WO2021036097A1 - 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺 - Google Patents

一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺 Download PDF

Info

Publication number
WO2021036097A1
WO2021036097A1 PCT/CN2019/124938 CN2019124938W WO2021036097A1 WO 2021036097 A1 WO2021036097 A1 WO 2021036097A1 CN 2019124938 W CN2019124938 W CN 2019124938W WO 2021036097 A1 WO2021036097 A1 WO 2021036097A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
reaction
enters
regeneration
Prior art date
Application number
PCT/CN2019/124938
Other languages
English (en)
French (fr)
Inventor
田俊凯
杨卫东
高军
周轶
范昌海
寇亮
范凌达
Original Assignee
浙江卫星能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星能源有限公司 filed Critical 浙江卫星能源有限公司
Publication of WO2021036097A1 publication Critical patent/WO2021036097A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a process for producing propylene by propane dehydrogenation, in particular to a process for preparing propylene by means of combined reaction feed and catalyst regeneration countercurrent contact dehydrogenation.
  • the main difference between the two processes is mainly in the catalyst.
  • the Lummus process fixed bed uses chromium-based catalysts, which are toxic and difficult to treat after the catalyst is scrapped.
  • the UOP process uses platinum-based catalysts, which are non-toxic, good in thermal stability, and low in investment, which is why it currently occupies a relatively large share of the domestic market.
  • UOP process Propane is mixed with a certain proportion of hydrogen and then passes through the first reactor, the second reactor, the third reactor and the fourth reactor in sequence to obtain products, and then enters the subsequent separation system.
  • the flow direction of the catalyst is the same as that of the raw material.
  • the regenerated catalyst enters the first reactor, the second reactor, the third reactor and the fourth reactor successively, and then carries out catalyst elutriation, enters the regeneration tower, the catalyst is regenerated, and the regenerated catalyst Enter the reactor to participate in the reaction.
  • the flow direction of the raw material and the catalyst is the same.
  • the process gas has the highest olefin content after reacting in the first three reactors. At this time, the catalyst has the highest carbon content and the lowest catalyst activity.
  • the above-mentioned UOP process has a short operating cycle and the terminal reactor is easily blocked, which affects the operating cycle and other shortcomings.
  • the purpose of the present invention is to provide a combined reaction feed and catalyst regeneration countercurrent contact dehydrogenation to propylene process, which solves the problems of short reactor operation period, frequent maintenance, and low single-pass yield. It has stable operation, reduced carbon deposits, and single-pass recovery. Features such as high rate.
  • a combined reaction feed and catalyst regeneration countercurrent contact dehydrogenation to propylene process which includes catalytic dehydrogenation and catalyst regeneration:
  • Catalytic dehydrogenation the feed gas containing propane enters three or four reactors in sequence, and undergoes a catalytic dehydrogenation reaction with the catalyst entering from the upper part of the reactor, until the product containing propylene produced by the last reactor enters the subsequent separation
  • the system is separated to obtain the final product propylene; each reactor is equipped with a heating furnace, and the process gas is heated to the reaction temperature by the heating furnace before entering the reactor, and then enters the reactor to carry out catalytic dehydrogenation reaction with the catalyst.
  • the catalyst is regenerated.
  • the catalyst to be regenerated containing carbon deposits after the reaction of the first reactor is discharged from the bottom of the reactor, collected and transported to the first lock hopper through the collector, where the hydrogen environment where the catalyst is located is converted into inert gas The environment is then lifted to the separation hopper by a fan.
  • the catalyst to be regenerated enters the catalyst regeneration tower for coking to obtain a recyclable catalyst.
  • the recyclable catalyst enters the separation hopper through the buffer hopper. Perform the second elutriation.
  • the recyclable catalyst After elutriation, the recyclable catalyst enters the second lock hopper, where the inert gas environment where the catalyst is located is converted to a hydrogen environment; then it is lifted by the fan from the last one in turn
  • the first reactor to the first reactor respectively enter the reactor to participate in the catalytic dehydrogenation reaction; the combined feed flow direction of the process gas containing propane is opposite to the feed direction of the catalyst regeneration, forming a countercurrent contact reaction.
  • an L valve group is provided in the lifting pipeline of the catalyst regeneration.
  • each time the catalyst is regenerated it needs to be heated to 100-200°C before being raised into the next reactor.
  • each time the catalyst is regenerated it needs to be heated to 120-140°C before being lifted into the next reactor.
  • the present invention adopts a countercurrent reaction between the catalyst and the process gas phase.
  • the process gas flows from the first reactor to the third reactor or the fourth reactor, and the catalyst flows from the third reactor. Or the fourth reactor flows to the first reactor.
  • the regenerated catalyst has the highest activity, and the fourth reactor has the highest propylene content, which requires higher catalyst activity for catalytic reaction, while the combined feed in the first reactor has the largest content of propylene, and the dehydrogenation reaction
  • the most intense, contact with a catalyst containing carbon deposits can also have a high reaction efficiency. Therefore, by adopting this countercurrent reaction method, the single-pass yield can be increased by 2-10%.
  • the propane in each reactor contacts the catalyst to carry out dehydrogenation reaction.
  • a heating furnace is added after each reactor. The gas undergoes heat compensation, so that the process gas reaches the reaction temperature again and enters the next reactor, so that the dehydrogenation reaction can proceed quickly.
