WO2021036997A1 - 一种显示基板及其控制方法、显示面板、显示装置 - Google Patents

一种显示基板及其控制方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2021036997A1
WO2021036997A1 PCT/CN2020/110849 CN2020110849W WO2021036997A1 WO 2021036997 A1 WO2021036997 A1 WO 2021036997A1 CN 2020110849 W CN2020110849 W CN 2020110849W WO 2021036997 A1 WO2021036997 A1 WO 2021036997A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
substrate
display
mode switching
mode
Prior art date
Application number
PCT/CN2020/110849
Other languages
English (en)
French (fr)
Inventor
郑琪
袁洪亮
武晓娟
毕谣
赵志强
钟璇
程张祥
王家星
张冬华
郭兰军
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/285,482 priority Critical patent/US11435608B2/en
Publication of WO2021036997A1 publication Critical patent/WO2021036997A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1323Arrangements for providing a switchable viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/05Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 multimode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/121Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode common or background
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/128Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode field shaping

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and particularly relates to a display substrate and a control method thereof, a display panel, and a display device.
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • the present disclosure provides a display substrate provided in a display panel, including: a first substrate and a plurality of mode switching electrodes and a plurality of data lines provided on the first substrate;
  • the mode switching electrode is arranged on a side of the data line away from the first substrate, and is insulated from the data line, and the mode switching electrode is in the orthographic projection of the first substrate Orthographic projection of covering part of the data line on the first substrate;
  • the mode switching electrode is configured to switch the display mode of the display panel, and the display mode includes: a normal mode and a privacy mode.
  • the display substrate further includes: a first electrode and a second electrode;
  • the first electrode and the mode switching electrode are arranged in the same layer, and the second electrode is arranged on the side of the first electrode close to the first substrate;
  • the first electrode is a slit electrode
  • the second electrode is a plate electrode or a slit electrode
  • the mode switching electrode includes: a first edge and a second edge that extend in a first direction and are opposed to each other, and the data line includes: a third edge and a second edge that extend in the first direction and are opposed to each other.
  • the first edge and the third edge are located on the same side, and the second edge and the fourth edge are located on the same side;
  • the distance between the orthographic projection of the first edge on the first substrate and the orthographic projection of the third edge on the first substrate is equal to the orthographic projection of the second edge on the first substrate and the first substrate.
  • the orthographic projection of the four edges on the first substrate, and the first direction is the extension direction of the data line.
  • the first electrode is a common electrode and the second electrode is a pixel electrode, or the first electrode is a pixel electrode and the second electrode is a common electrode;
  • the mode switching electrode is configured to form a turbulent electric field for driving the deflection of liquid crystal molecules with the first electrode and the second electrode in the privacy mode, and form a light leakage area around the data line.
  • the length of the light leakage region along the second direction is greater than the distance between the orthographic projection of the first edge on the first substrate and the orthographic projection of the third edge on the first substrate ,
  • the second direction is the data line arrangement direction.
  • the display mode of the display panel when the first signal is applied to the mode switching electrode, the display mode of the display panel is the normal mode, and when the second signal is applied to the mode switching electrode, the display mode of the display panel is The display mode is privacy mode.
  • the first signal is a signal applied to the common electrode in a normal mode.
  • the first electrode, the second electrode, and the mode switching electrode are all transparent electrodes.
  • multiple mode switching electrodes on the display substrate are connected to each other.
  • the present disclosure also provides a display panel, including: a cell-matching substrate, the above-mentioned display substrate, and a liquid crystal layer disposed between the cell-matching substrate and the display substrate, and the cell-matching substrate includes: A second substrate and a black matrix layer provided on the second substrate;
  • the orthographic projection of the black matrix layer on the second substrate covers the orthographic projection of the data line on the second substrate.
  • the second substrate further includes: a color filter, a flat layer disposed on a side of the black matrix layer close to the liquid crystal layer, and a flat layer disposed on the second substrate away from the liquid crystal layer.
  • the upper polarizer on one side of the black matrix layer; the length W BM of the black matrix layer along the second direction satisfies W BM W D +2W 0 +2tan(arcsin(sinA1/(n2/n1)))*(H1+ H2);
  • W D is the length of the data line along the second direction
  • W 0 is the length of the light leakage area along the second direction
  • A1 is the recognizable maximum field angle
  • n1 is the liquid crystal layer, the flat layer
  • n2 is the refractive index of air
  • H1 is the surface of the flat layer close to the first substrate and the mode switching electrode close to the first substrate
  • the vertical distance between the surfaces of the bottom, H2 is the thickness of the flat layer.
  • the present disclosure also provides a display device, including: a printed circuit board, an anti-peep signal line, and the above-mentioned display panel;
  • the display panel includes a privacy signal line configured to provide a signal to the mode switching electrode, and the privacy signal line is connected to the printed circuit board.
  • the present disclosure also provides a method for controlling a display substrate, which is configured to control the above-mentioned display substrate, and the method includes:
  • the display mode of the display panel is switched.
  • the switching the display mode of the display panel by controlling the signal applied to the mode switching electrode includes:
  • the display mode of the display panel is switched to the normal mode;
  • the first signal is the signal of the common electrode;
  • the display mode of the display panel is switched to the privacy mode.
  • FIG. 1 is a schematic structural diagram of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a display substrate provided by an exemplary embodiment
  • FIG. 3 is a schematic structural diagram of a display substrate provided by another exemplary embodiment
  • Fig. 4 is a top view of a display substrate provided by an exemplary embodiment
  • FIG. 5 is another top view of a display substrate provided by an exemplary embodiment
  • FIG. 6 is a schematic diagram of a structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 7 is a schematic diagram of another structure of a display panel provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • a display product that realizes anti-peeping not only has a higher product cost, but also a more complicated manufacturing process.
  • FIG. 1 is a schematic diagram of the structure of a display substrate provided by an embodiment of the disclosure.
  • the display substrate provided by the embodiment of the present disclosure includes: a first substrate 10 and a plurality of mode switching electrodes 11 and a plurality of data lines 12 provided on the first substrate 10.
  • the mode switching electrode 11 is arranged on the side of the data line 12 away from the first substrate 10 and insulated from each other.
  • the orthographic projection of the mode switching electrode 11 on the first substrate 10 covers a part of the data line 12 in the first substrate 10.
  • a plurality of mode switching electrodes may be arranged along the array, and the number of columns of the mode switching electrodes is equal to the number of columns of data lines.
  • the display substrate may further include a plurality of pixel units, and the mode switching electrode is disposed between adjacent pixel units.
  • the first substrate 10 may be a rigid substrate or a flexible substrate.
  • the rigid substrate can be, but is not limited to, one or more of glass and metal sheet.
  • the flexible substrate can be, but is not limited to, polyethylene terephthalate, ethylene terephthalate, polyether ether ketone, polystyrene, polycarbonate, polyarylate, polyarylate, One or more of polyimide, polyvinyl chloride, polyethylene, and textile fibers.
  • the display panel may be a liquid crystal display panel.
  • the display mode of the display panel may be Advanced Super Dimension Switch (ADS).
  • ADS Advanced Super Dimension Switch
  • the ADS mode display panel forms a multi-dimensional electric field through the electric field generated by the edge of the slit electrode in the same plane and the electric field generated between the slit electrode layer and the plate electrode layer, so that all areas between the slit electrodes and directly above the electrodes in the liquid crystal cell are formed.
  • the oriented liquid crystal molecules can be rotated, thereby improving the working efficiency of the liquid crystal and increasing the light transmission efficiency. It has high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration and no squeeze water The advantages of corrugation.
  • the mode switching electrode may have any shape, which is not limited in the embodiment of the present disclosure.
  • the mode switching electrode 11 may be a transparent electrode.
  • the mode switching electrode 11 being a transparent electrode may not affect the aperture ratio and transmittance of the display substrate.
  • the mode switching electrode 11 can be made of a mask plate, which not only reduces the product cost, but also simplifies the manufacturing process.
  • the material of the mode switching electrode 11 is a transparent conductive material, where the transparent conductive material includes: indium tin oxide or zinc tin oxide.
  • the display substrate provided by the embodiment of the present disclosure is arranged in the display panel, and includes: a first substrate and a plurality of mode switching electrodes and a plurality of data lines arranged on the first substrate; wherein, the mode switching electrode is arranged far away from the data line.
  • One side of the first substrate is insulated from the data line.
