干燥旋干。粗品用柱层析纯化(石油醚:乙酸乙酯=20:1~10:1)得到950mg 4-(2-溴乙氧基)苯甲酸甲酯(6),白色固体,产率55.9%。
1H NMR(CDCl 3,300MHz)δ:7.93(d,J=6.0Hz,2H),6.85(d,J=6.0Hz,2H),4.30(t,J=6.0Hz,2H),3.74(s,3H),3.58(t,J=6.0Hz,2H).
(ii)4-(2-溴乙氧基)苯甲酸(7)
将化4-(2-溴乙氧基)苯甲酸甲酯(6)(500mg,1.93mmol,1.0eq)溶于10mL四氢呋喃和2mL水,然后加入一水合氢氧化锂(162mg,3.86mmol,2.0eq),将反应液升温至50℃反应2小时。TLC(石油醚:乙酸乙酯=3:1,R f/化合物6=0.75,R f/化合物7=0.05)显示原料反应完,并有新点产生。减压旋走大部分四氢呋喃,将剩余反应液用稀盐酸调节到pH=1~3,有固体析出,过滤收集滤饼,并用甲苯带水3次得到420mg4-(2-溴乙氧基)苯甲酸(7),白色固体,产率88.8%。
1H NMR(DMSO-d 6,300MHz)δ:12.65(brs,1H),7.91-7.87(m,2H),7.07-7.01(m,2H),4.48-4.16(m,2H),3.85-3.66(m,2H).
(iii)4-(2-溴乙氧基)苯甲酰氯(8)
将4-(2-溴乙氧基)苯甲酸(7)(140mg,0.57mmol,1.0eq)溶于氯化亚砜(3mL),升温到80℃反应两小时。将反应液旋干,并用二氯甲烷带3次(20mL*3)得到150mg 4-(2-溴乙氧基)苯甲酰氯(8),没有纯化直接用于下一步反应。
化合物1b~2f的盐酸盐合成方法参照实施例1,区别之处在于:化合物1b,1c的合成过程中,在步骤3中,分别用吗啡啉,环己亚胺(即高哌啶)代替哌啶,其余同实施例1;化合物1d,1e,1f的合成过程中,在步骤(i)中,用1,3-二溴丙烷代替1,2-二溴丙烷,化合物1d,1f的合成过程中,在步骤3中,分别用吗啡啉,环己亚胺(即高哌啶)代替哌啶,其余同实施例1;化合物2a,2b,2c,2d,2e,2f的合成过程中,在步骤5中,分别用3-氰基-4羟基-苯甲酸甲酯,3-氯-4羟基-苯甲酸甲酯,3-硝基-4羟基-苯甲酸甲酯,2-氰基-4羟基-苯甲酸甲酯,2-氯-4羟基-苯甲酸甲酯,2-硝基-4羟基-苯甲酸甲酯代替4羟基-苯甲酸甲酯,此处对于其详细的制备过程不再赘述。
实施例2:化合物3a-4f的合成
Figure PCTCN2020111539-appb-000049
3a:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
3b:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
3c:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
3d:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=H,R 3=H,R 4=H
3e:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-CH 2-,R 1=H,R 2=H,R 3=H,R 4=H
3f:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-O-,R 1=H,R 2=H,R 3=H,R 4=H
4a:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-CH 2-,R 1=H,R 2=CN,R 3=H,R 4=H
4b:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-O-,R 1=H,R 2=Cl,R 3=H,R 4=H
4c:X=-CH 2-,Y=-(CH 2) 2-,Q=-CH 2-,E=-(CH 2) 2-,R 1=H,R 2=NO 2,R 3=H,R 4=H
4d:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-(CH 2) 2-,R 1=CN,R 2=H,R 3=H,R 4=H
4e:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-CH 2-,R 1=Cl,R 2=H,R 3=H,R 4=H
4f:X=-CH 2-,Y=-(CH 2) 3-,Q=-CH 2-,E=-O-,R 1=NO 2,R 2=H,R 3=H,R 4=H