  • the catalyst lifting pipeline adopts the L valve block design. This design can effectively reduce the number of valves required in the catalyst regeneration stage, and it is also beneficial to reduce the catalyst's adsorption of dust.
  • the catalyst needs to be elutriated.
  • the elutriation process of the catalyst may be one or two. If two elutriations are performed, each elutriation is performed before and after the catalyst enters the regeneration tower for coking. If one elutriation is used, elutriation can be performed on the catalyst before it enters the regeneration tower for scorching, or it can be elutriated after the catalyst is scorched in the regeneration tower, preferably before the regeneration tower.
  • the elutriation of the catalyst can effectively reduce the amount of dust attached to the catalyst and reduce the risk of clogging of the inner and outer nets of the reactor, thereby prolonging the operation cycle of the device.
  • the function of the first lock hopper is to isolate the process gas from the oxygen environment, and to convert the catalyst containing carbon deposits into the inert gas environment in the first lock hopper to prevent the process gas from entering the regeneration system; the second lock hopper functions to isolate the oxygen environment from the oxygen environment.
  • the regenerated catalyst is converted into process gas in the inert gas environment in the second lock hopper to prevent the above oxygen from entering the process gas system.
  • the combined reaction feed and catalyst regeneration countercurrent contact dehydrogenation to propylene process of the present invention adopts a combined feed method to ensure that the reaction can proceed continuously; the process gas and the catalyst adopt a countercurrent flow direction, so that the catalyst can be maximized Its catalytic effect improves the single-pass catalytic yield.
  • the activity of the catalyst is effectively controlled, so that the catalyst can be recycled.
  • the combined feed flow direction of the process gas of the present invention is countercurrent to the catalyst regeneration phase, and the catalyst that has just been regenerated is sent to the last reactor first.
  • the raw material of the last reactor contains the highest propylene content, and the new catalyst after regeneration needs to be in direct contact.
  • the catalyst has the greatest activity and can satisfy the reaction at a lower temperature, effectively lowering the reaction temperature, reducing carbon deposition and reducing clogging.
  • an elutriation system is added before and after the catalyst regeneration tower, which can effectively remove catalyst dust to more than 98.5%, reduce the cumulative effect of dust to less than 0.2%, reduce the speed of reactor blockage, and minimize the reaction
  • the risk of blockage of the internal and external networks of the device reduces the number of maintenance, so that the device can operate stably and the operating cycle becomes longer.
  • the catalyst lifting pipeline of the present invention is designed according to the L valve group, which can effectively reduce the valves required for regeneration and reduce the catalyst dust.
  • Fig. 1 is a schematic structural diagram of an embodiment of the present invention.
  • the process for preparing propylene by reaction dehydrogenation of the combined reaction feed and continuous catalyst regeneration phase countercurrent contact reaction of the present invention includes catalytic dehydrogenation and catalyst regeneration, wherein:
  • the process gas containing propane enters the first to fourth reactors R1 to R4 in sequence, and undergoes catalytic dehydrogenation reaction with the catalyst entering from the upper part of the reactor until the fourth reactor R4 produces propylene containing
  • the product enters the subsequent separation system for separation to obtain the final product propylene; each reactor is equipped with a heating furnace H1 ⁇ H4, the process gas is heated to the reaction temperature by the heating furnace before entering the reactor, and then enters the reactor for catalytic dehydrogenation with the catalyst
  • the reaction temperature of the reactor is 600-650°C;
  • the catalyst is regenerated.
  • the catalyst to be regenerated containing carbon deposits after the reaction of the first reactor R1 is discharged from the bottom of the reactor, collected and transported to the first lock hopper V15 through the collector V01, and the hydrogen containing the process gas in the first lock hopper V15
  • the environment is transformed into an inert gas environment, and then lifted to the separation hopper V09A by the fan C01.
  • the catalyst to be regenerated enters the catalyst regeneration tower V10 for coking, and a recyclable catalyst is obtained, which can be recycled.
  • the catalyst passes through the buffer hopper V12 and enters the separation hopper V09B for the second elutriation.
  • the recyclable catalyst After the second elutriation, the recyclable catalyst enters the second lock hopper V14.
  • the inert gas environment where the catalyst is located in the second lock hopper V14 It is converted into a hydrogen environment; then, after being lifted by a fan, it enters the reactor from the fourth reactor R4 to the first reactor R1 to participate in the catalytic dehydrogenation reaction; the process gas containing propane is combined with the feed flow direction of the catalyst regeneration The direction of the materials is opposite, forming a countercurrent contact reaction.
  • an L valve group is provided in the lifting pipeline of the catalyst regeneration.
  • each time the catalyst is regenerated it needs to be heated to 100-200°C before being raised into the next reactor.
  • each time the catalyst is regenerated it needs to be heated to 120-140°C before being lifted into the next reactor.
  • Propane/H 2 is mixed according to 100:50mol and then enters the reactor according to 15Nm 3 /h. It enters the first reactor R1 after heating furnace H1 to 625°C, and then enters the second reactor after heating furnace H2 to 625°C. R2, then heated to 625°C through heating furnace H3, enters the third reactor R3, and finally heated to 625°C through heating furnace H4, enters the fourth reactor R4, runs continuously online for 3h, and the reacted product (propylene) enters The subsequent separation system performs separation, and the analysis can obtain a yield of 33.6% propylene;
