WO2021036798A1 - 一种pid抗性高的perc电池组件及其制备方法 - Google Patents
一种pid抗性高的perc电池组件及其制备方法 Download PDFInfo
- Publication number
- WO2021036798A1 WO2021036798A1 PCT/CN2020/108861 CN2020108861W WO2021036798A1 WO 2021036798 A1 WO2021036798 A1 WO 2021036798A1 CN 2020108861 W CN2020108861 W CN 2020108861W WO 2021036798 A1 WO2021036798 A1 WO 2021036798A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- passivation
- layer
- sixny
- protective film
- positive
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title abstract description 8
- 101100409194 Rattus norvegicus Ppargc1b gene Proteins 0.000 title 1
- 238000002161 passivation Methods 0.000 claims abstract description 132
- 229910020776 SixNy Inorganic materials 0.000 claims abstract description 64
- 230000001681 protective effect Effects 0.000 claims abstract description 61
- 229910017107 AlOx Inorganic materials 0.000 claims abstract description 33
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 24
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 claims abstract description 23
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 claims abstract description 23
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 238000009792 diffusion process Methods 0.000 claims abstract description 10
- 230000009467 reduction Effects 0.000 claims description 30
- 238000000137 annealing Methods 0.000 claims description 21
- 230000005684 electric field Effects 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 10
- 238000007650 screen-printing Methods 0.000 claims description 10
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 8
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 description 11
- 238000000576 coating method Methods 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 229910004205 SiNX Inorganic materials 0.000 description 4
- 230000003667 anti-reflective effect Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 acetate anions Chemical class 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
- H01L31/02168—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/1804—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/186—Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
- H01L31/1868—Passivation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to the technical field of solar cells, and more specifically to a PERC battery module with high PID resistance and a preparation method thereof.
- the PID effect Pultential Induced Degradation
- the mechanism of PID phenomenon is: water vapor enters the inside of the module through the edge-sealing silica gel or back plate, or the module is in a long-term high temperature and high humidity environment, the ester acid bond in the module EVA is decomposed, and acetate anions that can move freely are generated.
- the acetate anion reacts with the soda ash (Na 2 CO 3 ) in the glass to precipitate Na+. Under the action of the internal electric field of the battery, Na+ drifts to the silicon matrix through the SiNx layer, destroying the PN junction, and finally leading to a large degree of power attenuation at the module end. .
- the current solution to the PID effect of PERC cells is to use a high refractive index passivation anti-reflective film, such as the patent application number "CN201310008588.0” published “anti-PID effect solar cell passivation reduction "Anti-reflection film”, which has two structures, the first one: the bottom layer of the passivation anti-reflection film is the passivation anti-reflection layer SiNx, the refractive index is 2.0-2.1, and the thickness is 70-80nm; the passivation anti-reflection film is The top layer is a conductive amorphous silicon layer with a thickness of 3-10 nm.
- the second type the bottom layer of the passivation anti-reflection film is a passivation layer SiNx, the refractive index is 2.2-2.3, and the thickness is 9-11 nm; b.
- the middle layer of the passivation anti-reflection film is a conductive layer of amorphous silicon layer, The thickness is 3-10 nm;
- the top layer of the passivation anti-reflective film is an anti-reflective SiNx layer, the refractive index is 2.0-2.1, and the thickness is 60-70 nm.
- the main reasons for the PID effect are: (1) substrate material resistivity and doping; (2) film layer technology; (3) component packaging materials; (4) component array arrangement; (5) component working environment; (6) The type and grounding method of the inverter.
- PID failure cannot rely solely on the change of passivation anti-reflection film composition and thickness.
- the optimization of PID failure needs to rely on comprehensive process improvement, material optimization, component arrangement and Structural improvements, etc.
- the purpose of the present invention is to solve the technical problem that the existing PERC battery simply relies on the change of the passivation anti-reflection film composition and thickness to solve the PID effect, and the battery has poor performance against PID failure.
- the present invention provides a high PID resistance. PERC battery module and its preparation method.
- a PERC battery module with high PID resistance including a substrate layer.
- the top surface of the substrate layer is sequentially provided with a diffusion layer, a SiOx positive passivation layer and a SixNy positive-minus-reverse passivation protective film layer from bottom to top.