  • the orthographic projection of the mode switching electrode on the first substrate covers part of the orthographic projection of the data line on the first substrate; the mode switching electrode is set to switch the display panel Display mode, display mode includes: normal mode and privacy mode.
  • FIG. 2 is a schematic structural diagram of a display substrate provided by an exemplary embodiment
  • FIG. 3 is a schematic structural diagram of a display substrate provided by another exemplary embodiment.
  • the display substrate of an exemplary embodiment further includes: a first electrode 13 and a second electrode 14.
  • the first electrode 13 and the mode switching electrode 11 are arranged in the same layer, and the second electrode 14 is arranged on the side of the first electrode 13 close to the first substrate 10.
  • the first electrode 13 may be a slit electrode.
  • the second electrode 14 may be a plate electrode, or may be a slit electrode.
  • the display substrate provided by an exemplary embodiment may further include: a first insulating layer 15 and a second insulating layer 16.
  • the first insulating layer 15 is arranged between the mode switching electrode 11 and the data line 12, and the second insulating layer 16 is arranged on the side of the first insulating layer 15 close to the first substrate 10.
  • the material of the first insulating layer 15 and the second insulating layer 16 may be silicon oxide, silicon nitride, or a composite of silicon oxide and silicon nitride.
  • the first insulating layer 15 and the second insulating layer 16 may have a single-layer structure, or may have a multi-layer structure.
  • the display substrate may further include: a thin film transistor.
  • the thin film transistor includes: an active layer, a gate electrode, a source and drain electrode, a gate insulating layer, an interlayer insulating layer, and a passivation layer.
  • the thin film transistor may have a bottom gate structure or may have a top gate structure.
  • the first insulating layer is a passivation layer of a thin film transistor.
  • the second insulating layer may be a gate insulating layer, or may be an interlayer insulating layer, or may be a gate insulating layer and an interlayer insulating layer.
  • the data line and the source and drain electrodes of the thin film transistor are arranged in the same layer.
  • the second electrode 14 may be provided in the same layer as the data line 12, or may be provided on the side of the data line 12 close to the first substrate 10.
  • FIG. 2 illustrates an example in which the second electrode 14 is arranged on the side of the data line 12 close to the first substrate 10
  • FIG. 3 illustrates an example in which the second electrode 14 is arranged in the same layer as the data line.
  • the second electrode 14 when the second electrode 14 is disposed on the side of the data line 12 close to the first substrate 10, the second electrode 14 may be disposed on the same layer as the active layer, or may be disposed on the same layer as the gate electrode. Layer settings.
  • the mode switching electrode 11 may include: a first edge and a second edge that extend in a first direction and are opposed to each other, and the data line 12 includes: extend in the first direction And the third edge and the fourth edge are opposite, the first edge and the third edge are located on the same side, and the second edge and the fourth edge are located on the same side.
  • the distance dl between the orthographic projection of the first edge on the first substrate and the orthographic projection of the third edge on the first substrate is equal to the orthographic projection of the second edge on the first substrate and the fourth edge on the first substrate The distance dr on the orthographic projection.
  • the first direction is the extending direction of the data line 12.
  • the first electrode 13 and the second electrode 14 may be configured to generate an electric field that drives the normal deflection of liquid crystal molecules to achieve display.
  • the display mode when the first signal is applied to the mode switching electrode, the display mode is the normal mode, and when the second signal is applied to the mode switching electrode, the display mode is the privacy mode.
  • the first signal may be a signal of the common electrode.
  • the first electrode 13 may be a pixel electrode
  • the second electrode 14 may be a common electrode.
  • the signal of the common electrode or the signal of the pixel electrode may be applied to the mode switching electrode 11.
  • the mode switching electrode 11 applies the signal of the common electrode, since there is no voltage difference between the mode switching electrode 11 and the common electrode, and the intensity of the electric field generated between the mode switching electrode 11 and the pixel electrode interferes with the normal display noise of the display substrate. Therefore, applying the signal of the common electrode to the mode switching electrode 11 can ensure the display effect of the display substrate in the normal mode.
  • the pixel electrode signal of the pixel adjacent to the mode switching electrode can be applied to the mode switching electrode 11, that is, when the display panel displays a monochrome screen, different mode switching electrodes can be provided
  • the signal of the same pixel electrode when the display panel displays a color screen, can provide the signal of different pixel electrodes to different mode switching electrodes.
  • the electric field intensity generated between the mode switching electrode 11 and the common electrode is the same as the electric field intensity between the common electrode and the pixel electrode.
  • the application of the signal of the pixel electrode by the electrode 11 can ensure the display effect of the display substrate in the normal mode.
  • the pixel electrode signal of any pixel adjacent to the mode switching electrode may be applied to the mode switching electrode 11.
  • the first electrode 13 may be a common electrode
  • the second electrode 14 may be a pixel electrode.
  • the signal of the common electrode can be applied to the mode switching electrode 11. Since there is no voltage difference between the first electrode 13 and the mode switching electrode 11, and there is no pressure difference between the mode switching electrode 11 and the second electrode 14.
  • the intensity of the electric field is the same as the intensity of the electric field between the first electrode 13 and the second electrode 14. Therefore, applying the signal of the common electrode to the mode switching electrode 11 can ensure the display effect of the display substrate in the normal mode.
  • the mode switching electrode 11 is a part of the first electrode 13 and forms an electric field with the second electrode 14 to drive the normal deflection of liquid crystal molecules.
  • the mode switching electrode 11 is set to form a turbulent electric field for driving the deflection of liquid crystal molecules between the first electrode 13 and the second electrode 14 in the privacy mode, and is formed on the periphery of the data line 12.
  • the light leakage area DA is formed.
  • the length of the light leakage area DA in the second direction is greater than the distance dl between the orthographic projection of the first edge on the first substrate 10 and the orthographic projection of the third edge on the first substrate 10.
  • the orthographic projection of the mode switching electrode 11 on the first substrate 10 does not cover the orthographic projection of the light leakage area DA on the first substrate 10.
  • the second direction is the arrangement direction of the data lines.
  • the orthographic projection of the data line 12 on the first substrate 10 and the orthographic projection of the light leakage area DA on the first substrate 10 do not overlap.
  • the first electrode 13 and the second electrode 14 may be transparent electrodes.
  • the first electrode 13 and the second electrode 14 being transparent electrodes may not affect the aperture ratio and transmittance of the display substrate.
  • the transparent electrode may be made of indium tin oxide or zinc tin oxide.
  • the mode switching electrode 11 and the first electrode 13 and the second electrode 14 are formed between the mode switching electrode 11 and the first electrode 13 and the second electrode 14 to drive the deflection of liquid crystal molecules.
  • the electric field is disturbed, and a light leakage area DA is formed around the data line 12, the display substrate leaks light, and the contrast of the display content seen by the observer at the side viewing angle is reduced, so that the observer viewing the display substrate from the side viewing angle cannot see the image. , You can achieve privacy protection.
  • the contrast of the displayed content seen by the observer is different.
  • the mode switching electrode 11 applies different signals, and the range of forming the light leakage area DA is different.
  • the larger the voltage difference between the voltage of the signal applied to the mode switching electrode 11 and the voltage of the signal applied to the common electrode the larger the range of the light leakage area DA formed.
  • the second electrode is the pixel electrode
  • the greater the voltage difference between the voltage of the signal applied to the mode switching electrode 11 and the voltage of the signal applied to the first electrode 13 the greater the light leakage area DA formed The larger the range.
  • the first electrode 13 is a pixel electrode and the second electrode 14 is a common electrode
  • the voltage values of the first signal and the second signal are determined according to the voltage values of the signals applied by the first electrode and the second electrode.
  • the voltage value of the second signal may be higher than the voltage value of the first signal, or may be lower than the voltage value of the first signal.
  • the signal of the common electrode is provided to the mode switching electrode 11.
  • the voltage between the mode switching electrode 11 and the first electrode 13 The difference is equal to zero.
  • the pressure difference between the mode switching electrode 11 and the first electrode 13 is not equal to 0, that is, the pressure difference between the mode switching electrode 11 and the second electrode 14 is the same as that between the first electrode 13 and the second electrode 14.
  • the absolute value of the difference between the pressure difference is not equal to zero. The smaller the voltage difference between the mode switching electrode 11 and the first electrode 13, the greater the difference between the voltage difference between the mode switching electrode 11 and the second electrode 14 and the voltage difference between the first electrode 13 and the second electrode 14.
  • the difference in pressure between the second electrode 14 and the second electrode 14 is greater.