  • the process gas is carried out in the direction from R1-R2-R3-R4, the feed direction of the catalyst and the process gas is exactly opposite, and the phase countercurrent reaction, the process gas flows from the direction of the reactor R1-R2-R3-R4, The catalyst flows in the direction of the reactor R4-R3-R2-R1.
  • the regenerable catalyst containing 2% carbon is collected by the catalyst collector at the bottom of the reactor.
  • the regenerable catalyst collected by the catalyst collector V01 first enters the first lock hopper V15, and then enters the first lock hopper V15.
  • the hydrogen environment where the catalyst is located is converted into a nitrogen environment, and then it is lifted to the first separation hopper V09A by the fan C01, and an elutriation is completed in the first separation hopper V09A by the fan C02 to remove excess dust; then it enters the catalyst regeneration Tower V10 is used to burn the catalyst to remove carbon deposits.
  • the regeneration environment in the regeneration tower is controlled with 0.6% oxygen content in the upper part and 3.5% oxygen content in the lower part.
  • the maximum regeneration temperature is controlled to be less than 580°C.
  • the carbon content of the catalyst after regeneration in the regeneration tower The scorching speed is controlled by the flow control hopper V11, and the scorched catalyst enters the buffer hopper V12 for cooling; then enters the second separation hopper V09B, and uses the fan C03 to perform secondary elutriation on the catalyst to remove excess Dust, after two elutriations, the fine powder content is reduced to less than 0.002%; after completion, the catalyst enters the second lock hopper V14 to convert nitrogen to hydrogen environment, and finally the catalyst that can participate in the reaction from the second lock hopper V14 is heated
  • the reactor E02 is heated to 140°C, and the fourth reactor R4 is lifted by the L valve group to participate in the reaction; the catalyst completed in the fourth reactor R4 is collected by the catalyst collector V05, and then heated to again by the heater E01 At 140°C, it is lifted through the L valve group to enter the next reactor; the lift gas will sequentially enter the regenerated catalyst into the reactor R4,
  • the catalyst flows in the direction of the reactor R4-R3-R2-R1.
  • the regenerated catalyst has the highest activity, and the fourth reactor R4 has the highest propylene content in the process gas.
  • a catalyst with high activity is required for the reaction, while the first reactor R1 has the highest propylene content in the combined feed.
  • the dehydrogenation reaction is the most intense, and contact with a catalyst containing carbon deposits can increase the single-pass yield by 2-10%.
  • Propane/H 2 is mixed according to 100:50mol and then enters the reactor according to 15Nm 3 /h. It enters the first reactor R1 after heating to 615°C through heating furnace H1, and then enters the second reactor after heating to 615°C through heating furnace H2. R2, then heated to 615°C by heating furnace H3, enters the third reactor R3, and finally heated to 615°C by heating furnace H4, enters the fourth reactor R4, and runs continuously on-line for 3h, and the reacted product (propylene) enters The subsequent separation system performs separation, and the analysis can obtain a yield of 31.2% propylene;
  • the process gas is carried out in the direction from R1-R2-R3-R4, the feed direction of the catalyst and the process gas is exactly opposite, and the phase countercurrent reaction, the process gas flows from the direction of the reactor R1-R2-R3-R4, The catalyst flows in the direction of the reactor R4-R3-R2-R1.
  • the regenerable catalyst containing 1.5% carbon is collected by the catalyst collector at the bottom of the reactor.
  • the regenerable catalyst collected by the catalyst collector V01 first enters the first lock hopper V15, and then enters the first lock hopper V15.
  • the hydrogen environment where the catalyst is located is converted into a nitrogen environment, and then it is lifted to the first separation hopper V09A by the fan C01, and an elutriation is completed in the first separation hopper V09A by the fan C02 to remove excess dust; then it enters the catalyst regeneration Tower V10 is used to burn the catalyst to remove carbon deposits.
  • the regeneration environment in the regeneration tower is to control 0.8% oxygen content in the upper part, 4.0% oxygen content in the lower part, and control the maximum regeneration temperature to be less than 580°C.
  • the carbon content of the catalyst after regeneration in the regeneration tower The scorching speed is controlled by the flow control hopper V11, and the scorched catalyst enters the buffer hopper V12 for cooling; then enters the second separation hopper V09B, and uses the fan C03 to perform secondary elutriation on the catalyst to remove excess Dust, after two elutriations, the fine powder content is reduced to less than 0.002%; after completion, the catalyst enters the second lock hopper V14 to convert nitrogen to hydrogen environment, and finally the catalyst that can participate in the reaction from the second lock hopper V14 is heated
  • the reactor E02 is heated to 140°C, and the fourth reactor R4 is lifted by the L valve group to participate in the reaction; the catalyst completed in the fourth reactor R4 is collected by the catalyst collector V05, and then heated to again by the heater E01 At 140°C, it is lifted
  • the catalyst flows in the direction of the reactor R4-R3-R2-R1.
  • the regenerated catalyst has the highest activity, and the fourth reactor R4 has the highest propylene content in the process gas.
  • a catalyst with high activity is required for the reaction, while the first reactor R1 has the highest propylene content in the combined feed.
  • the dehydrogenation reaction is the most intense, and contact with a catalyst containing carbon deposits can increase the single-pass yield by 2-10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,包括催化脱氢和催化剂循环再生;原料经过加热器加热之后进入第一反应器与催化剂接触进行催化脱氢反应,反应一段时间之后温度降低,反应速度下降,从第一反应器出来的工艺气经过加热器进入随后的反应器中与催化剂进行反应,如此循环多次进行催化脱氢反应,最后从终端反应器出来的产品气进入分离系统进行分离得到最终产物丙烯;在第一反应器中参与完反应的待再生催化剂经过催化剂收集器收集,经风机提升到分离料斗,所述待再生催化剂经淘析、烧焦,得到可以再循环使用的催化剂,随后催化剂经过提升再送回终端反应器,随后依次流入各级反应器中参与反应,实现催化剂循环。