- the thickness of SixNy positive minus and reverse passivation protective film is 75-95nm, and its refractive index is 2.08- 2.13, the thickness of SixNy back reduction and anti-passivation protective film is 90-160nm, the number of SixNy back reduction and anti-passivation protective film is at least 2 layers, and the refractive index of the layer closest to the substrate layer is ⁇ 2.1, AlOx
- the thickness of the back passivation film layer is 2-28 nm, and the refractive index of the AlOx back passivation film layer is 1.56-1.76.
- the thickness of the SixNy back reduction passivation protective film layer is 100 nm.
- the number of layers of the SixNy back reduction passivation protective film is 5 layers.
- a positive electrode is provided on the upper surface of the SixNy positive reduction and negative passivation protective film layer
- a back electric field is provided on the lower surface of the SixNy back reduction and negative passivation protective film layer
- a back electrode is provided at the bottom of the back electric field.
- the thickness of the back electric field is 5-30 ⁇ m.
- a method for preparing PERC battery modules with high PID resistance includes the following steps:
- the diffusion layer and the SiOx positive passivation layer are sequentially prepared on the top surface of the substrate layer, and the SiOx back passivation layer is prepared on the bottom surface of the substrate layer;
- a SixNy positive negative negative passivation protective film is formed on the top surface of the SiOx positive passivation layer, and annealed, the annealing time is 17-44min, and the annealing temperature is 380-480°C;
- the present invention optimizes the arrangement and combination of the key components of the PERC battery module, and optimizes the thickness and refractive index of each layer, optimizes the thickness of the SixNy positive-minus negative passivation protective film layer, ensures the protection of the SiOx positive passivation layer, and optimizes at the same time
- the thickness of the AlOx back passivation film layer and SixNy back reduction and anti-passivation protective film layer can increase the folding rate and form a high-density film.
- the number of SixNy back reduction and anti-passivation protective film layers is at least 2 layers to enhance each
- the compactness and final thickness between the layers can better protect the AlOx back passivation film and enhance the stability of the AlOx back passivation film, thereby comprehensively improving the anti-PID ability of PERC cells.
- the preparation method of the present invention can improve the PID resistance of the PERC battery by optimizing the number of deposition turns of the AlOx back passivation film, and at the same time strictly control the coating sequence, in sequence according to the AlOx back passivation film, SixNy positive and negative passivation protective film
- the sequential coating with SixNy back reduction and anti-passivation protective film increases the density of SixNy back reduction and anti-passivation protective film, and strictly controls the annealing time and temperature to comprehensively improve the anti-PID ability of PERC cells.
- Fig. 1 is a schematic diagram of the structure of a PERC battery module with high PID resistance according to the present invention
- Fig. 2 is a graph showing the effect of the number of turns of AlOx back passivation film deposition on PID in the present invention.
- this embodiment provides a PERC battery assembly with high PID resistance and a preparation method thereof, including a substrate layer 1.
- the top surface of the substrate layer 1 is sequentially provided with a diffusion layer 2 and SiOx positive passivation from bottom to top.
- the bottom surface of substrate layer 1 is sequentially provided with SiOx back passivation layer 6, AlOx back passivation film layer 7 and SixNy back negative negative passivation protective film layer 8 from top to bottom ,
- the thickness of SixNy positive reduction and negative passivation protection film 4 is 75-95nm, and its refractive index is 2.08-2.13, the thickness of SixNy back reduction and negative passivation protection film 8 is 90-160nm, SixNy back reduction and reverse passivation protection
- the number of film layers of the film layer 8 is at least two, and the refractive index of the layer closest to the substrate layer 1 is ⁇ 2.1, the thickness of the AlOx back passivation film layer 7 is 2-28nm, and the refractive index of the AlOx back passivation film layer 7 It is 1.56-1.76.
- the thickness of the SixNy positive minus and negative passivation protective film layer by optimizing the thickness of the SixNy positive minus and negative passivation protective film layer, the protection of the SiOx positive passivation layer is ensured, and the thickness of the AlOx back passivation film and the SixNy back minus and negative passivation protective film are optimized at the same time, Increase the folding rate to form a high-density film.
- the number of SixNy back-reduction passivation protective film layers is at least 2 layers, which enhances the density and final thickness of each layer, and better protects the AlOx back passivation film It enhances the stability of the AlOx back passivation film layer, and optimizes the arrangement and refractive index of each film layer, thereby comprehensively improving the anti-PID capability of the PERC battery module.