具体合成方法,以化合物3a为例,结构式如下:
Figure PCTCN2020111539-appb-000050
化合物3a的名称为4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-萘胺二盐酸盐,其合成路线如下:
Figure PCTCN2020111539-appb-000051
步骤1. 4-(2-溴乙氧基)苯甲醇(9)
将4-(2-溴乙氧基)苯甲酸甲酯(6)(450mg,1.74mmol,1.0eq)溶于20mL无水四氢呋喃,冷却到0℃,分批加入四氢铝锂(66mg,1.74mmol,1.0eq),自然升温到室温反应0.5小时。TLC(石油醚:乙酸乙酯=3:1,R f/化合物6=0.75,R f/化合物9=0.30)显示原料反应完毕,并有新点产生。将反应液缓慢倒入50mL水中,用稀盐酸(15%)调节pH=1,用150mL乙酸乙酯萃取3次(50mL*3),将有机相合并,用无水硫酸钠干燥,过一层硅胶,滤液旋干得到340mg4-(2-溴乙氧基)苯甲醇(9),无色油状液体,产率84.8%。
步骤2. 4-(2-溴乙氧基)苄氯(10)
将4-(2-溴乙氧基)苯甲醇(9)(340mg,1.47mmol,1.0eq)溶于氯化亚砜(10mL),升温到80℃反应两小时。将反应液旋干,并用20mL二氯甲烷溶解,再次旋干,重复3次得到365mg 4-(2-溴乙氧基)苄氯(10),没有纯化直接用于下一步反应。
步骤3. 4-(4-(2-溴乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(11)
将1-叔丁氧羰氨基-4-羟基-萘(2)(380mg,1.47mmol,1.0eq),4-(2-溴乙氧基)苄氯(10)(366mg,1.47mmol,1.0eq)和碳酸钾(405mg,2.93mmol,2.0eq)溶于15mL乙腈,升温至80℃反应12小时。TLC(石油醚:乙酸乙酯=3:1,R f/化合物2=0.45,R f/化合物11=0.75)显示原料反应完毕,并有新点产生。将反应液倒入50mL水中,并用150mL乙酸乙酯萃取3次(50mL*3),合并有机相并用无水硫酸钠干燥,旋干得到粗品。然后用柱层析纯化(石油醚:乙酸乙酯=20:1~5:1)得到250mg 4-(4-(2-溴乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(11),黄色油状液体,产率36.1%。
1H NMR(CDCl 3,300MHz)δ:7.84-7.77(m,2H),7.48-7.39(m,2H),7.28(d,J=9.0Hz,2H),7.07(d,J=9.0Hz,2H),6.83(d,J=6.0Hz,2H),6.54(m,1H),4.35(s,2H),4.22(t,J=6.0Hz,2H),3.56(t,J=6.0Hz,2H),1.51(s,9H)
步骤4. 4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(12)
将4-(4-(2-溴乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(11)(250mg,0.53mmol,1.0eq),哌啶(135mg,1.59mmol,3.0eq)和碘化钾(8.79mg,0.053mmol,0.10eq)溶于10mL四氢呋喃,升温到78℃反应12小时。TLC(二氯甲烷:甲醇=10:1,R f/化合物11=0.95,R f/化合物12=0.30)显示原料反应完毕,并有新点产生。将反应液冷却到室温,倒入20mL水中,用60mL乙酸乙酯反应液萃取三次(20mL*3),合并有机相并用无水硫酸钠干燥旋干。粗品经柱层析纯化(梯度洗脱,二氯甲烷:甲醇=100:1~20:1)得到60mg 4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(12),浅黄色油状液体,产率24.6%。
1H NMR(CDCl 3,300MHz)δ:7.82(d,J=9.0Hz,1H),7.76(d,J=9.0Hz,1H),7.44(m,2H),7.27(d,J=9.0Hz,2H),7.08(d,J=6.0Hz,1H),6.83(d,J=9.0Hz,2H),6.48(d,J=9.0Hz,1H),4.49(s,2H),4.14(t,J=6.0Hz,2H),2.84(t,J=6.0Hz,2H),2.60(m,4H),1.65(m,4H),1.51(s,9H),1.43(m,2H).