Description

一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺 技术领域
本发明涉及丙烷脱氢生产制丙烯工艺,具体地涉及一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺。
背景技术
目前世界范围内丙烷脱氢制丙烯工艺主要有两种,分别是美国UOP工艺及美国Lummus两种工艺。
两种工艺的主要差别是主要是在催化剂方面的不同。Lummus工艺固定床,采用铬系催化剂,有毒,催化剂报废后处理难度大。而UOP工艺采用铂系催化剂,无毒,热稳定性好,投资低,因此也是目前占据国内市场份额比较大的原因。
UOP工艺:丙烷与一定比例的氢气混合后依次经过第一反应器,第二反应器,第三反应器和第四反应器反应得到产品后,进入后续分离系统。催化剂的流动方向与原料一致再生后的催化剂依次进入第一反应器,第二反应器,第三反应器和第四反应器,然后进行催化剂淘析,进入再生塔,催化剂再生,再生后的催化剂进入反应器参与反应。原料与催化剂流动方向一致。工艺气经过前三个反应器反应后烯烃含量最高,此时催化剂上面含碳量最高催化剂活性最低,当烯烃含量高与催化剂活性最低相遇时,只能通过提高反应温度进行反应。高温容易导致积碳,所以在UOP传统设计工艺中第四反应器在线时间最短,严重影响到产能。同时UOP催化剂再生系统内只有一个在进入催化剂再生塔前的淘析系统,再生后的催化剂细粉无法进行淘析,很容易造成细粉累计效应,以粉尘为核心生焦胶黏堵塞内外网,造成催化剂不流动。UOP工艺流程中每个反应器下面都是催化剂提升器,每次提升依靠阀门的切换完成,造成催化剂的磨损,形成细粉。
上述UOP工艺运行周期短,终端反应器容易堵塞,从而影响到运行周期等缺点。
发明内容
本发明的目的是提供一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,解决反应器运行周期短,检修频繁,单程收率低等问题,具有运行稳定、减少积碳、单程收率高等特点。
本发明采取的技术方案如下:
一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,其包括催化脱氢和催化剂再生:
催化脱氢,包含丙烷的原料气依次进入三台或四台反应器,与从反应器上部进入的催化剂进行催化脱氢反应,直至最后一台反应器产出的包含丙烯的产品进入后续的分离系统进行分离得到最终的产物丙烯;每台反应器配置一台加热炉,工艺气进反应器前经加热炉加热至反应温度后进入反应器,与催化剂进行催化脱氢反应,反应器的反应温度为600-650℃;
催化剂再生,第一台反应器反应后的含有积碳的待再生催化剂自反应器底部排出,经收集器收集输送至第一闭锁料斗,第一闭锁料斗中使催化剂所在的氢气环境转化为惰性气体环境,再经风机提升到分离料斗,所述待再生催化剂经第一次淘析后进入催化剂再生塔烧焦,得到可再循环使用的催化剂,该可再循环使用的催化剂经过缓冲料斗进入分离料斗进行第二次淘析,该可再循环使用的催化剂经过淘析后进入第二闭锁料斗,在第二闭锁料斗中催化剂所在的惰性气体环境转化为氢气环境;随后经风机提升之后依次从最后一台反应器至第一台反应器分别进入反应器内参与催化脱氢反应;包含丙烷的工艺气联合进料流向与催化剂再生的进料方向相反,形成逆流接触反应。
优选的,所述催化剂再生的提升管路中设置L阀组。
优选的,所述催化剂再生后每次提升进入下一反应器之前需要加热到100~200℃。
优选的,所述催化剂再生后每次提升进入下一反应器之前需要加热到120-140℃。
在本发明所述联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺中:
为使工艺气与催化剂充分接触,本发明采用催化剂与工艺气相逆流反 应的方式,工艺气从第一台反应器流向第三台反应器或第四台反应器,而催化剂从第三台反应器或第四台反应器流向第一台反应器。再生后的催化剂活性最高,到了第四台反应器中的丙烯含量最高,需要较高的催化剂活性进行催化反应,而在第一台反应器中的联合进料中丙烯的含量最大,脱氢反应最激烈,与含有积碳的催化剂进行接触也可以有很高的反应效率。因此采用这种逆流反应的方式,能够使单程的收率提高2-10%。
在催化脱氢反应阶段,每台反应器中丙烷与催化剂接触进行脱氢反应,物料温度降低,脱氢速度下降后,在每一反应器后增设一台加热炉,对从反应器出来的工艺气进行热补,使工艺气重新达到反应温度,进入下一反应器内,如此能够使脱氢反应快速进行。
