WO2021036096A1 - 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺 - Google Patents

一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺 Download PDF

Info

Publication number
WO2021036096A1
WO2021036096A1 PCT/CN2019/124936 CN2019124936W WO2021036096A1 WO 2021036096 A1 WO2021036096 A1 WO 2021036096A1 CN 2019124936 W CN2019124936 W CN 2019124936W WO 2021036096 A1 WO2021036096 A1 WO 2021036096A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
catalyst
standby
gas
fluidized bed
Prior art date
Application number
PCT/CN2019/124936
Other languages
English (en)
French (fr)
Inventor
杨卫东
高军
田俊凯
范昌海
寇亮
陆朝阳
周轶
Original Assignee
浙江卫星能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江卫星能源有限公司 filed Critical 浙江卫星能源有限公司
Publication of WO2021036096A1 publication Critical patent/WO2021036096A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/72Regeneration or reactivation of catalysts, in general including segregation of diverse particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the field of propane dehydrogenation production to propylene, and in particular to a superimposed on-line switchable fluidized bed propane dehydrogenation to propylene process.
  • the main difference between the two processes is mainly in the catalyst.
  • the Lummus process fixed bed uses chromium-based catalysts, which are toxic and difficult to treat after the catalyst is scrapped.
  • the UOP process uses platinum-based catalysts, which are non-toxic, good in thermal stability, and low in investment, which is why it currently occupies a relatively large share of the domestic market.
  • UOP process Propane is mixed with a certain proportion of hydrogen and then passes through the first reactor, the second reactor, the third reactor and the fourth reactor in sequence to obtain products, and then enters the subsequent separation system.
  • the flow direction of the catalyst is the same as that of the raw material.
  • the regenerated catalyst enters the first reactor, the second reactor, the third reactor and the fourth reactor successively, and then carries out catalyst elutriation, enters the regeneration tower, the catalyst is regenerated, and the regenerated catalyst Enter the reactor to participate in the reaction.
  • the process gas has the highest olefin content after reacting in the first three reactors. At this time, the catalyst has the highest carbon content and the lowest catalyst activity.
  • the above-mentioned UOP process catalyst is easy to deactivate, the operation period is short, and the terminal reactor is easily blocked, which affects the operation period and other shortcomings.
  • the purpose of the present invention is to provide a superpositionable online switchable fluidized bed propane dehydrogenation to propylene process, which solves the problems of short reactor operation period, frequent maintenance, and easy catalyst deactivation in the current international mainstream UOP propane dehydrogenation process. , It has the characteristics of saving costs, reducing carbon deposits, reducing operating severity, reducing catalyst dust, increasing output, and increasing operating cycles.
  • a superpositionable online switchable fluidized bed propane dehydrogenation to propylene process which includes: the raw material is heat exchanged with product gas through a heat exchanger, and then heated by a heating furnace, and then enters multiple two-stage superimposed reactors connected in series to participate in the reaction ,
  • the two-stage stacking reactor includes an upper reactor and a lower reactor that are sequentially stacked from top to bottom. Each reactor is equipped with a heating furnace. The raw materials are heated to the reaction temperature by the heating furnace and enter the next reactor. The product gas flowing out of the last-stage reactor exchanges heat with the raw materials, and then is cooled, and then sent to the separation system through a compressor to obtain the final product.
  • the lower reactor of the last stacking reactor is equipped with two, and In order to run the reactor and the standby reactor, the two reactors can be switched freely.
  • the pressure and temperature in the standby reactor are adjusted so that they are the same as the pressure and temperature in the operating reactor before switching.
  • the catalyst to be regenerated containing carbon deposits is collected by a collector, transported to the first lock hopper, and then lifted to the separation hopper by a fan.
  • the catalyst to be regenerated is elutriated, burnt, and then elutriated to obtain a regenerated catalyst.
  • the catalyst is lifted into the first-stage reactor by the heated lifting gas, and then passes through the reactors in order to react, and the catalyst to be regenerated containing carbon deposits after the completion of the reaction in the last-stage reactor is collected by the catalyst collector , Then enter the hopper for elutriation, enter the catalyst regeneration tower for catalytic regeneration after elutriation, and then perform the second elutriation to achieve continuous regeneration of the catalyst.