  • the contrast of the displayed content viewed from different side viewing angles is different, that is, the attenuation degree of the contrast is also related to the viewing angle of view.
  • the signal of the common electrode is provided to the mode switching electrode 11.
  • the voltage between the mode switching electrode 11 and the second electrode 14 is The difference is equal to 0; in the privacy mode, the pressure difference between the mode switching electrode 11 and the second electrode 14 is not equal to 0, that is, the pressure difference between the mode switching electrode 11 and the first electrode 13 is the same as that between the first electrode 13 and the first electrode 13
  • the difference in the pressure difference between the two electrodes 14 is not equal to zero.
  • the smaller the voltage difference between the mode switching electrode 11 and the second electrode 14 the smaller the difference between the voltage difference between the mode switching electrode 11 and the first electrode 13 and the voltage difference between the first electrode 13 and the second electrode 14.
  • the more serious the light leakage of the display substrate the lower the contrast of the display content seen by the observer at the side view angle, so that the observer who sees the display substrate from the side view angle can not see the image clearly, and the better the privacy performance. Due to the shielding of the black matrix layer in the box substrate provided on the display substrate, an observer at a positive viewing angle will not be affected by light leakage in the light leakage area, and normal display may not be affected.
  • the contrast of the displayed content viewed from different side viewing angles is different, that is, the degree of attenuation of the contrast is also related to the viewing angle of view.
  • the first electrode 13 in the display substrate is a common electrode and the second electrode 14 is a pixel electrode
  • the voltage value of the signal applied to the pixel electrode is 5V
  • the voltage value of the signal applied by the common electrode is 5V.
  • the value is 0V
  • the display mode of the display panel is switched to the privacy mode.
  • the field of view is greater than 40 degrees
  • the contrast of the display content viewed by the observer is less than 5.
  • the contrast of the displayed content viewed by the observer is between 20-50, that is, in the anti-peep mode, as the field of view increases, the observer sees The contrast of the displayed content is decreasing.
  • the voltage value of the signal of the mode switching electrode increases, the voltage difference between the mode switching electrode 11 and the first electrode 13 increases, and the contrast attenuation of the display content viewed by the observer under different field angles will also vary with The rise.
  • the display mode is switched to the normal mode. At this time, the contrast of the display content viewed by the observer is greater than 10 at all field angles.
  • FIG. 4 is a top view of a display substrate provided by an exemplary embodiment
  • FIG. 5 is another top view of a display substrate provided by an exemplary embodiment
  • a display substrate provided by an exemplary embodiment includes a gate line G and a data line D.
  • the orthographic projection of the mode switching electrode 11 on the first substrate covers a part of the data line D on the front of the first substrate. For projection, the number of mode switching electrodes 11 is multiple. Only two mode switching electrodes 11 are shown in FIG. 4.
  • a common electrode signal is provided to the mode switching electrodes, as shown in FIG. 5, a plurality of mode switching electrodes 11 in a display substrate provided by an exemplary embodiment are connected to each other.
  • the first electrode is a pixel electrode and the second electrode is a common electrode
  • the normal mode display is performed by providing different pixel electrode signals to the different mode switching electrodes, between the different mode switching electrodes Independent.
  • FIG. 6 is a schematic diagram of a structure of a display panel provided by an embodiment of the disclosure
  • FIG. 7 is a schematic diagram of another structure of a display panel provided by an embodiment of the disclosure.
  • the display panel provided by the embodiment of the present disclosure includes: a cell substrate, a display substrate, and a liquid crystal layer (not shown in the figure) between the cell substrate and the display substrate.
  • the box-matching substrate includes: a second substrate 20 and a black matrix layer 21 provided on the second substrate 20.
  • the orthographic projection of the black matrix layer 21 on the second substrate 20 covers the orthographic projection of the data line 12 on the second substrate 30.
  • the liquid crystal layer includes a plurality of liquid crystal molecules.
  • the second substrate 20 may be a rigid substrate or a flexible substrate.
  • the rigid substrate can be but not limited to one or more of glass and metal sheet;
  • the flexible substrate can be but not limited to polyethylene terephthalate, ethylene terephthalate, One or more of polyetheretherketone, polystyrene, polycarbonate, polyarylate, polyarylate, polyimide, polyvinyl chloride, polyethylene, and textile fibers.
  • the box substrate may further include: a color filter 22, a flat layer 23 arranged on the side of the black matrix layer 21 close to the display substrate, and a flat layer 23 arranged on the second substrate 20 away from the black matrix layer. 21 side of the upper polarizer 24.
  • the color filter 22 and the black matrix layer 21 are arranged in the same layer and arranged in the pixel area, and the black matrix layer 21 is arranged between adjacent pixel areas and arranged to shield the data line 12.
  • W D is the length of the data line along the second direction
  • W 0 is the length of the light leakage area along the second direction
  • W 1 is the length of the compensation area along the second direction
  • A1 is the maximum recognizable angle of view.
  • n1 is the overall refractive index of the liquid crystal layer, flat layer, color filter and upper polarizer
  • n2 is the refractive index of air
  • H1 is the difference between the surface of the flat layer near the first substrate and the surface of the mode switching electrode near the first substrate. The vertical distance between the two, H2 is the thickness of the flat layer.
  • the contrast ratio CR of the content displayed on the display substrate satisfies CR>L1/L2, where L1 is the maximum brightness of the entire pixel area in the display substrate, and L2 is the brightness at the boundary of the light leakage area specified by the user, which can be obtained according to CR and L1 L2, and the boundary of the light leakage area can be determined according to L2, and the length W 0 of the light leakage area along the second direction can also be derived from L2 to ensure that the viewing angle of the display panel in the anti-peep mode can achieve the display effect required by the customer .
  • the derivation process of the length W 1 of the compensation area along the second direction is as follows: In order to ensure the recognizable (that is, the contrast CR of the displayed content is greater than or equal to the contrast threshold) maximum viewing angle A1, the length W 1 of the compensation area along the second direction satisfies Ensure that the angle of the light emitted from the boundary of the light leakage area through the liquid crystal layer, the flat layer, the color filter and the upper polarizer is A1, and A2 is the minimum incident angle that can avoid the black matrix layer BM and hit the surface of the display panel. According to the law of refraction:
  • the orthographic projection of the black matrix layer on the first substrate covers the orthographic projection of the light leakage area on the first substrate, ensuring that the light leakage area is blocked at the front viewing angle and not blocked at the side viewing angle.
  • the light leakage area ensures that in the anti-peep mode, the observer at the front viewing angle can not see the light emitted from the light leakage area, while the observer at the side viewing angle will be affected by the light emitted from the light leakage area.
  • the front angle of view refers to the angle of the field of view less than A1
  • the side angle of view refers to the angle of the field of view greater than or equal to A1.
  • the above-mentioned derivation method is reversed along the exit light path, in which the orthographic projection of the black matrix layer not only covers the orthographic projection of the light leakage area, but also covers the orthographic projection of the compensation area. Therefore, when observing from a certain angle of view, such as viewing the display content at the angle of view A1, the oblique projection along the direction of the angle of view just covers the light leakage area, ensuring that as long as the angle of view is within the angle of view A1, the black The matrix layer can cover the light leakage area, ensuring that the observer at the front viewing angle can watch normally in the anti-peep mode.
  • the black matrix layer that satisfies the above formula can make the observer in the side view angle affected by the light emitted from the light leakage area in the anti-peep mode, and the contrast of the display content viewed by the observer is small, which can achieve the purpose of anti-peep.
  • the black matrix layer covers the light leakage area, which can ensure that the displayed content viewed by the observer with the field angle smaller than A1, that is, the front viewing angle, will not be affected by the light leakage, and the display viewed by the observer
  • the contrast of the content is greater than or equal to the contrast threshold, and the displayed content can be viewed normally.
  • the black matrix layer that satisfies the above formula can weaken the negative effect on the contrast of the front viewing angle in this process to a certain extent, and ensure the display effect of the front viewing angle.
  • the anti-peeping effect can be enhanced by changing the voltage value of the signal applied to the mode switching electrode 11.
  • the data lines of different display products have different lengths in the second direction. Therefore, the length of the light leakage area of different display products in the second direction is different.
  • the length of the black matrix layer in the second direction is about 22 microns, it can ensure that the light leakage area is completely covered.
  • the length of the black matrix layer in the second direction is about 28 When micron, it can ensure that the light leakage area is completely covered.
  • the display substrate is the display substrate provided by any of the foregoing embodiments, and the implementation principle and the implementation effect are similar, and will not be repeated here.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the disclosure. As shown in FIG. 8, the display device provided by the embodiment of the present disclosure includes: a printed circuit board 1 and a display panel 2.