整个生产过程中,催化剂提升管路均采用L阀组设计,这样的设计可以有效的减少催化剂再生阶段需要的阀门的个数,而且也有利于减少催化剂对粉尘的吸附。
在催化剂循环再生阶段,需要对催化剂进行淘析。本发明中对催化剂的淘析过程可以是一次也可以是两次,如进行两次淘析,则分别是在催化剂进入再生塔进行烧焦前后各进行一次淘析。如采用一次淘析,可以对催化剂在进入再生塔烧焦之前进行淘析,也可以在催化剂在再生塔烧焦之后再进行淘析,优选是在再生塔前进行淘析。经过对催化剂进行淘析,可以有效的减少催化剂上附着的粉尘的数量,降低反应器内外网堵塞的风险,从而使装置的运行周期变长。
第一闭锁料斗作用是隔绝工艺气与氧气环境,把含有积碳的催化剂在第一闭锁料斗中工艺气转化成惰性气体环境,防止工艺气进入再生系统;第二闭锁料斗作用是隔绝氧气环境与工艺气环境,把再生好的催化剂在第二闭锁料斗中惰性气体环境转化成工艺气,防止上面的氧气进入工艺气系统。
与现有技术相比,本发明的优点在于:
传统UOP工艺:原料与催化剂按照一个方向进行流动,当在最后一个反应器反应时,工艺气中的丙烯含量最高而催化剂活性最低,导致需要提高温度才能维持反应进行,工艺运行周期短,终端反应器容易堵塞,从而影响到运行周期等缺点。
本发明所述联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,采用联合进料的方式,保证了反应能够连续的进行;工艺气与催化剂采用逆流进向,从而使催化剂可以最大程度发挥它的催化效果,使单程催化收率提高。在催化剂循环阶段,通过控制催化剂再生条件,有效控制了催化剂的活性,使催化剂得以循环使用。
本发明工艺气联合进料流向和催化剂再生相逆流,将刚再生完成的催化剂先去最后一台反应器,最后一台反应器原料中的丙烯含量最高,需要再生后的新催化剂直接接触,此刻催化剂活性最大,可以较低温度满足反应,有效降低反应温度,减少积碳,降低堵塞。
本发明催化剂再生阶段,在催化剂再生塔前后分别增加了淘析系统,可以有效除去催化剂粉尘达到98.5%以上,把粉尘累计效应降低至0.2%以下,降低了反应器堵塞速度,最大限度的降低反应器内外网堵塞风险,减少检修次数,从而使装置能够稳定运行,运行周期变长。
在催化剂提升技术中,本发明催化剂提升管线均按照L阀组设计,可以有效的减少再生需要的阀门,减少催化剂粉尘。
附图说明
图1为本发明实施例的结构示意图。
具体实施方式
参见图1,本发明所述的联合反应进料与连续催化剂再生相逆流接触反应脱氢制丙烯的工艺,包括催化脱氢和催化剂再生,其中:
催化脱氢,包含丙烷的工艺气依次进入第一~第四台反应器R1~R4,与从反应器上部进入的催化剂进行催化脱氢反应,直至第四台反应器R4产出的包含丙烯的产品进入后续的分离系统进行分离得到最终的产物丙烯;每台反应器配置一加热炉H1~H4,工艺气进反应器前经加热炉加热至反应温度后进入反应器,与催化剂进行催化脱氢反应,反应器的反应温度为600-650℃;
催化剂再生,第一台反应器R1反应后的含有积碳的待再生催化剂自 反应器底部排出,经收集器V01收集输送至第一闭锁料斗V15,第一闭锁料斗V15中使工艺气所在的氢气环境转化为惰性气体环境,再经风机C01提升到分离料斗V09A,所述待再生催化剂经第一次淘析后进入催化剂再生塔V10烧焦,得到可再循环使用的催化剂,该可再循环使用的催化剂经过缓冲料斗V12进入分离料斗V09B进行第二次淘析,经过第二次淘析后该可再循环使用的催化剂进入第二闭锁料斗V14,第二闭锁料斗V14中催化剂所在的惰性气体环境转化为氢气环境;随后经风机提升之后依次从第四台反应器R4至第一台反应器R1分别进入反应器内参与催化脱氢反应;包含丙烷的工艺气联合进料流向与催化剂再生的进料方向相反,形成逆流接触反应。
优选的,所述催化剂再生的提升管路中设置L阀组。
优选的,所述催化剂再生后每次提升进入下一反应器之前需要加热到100~200℃。
优选的,所述催化剂再生后每次提升进入下一反应器之前需要加热到120-140℃。
实施例1
丙烷/H 2按照100∶50mol混合后按照15Nm 3/h进入反应器经过加热炉H1加热到625℃后进入第一台反应器R1,后经过加热炉H2加热到625℃进入第二台反应器R2,再后经过加热炉H3加热到625℃进入第三台反应器R3,最后经过加热炉H4加热到625℃进入第四台反应器R4,连续在线运行3h,反应后的产品(丙烯)进入后续的分离系统进行分离,分析可以得到收率达33.6%丙烯;