步骤5. 4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-萘胺二盐酸盐(化合物3a的盐酸盐)
将4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-(叔丁氧羰基)氨基萘(12)(60.0mg,0.13mmol,1.0eq)溶于2mL甲醇,搅拌下慢慢加入2mLHCl/甲醇溶液(6mol/L),室温反应12小时。TLC(二氯甲烷:甲醇=10:1,R f/化合物12=0.30,R f/化合物2a=0.15)显示原料反应完毕,并有新点产生。将反应液旋干,并用无水甲苯带3次得到45mg 4-(4-(2-(哌啶-1-基)乙氧基)苄氧基)-1-萘胺二盐酸盐(2a),棕色油状液体,产率81.8%。 1H NMR(DMSO-d 6,300MHz)δ:10.5(brs,2H),8.20(d,J=9.0Hz,1H),8.13(d,J=9.0Hz,2H),7.63-7.52(m,2H),7.34-7.21(m,3H),6.92(d,J=9.0Hz,1H),6.82(d,J=9.0Hz,1H),4.50(s,2H),4.37(t,J=6.0Hz,2H),3.55-3.30(m,4H),2.97(t,J=6.0Hz,2H),1.79-1.67(m,4H),1.65(m,4H),1.39-1.20(m,2H).
化合物3b~4f的合成方法参照实施例2,区别之处在于:化合物3b,3c的合成过程中,在步骤4中,分别用吗啡啉,高哌啶代替哌啶,其余同实施例2;化合物3d,3e,3f的合成过程中,在实施例2的步骤5中,用1,3-二溴丙烷代替1,2-二溴丙烷,化合物3d,3f的合成过程中,在步骤4中,分别用吗啡啉,高哌啶代替哌啶,其余同实施例2;化合物4a,4b,4c,4d,4e,4f的合成过程中,在实施例2的步骤5中,分别用3-氰基-4羟基-苯甲酸甲酯,3-氯-4羟基-苯甲酸甲酯,3-硝基-4羟基-苯甲酸甲酯,2-氰基-4羟基-苯甲酸甲酯,2-氯-4羟基-苯甲酸甲酯,2-硝基-4羟基-苯甲酸甲酯代替4羟基-苯甲酸甲酯,此处对于其详细的制备过程不再赘述。
诱导乳腺癌、结肠癌、肺癌癌细胞凋亡MTT的实验
方法:分别收集对数生长期MDA-MB-231、MCF-7、HCT-116、PC9-AR、PC9-GR、PC9细胞,计数,调整细胞悬液浓度为50000个/mL,每孔加入100ul细胞悬液即每孔5000个细 胞,并将上述癌细胞加本发明所述1a和3a的萘胺类化合物的盐酸盐处理,使体系中萘胺类化合物的盐酸盐的终浓度分别为0.1、0.3、1、3、10、30、100、300(μmol/L)几个梯度,并继续培养48h;药物处理后,每孔加入噻唑蓝试剂50μL(1mg/mL),37℃孵育4h,甩板弃去孔中液体,沥干水份,用滤纸吸净残留液,然后加入100μL二甲基亚砜,在水平震荡器上反应7-8min,至蓝紫色结晶完全溶解,酶标仪读值,测定在吸收波长为570nm下的OD值,记录结果,其中所述1a(对应图1至6中SMY-001)和3a(对应图1至6中SMY-002)的加入浓度和细胞抑制率的曲线图如图1至6所示,所述1a和3a的萘胺类化合物的盐酸盐的统计结果如下表所示:
Figure PCTCN2020111539-appb-000052
表中显示:SMY001、SMY002在低浓度下,对乳腺癌细胞株(MCF-7、MDA-MB-231)、人源结肠癌(HCT-116)和肺癌细胞株(PC9、PC9AR和PC9GR)均有显著抑制作用,依据分子模拟(图8)的结论,SMY001与STAT3-SH2功能域的磷酸化络氨酸激酶作用区域有显著的相互作用,SMY001的萘胺基(作为I式萘胺类化合物的公共基团)分别参与了与关键氨基酸-赖氨酸591、精氨酸595的极性和疏水相互作用。所以,SMY001的萘胺基既是I式萘胺类化合物的公共基团,也是参与与蛋白分子相互作用的关键基团,由此推断,作为I式萘胺类化合物的氨基与STAT3蛋白SH2功能域的磷酸化络氨酸相互作用区域有强相互作用,I式萘胺类化合物均为STAT3作用于赖氨酸591、精氨酸595和精氨酸609位点的抑制剂,所以,I式萘胺类化合物均能抑制STAT3蛋白与信号传导中上下游蛋白的结合,抑制STAT3蛋白的磷酸化、阻断STAT3信号传导下游基因的表达、诱导相关肿瘤细胞的凋亡,并达到控制肿瘤生长的作用。
蛋白免疫印迹(Westernblot)实验
1、细胞培养及加药:
(1)取对数生长期HCC827细胞,以胰酶消化后,用含10%胎牛血清的RPMI-1640培养基制成密度为300000个/mL的单细胞悬液,以每孔加入2mL细胞悬液接种至6孔细胞培养板中。
(2)37℃、5%CO 2培养箱孵育,待细胞贴壁后,实验组加入含不同浓度的药物SMY002(3a),浓度梯度分别为:10、30、100和300μmol/L,1h后加入浓度为1mg/mL白介素-6(IL-6)30μL刺激细胞,白介素-6(IL-6)终浓度为30ng/mL。
(3)继续培养0.5h后,用RIPA裂解液裂解细胞收集蛋白。
2、细胞收集和裂解
(1)去除上层培养基,六孔板中细胞用磷酸盐缓冲液(PBS)洗两次。加入预冷的RIPA细胞裂解液(蛋白酶抑制剂和苯甲基磺酰氟与裂解液均以1:100的比例提前加入混匀)160μL。用提前洗净的细胞刮子将细胞裂解液刮下来,收集到一个干净的1.5mL离心管中。