- the thickness of the SixNy back anti-reflection passivation protective film 8 is 100 nm.
- the number of layers of the SixNy back reduction passivation protective film 8 is 5 layers.
- the positive electrode 5 is provided on the upper surface of the SixNy positive reduction and negative passivation protective film layer 4
- the back electric field 9 is provided on the lower surface of the SixNy back reduction and negative passivation protective film layer 8
- the back electrode 10 is provided at the bottom of the back electric field 9.
- the thickness is 5-30 ⁇ m.
- this embodiment provides a method for preparing a PERC battery module with high PID resistance, which includes the following steps:
- the diffusion layer 2 and the SiOx positive passivation layer 3 are sequentially prepared on the top surface of the substrate layer 1, and the SiOx back passivation layer 6 is prepared on the bottom surface of the substrate layer 1;
- the AlOx back passivation layer 7 is then deposited on the bottom surface of the SiOx back passivation layer 6 through an ALD process, and the number of deposited turns is 24-36;
- a SixNy positive negative negative passivation protective film 4 is formed on the top surface of the SiOx positive passivation layer 3, and annealed, the annealing time is 17-44min, and the annealing temperature is 380-480°C;
- the PECVD process includes cleaning the surface of the texturing substrate layer, diffusion to form a doped diffusion layer, etching and polishing, surface oxidation, backside ALD passivation, PECVD coating and annealing, laser grooves, screen printing And sintering, and the tubular PECVD process is different from the plate PECVD process.
- the silicon wafer is vertically inserted into the graphite boat to be adsorbed, and the SiC paddle is sent into the quartz furnace tube as an electrode end for coating, so it is called tubular PECVD.
- the preparation method of the present invention can improve the PID resistance of the PERC battery by optimizing the number of deposition turns of the AlOx back passivation film, and at the same time strictly control the coating sequence, in sequence according to the AlOx back passivation film, SixNy positive and negative passivation protective film and SixNy
- the sequential coating of the back reduction and reverse passivation protective film increases the compactness of the SixNy back reduction and reverse passivation protective film, and strictly controls the annealing time and temperature to comprehensively improve the anti-PID ability of the PERC battery.