  • the display panel 2 includes a privacy signal line 3 configured to provide a signal to the mode switching electrode.
  • the privacy signal line 3 is connected to the printed circuit board 1.
  • the display panel includes a display area AA and a non-display area.
  • the printed circuit board 1 is located in the non-display area of the display panel.
  • the printed circuit board 1 applies different signals to the mode switching electrode 11 in different display modes, so as to realize time-sharing power supply to the mode switching electrode 11.
  • the privacy signal line may be provided in the same layer as one of the gate electrode, the source electrode, the gate insulating layer, the active layer, and the interlayer insulating layer in the thin film transistor.
  • the privacy signal line may be connected to the printed circuit board through a gate line, or may be connected to the printed circuit board through other connection methods.
  • the display panel is the display panel provided by any of the foregoing embodiments, and the implementation principle and the implementation effect are similar, and will not be repeated here.
  • the embodiment of the present disclosure also provides a control method of the display substrate, which is configured to control the display substrate.
  • the control method of the display substrate provided by the embodiment of the present disclosure includes:
  • the display mode is switched by controlling the signal applied to the mode switching electrode.
  • the display substrate is the display substrate provided by any of the foregoing embodiments, and the implementation principle and the implementation effect are similar, and will not be repeated here.
  • controlling the signal applied to the mode switching electrode to switch the display mode of the display panel may include: applying the first signal to the mode switching electrode, switching the display mode to the normal mode, or switching the display mode to the normal mode, or to the mode switching electrode.
  • the second signal is applied, and the display mode is switched to the privacy mode.
  • the first signal may be a signal of the common electrode.
  • applying the second signal to the mode switching electrode and switching the display mode to the privacy mode may include: adjusting the degree of privacy of the privacy mode by changing the magnitude of the second signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种显示基板及其控制方法、显示面板、显示装置,显示基板设置在显示面板中,包括第一衬底(10)以及设置在第一衬底(10)上的多个模式切换电极(11)和多条数据线(12);其中,模式切换电极(11)设置在数据线(12)远离第一衬底(10)的一侧,且与数据线(12)之间相互绝缘,模式切换电极(11)在第一衬底(10)的正投影覆盖部分数据线(12)在第一衬底(10)的正投影;模式切换电极(11)设置为切换显示面板的显示模式,显示模式包括:正常模式和防窥模式。

Description

一种显示基板及其控制方法、显示面板、显示装置
本申请要求于2019年8月26日提交中国专利局、申请号为201910790910.7、公开名称为“一种显示基板及其控制方法、显示面板、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开涉及但不限于显示技术领域,特别涉及一种显示基板及其控制方法、显示面板、显示装置。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,简称TFT-LCD)具有体积小,功耗低和无辐射的特点,近年来得到迅速发展,在当前的平板显示器市场中占据主导地位。随着社会的发展和物质条件的丰富,显示器在为人们提供诸多便捷的同时,总是不可避免地会发生隐私泄露。对此,业界出现了可以实现防窥的显示产品。
发明内容
以下是对本公开详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
第一方面,本公开提供了一种显示基板,设置在显示面板中,包括:第一衬底以及设置在所述第一衬底上的多个模式切换电极和多条数据线;
其中,所述模式切换电极设置在所述数据线远离所述第一衬底的一侧,且与所述数据线之间相互绝缘,所述模式切换电极在所述第一衬底的正投影覆盖部分数据线在所述第一衬底的正投影;
所述模式切换电极设置为切换所述显示面板的显示模式,所述显示模式包括:正常模式和防窥模式。
在一些可能的实现方式中,所述显示基板还包括:第一电极和第二电极;
所述第一电极与所述模式切换电极同层设置,所述第二电极设置在所述第一电极靠近所述第一衬底的一侧;
其中,所述第一电极为狭缝电极,所述第二电极为板状电极或狭缝电极。
在一些可能的实现方式中,所述模式切换电极包括:沿第一方向延伸且相对的第一边缘和第二边缘,所述数据线包括:沿第一方向延伸且相对的第三边缘和第四边缘,所述第一边缘和所述第三边缘位于同一侧,所述第二边缘和所述第四边缘位于同一侧;
所述第一边缘在第一衬底上的正投影与所述第三边缘在第一衬底上的正投影的间距等于所述第二边缘在第一衬底上的正投影与所述第四边缘在第一衬底上的正投影,所述第一方向为数据线延伸方向。
在一些可能的实现方式中,所述第一电极为公共电极,所述第二电极为像素电极,或者,所述第一电极为像素电极,所述第二电极为公共电极;
所述模式切换电极设置为在防窥模式下,分别与所述第一电极和所述第二电极之间形成驱动液晶分子偏转的紊乱电场,并在所述数据线的周边形成漏光区。
在一些可能的实现方式中,所述漏光区沿第二方向的长度大于所述第一边缘在第一衬底上的正投影与所述第三边缘在第一衬底上的正投影的间距,所述第二方向为数据线排布方向。
在一些可能的实现方式中,当向所述模式切换电极施加第一信号时,所述显示面板的显示模式为正常模式,当向所述模式切换电极施加第二信号时,所述显示面板的显示模式为防窥模式。
在一些可能的实现方式中,所述第一信号为正常模式下,向公共电极施加的信号。
在一些可能的实现方式中,所述第一电极、所述第二电极和所述模式切换电极均为透明电极。
在一些可能的实现方式中,位于所述显示基板上的多个模式切换电极之间相互连接。
第二方面,本公开还提供了一种显示面板,包括:对盒基板、上述显示 基板以及设置在所述对盒基板和所述显示基板之间的液晶层,所述对盒基板包括:第二衬底和设置在所述第二衬底上的黑矩阵层;
所述黑矩阵层在所述第二衬底上的正投影覆盖所述数据线在所述第二衬底上的正投影。