(2)在冰上放置,裂解30min,每隔一定的时间(6min)涡旋一次。
(3)4℃,12000rpm,离心12min。
(4)将细胞上清液移入到一个干净的离心管中。细胞上清分两部分:取5μL加入到1.5mL的离心管中用于BCA测蛋白含量,再加入45μL的1×磷酸盐缓冲液(PBS)混匀备用;剩余的细胞上清定量取140μL,加入5×SDS上样缓冲液(Loading Buffer)35μL,混匀后在沸水中煮沸8min,离心后-20℃冰箱中保存。
(5)蛋白浓度测定步骤:
A、1×磷酸盐缓冲液(PBS)稀释蛋白标准品:
Figure PCTCN2020111539-appb-000053
B、BCA工作液配制:根据标准品和待测样品的个数,计算出总共所需A与B混合工作液的量。按BCA试剂A与B体积比50:1的比例,配制好工作液,涡旋振荡混匀备用。
C、将蛋白标准液和用磷酸盐缓冲液(PBS)稀释好的样品上清液(10倍稀释)各取25μL加入到新的96孔板中。然后再分别加入200μL的提前配好的BCA工作液充分混匀。切记不要吹打产生气泡,盖紧96孔板板盖,在37℃恒温箱中反应30min。
D、取出96孔板恢复至室温3-5min,在酶标仪上测定在562nm波长下的吸光度值,并作出标准曲线计算出每个样品的1μL/Protein含量以备蛋白上样。
3、十二烷基磺酸钠-聚丙烯酰胺凝胶(SDS-PAGE)
(1)固定制胶板,配制10%的SDS-PAGE分离胶。
按照下表配制分离胶:10mL
Figure PCTCN2020111539-appb-000054
(2)将混好的分离胶分别加入到2块胶板中,加到离顶部1.0cm的位置,用无水乙醇填满胶板,静置30-45min。
(3)分离胶凝好后,倒出剩余的无水乙醇,并用滤纸将剩余无水乙醇吸干净。
(4)按照下表配制5%浓缩胶5mL
Figure PCTCN2020111539-appb-000055
(5)将配制好的浓缩胶缓慢地加入胶板中,避免产生气泡,插入样品梳,静置30-45min。
(6)取出蛋白样品,100℃水浴加热5min,转速10000rpm,离心10min。
(7)将胶板固定到电泳槽中,加入SDS-PAGE电泳缓冲液,拔出样品梳,按照顺序将 处理好的蛋白样品加入到样品槽中。
(8)80V电泳40min。
(9)换电压120V电泳大约1.5h直至溴酚蓝跑出胶体;
4、Western-blot转膜
(1)将电泳完毕的SDS-PAGE胶放入TBST缓冲液中漂洗一次,蛋白胶放到转膜缓冲液中浸泡。
(2)将一层海绵垫在膜转移缓冲液中浸湿,用镊子夹到转膜仪上,按照海绵垫,三层滤纸,蛋白胶,聚偏氟乙烯(PVDF)膜,三层滤纸,海绵垫,顺序放好,对齐,夹起放到转膜仪上,操作时,滤纸、海绵垫均要在转膜缓冲液中浸湿。每层之间若有气泡应用玻璃试管轻轻滚动将其赶出。
(3)打开转膜仪,300mA转膜75min。
(4)将膜取出,放入TBST缓冲液中,60rpm水平震荡仪漂洗3次,每次8min。
(5)用5%牛血清白蛋白(BSA)封闭液20mL,60rpm水平震荡仪室温封闭2h。
(6)用加有3μL一抗(Stat3和p-STAT31:1000)的3mL抗体孵育液,4℃60rpm水平震荡仪过夜孵育。
(7)用10mLTBST,常温60rpm水平震荡仪洗涤PVDF膜三次,每次10min。
(8)用加有2μL二抗的20mL抗体孵育液,常温60rpm水平震荡仪孵育PVDF膜2h。
(9)用10mLTBST,常温60rpm水平震荡仪洗涤PVDF膜三次,每次10min。
(10)取化学发光底物试剂溶液A和溶液B各1mL,室温显色5min。
(11)用滤纸将膜上的液体吸干,显影仪显影。
图7是化合物SMY002(3a)蛋白免疫印迹的结果。蛋白免疫印迹实验的结果以将电泳分离后的细胞总蛋白质从凝胶转移到固相支持物膜上,根据抗原抗体特异原理,分别通过STAT3、p-STAT3、β-Actin抗体检测相应蛋白表达量。结果如图,可以看到在药物作用下,随药物浓度增加,HCC827表达STAT3、β-Actin蛋白量不变,而p-STAT3表达量呈下降趋势,化合物SMY002(3a)明显抑制p-STAT3的表达。
分子对接(docking)实验
方法:为了验证化合物SMY001与STAT3蛋白的相互作用机制,发明人用STAT3蛋白的SH2功能域区的磷酸化络氨酸(pY-705)结合区域作为计算机虚拟模拟(docking)的蛋白质模板,虚拟对接区域主要集中在磷酸化酪氨酸作用位点ARG609和LYS591附近区域。STAT3SH2的结构坐标取于蛋白质结构数据库(PDB databank,ID:1BG1)。分子对接(docking) 的方法:所有的计算机配位模拟(docking)的实验均在sybyl X2.1.1的操作平台上完成,所用的计算机配位模拟(docking)的工具为SUEFLEX DOCK。依据所选的位点(主要包括磷酸化酪氨酸作用位点ARG609和LYS591)进行计算,确定势能面(potential gradient)并作计算机配位模拟(docking)的实验。依据模拟(docking)的分数(Score)和构象及相互作用进行分析。图8.的虚拟对接显示:SMY001(1a)与STAT3-SH2功能域的赖氨酸591、精氨酸595有Pi-Pi折叠相互作用,并与赖氨酸591的主链有极性相互作用。