- Figure 2 shows the effect of AlOx back passivation film deposition turns on PID. It can be seen from Figure 2 that six groups of PERC cells are taken, and the AlOx back passivation film deposition turns are 24, 26, 28, 30, respectively. , 32 and 36 turns, and test the effect on PID respectively.
- the test conditions are: 96h under the conditions of temperature 85°C, humidity 85% and -1000V, combined with the number of turns of the current control, and the reliability results, AlOx back is blunt
- the anti-PID effect is the best when the number of turns of the film is 26, as a preferred technical solution of the present invention:
- step S2 the number of turns of AlOx back passivation layer 7 deposited is 26 turns.
- Table 3 below is the experimental test result table of the effect of annealing time on PID:
- the oxygen concentration N2:O2 is (500-1500):2000
- the annealing back pressure N2:O2 is 2000:2000
- the oxygen concentration ratio Improved, more compact response, better resistance to PID.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
本发明公开了一种PID抗性高的PERC电池组件及其制备方法,涉及太阳能电池技术领域,本发明包括衬底层,衬底层顶面从下到上依次设置有扩散层、SiOx正钝化层和SixNy正减反钝化保护膜层,衬底层底面从上到下依次设置有SiOx背钝化层、AlOx背钝化膜层和SixNy背减反钝化保护膜层,其特征在于,SixNy正减反钝化保护膜层的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层的厚度为90-160nm,SixNy背减反钝化保护膜层的膜层数量为至少2层,且距离衬底层最近一层的折射率≥2.1,AlOx背钝化膜层的厚度为2-28nm,AlOx背钝化膜层的折射率为1.56-1.76,本发明通过优化电池组件排布及各层组件厚度和折射率,优化制备工艺,制得的电池抗PID性能高。
Description
本发明涉及太阳能电池技术领域,更具体的是涉及一种PID抗性高的PERC电池组件及其制备方法。
近年来,PID效应引发的光伏电池可靠性问题越来越受重视,PID效应(Potential Induced Degradation),即电势差引起的组件功率衰减,又叫电位诱导衰减。PID现象产生的机理为:水汽通过封边的硅胶或背板进入组件内部,或组件在长时间的高温高湿环境下,组件EVA中酯酸键产生分解,产生可以自由移动的醋酸根阴离子,醋酸根阴离子和玻璃中的纯碱(Na
2CO
3)反应将Na+析出,在电池内部电场作用下,Na+通过SiNx层漂移至硅基体,破坏PN结,最终导致组件端功率出现较大程度的衰减。
随着PID问题的增加,目前解决PERC电池PID效应的方案是采用高折射率的钝化减反膜,如专利申请号为“CN201310008588.0”公开的“能抗PID效应的太阳电池钝化减反膜”,其有两种结构,第一种:该钝化减反膜的底层为钝化减反层SiNx,折射率为2.0-2.1,厚度为70-80nm;该钝化减反膜的顶层为导电层非晶硅层,厚度为3-10nm。第二种:该钝化减反膜的底层为钝化层SiNx,折射率为2.2-2.3,厚度为9-11nm;b、该钝化减反膜的中间层为导电层非晶硅层,厚度为3-10nm;该钝化减反膜的顶层为减反层SiNx层,折射率为2.0-2.1,厚度为60-70nm。而造成PID效应的原因主要在于:(1)衬底材料电阻率及掺杂;(2)膜层工艺;(3)组件封装材料;(4)组件阵列排布;(5)组件工作环境;(6)逆变器的类型和接地方式。由上述PID失效的主要因素分析可以得出,PID失效并不能单纯依靠钝化减反膜成分和厚度的改变,其PID失效的优化需要依赖于综合性的工艺改进、材料优化、组件排布和结构改进等。
故如何解决上述技术问题,对于本领域技术人员来说很有现实意义。
发明内容
本发明的目的在于:为了解决现有PERC电池单纯依靠钝化减反膜成分和厚度的改变来解决PID效应,电池抗PID失效的性能较差的技术问题,本发明提供一种PID抗性高的PERC电池组件及其制备方法。
本发明为了实现上述目的具体采用以下技术方案:
一种PID抗性高的PERC电池组件,包括衬底层,衬底层顶面从下到上依次设置有扩散层、SiOx正钝化层和SixNy正减反钝化保护膜层,衬底层底面从上到下依次设置有SiOx背钝化层、AlOx背 钝化膜层和SixNy背减反钝化保护膜层,SixNy正减反钝化保护膜层的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层的厚度为90-160nm,SixNy背减反钝化保护膜层的膜层数量为至少2层,且距离衬底层最近一层的折射率≥2.1,AlOx背钝化膜层的厚度为2-28nm,AlOx背钝化膜层的折射率为1.56-1.76。
进一步地,SixNy背减反钝化保护膜层的厚度为100nm。
进一步地,SixNy背减反钝化保护膜层的膜层数量为5层。
进一步地,SixNy正减反钝化保护膜层上表面设置有正电极,SixNy背减反钝化保护膜层下表面设置有背电场,背电场底部设置有背电极。
进一步地,背电场的厚度为5-30μm。
一种PID抗性高的PERC电池组件的制备方法,包括以下步骤:
S1:根据管式PECVD工艺,在衬底层顶面依次制备扩散层和SiOx正钝化层,在衬底层底面制备SiOx背钝化层;
S2:然后在SiOx背钝化层底面通过ALD工艺沉积形成AlOx背钝化膜层,沉积的圈数为24-36圈;
S3:然后在SiOx正钝化层顶面镀膜形成SixNy正减反钝化保护膜层,并进行退火,退火时间为17-44min,退火温度在380-480℃;
S4:然后在AlOx背钝化膜层底面镀膜形成SixNy背减反钝化保护膜层,并进行退火,退火时间为17-44min,退火温度在380-480℃。
进一步地,还包括以下步骤:
S01:在SixNy背减反钝化保护膜层底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;
S02:在SixNy背减反钝化保护膜层底面通过丝网印刷得到背电场;
S03:在对应局部开槽镂空区域,并在非背电场区域进行丝网印刷银浆料并烘干,形成背电极;
S04:在SixNy正减反钝化保护膜层顶面进行丝网印刷正电极并烘干烧结。
本发明的有益效果如下:
1、本发明优化了PERC电池组件关键部件排布组合,且优化了各层厚度及折射率,优化SixNy正减反钝化保护膜层的厚度,确保对SiOx正钝化层的保护,同时优化AlOx背钝化膜层和SixNy背减反钝化保护膜层的厚度,提高折叠率,形成高致密膜层,同时SixNy背减反钝化保护膜层的膜层数量为至少2层,增强各层膜之间致密性和最终厚度,更好的保护AlOx背钝化膜层,增强AlOx背钝化膜层的稳定性,从而综合各方面来提高PERC电池的抗PID能力。
2、本发明制备方法通过优化AlOx背钝化膜层沉积圈数,可提高PERC电池PID抗性,同时严格控制镀膜顺序,依次按照AlOx背钝化膜层、SixNy正减反钝化保护膜层和SixNy背减反钝化保护膜层的顺序镀膜,增加了SixNy背减反钝化保护膜层的致密性,并严格控制退火时间和温度,综合提高PERC电池的抗PID能力。
图1是本发明一种PID抗性高的PERC电池组件的结构示意图;
图2是本发明中的AlOx背钝化膜层沉积圈数对PID的影响效果图。
附图标记:1-衬底层,2-扩散层,3-SiOx正钝化层,4-SixNy正减反钝化保护膜层,5-正电极,6-SiOx背钝化层,7-AlOx背钝化膜层,8-SixNy背减反钝化保护膜层,9-背电场,10-背电极。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本申请的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以下结合实施例对本发明的特征和性能作进一步的详细描述。
实施例1
如图1所示,本实施例提供一种PID抗性高的PERC电池组件及其制备方法,包括衬底层1,衬底层1顶面从下到上依次设置有扩散层2、SiOx正钝化层3和SixNy正减反钝化保护膜层4,衬底层1底面从上到下依次设置有SiOx背钝化层6、AlOx背钝化膜层7和SixNy背减反钝化保护膜层8,SixNy正减反钝化保护膜层4的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层8的厚度为90-160nm,SixNy背减反钝化保护膜层8的膜层数量为至少2层,且距离衬底层1最近一层的折射率≥2.1,AlOx背钝化膜层7的厚度为2-28nm,AlOx背钝化膜层7的折射率为1.56-1.76。
本实施例中,通过优化SixNy正减反钝化保护膜层的厚度,确保对SiOx正钝化层的保护,同时优化AlOx背钝化膜层和SixNy背减反钝化保护膜层的厚度,提高折叠率,形成高致密膜层,同时SixNy背减反钝化保护膜层的膜层数量为至少2层,增强各层膜之间致密性和最终厚度,更好的保护AlOx背钝化膜层,增强AlOx背钝化膜层的稳定性,并优化各膜层组合排布及折射率,从而综合提高PERC电池组件的抗PID能力。
下表1为SixNy背减反钝化保护膜层厚度对PID影响的实验测试结果表:
表1
由上表1可知,SixNy背减反钝化保护膜层厚度为100nm时对PID抗性最好,因此作为本发明的一种优选技术方案:
SixNy背减反钝化保护膜层8的厚度为100nm。
下表2为SixNy背减反钝化保护膜层的膜层数量对PID影响的实验测试结果表:
表2
由上表2可知,随着SixNy背减反钝化保护膜层的膜层数量的增加,其PID抗性能力增强,但受其厚度限制,膜层数量不宜过多,因此作为本发明的一种优选技术方案:
SixNy背减反钝化保护膜层8的膜层数量为5层。
作为本发明的一种优选技术方案:
SixNy正减反钝化保护膜层4上表面设置有正电极5,SixNy背减反钝化保护膜层8下表面设置有背电场9,背电场9底部设置有背电极10,背电场9的厚度为5-30μm。
实施例2
如图1到2所示,本实施例提供一种PID抗性高的PERC电池组件的制备方法,包括以下步骤:
S1:根据管式PECVD工艺,在衬底层1顶面依次制备扩散层2和SiOx正钝化层3,在衬底层1底面制备SiOx背钝化层6;
S2:然后在SiOx背钝化层6底面通过ALD工艺沉积形成AlOx背钝化层7,沉积的圈数为24-36圈;
S3:然后在SiOx正钝化层3顶面镀膜形成SixNy正减反钝化保护膜层4,并进行退火,退火时间为17-44min,退火温度在380-480℃;
S4:然后在AlOx背钝化层7底面镀膜形成SixNy背减反钝化保护膜层8,并进行退火,退火时间为17-44min,退火温度在380-480℃。
进一步地,还包括以下步骤:
S01:在SixNy背减反钝化保护膜层8底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;
S02:在SixNy背减反钝化保护膜层8底面通过丝网印刷得到背电场9;
S03:在对应局部开槽镂空区域,并在非背电场9区域进行丝网印刷银浆料并烘干,形成背电极10:
S04:在SixNy正减反钝化保护膜层4顶面进行丝网印刷正电极5并烘干烧结。
本实施例中,所述的PECVD工艺流程包括清洗制绒衬底层表面、扩散形成掺杂扩散层、刻蚀抛光、表面氧化、背面ALD钝化、PECVD镀膜并退火、激光刻槽、丝网印刷和烧结,而管式PECVD工艺区别于板式PECVD工艺,镀膜过程中,硅片竖直插入石墨舟中吸附,由SiC桨送入石英炉管内作为一电极端进行镀膜,因此称为管式PECVD。本发明制备方法通过优化AlOx背钝化膜层沉积圈数,可提高PERC电池PID抗性,同时严格控制镀膜顺序,依次按照AlOx背钝化膜层、SixNy正减反钝化保护膜层和SixNy背减反钝化保护膜层的顺序镀膜,增加了SixNy背减反钝化保护膜层的致密性,并严格控制退火时间和温度,综合提高PERC电池的抗PID能力。
图2为AlOx背钝化膜层沉积圈数对PID的影响效果图,从图2可看出,取六组PERC电池,其AlOx背钝化膜沉积圈数分别为24、26、28、30、32和36圈,并分别测试对PID的影响,测试条件为:在温度85℃、湿度85%以及-1000V的条件下持续96h,结合现行控制的圈数,以及可靠性结果,AlOx背钝化膜的圈数为26时的抗PID效果最好,作为本发明的一种优选技术方案:
在步骤S2中,AlOx背钝化层7沉积的圈数为26圈。
下表3为退火时间对PID影响的实验测试结果表:
表3
由上表3可以得出,随着退火时间的延长,电池PID性能得以提升,氧浓度N2∶O2为(500-1500)∶2000,退火降温回压N2∶O2为2000∶2000,氧浓度比例提高,反应更加致密,对PID抗性更佳。
以上所述,仅为本发明的较佳实施例,并不用以限制本发明,本发明的专利保护范围以权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。
Claims (7)
- 一种PID抗性高的PERC电池组件,包括衬底层(1),其特征在于,衬底层(1)顶面从下到上依次设置有扩散层(2)、SiOx正钝化层(3)和SixNy正减反钝化保护膜层(4),衬底层(1)底面从上到下依次设置有SiOx背钝化层(6)、AlOx背钝化膜层(7)和SixNy背减反钝化保护膜层(8),SixNy正减反钝化保护膜层(4)的厚度为75-95nm,其折射率为2.08-2.13,SixNy背减反钝化保护膜层(8)的厚度为90-160nm,SixNy背减反钝化保护膜层(8)的膜层数量为至少2层,且距离衬底层(1)最近一层的折射率≥2.1,AlOx背钝化膜层(7)的厚度为2-28nm,AlOx背钝化膜层(7)的折射率为1.56-1.76。
- 根据权利要求1所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy背减反钝化保护膜层(8)的厚度为100nm。
- 根据权利要求1所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy背减反钝化保护膜层(8)的膜层数量为5层。
- 根据权利要求1至3中任一权利要求所述的一种PID抗性高的PERC电池组件,其特征在于,SixNy正减反钝化保护膜层(4)上表面设置有正电极(5),SixNy背减反钝化保护膜层(8)下表面设置有背电场(9),背电场(9)底部设置有背电极(10)。
- 根据权利要求4所述的一种PID抗性高的PERC电池组件,其特征在于,背电场(9)的厚度为5-30μm。
- 根据权利要求5所述的一种PID抗性高的PERC电池组件的制备方法,其特征在于,包括以下步骤:S1:根据管式PECVD工艺,在衬底层(1)顶面依次制备扩散层(2)和SiOx正钝化层(3),在衬底层(1)底面制备SiOx背钝化层(6);S2:然后在SiOx背钝化层(6)底面通过ALD工艺沉积形成AlOx背钝化膜层(7),沉积的圈数为24-36圈;S3:然后在SiOx正钝化层(3)顶面镀膜形成SixNy正减反钝化保护膜层(4),并进行退火,退火时间为17-44min,退火温度在380-480℃;S4:然后在AlOx背钝化膜层(7)底面镀膜形成SixNy背减反钝化保护膜层(8),并进行退火,退火时间为17-44min,退火温度在380-480℃。
- 根据权利要求6所述的一种PID抗性高的PERC电池组件的制备方法,其特征在于,还包括以下步骤:S01:在SixNy背减反钝化保护膜层(8)底面通过532nm-1064nm的激光进行局部开槽,局部开槽区域占比0.5%-6%;S02:在SixNy背减反钝化保护膜层(8)底面通过丝网印刷得到背电场(9);S03:在对应局部开槽镂空区域,并在非背电场(9)区域进行丝网印刷银浆料并烘干,形成背电极(10);S04:在SixNy正减反钝化保护膜层(4)顶面进行丝网印刷正电极(5)并烘干烧结。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910811785.3 | 2019-08-29 | ||