  • the gas filled into the reactor is nitrogen.
  • the gas used in the replacement of the gas environment in the standby reactor is dry gas, replaced to a content of oxygen+nitrogen less than 5%, preferably 2%, and the replaced gas is discharged into the wet torch system.
  • dry gas is used to pressurize the standby reactor until the pressure in the operating reactor is reached.
  • the standby reactor is preheated by a heater, and the preheating rate is 20-30° C./h, until the temperature in the operating reactor is reached.
  • the raw material exchanges heat with the product gas through a heat exchanger, and then enters multiple two-stage stacking reactors connected in series to participate in the reaction after being heated by a heating furnace.
  • the two-stage stacking reactor includes an upper reactor and The lower reactor is equipped with a heating furnace in front of each reactor.
  • the raw materials are heated to the reaction temperature by the heating furnace and enter the next reactor.
  • the product gas flowing from the last reactor exchanges heat with the raw materials, and then cools. , And then sent to the separation system through a compressor for separation to obtain the final product.
  • two reactors are installed in the lower part of the last stacking reactor, which are divided into operating reactor and standby reactor. The two reactors can be switched freely.
  • the reactor adopts multiple two-stage stacking reactors in series mode.
  • This design can effectively reduce the length of the route that the catalyst needs to be upgraded due to the traditional reactor design, reduce the number of catalyst lifting times, reduce the friction between the high-speed lifting catalyst and the wall, and reduce The catalyst wears out and reduces the catalyst dust.
  • the design of this reactor breaks the traditional downstream process design and effectively reduces the overall height of the reactor. At the same time, it reduces the process of first cooling and then heating the catalyst in the traditional design, avoiding the catalyst explosion caused by repeated heating and cooling of the catalyst, and effectively saving about 18.5% of fuel.
  • the operating reactor in the last-stage reactor increases significantly due to the pressure difference between the internal and external networks, and the reaction temperature continues to decrease, so that the operating state of the operating reactor is not good. It is necessary to switch between the operating reactor and the standby reactor to realize the efficient operation of the device.
  • the backup reactor cannot be switched directly, because the temperature difference is too large, which will damage the internal parts of the reactor.
  • the nitrogen in the standby reactor needs to be replaced with process gas.
  • Use dry gas at 42°C to replace the nitrogen in the standby reactor to the oxygen + nitrogen content less than 5%, preferably less than 2%.
  • the replaced gas is discharged Into the wet torch system.
  • the temperature is controlled by the steam heater The speed is heated at 20-30°C/h to 380-400°C, and then heated to a reaction temperature of 600-650°C through a heater, so that the temperature of the standby reactor is consistent with the temperature of the running reactor.
  • the process gas is switched to the standby reactor through the hand valve, and the hand valve at the inlet and outlet of the original operating reactor is closed. This completes the switching of the standby reactor to the running state.
  • the dry gas enters the standby reactor through the steam heater, heater, flow meter, and valve. After opening the outlet of the standby reactor, the dry gas passing through the standby reactor enters the buffer tank and mixes with the process gas and enters the separation system.
  • the above-mentioned dry gas process is used to cool the original operating reactor and perform operations such as nitrogen replacement. Afterwards, online maintenance and other operations of the original operating reactor will not affect the continuous online operation of the device.
  • the catalyst to be regenerated containing carbon deposits is collected by a collector, transported to the first lock hopper, and then lifted to the separation hopper by a fan.
  • the catalyst to be regenerated is elutriated, burnt, and then elutriated to obtain a regenerated catalyst.
  • the catalyst is lifted into the first-stage reactor by the heated lifting gas, and then passes through the reactors in order to react, and the catalyst to be regenerated containing carbon deposits after the completion of the reaction in the last-stage reactor is collected by the catalyst collector , Then enter the hopper for the first elutriation, after the first elutriation, enter the catalyst regeneration tower for catalytic regeneration, and then perform the second elutriation to achieve continuous regeneration of the catalyst.