依据分子模拟(图8)的结论,I式萘胺类化合物的氨基与STAT3蛋白SH2功能域的磷酸化络氨酸相互作用区域有强相互作用,I式萘胺类化合物均为STAT3作用于赖氨酸591、精氨酸595和精氨酸609位点的抑制剂,所以,I式萘胺类化合物均能抑制STAT3蛋白与信号传导中上下游蛋白的结合,抑制STAT3蛋白的磷酸化、阻断STAT3信号传导下游基因的表达、诱导相关肿瘤细胞的凋亡,并达到控制肿瘤生长的作用。
因此,按照药物开发的一般途径(先进行常规的抗肿瘤体外筛选,然后进行针对性的研究),本发明的化合物可以应用到与STAT3细胞信号传导异常相关的癌症治疗药物中,可通过与人体可接受的酸成盐或与药用载体混合制备抗肿瘤药物。
最后所应说明的是:上述实施例仅用于说明而非限制本发明的技术方案,任何对本发明进行的等同替换及不脱离本发明精神和范围的修改或局部替换,其均应涵盖在本发明权利要求保护的范围之内。

Claims (10)

  1. 一种萘胺类化合物,其特征在于,结构式如通式I所示:
    Figure PCTCN2020111539-appb-100001
    其中,R 1、R 2、R 3、R 4各自独立地选自氢、卤素、硝基、烷基、氰基、芳基;
    p代表X取代基的个数,P为0或1;
    X为-CH 2-、-(CH 2) 2-、-CO-、-CH 2-CO-或-(CH 2) 2-CO-;
    m代表Y取代基的个数,M为0或1;
    Y为-(CH 2) 2-、-(CH 2) 3-、-CO-、-CH 2-CO-或-(CH 2) 2-CO-
    A为
    Figure PCTCN2020111539-appb-100002
    其中n=0、1、2、3。
  2. 根据权利要求1所述的萘胺类化合物,其特征在于,具体为如下结构的化合物:
    Figure PCTCN2020111539-appb-100003
    Figure PCTCN2020111539-appb-100004
  3. 权利要求1或2所述的萘胺类化合物与乙酸、二氢乙酸、苯甲酸、柠檬酸、山梨酸、丙酸、草酸、富马酸、马来酸、盐酸、苹果酸、磷酸、亚硫酸、硫酸、香草酸、酒石酸、抗坏血酸、硼酸、乳酸和乙二胺四乙酸中的至少一种形成的生物学可接受的盐。
  4. 权利要求1或2所述的萘胺类化合物的制备方法,其特征在于,包括以下步骤:
    (1)将摩尔比为1:1的
    Figure PCTCN2020111539-appb-100005
    Figure PCTCN2020111539-appb-100006
    溶解于有机溶剂中,并加入碱,TLC检测反应结束后,后处理得到
    Figure PCTCN2020111539-appb-100007
    (2)然后将摩尔比为1:3的
    Figure PCTCN2020111539-appb-100008
    Figure PCTCN2020111539-appb-100009
    通过亲核取代反应生成
    Figure PCTCN2020111539-appb-100010
    其中,E为-CH 2-、-O-或-(CH 2) 2-。
  5. 根据权利要求4所述的萘胺类化合物的制备方法,其特征在于,所述
    Figure PCTCN2020111539-appb-100011
    通过以下方法制备得到:将摩尔比为1:4的
    Figure PCTCN2020111539-appb-100012
    Figure PCTCN2020111539-appb-100013
    通过亲核取代反应得到
    Figure PCTCN2020111539-appb-100014
    然后
    Figure PCTCN2020111539-appb-100015
    通过反应转换为
    Figure PCTCN2020111539-appb-100016
    继而将
    Figure PCTCN2020111539-appb-100017
    与氯化剂发生卤化反应,得到所述
    Figure PCTCN2020111539-appb-100018
  6. 根据权利要求5所述的萘胺类化合物的制备方法,其特征在于,所述
    Figure PCTCN2020111539-appb-100019
    包括
    Figure PCTCN2020111539-appb-100020
    Figure PCTCN2020111539-appb-100021
    的具体制备方法如下:
    将所述
    Figure PCTCN2020111539-appb-100022
    溶解于四氢呋喃和水的混合溶剂中,然后加入氢氧化锂,20~50℃反应,TLC检测反应完成后,旋蒸除去四氢呋喃,残余物用盐酸调节至pH=1~3,析出得到的固体即为
    Figure PCTCN2020111539-appb-100023