在一些可能的实现方式中,所述第二基板还包括:彩色滤光片、设置在所述黑矩阵层靠近所述液晶层一侧的平坦层和设置在所述第二衬底远离所述黑矩阵层一侧的上偏光片;所述黑矩阵层沿第二方向的长度W BM满足W BM=W D+2W 0+2tan(arcsin(sinA1/(n2/n1)))*(H1+H2);
其中,W D为所述数据线沿第二方向的长度,W 0为漏光区沿第二方向的长度,A1为可识别的最大视场角,n1为所述液晶层、所述平坦层、所述彩色滤光片和所述上偏光片的整体折射率,n2为空气折射率,H1为所述平坦层靠近所述第一衬底的表面与所述模式切换电极靠近所述第一衬底的表面之间的垂直距离,H2为所述平坦层的厚度。
第三方面,本公开还提供了一种显示装置,包括:印刷电路板、防窥信号线和上述显示面板;
所述显示面板包括:设置为向所述模式切换电极提供信号的防窥信号线,所述防窥信号线与所述印刷电路板连接。
第四方面,本公开还提供了一种显示基板的控制方法,设置为控制上述显示基板,所述方法包括:
通过控制施加在模式切换电极的信号,以切换显示面板的显示模式。
在一些可能的实现方式中,所述通过控制施加在所述模式切换电极的信号,以切换显示面板的显示模式包括:
通过控制施加在所述模式切换电极的信号为第一信号,以切换显示面板的显示模式为正常模式;所述第一信号为公共电极的信号;
通过控制施加在所述模式切换电极的信号为第二信号,以切换显示面板的显示模式为防窥模式。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的显示基板的结构示意图;
图2为一种示例性实施例提供的显示基板的结构示意图;
图3为另一示例性实施例提供的显示基板的结构示意图;
图4为一种示例性实施例提供的显示基板的一个俯视图;
图5为一种示例性实施例提供的显示基板的另一俯视图;
图6为本公开实施例提供的显示面板的一个结构示意图;
图7为本公开实施例提供的显示面板的另一结构示意图;
图8为本申请实施例提供的显示装置的结构示意图。
详述
下文中将结合附图对本公开的实施例进行详细说明。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在详述中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的技术方案。任何实施例的任何特征或元件也可以与来自其它技术方案的特征或元件组合,以形成另一个由权利要求限定的技术 方案。因此,应当理解,在本公开中示出的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
除非另外定义,本公开中使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”仅表示相对位置关系,当被描述的对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
通常,实现防窥的显示产品不仅产品成本较高,而且制作工艺较为复杂。
图1为本公开实施例提供的显示基板的结构示意图。如图1所示,本公开实施例提供的显示基板包括:第一衬底10以及设置在第一衬底10上的多个模式切换电极11和多条数据线12。
模式切换电极11设置在数据线12远离第一衬底10的一侧,且与数据线12之间相互绝缘,模式切换电极11在第一衬底10的正投影覆盖部分数据线12在第一衬底10的正投影。
在一种示例性实施例中,多个模式切换电极可以沿阵列设置,且模式切换电极的列数等于数据线的列数。
在一种示例性实施例中,显示基板还可以包括多个像素单元,模式切换电极设置在相邻像素单元之间。
在一种示例性实施例中,第一衬底10可以为刚性衬底或柔性衬底。其中,刚性衬底可以为但不限于玻璃、金属萡片中的一种或多种。柔性衬底可以为但不限于聚对苯二甲酸乙二醇酯、对苯二甲酸乙二醇酯、聚醚醚酮、聚苯乙烯、聚碳酸酯、聚芳基酸酯、聚芳酯、聚酰亚胺、聚氯乙烯、聚乙烯、纺织纤维中的一种或多种。
在一种示例性实施例中,显示面板可以为液晶显示面板。显示面板的显示模式可以为高级超维场转换模式(Advanced Super Dimension Switch,简称ADS)。其中,ADS模式的显示面板通过同一平面内狭缝电极边缘所产生的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场,使液晶盒内狭缝电极间、电极正上方所有取向液晶分子都可以产生旋转,从而提高了液晶工作效率并增大了透光效率,具有高分辨率、高透过率、低功耗、宽视角、高开口率、低色差和无挤压水波纹的优点。
在一种示例性实施例中,模式切换电极可以为任意形状,本公开实施例对此不作任何限定。
在一种示例性实施例中,模式切换电极11可以为透明电极。模式切换电极11为透明电极可以不影响显示基板的开口率和透过率。
模式切换电极11可以采用掩膜板制成,不仅降低了产品成本,而且简化了制作工艺。
在一种示例性实施例中,模式切换电极11的制作材料为透明导电材料,其中,透明导电材料包括:氧化铟锡或者氧化锌锡。
本公开实施例提供的显示基板设置在显示面板中,包括:第一衬底以及设置在第一衬底上的多个模式切换电极和多条数据线;其中,模式切换电极设置在数据线远离第一衬底的一侧,且与数据线之间相互绝缘,模式切换电极在第一衬底的正投影覆盖部分数据线在第一衬底的正投影;模式切换电极设置为切换显示面板的显示模式,显示模式包括:正常模式和防窥模式。本公开实施例提供的显示基板中通过设置模式切换电极,实现了显示面板的显示模式切换,可以实现防窥,不仅降低了产品成本,而且简化了制作工艺。
图2为一种示例性实施例提供的显示基板的结构示意图,图3为另一示例性实施例提供的显示基板的结构示意图。如图1至3所示,一种示例性实施例的显示基板还包括:第一电极13和第二电极14。第一电极13与模式切换电极11同层设置,第二电极14设置在第一电极13靠近第一衬底10的一侧。
一种示例性实施例中,第一电极13可以为狭缝电极。
一种示例性实施例中,第二电极14可以为板状电极,或者可以为狭缝电极。
如图2和3所示,一种示例性实施例提供的显示基板还可以包括:第一绝缘层15和第二绝缘层16。其中,第一绝缘层15设置在模式切换电极11和数据线12之间,第二绝缘层16设置在第一绝缘层15靠近第一衬底10的一侧。
一种示例性实施例中,第一绝缘层15和第二绝缘层16的制作材料可以为氧化硅、氮化硅或者氧化硅和氮化硅的复合物。
在一种示例性实施例中,第一绝缘层15和第二绝缘层16可以为单层结构,或者可以为多层结构。
在一种示例性实施例中,显示基板还可以包括:薄膜晶体管。薄膜晶体管包括:有源层、栅电极、源漏电极、栅绝缘层、层间绝缘层和钝化层。
在一种示例性实施例中,薄膜晶体管可以为底栅结构,或者可以为顶栅结构。
在一种示例性实施例中,第一绝缘层为薄膜晶体管的钝化层。第二绝缘层可以为栅绝缘层、或者可以为层间绝缘层,或者可以为栅绝缘层和层间绝缘层。
在一种示例性实施例中,数据线与薄膜晶体管的源漏电极同层设置。
在一种示例性实施例中,第二电极14可以与数据线12同层设置,或者可以设置在数据线12靠近第一衬底10的一侧。图2是以第二电极14设置在数据线12靠近第一衬底10的一侧为例进行说明的,图3是以第二电极14与数据线层同层设置为例进行说明的。
在一种示例性实施例中,当第二电极14设置在数据线12靠近第一衬底10的一侧时,第二电极14可以与有源层同层设置,或者可以为与栅电极同层设置。
考虑工艺波动及像素对称性,如图2和图3所示,模式切换电极11可以包括:沿第一方向延伸且相对的第一边缘和第二边缘,数据线12包括:沿第一方向延伸且相对的第三边缘和第四边缘,第一边缘和第三边缘位于同一侧, 第二边缘和第四边缘位于同一侧。
第一边缘在第一衬底上的正投影与第三边缘在第一衬底上的正投影的间距dl等于第二边缘在第一衬底上的正投影与第四边缘在第一衬底上的正投影的间距dr。其中,第一方向为数据线12延伸方向。
在一种示例性实施例中,,第一电极13与第二电极14可以设置为产生驱动液晶分子正常偏转实现显示的电场。
在一种示例性实施例中,当向模式切换电极施加第一信号时,显示模式为正常模式,当向模式切换电极施加第二信号时,显示模式为防窥模式。
在一种示例性实施例中,第一信号可以为公共电极的信号。
在一种示例性实施例中,如图2所示,第一电极13可以为像素电极,第二电极14可以为公共电极。此时,在正常模式下,可以向模式切换电极11施加公共电极的信号或者像素电极的信号。当模式切换电极11施加公共电极的信号时,由于模式切换电极11与公共电极之间没有压差,且模式切换电极11与像素电极之间产生的电场强度对显示基板的正常显示噪声的干扰较小,因此,向模式切换电极11施加公共电极的信号可以保证显示基板在正常模式下的显示效果。当向模式切换电极11施加像素电极的信号时,可以向模式切换电极11施加与模式切换电极相邻的像素的像素电极信号,即当显示面板显示单色画面时,可以向不同模式切换电极提供相同的像素电极的信号,当显示面板显示彩色画面时,可以向不同模式切换电极提供不同的像素电极的信号。针对每个像素单元,由于模式切换电极11与像素电极之间没有压差,模式切换电极11与公共电极之间产生的电场强度与公共电极和像素电极之间电场强度相同,因此,向模式切换电极11施加像素电极的信号可以保证显示基板在正常模式下的显示效果。
在一种示例性实施例中,当向模式切换电极11施加像素电极的信号时,可以向模式切换电极11施加与模式切换电极相邻的任一像素的像素电极信号。
在一种示例性实施例中,如图3所示,第一电极13可以为公共电极,第二电极14可以为像素电极。此时,在正常模式下,可以向模式切换电极11施加公共电极的信号,由于第一电极13和模式切换电极11之间没有压差, 且模式切换电极11与第二电极14之间产生的电场强度与第一电极13和第二电极14之间电场强度相同,因此,向模式切换电极11施加公共电极的信号可以保证显示基板在正常模式下的显示效果。模式切换电极11作为第一电极13的一部分,与第二电极14形成驱动液晶分子正常偏转的电场。