催化剂循环再生:工艺气按照从R1-R2-R3-R4的方向进行,催化剂与工艺气进料的方向恰好反,相逆流反应,工艺气从反应器R1-R2-R3-R4的方向流动,催化剂沿反应器R4-R3-R2-R1的方向流动。
催化剂循环再生过程中,含碳2%的可再生的催化剂经过反应器底部的催化剂收集器进行收集,经催化剂收集器V01收集的可再生催化剂,先进入第一闭锁料斗V15,在第一闭锁料斗中将催化剂所处的氢气环境转化为氮气环境,随后通过风机C01提升到第一分离料斗V09A中,并利用风 机C02在第一分离料斗V09A中完成一次淘析,去除多余粉尘;后进入催化剂再生塔V10进行催化剂的烧焦,去除积碳,再生塔内再生环境为上部氧含量控制0.6%,下部氧含量控制3.5%,再生最高温度控制小于580℃,经过再生塔再生后的催化剂含碳量为0.02%,通过流量控制料斗V11控制烧焦的速度,烧焦后的催化剂进入缓冲料斗V12进行冷却;而后进入第二分离料斗V09B,利用风机C03对催化剂进行二次淘析,再一次去除多余粉尘,经过两次淘析之后细粉含量降低到0.002%以下;完成后催化剂进入第二闭锁料斗V14中进行氮气转换为氢气环境,最后从第二闭锁料斗V14出来的可参与反应的催化剂经加热器E02加热到140℃,经过L阀组的提升进去第四台反应器R4参与反应;在第四台反应器R4中反应完成的催化剂经过催化剂收集器V05收集,之后通过加热器E01再次加热到140℃,经过L阀组提升进入下一反应器;提升气将再生后的催化剂依次进入反应器R4、R3、R2、R1,完成催化剂循环连续再生。
催化剂沿反应器R4-R3-R2-R1的方向流动。再生后的催化剂活性最高,而到了第四台反应器R4反应中工艺气中的丙烯含量最高,需要活性高的催化剂进行反应,而第一台反应器R1中的联合进料中丙烯含量最大,脱氢反应最激烈,与含有积碳的催化剂进行接触,能提高单程收率2-10%。
实施例2
丙烷/H 2按照100∶50mol混合后按照15Nm 3/h进入反应器经过加热炉H1加热到615℃后进入第一台反应器R1,后经过加热炉H2加热到615℃进入第二台反应器R2,再后经过加热炉H3加热到615℃进入第三台反应器R3,最后经过加热炉H4加热到615℃进入第四台反应器R4,连续在线运行3h,反应后的产品(丙烯)进入后续的分离系统进行分离,分析可以得到收率达31.2%丙烯;
催化剂循环再生:工艺气按照从R1-R2-R3-R4的方向进行,催化剂与工艺气进料的方向恰好反,相逆流反应,工艺气从反应器R1-R2-R3-R4的方向流动,催化剂沿反应器R4-R3-R2-R1的方向流动。
催化剂循环再生过程中,含碳1.5%的可再生的催化剂经过反应器底部的催化剂收集器进行收集,经催化剂收集器V01收集的可再生催化剂,先 进入第一闭锁料斗V15,在第一闭锁料斗中将催化剂所处的氢气环境转化为氮气环境,随后通过风机C01提升到第一分离料斗V09A中,并利用风机C02在第一分离料斗V09A中完成一次淘析,去除多余粉尘;后进入催化剂再生塔V10进行催化剂的烧焦,去除积碳,再生塔内再生环境为上部氧含量控制0.8%,下部氧含量控制4.0%,再生最高温度控制小于580℃,经过再生塔再生后的催化剂含碳量为0.02%,通过流量控制料斗V11控制烧焦的速度,烧焦后的催化剂进入缓冲料斗V12进行冷却;而后进入第二分离料斗V09B,利用风机C03对催化剂进行二次淘析,再一次去除多余粉尘,经过两次淘析之后细粉含量降低到0.002%以下;完成后催化剂进入第二闭锁料斗V14中进行氮气转换为氢气环境,最后从第二闭锁料斗V14出来的可参与反应的催化剂经加热器E02加热到140℃,经过L阀组的提升进去第四台反应器R4参与反应;在第四台反应器R4中反应完成的催化剂经过催化剂收集器V05收集,之后通过加热器E01再次加热到140℃,经过L阀组提升进入下一反应器;提升气将再生后的催化剂依次进入反应器R4、R3、R2、R1,完成催化剂循环连续再生。
催化剂沿反应器R4-R3-R2-R1的方向流动。再生后的催化剂活性最高,而到了第四台反应器R4反应中工艺气中的丙烯含量最高,需要活性高的催化剂进行反应,而第一台反应器R1中的联合进料中丙烯含量最大,脱氢反应最激烈,与含有积碳的催化剂进行接触,能提高单程收率2-10%。