    Figure PCTCN2020111539-appb-100024
    的具体制备方法如下:
    Figure PCTCN2020111539-appb-100025
    溶解于四氢呋喃中,加入四氢铝锂,室温反应,TLC检测反应完成后,将反应液倒入水中,用盐酸调节至pH=1~3,乙酸乙酯萃取并收集有机相,过滤后旋蒸即得。
  7. 根据权利要求6所述的萘胺类化合物的制备方法,其特征在于,当结构式为1a至2f的化合物时,此时Y为-(CH 2) 2-或-(CH 2) 3-,其具体制备方法如下:
    (1)将
    Figure PCTCN2020111539-appb-100026
    Figure PCTCN2020111539-appb-100027
    溶解于四氢呋喃中,并加入三乙 胺,室温下反应,TLC检测反应结束后,后处理得到
    Figure PCTCN2020111539-appb-100028
    其中,所述
    Figure PCTCN2020111539-appb-100029
    Figure PCTCN2020111539-appb-100030
    以及三乙胺的摩尔比为1:1:2;
    (2)然后将
    Figure PCTCN2020111539-appb-100031
    Figure PCTCN2020111539-appb-100032
    溶解于四氢呋喃中,并加入碘化钾,回流反应结束后,后处理即得;
    其中,
    Figure PCTCN2020111539-appb-100033
    Figure PCTCN2020111539-appb-100034
    以及碘化钾的摩尔比为1:3:0.1。
  8. 根据权利要求6所述的萘胺类化合物的制备方法,其特征在于,当结构式为3a至4f的化合物时,此时Y为-(CH 2) 2-或-(CH 2) 3-,其具体制备方法如下:
    (1)将
    Figure PCTCN2020111539-appb-100035
    Figure PCTCN2020111539-appb-100036
    溶解于乙腈中,并加入碳酸钾,60-80℃下反应,TLC检测反应结束后,后处理得到
    Figure PCTCN2020111539-appb-100037
    其中,
    Figure PCTCN2020111539-appb-100038
    Figure PCTCN2020111539-appb-100039
    以及碳酸钾的摩尔比为1:1:1.2;
    (2)然后将
    Figure PCTCN2020111539-appb-100040
    Figure PCTCN2020111539-appb-100041
    溶解于四氢呋喃中,并加入碘化钾,回流反应结束后,后处理即得;
    其中,
    Figure PCTCN2020111539-appb-100042
    Figure PCTCN2020111539-appb-100043
    以及碘化钾的摩尔比为1:3:0.1。
  9. 权利要求3所述的萘胺类化合物的生物学可接受的盐,其特征在于,通过以下方法制备:将所述萘胺类化合物溶于对应酸的甲醇溶液中,室温下反应,TLC检测反应结束后,后处理即得。
  10. 权利要求1至3任一项所述的萘胺类化合物及其生物学可接受的盐在制备用于治疗与STAT3细胞信号传导相关疾病的药物中的用途。
PCT/CN2020/111539 2019-08-27 2020-08-27 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用 WO2021037090A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/427,629 US20220098162A1 (en) 2019-08-27 2020-08-27 Aphthylamine compound and biologically acceptable salt thereof, preparation method therefor, and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910794306.1 2019-08-27
CN201910794306.1A CN110526881B (zh) 2019-08-27 2019-08-27 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021037090A1 true WO2021037090A1 (zh) 2021-03-04

Family

ID=68664359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111539 WO2021037090A1 (zh) 2019-08-27 2020-08-27 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用