在一种示例性实施例中,模式切换电极11设置为在防窥模式下,分别与第一电极13和第二电极14之间形成驱动液晶分子偏转的紊乱电场,并在数据线12的周边形成漏光区DA。
如图2和3所示,漏光区DA沿第二方向的长度大于第一边缘在第一衬底10上的正投影与第三边缘在第一衬底10上的正投影的间距dl,也就是说,模式切换电极11在第一衬底10上的正投影并未覆盖漏光区DA在第一衬底10上的正投影。其中,第二方向为数据线排布方向。
在一种示例性实施例中,数据线12在第一衬底10上的正投影与漏光区DA在第一衬底10上的正投影不重叠。
在一种示例性实施例中,第一电极13和第二电极14可以为透明电极。第一电极13和第二电极14为透明电极可以不影响显示基板的开口率和透过率。
在一种示例性实施例中,透明电极的制作材料可以为氧化铟锡或者氧化锌锡。
在一种示例性实施例中,在防窥模式下,通过向模式切换电极11施加第二信号,使得模式切换电极11分别与第一电极13和第二电极14之间形成驱动液晶分子偏转的紊乱电场,并在数据线12的周边形成漏光区DA,显示基板发生漏光,位于侧视角的观察者看到的显示内容的对比度减小,使得从侧视角观看显示基板的观察者看不清楚图像,可以实现防窥。
在一种示例性实施例中,位于不同的视场角时,观察者看到的显示内容的对比度不同。
在一种示例性实施例中,模式切换电极11施加信号不同,形成漏光区DA的范围有所不同。其中,向模式切换电极11施加的信号的电压与向公共电极施加的信号的电压之间的压差越大,形成的漏光区DA的范围越大。当 第一电极为公共电极,第二电极为像素电极时,模式切换电极11施加的信号的电压与向第一电极13施加的信号的电压之间的压差越大,形成的漏光区DA的范围越大。当第一电极13为像素电极,第二电极14为公共电极时,模式切换电极11施加的信号的电压与向第二电极14施加的信号的电压之间的压差越大,形成的漏光区DA的范围越大。
在一种示例性实施例中,第一信号和第二信号的电压值根据第一电极和第二电极施加的信号的电压值所确定。
在一种示例性实施例中,第二信号的电压值可以高于第一信号的电压值,或者可以低于第一信号的电压值,。
当第一电极13为公共电极,第二电极14为像素电极时,在正常模式下,向模式切换电极11提供公共电极的信号,此时,模式切换电极11和第一电极13之间的压差等于0。在防窥模式下,模式切换电极11和第一电极13之间的压差不等于0,即模式切换电极11和第二电极14之间的压差与第一电极13和第二电极14之间的压差的差值绝对值不等于0。模式切换电极11与第一电极13之间的压差越小,模式切换电极11和第二电极14之间的压差与第一电极13和第二电极14之间的压差的差值越小,反之,模式切换电极11的信号的电压值与第一电极13的信号的电压值之间的差值越大,模式切换电极11和第二电极14之间的压差与第一电极13和第二电极14之间的压差的差值越大。模式切换电极11和第一电极13之间的压差越大,模式切换电极11分别与第一电极13和第二电极14之间形成的紊乱电场越紊乱,显示基板中漏光区的范围越大,即显示基板的漏光越严重,位于侧视角的观察者看到的显示内容的对比度减小,使得从侧视角看显示基板的观察者看不清楚图像,防窥性能越好。由于设置在显示基板上的对盒基板中的黑矩阵层的遮挡,位于正视角的观察者不会被漏光区的漏光所影响,可以不影响正常显示。
在一种示例性实施例中,在防窥模式下,不同的侧视角观看到的的显示内容对比度不同,即对比度的衰减程度还与观看的视场角有关。
当第一电极13为像素电极,第二电极14为公共电极时,在正常模式下,向模式切换电极11提供公共电极的信号,此时,模式切换电极11和第二电极14之间的压差等于0;在防窥模式下,模式切换电极11和第二电极14之 间的压差不等于0,即模式切换电极11和第一电极13之间的压差与第一电极13和第二电极14之间的压差的差值不等于0。模式切换电极11与第二电极14之间的压差越小,模式切换电极11和第一电极13的压差与第一电极13和第二电极14之间的压差的差值越小,反之,模式切换电极11的信号的电压值与第二电极14的信号的电压值之间的差值越大,模式切换电极11和第一电极13之间的压差与第一电极13和第二电极14之间的压差的差值越大。模式切换电极11和第二电极14之间的压差越大,模式切换电极11分别与第一电极13和第二电极14之间形成的紊乱电场越紊乱,显示基板中漏光区的范围越大,即显示基板的漏光越严重,位于侧视角的观察者看到的显示内容的对比度减小,使得从侧视角看显示基板的观察者看不清楚图像,防窥性能越好。由于设置在显示基板上的对盒基板中的黑矩阵层的遮挡,位于正视角的观察者不会被漏光区的漏光所影响,可以不影响正常显示。
在一种示例性实施例中,不同的侧视角观看到的显示内容的对比度不同,即对比度的衰减程度还与观看的视场角有关。
在一种示例性实施例中,当显示基板中的第一电极13为公共电极,第二电极14为像素电极时,当向像素电极施加信号的电压值为5V,公共电极施加的信号的电压值为0V,向模式切换电极施加信号的电压值为2V时,显示面板的显示模式切换为防窥模式,此时,当视场角大于40度时,观察者观看到的显示内容的对比度小于5,当视场角小于40度时,观察者观看到的显示内容的对比度在20~50之间,也就是说,在防窥模式下,随着视场角的增大,观察者观看到的显示内容的对比度在下降。随着模式切换电极的信号的电压值的增加,模式切换电极11与第一电极13之间的压差增大,不同视场角下的观察者观看到的显示内容的对比度衰减程度也会随之上升。当向模式切换电极施加信号的电压值为0V时,显示模式切换为正常模式,此时,在所有视场角下,观察者观看到的显示内容的对比度均大于10。
图4为一种示例性实施例提供的显示基板的一个俯视图,图5为一种示例性实施例提供的显示基板的另一俯视图。如图4所示,一种示例性实施例提供的显示基板包括:栅线G和数据线D,模式切换电极11在第一衬底的正投影覆盖部分数据线D在第一衬底的正投影,模式切换电极11的数量为 多个。图4中仅示出2个模式切换电极11。
当向模式切换电极提供公共电极信号时,如图5所示,一种示例性实施例提供的显示基板中多个模式切换电极11相互连接。
一种示例性实施例中,当第一电极为像素电极,第二电极为公共电极时,通过向不同的模式切换电极提供不同的像素电极信号来进行正常模式显示时,不同模式切换电极之间相互独立。
图6为本公开实施例提供的显示面板的一个结构示意图,图7为本公开实施例提供的显示面板的另一结构示意图。如图6和7所示,本公开实施例提供的显示面板包括:对盒基板、显示基板和对盒基板和显示基板之间的液晶层(图中未示出)。对盒基板包括:第二衬底20和设置在第二衬底20上的黑矩阵层21。黑矩阵层21在第二衬底20上的正投影覆盖数据线12在第二衬底30上的正投影。
在一种示例性实施例中,液晶层包括:多个液晶分子。
在一种示例性实施例中,第二衬底20可以为刚性衬底或柔性衬底。其中,刚性衬底可以为但不限于玻璃、金属萡片中的一种或多种;柔性衬底可以为但不限于聚对苯二甲酸乙二醇酯、对苯二甲酸乙二醇酯、聚醚醚酮、聚苯乙烯、聚碳酸酯、聚芳基酸酯、聚芳酯、聚酰亚胺、聚氯乙烯、聚乙烯、纺织纤维中的一种或多种。
在一种示例性实施例中,对盒基板还可以包括:彩色滤光片22、设置在黑矩阵层21靠近显示基板的一侧的平坦层23以及设置在第二衬底20远离黑矩阵层21一侧的上偏光片24。
在一种示例性实施例中,彩色滤光片22与黑矩阵层21同层设置,且设置在像素区域内,黑矩阵层21设置在相邻像素区域之间,设置为遮挡数据线12。
在一种示例性实施例中,黑矩阵层21沿第二方向的长度W BM满足W BM=W D+2W 0+2W 1,其中,W 1=tan(arcsin(sinA1/(n2/n1)))*(H1+H2)。
W D为数据线沿第二方向的长度,W 0为漏光区沿第二方向的长度,W 1为补偿区沿第二方向的长度,A1为可识别的最大视场角,为了方便计算,n1 为液晶层、平坦层、彩色滤光片和上偏光片的整体折射率,n2为空气折射率,H1为平坦层靠近第一衬底的表面与模式切换电极靠近第一衬底的表面之间的垂直距离,H2为平坦层的厚度。
在防窥模式下,要保证从视场角小于A1的角度观察时,显示基板所显示内容的对比度CR大于或者等于对比度阈值。由于显示基板所显示内容的对比度CR得满足CR>L1/L2,其中,L1为显示基板中整个像素区域的最大亮度,L2为用户指定的漏光区的边界处的亮度,根据CR和L1可以获得L2,而漏光区的边界处可以根据L2确定,漏光区沿第二方向的长度W 0也可以根据L2推导得到,以保证显示面板在防窥模式下,视场角可以达到客户要求的显示效果。
补偿区沿第二方向的长度W 1的推导过程如下:为了保证可识别(即显示内容的对比度CR大于或者等于对比度阈值)的最大视场角A1,补偿区沿第二方向的长度W 1满足保证从漏光区边界发射的光线经过液晶层、平坦层、彩色滤光片和上偏光片射出的光线的角度为A1,A2为可以避开黑矩阵层BM射至显示面板表面的最小入射角,根据折射定律可知:
sinA1/sinA2=n2/n1
因此,A2=arcsin[sin A1/(n2/n1)],由三角函数可知tanA2=W1/(H1+H2),则W 1=tanA2*(H1+H2)=tan(arcsin(SinA1/(n2/n1)))*(H1+H2)。
在一种示例性实施例中,黑矩阵层在第一衬底上的正投影覆盖漏光区在第一衬底上的正投影,保证了在正视角上遮挡漏光区,在侧视角上不遮挡漏光区,保证了在防窥模式下,位于正视角的观察者可以看不到从漏光区射出的光线,而位于侧视角的观察者则会被从漏光区射出的光线所影响,可以实现防窥。其中,正视角指的是视场角小于A1的角度,侧视角指的是视场角大于或者等于A1的角度。