CN201910811785.3A CN110491952B (zh) | 2019-08-29 | 2019-08-29 | 一种pid抗性高的perc电池组件及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021036798A1 true WO2021036798A1 (zh) | 2021-03-04 |
Family
ID=68555315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/108861 WO2021036798A1 (zh) | 2019-08-29 | 2020-08-13 | 一种pid抗性高的perc电池组件及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110491952B (zh) |
WO (1) | WO2021036798A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114709295A (zh) * | 2022-06-06 | 2022-07-05 | 一道新能源科技(衢州)有限公司 | 一种降低perc电池片衰减的方法及装置 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110491952B (zh) * | 2019-08-29 | 2024-07-02 | 通威太阳能(眉山)有限公司 | 一种pid抗性高的perc电池组件及其制备方法 |
CN111106183A (zh) * | 2019-12-26 | 2020-05-05 | 湖南红太阳光电科技有限公司 | 利用管式pecvd制备背面全钝化接触太阳电池的方法及背面全钝化接触太阳电池 |
CN112531035B (zh) * | 2020-12-03 | 2022-04-29 | 通威太阳能(成都)有限公司 | 太阳电池及其制备方法、太阳电池背面多层复合钝化膜 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110132444A1 (en) * | 2010-01-08 | 2011-06-09 | Meier Daniel L | Solar cell including sputtered reflective layer and method of manufacture thereof |
CN109087956A (zh) * | 2018-07-16 | 2018-12-25 | 横店集团东磁股份有限公司 | 一种双面perc太阳能电池结构及其制备工艺 |
CN109786477A (zh) * | 2019-01-24 | 2019-05-21 | 江西展宇新能源股份有限公司 | 一种抗pid双面perc电池多层钝化膜和双面perc电池的制备方法 |
CN110491952A (zh) * | 2019-08-29 | 2019-11-22 | 通威太阳能(眉山)有限公司 | 一种pid抗性高的perc电池组件及其制备方法 |
CN210403744U (zh) * | 2019-08-29 | 2020-04-24 | 通威太阳能(眉山)有限公司 | 一种pid抗性高的perc电池组件 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103022160B (zh) * | 2013-01-10 | 2015-11-18 | 常州天合光能有限公司 | 能抗pid效应的太阳电池钝化减反膜 |
WO2015006247A1 (en) * | 2013-07-07 | 2015-01-15 | Solexel, Inc. | Surface passivation of high-efficiency crystalline silicon solar cells |
WO2015039128A2 (en) * | 2013-09-16 | 2015-03-19 | Special Materials Research And Technology, Inc. (Specmat) | Methods, apparatus, and systems for passivation of solar cells and other semiconductor devices |
KR101614190B1 (ko) * | 2013-12-24 | 2016-04-20 | 엘지전자 주식회사 | 태양전지 및 이의 제조 방법 |
CN104752526B (zh) * | 2015-03-19 | 2017-05-03 | 江苏顺风光电科技有限公司 | 一种高pid抗性多晶电池的钝化减反射膜及其制备工艺 |
CN106653872B (zh) * | 2016-11-25 | 2018-06-29 | 罗雷 | 一种抗pid效应的太阳能电池 |
CN106992229A (zh) * | 2017-06-06 | 2017-07-28 | 通威太阳能(合肥)有限公司 | 一种perc电池背面钝化工艺 |
CN111987296B (zh) * | 2018-12-17 | 2021-05-18 | 宁德新能源科技有限公司 | 负极材料及使用其的电化学装置和电子装置 |
CN109943857B (zh) * | 2019-03-29 | 2020-07-07 | 国家纳米科学中心 | 一种硅基光电极、及其制备方法和用途 |
-
2019