Country Status (3)

Country Link
US (1) US20220098162A1 (zh)
CN (1) CN110526881B (zh)
WO (1) WO2021037090A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526881B (zh) * 2019-08-27 2020-09-22 河南省锐达医药科技有限公司 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用
CN111559991B (zh) * 2020-06-01 2022-01-25 河南省锐达医药科技有限公司 一种萘胺类化合物及其盐的制备方法和应用
CN112961120B (zh) * 2021-02-06 2022-02-08 河南省锐达医药科技有限公司 一种萘基脲类化合物、其制备方法及应用
CN113444035B (zh) * 2021-04-08 2022-05-27 河南省锐达医药科技有限公司 一类具有抗癌作用的萘基脲类化合物及其制备方法和应用
CN114702439B (zh) * 2021-12-13 2023-11-10 河南省锐达医药科技有限公司 一类萘基脲-哌嗪类化合物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668303A (zh) * 2002-07-22 2005-09-14 伊莱利利公司 含苯磺酰基的选择性雌激素受体调节剂
WO2010088408A2 (en) * 2009-01-28 2010-08-05 Emory University Subunit selective nmda receptor antagonists for the treatment of neurological conditions
WO2014028909A1 (en) * 2012-08-16 2014-02-20 Ohio State Innovation Foundation Stat3 inhibitors and their anticancer use
US20180071258A1 (en) * 2016-09-13 2018-03-15 Regents Of The University Of Minnesota Anticancer compounds
WO2018202681A1 (en) * 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft Use of disubstituted benzenes to control insecticide-resistant pests
CN110526881A (zh) * 2019-08-27 2019-12-03 河南省锐达医药科技有限公司 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用
CN111559991A (zh) * 2020-06-01 2020-08-21 河南省锐达医药科技有限公司 一种萘胺类化合物及其盐的制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101836971A (zh) * 2010-05-21 2010-09-22 徐学军 一种化合物在制备治疗癌症或牛皮癣药物方面的应用
CN108498503A (zh) * 2017-02-24 2018-09-07 河南省锐达医药科技有限公司 一类新型细胞信号传导和基因转录激活因子3型(stat3)抑制剂的制备和用途
CN109316479B (zh) * 2018-10-22 2023-09-05 河南省锐达医药科技有限公司 一种萘酚类化合物的制备及其在癌症治疗方面的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1668303A (zh) * 2002-07-22 2005-09-14 伊莱利利公司 含苯磺酰基的选择性雌激素受体调节剂
WO2010088408A2 (en) * 2009-01-28 2010-08-05 Emory University Subunit selective nmda receptor antagonists for the treatment of neurological conditions
WO2014028909A1 (en) * 2012-08-16 2014-02-20 Ohio State Innovation Foundation Stat3 inhibitors and their anticancer use
US20180071258A1 (en) * 2016-09-13 2018-03-15 Regents Of The University Of Minnesota Anticancer compounds