Claims (4)

  1. 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,其特征是,包括催化脱氢和催化剂再生:其中,
    催化脱氢,包含丙烷的原料依次进入三台或四台反应器,与从反应器上部进入的催化剂进行催化脱氢反应,直至最后一台反应器产出的包含丙烯的产品气进入后续的分离系统进行分离得到最终的产物丙烯;每台反应器配置一台加热炉,工艺气进反应器前经加热炉加热至反应温度后进入反应器,与催化剂进行催化脱氢反应,反应器的反应温度为600-650℃;
    催化剂再生,第一台反应器反应后的含有积碳的待再生催化剂自反应器底部排出,经收集器收集输送至第一闭锁料斗,第一闭锁料斗中使催化剂所在的氢气环境转化为惰性气体环境,再经风机提升到分离料斗,所述待再生催化剂经第一次淘析后进入催化剂再生塔烧焦,得到可再循环使用的催化剂,该可再循环使用的催化剂经过缓冲料斗进入分离料斗进行第二次淘析,经过淘析后该可再循环使用的催化剂进入第二闭锁料斗,第二闭锁料斗中催化剂所在的惰性气体环境转化为氢气环境;随后经风机提升之后依次从最后一台反应器至第一台反应器分别进入反应器内参与催化脱氢反应;包含丙烷的原料联合进料流向与催化剂再生的进料方向相反,形成逆流接触反应。
  2. 如权利要求1所述的联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,其特征是,所述催化剂再生的提升管路中设置L阀组。
  3. 如权利要求1所述的联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,其特征是,所述催化剂再生后每次提升进入下一反应器之前需要加热到100~200℃。
  4. 如权利要求1所述的联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺,其特征是,所述催化剂再生后每次提升进入下一反应器之前需要加热到120-140℃。
PCT/CN2019/124938 2019-08-26 2019-12-12 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺 WO2021036097A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910793008.0A CN111170820A (zh) 2019-08-26 2019-08-26 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺
CN201910793008.0 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021036097A1 true WO2021036097A1 (zh) 2021-03-04