- 2019-08-29 CN CN201910811785.3A patent/CN110491952B/zh active Active
-
2020
- 2020-08-13 WO PCT/CN2020/108861 patent/WO2021036798A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110132444A1 (en) * | 2010-01-08 | 2011-06-09 | Meier Daniel L | Solar cell including sputtered reflective layer and method of manufacture thereof |
CN109087956A (zh) * | 2018-07-16 | 2018-12-25 | 横店集团东磁股份有限公司 | 一种双面perc太阳能电池结构及其制备工艺 |
CN109786477A (zh) * | 2019-01-24 | 2019-05-21 | 江西展宇新能源股份有限公司 | 一种抗pid双面perc电池多层钝化膜和双面perc电池的制备方法 |
CN110491952A (zh) * | 2019-08-29 | 2019-11-22 | 通威太阳能(眉山)有限公司 | 一种pid抗性高的perc电池组件及其制备方法 |
CN210403744U (zh) * | 2019-08-29 | 2020-04-24 | 通威太阳能(眉山)有限公司 | 一种pid抗性高的perc电池组件 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114709295A (zh) * | 2022-06-06 | 2022-07-05 | 一道新能源科技(衢州)有限公司 | 一种降低perc电池片衰减的方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110491952A (zh) | 2019-11-22 |
CN110491952B (zh) | 2024-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021036798A1 (zh) | 一种pid抗性高的perc电池组件及其制备方法 | |
Werner et al. | Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells | |
CN102598308B (zh) | 太阳能电池、其制造方法及太阳能电池组件 | |
JP6788144B1 (ja) | 太陽電池モジュール、太陽電池及びその製造方法 | |
Ying et al. | Monolithic perovskite/black-silicon tandems based on tunnel oxide passivated contacts | |
JP5694620B1 (ja) | 結晶シリコン系太陽電池の製造方法、および結晶シリコン系太陽電池モジュールの製造方法 | |
WO2021068586A1 (zh) | 晶体硅太阳能电池及其制备方法、光伏组件 | |
TWI463682B (zh) | 異質接面太陽能電池 | |
CN216980577U (zh) | 电池背面结构及双面TOPCon太阳能电池 | |
CN101794833A (zh) | 一种背表面电介质钝化的太阳电池及其制备方法 | |
CN108123046A (zh) | 一种钙钛矿/n型晶体硅叠层太阳电池及其制造方法 | |
CN105810779A (zh) | 一种perc太阳能电池的制备方法 | |
CN113471311B (zh) | 一种异质结电池及其制备方法 | |
Lee et al. | Carbon nanotube electrode‐based perovskite–silicon tandem solar cells | |
CN111477720A (zh) | 一种钝化接触的n型背结太阳能电池及其制备方法 | |
CN103474506A (zh) | 双面受光太阳电池制作方法 | |
JP2015050277A (ja) | 太陽電池およびその製造方法 | |
JP2024529031A (ja) | パッシベーティングコンタクト構造体、その製造方法及びそれを用いた太陽電池 | |
CN110444634B (zh) | 一种p型单晶perc双面电池及其制作方法 | |
CN208336240U (zh) | 太阳能电池及太阳能电池组件 | |
WO2019119869A1 (zh) | 一种太阳能异质结电池及其制备方法 | |
TWI650872B (zh) | 太陽能電池及其製造方法、太陽能電池模組及太陽能電池發電系統 | |
CN116469945A (zh) | 一种TOPCon电池及其制备方法 | |
US20150187979A1 (en) | Heterojunction solar cell with epitaxial silicon thin film and method for preparing the same | |
CN115207135A (zh) | 一种perc电池的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20858005 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20858005 Country of ref document: EP Kind code of ref document: A1 |