WO2018202681A1 (en) * 2017-05-04 2018-11-08 Bayer Cropscience Aktiengesellschaft Use of disubstituted benzenes to control insecticide-resistant pests
CN110526881A (zh) * 2019-08-27 2019-12-03 河南省锐达医药科技有限公司 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用
CN111559991A (zh) * 2020-06-01 2020-08-21 河南省锐达医药科技有限公司 一种萘胺类化合物及其盐的制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENYING YU, XIAO HUI, LIN JIAYUH, LI CHENGLONG: "Discovery of Novel STAT3 Small Molecule Inhibitors via in Silico Site-Directed Fragment-Based Drug Design", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 56, no. 11, 13 June 2013 (2013-06-13), US, pages 4402 - 4412, XP055326145, ISSN: 0022-2623, DOI: 10.1021/jm400080c *

Also Published As

Publication number Publication date
CN110526881B (zh) 2020-09-22
US20220098162A1 (en) 2022-03-31
CN110526881A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
WO2021037090A1 (zh) 一种萘胺类化合物及其生物学可接受的盐,其制备方法和应用
CN108239083A (zh) 芳香烃受体调节剂
Wang et al. Synthesis and biological evaluation of new 4β-anilino-4′-O-demethyl-4-desoxypodophyllotoxin derivatives as potential antitumor agents
Gao et al. Rational drug design of benzothiazole-based derivatives as potent signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitors
CA2853062A1 (en) Pyridine- sulfoximines as tyrosine kinase inhibitors
CN109311852A (zh) 作为egfr抑制剂的苯胺嘧啶化合物的结晶
CN111533721B (zh) 苯并吡喃酮或喹啉酮类化合物及其应用
CN106946896B (zh) 呋喃并[2,3-d]嘧啶-4-胺衍生物
WO2019114741A1 (zh) 作为Akt抑制剂的盐型及其晶型
CN101253146A (zh) 用于治疗肥胖症及相关病症的新的氨基酸衍生物
CN114292270B (zh) 一种btk抑制剂及其制备方法与应用
CN112759564B (zh) 二芳基脲类化合物及其制法和药物用途
CN111606888B (zh) 吡咯类衍生物及其制备方法与应用
CN114478509B (zh) 五元杂环取代的苯甲酰胺类化合物及其制备方法与应用
CN113024460B (zh) 作为雌激素受体与组蛋白去乙酰化酶双靶点化合物的四氢异喹啉类化合物、合成方法及用途
JP7034430B2 (ja) 重水素化インドールアミン2,3-ジオキシゲナーゼ阻害剤及びその使用
CN115925606B (zh) 一种5-(3-(磺酰胺基)苯基)-1h-吡咯-2-羧酸衍生物及其制备方法和应用
CN110467551B (zh) 一种4-甲氧基-n-(1-萘基)苯磺酰胺类stat3小分子抑制剂及其制备和应用
WO2023236879A1 (zh) 苯并[c]色满化合物的多晶型及其制备方法和用途
CN109535101B (zh) 一类水杨酸衍生物的制备方法及其在肿瘤治疗方面的应用
CN104447733B (zh) 1-苄基-2-吡咯啉酮-4-酰胺类化合物及其制备方法与应用
CN117567361A (zh) 一类芳基炔类化合物及其制备方法和应用
CN112961081B (zh) 一种联苯甲酰胺脲类化合物及其制备方法和应用
CN115368331B (zh) 一类二氢吡喃酮类化合物及其制备方法和用途
CN105778896B (zh) 苯基(4‑哌啶基)甲酮类hERG钾离子通道的小分子荧光探针

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859470

Country of ref document: EP

Kind code of ref document: A1