为了保证视场角A1内的光线中无漏光,上述推导方式是沿出射光路倒推,其中,黑矩阵层的正投影不但覆盖了漏光区的正投影,而且还覆盖了补偿区的正投影,从而当以一定的视角观察时,例如视场角A1进行观看显示内容时,沿该视场角方向的斜投影刚好覆盖漏光区,保证了只要是视场角A1内的视场角,黑矩阵层都能覆盖漏光区,保证了在防窥模式下,位于正视角 的观察者可以正常观看。
满足上述公式的黑矩阵层,可以在防窥模式下使得位于侧视角的观察者会被漏光区射出的光线所影响,观察者观看到的显示内容的对比度较小,可以达到防窥目的。对于小于视场角A1的视场角,黑矩阵层覆盖漏光区,可以保证位于视场角小于A1即正视角的观察者观看的所显示内容不会被漏光所影响,观察者观看到的显示内容的对比度大于或者等于对比度阈值,可以正常观看到所显示内容。满足上述公式的黑矩阵层可以一定程度上弱化此过程中对正视角的对比度造成的负面影响,保证正视角的显示效果。
在一种示例性实施例中,可以通过改变施加在模式切换电极11上的信号的电压值来强化防窥效果。
在一种示例性实施例中,不同显示产品的数据线沿第二方向的长度不同,因此,不同显示产品的漏光区沿第二方向的长度有所差异,对于尺寸较小的显示产品例如手机,其中的黑矩阵层沿第二方向的长度约为22微米时,可保证漏光区被完全覆盖,对于尺寸较大的显示产品例如电脑,其中的黑矩阵层沿第二方向的长度约为28微米时,可保证漏光区被完全覆盖。
显示基板为前述任一个实施例提供的显示基板,实现原理和实现效果类似,在此不再赘述。
图8为本公开实施例提供的显示装置的结构示意图。如图8所示,本公开实施例提供的显示装置包括:印刷电路板1和显示面板2。
显示面板2包括设置为向模式切换电极提供信号的防窥信号线3。防窥信号线3与印刷电路板1连接。
显示面板包括:显示区域AA和非显示区域,其中,印刷电路板1位于显示面板的非显示区域。
在一种示例性实施例中,印刷电路板1在不同显示模式下,对模式切换电极11施加不同的信号,以对模式切换电极11实现分时供电。
在一种示例性实施例中,防窥信号线可以与薄膜晶体管中的栅电极、源电极、栅绝缘层、有源层和层间绝缘层中的其中之一膜层同层设置。
在一种示例性实施例中,防窥信号线可以通过栅线与印刷电路板连接, 或者可以通过其他连接方式与印刷电路板连接。
显示面板为前述任一个实施例提供的显示面板,实现原理和实现效果类似,在此不在赘述。
本公开实施例还提供了一种显示基板的控制方法,设置为控制显示基板,本公开实施例提供的显示基板的控制方法包括:
通过控制施加在模式切换电极的信号,以切换显示模式。
显示基板为前述任一个实施例提供的显示基板,实现原理和实现效果类似,在此不再赘述。
在一种示例性实施例中,通过控制施加在模式切换电极的信号,以切换显示面板的显示模式可以包括:向模式切换电极施加第一信号,显示模式切换为正常模式,或者向模式切换电极施加第二信号,显示模式切换为防窥模式。
在一种示例性实施例中,第一信号可以为公共电极的信号。
在一种示例性实施例中,向模式切换电极施加第二信号,显示模式切换为防窥模式可以包括:通过改变第二信号的大小,调整防窥模式的防窥程度。
本公开中的附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
为了清晰起见,在用于描述本公开的实施例的附图中,层或微结构的厚度和尺寸被放大。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种显示基板,设置在显示面板中,包括:第一衬底以及设置在所述第一衬底上的多个模式切换电极和多条数据线;
    其中,所述模式切换电极设置在所述数据线远离所述第一衬底的一侧,且与所述数据线之间相互绝缘,所述模式切换电极在所述第一衬底的正投影覆盖部分数据线在所述第一衬底的正投影;
    所述模式切换电极设置为切换所述显示面板的显示模式,所述显示模式包括:正常模式和防窥模式。
  2. 根据权利要求1所述的显示基板,其中,所述显示基板还包括:第一电极和第二电极;
    所述第一电极与所述模式切换电极同层设置,所述第二电极设置在所述第一电极靠近所述第一衬底的一侧;
    其中,所述第一电极为狭缝电极,所述第二电极为板状电极或狭缝电极。
  3. 根据权利要求2所述的显示基板,其中,所述模式切换电极包括:沿第一方向延伸且相对的第一边缘和第二边缘,所述数据线包括:沿第一方向延伸且相对的第三边缘和第四边缘,所述第一边缘和所述第三边缘位于同一侧,所述第二边缘和所述第四边缘位于同一侧;
    所述第一边缘在所述第一衬底上的正投影与所述第三边缘在所述第一衬底上的正投影的间距等于所述第二边缘在所述第一衬底上的正投影与所述第四边缘在所述第一衬底上的正投影的间距,所述第一方向为数据线延伸方向。
  4. 根据权利要求2所述的显示基板,其中,所述第一电极为公共电极,所述第二电极为像素电极,或者,所述第一电极为像素电极,所述第二电极为公共电极;
    所述模式切换电极设置为在防窥模式下,分别与所述第一电极和所述第二电极之间形成驱动液晶分子偏转的紊乱电场,并在所述数据线的周边形成漏光区。
  5. 根据权利要求4所述的显示基板,其中,所述漏光区沿第二方向的长 度大于所述第一边缘在第一衬底上的正投影与所述第三边缘在第一衬底上的正投影的间距,所述第二方向为数据线排布方向。
  6. 根据权利要求4所述的显示基板,其中,当向所述模式切换电极施加第一信号时,所述显示面板的显示模式为正常模式,当向所述模式切换电极施加第二信号时,所述显示面板的显示模式为防窥模式。
  7. 根据权利要求6所述的显示基板,其中,所述第一信号为正常模式下,向公共电极施加的信号。
  8. 根据权利要求2所述的显示基板,其中,所述第一电极、所述第二电极和所述模式切换电极均为透明电极。
  9. 根据权利要求6所述的显示基板,其中,位于所述显示基板上的多个模式切换电极之间相互连接。
  10. 一种显示面板,包括:对盒基板、如权利要求1至9任一项所述的显示基板以及设置在所述对盒基板和所述显示基板之间的液晶层,所述对盒基板包括:第二衬底和设置在所述第二衬底上的黑矩阵层;
    所述黑矩阵层在所述第二衬底上的正投影覆盖所述数据线在所述第二衬底上的正投影。
  11. 根据权利要求10所述的显示面板,其中,所述第二基板还包括:彩色滤光片、设置在所述黑矩阵层靠近所述液晶层一侧的平坦层和设置在所述第二衬底远离所述黑矩阵层一侧的上偏光片;所述黑矩阵层沿第二方向的长度W BM满足W BM=W D+2W 0+2tan(arcsin(sinA1/(n2/n1)))*(H1+H2);
    其中,W D为所述数据线沿第二方向的长度,W 0为漏光区沿第二方向的长度,A1为可识别的最大视场角,n1为所述液晶层、所述平坦层、所述彩色滤光片和所述上偏光片的整体折射率,n2为空气折射率,H1为所述平坦层靠近所述第一衬底的表面与所述模式切换电极靠近所述第一衬底的表面之间的垂直距离,H2为所述平坦层的厚度。
  12. 一种显示装置,包括:印刷电路板和如权利要求10或11所述的显示面板;
    所述显示面板包括:设置为向所述模式切换电极提供信号的防窥信号线, 所述防窥信号线与所述印刷电路板连接。
  13. 一种显示基板的控制方法,设置为控制如权利要求1至9任一项所述的显示基板,所述方法包括:
    通过控制施加在所述模式切换电极的信号,以切换显示面板的显示模式。
  14. 根据权利要求13所述的方法,其中,所述通过控制施加在所述模式切换电极的信号,以切换显示面板的显示模式包括:
    通过控制施加在所述模式切换电极的信号为第一信号,以切换显示面板的显示模式为正常模式;所述第一信号为公共电极的信号;
    通过控制施加在所述模式切换电极的信号为第二信号,以切换显示面板的显示模式为防窥模式。
PCT/CN2020/110849 2019-08-26 2020-08-24 一种显示基板及其控制方法、显示面板、显示装置 WO2021036997A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/285,482 US11435608B2 (en) 2019-08-26 2020-08-24 Display substrate and control method therefor, display panel and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910790910.7A CN110456580B (zh) 2019-08-26 2019-08-26 一种显示基板及其控制方法、显示面板、显示装置
CN201910790910.7 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021036997A1 true WO2021036997A1 (zh) 2021-03-04

Family

ID=68489113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110849 WO2021036997A1 (zh) 2019-08-26 2020-08-24 一种显示基板及其控制方法、显示面板、显示装置

Country Status (3)

Country Link
US (1) US11435608B2 (zh)
CN (1) CN110456580B (zh)
WO (1) WO2021036997A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456580B (zh) * 2019-08-26 2022-04-29 京东方科技集团股份有限公司 一种显示基板及其控制方法、显示面板、显示装置