Family

ID=70648666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124938 WO2021036097A1 (zh) 2019-08-26 2019-12-12 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺

Country Status (2)

Country Link
CN (1) CN111170820A (zh)
WO (1) WO2021036097A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570311A (zh) * 2022-02-25 2022-06-03 浙江华亿工程设计股份有限公司 落梯分段式充气反应方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978150A (en) * 1975-03-03 1976-08-31 Universal Oil Products Company Continuous paraffin dehydrogenation process
CN1247886A (zh) * 1998-09-11 2000-03-22 中国石化北京设计院 多个反应器逆流移动床催化转化工艺
US20190047922A1 (en) * 2017-08-09 2019-02-14 Uop Llc Processes for producing olefins from paraffins

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978150A (en) * 1975-03-03 1976-08-31 Universal Oil Products Company Continuous paraffin dehydrogenation process
CN1247886A (zh) * 1998-09-11 2000-03-22 中国石化北京设计院 多个反应器逆流移动床催化转化工艺
US20190047922A1 (en) * 2017-08-09 2019-02-14 Uop Llc Processes for producing olefins from paraffins

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHASIN, M.M. MCCAIN, J.H. VORA, B.V. IMAI, T. PUJADO, P.R.: "Dehydrogenation and oxydehydrogenation of paraffins to olefins", APPLIED CATALYSIS A: GENERAL, ELSEVIER, AMSTERDAM, NL, vol. 221, no. 1-2, 30 November 2001 (2001-11-30), AMSTERDAM, NL, pages 397 - 419, XP004326658, ISSN: 0926-860X, DOI: 10.1016/S0926-860X(01)00816-X *
CHEN JIANJIU, SHI HAIYING, WANGYONG: "Process of Producing Propylene by Propane Dehydrogenation", ADVANCES IN FINE PETROCHEMICALS, 1 December 2000 (2000-12-01), pages 23 - 28, XP055785902 *
WANG JIEGUANG, MA AIZENG; YUAN ZHONGXUN; GAI JINXIANG: "Investigation on reaction behavior of countercurrent ccr under low severity", PETROLEUM PROCESSING AND PETROCHEMICALS, vol. 47, no. 8, 1 August 2016 (2016-08-01), pages 47 - 52, XP055785915 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570311A (zh) * 2022-02-25 2022-06-03 浙江华亿工程设计股份有限公司 落梯分段式充气反应方法

Also Published As

Publication number Publication date
CN111170820A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
US8901025B2 (en) Catalyst regeneration zone divided into sectors for regenerative catalytic units
CN105585396B (zh) 一种由含氧化合物制取低碳烯烃的方法
WO2017118301A1 (zh) 一种催化裂化反应再生方法和装置
CN102557134B (zh) 一种生产高纯三氧化二钒的流态化还原炉及生产方法
CN111807916B (zh) 一种高效的含氧化合物生产低碳烯烃的装置
WO2021036097A1 (zh) 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺
CN104549566B (zh) 催化转化催化剂再生器及再生方法
WO2021036096A1 (zh) 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺
WO2021036098A1 (zh) 一种涉及催化剂再生及反应器双在线切换的丙烷脱氢工艺
CN111871343A (zh) 一种含氧化合物生产低碳烯烃的装置
CN107185462B (zh) 一种适于高so2冶金烟气还原生产s的流化床反应器及工艺
CN102259037A (zh) 一种液化气芳构化和液化气裂解催化剂的连续再生工艺
CN215364900U (zh) 一种化学环制氢的工艺系统
CN101705109B (zh) 一种重油催化裂化方法及装置
CN104725181B (zh) 一种含氧化合物制丙烯反应生成气的初分离工艺
CN108079913A (zh) 一种合成气制备芳烃的两段流化床反应器及方法
CN108993327B (zh) 基于甲醇制芳烃的三段流化床的连续反应再生系统及方法
CN109701458B (zh) 分区分功能将甲醇转化为芳烃的流化床装置及方法
CN102911682A (zh) 以多下料口移动床为反应器的焦载热煤裂解装置
CN102218354B (zh) 一种烃转化催化剂再生烧焦方法及再生器烧焦区结构
CN114426450B (zh) 丙烷氧化脱氢制丙烯的方法、其反应再生方法及反应再生装置
CN212199061U (zh) 一种能够实现连续生产的均四甲苯生产系统
CN114213207B (zh) 一种丙烷脱氢集成水煤气反应的工艺方法及其装置系统
CN219324191U (zh) 一种可连续再生提升管循环流化床低碳烷烃脱氢反应器
CN214863413U (zh) 一种低碳烷烃脱氢反应器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943457

Country of ref document: EP

Kind code of ref document: A1