CN110992850B (zh) * 2019-11-29 2021-08-10 京东方科技集团股份有限公司 显示面板、显示装置及驱动方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282059A (ja) * 2008-08-29 2008-11-20 Seiko Epson Corp 視角制御素子、液晶表示装置、電子機器
US20110069090A1 (en) * 2009-09-23 2011-03-24 Hwi-Deuk Lee Liquid crystal display device and method of driving the same
CN103728754A (zh) * 2014-01-21 2014-04-16 友达光电(厦门)有限公司 显示面板
CN104122726A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
CN108196406A (zh) * 2018-02-13 2018-06-22 京东方科技集团股份有限公司 阵列基板及制造方法、显示面板及操作方法、电子装置
CN108508666A (zh) * 2018-04-13 2018-09-07 昆山龙腾光电有限公司 阵列基板、液晶显示装置及视角切换方法
CN109946860A (zh) * 2019-04-17 2019-06-28 昆山龙腾光电有限公司 视角可切换液晶显示装置
CN110456580A (zh) * 2019-08-26 2019-11-15 京东方科技集团股份有限公司 一种显示基板及其控制方法、显示面板、显示装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323706A (ja) * 2001-02-23 2002-11-08 Nec Corp 横電界方式のアクティブマトリクス型液晶表示装置及びその製造方法
KR100916604B1 (ko) * 2002-12-27 2009-09-14 엘지디스플레이 주식회사 최적 선폭의 블랙 매트릭스를 포함하는 액정 표시 장치
JP5152352B2 (ja) * 2011-02-01 2013-02-27 凸版印刷株式会社 液晶表示用基板及び液晶表示装置
CN104155808B (zh) 2014-08-26 2017-04-19 昆山龙腾光电有限公司 可实现视角切换的液晶显示装置
CN104865757B (zh) * 2015-05-22 2019-09-17 昆山龙腾光电有限公司 一种显示面板、显示装置以及显示面板的视角控制方法
CN104932167B (zh) 2015-06-25 2018-06-19 深圳市华星光电技术有限公司 蓝相液晶显示装置及其驱动方法
CN105425480B (zh) * 2015-12-31 2018-09-18 昆山龙腾光电有限公司 可切换视角的液晶显示装置及其视角切换方法
CN106019733A (zh) * 2016-08-01 2016-10-12 京东方科技集团股份有限公司 一种阵列基板、显示面板及显示装置
CN106646954B (zh) * 2017-03-02 2019-09-13 京东方科技集团股份有限公司 一种防窥显示器及液晶显示装置
CN108196391B (zh) * 2018-01-02 2021-01-26 京东方科技集团股份有限公司 一种防窥装置、显示装置及防窥方法
CN108169953B (zh) * 2018-01-03 2024-03-01 京东方科技集团股份有限公司 一种防窥显示设备及其切换方法
CN108710243B (zh) * 2018-05-31 2021-01-26 Tcl华星光电技术有限公司 液晶显示面板遮光结构及液晶显示面板
CN108732827B (zh) * 2018-08-08 2021-10-26 昆山龙腾光电股份有限公司 液晶显示装置及其驱动方法
CN209265146U (zh) * 2018-12-26 2019-08-16 昆山龙腾光电有限公司 一种显示面板及显示装置
CN109656052B (zh) * 2019-01-18 2022-04-22 昆山龙腾光电股份有限公司 液晶显示面板及其制作方法和显示装置
CN109541831B (zh) 2019-01-30 2023-04-21 京东方科技集团股份有限公司 防窥结构及调节方法、显示面板、显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282059A (ja) * 2008-08-29 2008-11-20 Seiko Epson Corp 視角制御素子、液晶表示装置、電子機器
US20110069090A1 (en) * 2009-09-23 2011-03-24 Hwi-Deuk Lee Liquid crystal display device and method of driving the same
CN103728754A (zh) * 2014-01-21 2014-04-16 友达光电(厦门)有限公司 显示面板
CN104122726A (zh) * 2014-07-11 2014-10-29 京东方科技集团股份有限公司 显示面板、显示器、显示设备及驱动方法
CN108196406A (zh) * 2018-02-13 2018-06-22 京东方科技集团股份有限公司 阵列基板及制造方法、显示面板及操作方法、电子装置
CN108508666A (zh) * 2018-04-13 2018-09-07 昆山龙腾光电有限公司 阵列基板、液晶显示装置及视角切换方法
CN109946860A (zh) * 2019-04-17 2019-06-28 昆山龙腾光电有限公司 视角可切换液晶显示装置
CN110456580A (zh) * 2019-08-26 2019-11-15 京东方科技集团股份有限公司 一种显示基板及其控制方法、显示面板、显示装置

Also Published As

Publication number Publication date
CN110456580B (zh) 2022-04-29
US11435608B2 (en) 2022-09-06
CN110456580A (zh) 2019-11-15
US20210341771A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP4828557B2 (ja) 液晶表示装置
WO2016035202A1 (ja) 液晶表示装置及び表示装置用基板
US8294852B2 (en) Liquid crystal display device comprising a combination of O-type polarizers and E-type polarizers
JP4638462B2 (ja) 液晶表示装置
JP2008151817A (ja) 半透過型液晶表示装置
JP4494380B2 (ja) 液晶表示装置
US11036075B2 (en) Color filter substrate and liquid crystal display panel
JP3900141B2 (ja) 液晶表示装置および電子機器
CN108107623B (zh) 显示装置
CN112068340B (zh) 视角可切换的显示面板、显示装置及驱动方法
JP2007140089A (ja) 液晶表示装置
WO2021036997A1 (zh) 一种显示基板及其控制方法、显示面板、显示装置
CN215813616U (zh) 视角可切换的显示装置
US20190258123A1 (en) Display panel, display apparatus and driving method thereof
TW202032235A (zh) 顯示裝置
US20240069370A1 (en) Display module and display apparatus
WO2020168560A1 (zh) 阵列基板以及显示装置
JP3194456U (ja) 表示パネルおよび表示装置
CN113917721B (zh) 宽窄视角可切换的显示面板及驱动方法和显示装置
CN114594622B (zh) 宽窄视角可切换的显示面板及显示装置
US7542115B2 (en) Semi-transmissive liquid crystal display panel
WO2009113206A1 (ja) 液晶表示装置
KR102522531B1 (ko) 미러 디스플레이 패널
US20240142831A1 (en) Display panel, manufacturing method thereof and display device
WO2023193132A1 (zh) 宽窄视角可切换的显示面板及驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858143

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20858143

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.10.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20858143

Country of ref document: EP

Kind code of ref document: A1