  • the catalyst to be regenerated is subjected to an elutriation before and after entering the regeneration tower.
  • the significance of the two elutriations is that the former is the elutriation of the catalyst containing carbon deposits, and the latter does not contain carbon deposits. Breaking through the traditional elutriation design, it can effectively reduce the catalyst dust accumulation by more than 98.5%, which is about 50% higher than the traditional elutriation.
  • the superpositionable online switchable fluidized bed propane dehydrogenation to propylene process of the present invention uses a superposition reactor in the propane dehydrogenation process for the first time, which can effectively reduce catalyst friction, reduce catalyst dust, and reduce reactor blockage. Effectively save 18.5% of fuel.
  • the process of the present invention adopts the mode in which the last-stage reactor can be switched freely. Under the premise of ensuring continuous catalyst regeneration, it avoids the long-period operation of the device due to the clogging of the last-stage reactor, reduces the number of device maintenance, and makes the device
  • the operating cycle of the system becomes longer, the output is increased, and the maintenance cost is reduced.
  • the operating cycle can be increased to about 3.5 times that of the original, which completely solves the problem of the short operating cycle of the traditional design.
  • the catalyst regeneration stage of the process of the present invention adopts the double elution mode of the regeneration tower, and the effective elution dust can reach more than 98.5%, which is better than the traditional design by about 50%.
  • Fig. 1 is a process flow diagram of catalytic hydrogen production according to an embodiment of the present invention
  • Figure 2 is a flow chart of catalyst recycling regeneration according to an embodiment of the present invention
  • a superpositionable on-line switchable fluidized bed propane dehydrogenation to propylene process of the present invention specifically includes the following steps:
  • the raw material enters from the shell side of the heat exchanger E01A (E01B standby), is heated by the heating furnace H1, enters the reactor R1, then is heated by the heating furnace H2, enters the reactor R2, and then is heated by the heating furnace H3 into the reactor R3, and then later After heating by the heating furnace H4, it enters the reactor R4A (R4B standby).
  • the product gas flowing out of the reactor R4A enters the tube side of the heat exchanger E01A through the buffer tank, exchanges heat with the raw materials, and then passes through the water cooler E02A, and then is sent through the compressor To the separation system for separation to obtain the final product propylene.
  • reactor switching operation can extend the online operating time of the propane dehydrogenation reaction equipment by 3-5 times, which is equivalent to switching the R4 reactor once in 300 days and keeping R1-R3 unchanged, which can effectively extend the operating time of the original reactor, which is equivalent to
  • the operating time of the industrialized operating device can be increased to 3-5 years for maintenance once to achieve long-term operation.
  • the dry gas flow When the dry gas flow reaches a certain flow rate, it is heated by steam Reactor E03 controls the heating rate to be heated to 380°C at 20°C/h, and then is heated to the reaction temperature of 650°C by heater H01, so that the temperature of the standby reactor R4B is consistent with the temperature of the running reactor R4A; then the process gas is passed through the hand valve Switch to the backup reactor R4B, the dry gas passing through the backup reactor enters the buffer tank L and mixes with the product gas, and then enters the separation system GS. Close the hand valve at the inlet and outlet of the reactor R4A that was originally operating. This completes the switching of the standby reactor to the running state.
  • the above dry gas process is used to cool the original operating reactor R4A, nitrogen replacement and other operations; then the original operating reactor R4A is online maintenance and other operations, without affecting the continuous online operation of the device.
  • Catalyst regeneration After the reaction, the catalyst to be regenerated with carbon deposits passes through the intermediate separation hopper V05, and then enters the separation hopper V06 from V05.
  • the fan C01 is used for the first elutriation of catalyst fines to remove excess dust, and finally to the catalyst regeneration tower V07 Carry out coke burning to remove carbon deposits, control the circulation rate of the catalyst through the flow control hopper V08, enter the separation hopper V10 through the locked hopper V09 in a nitrogen environment, and use the fan CO2 catalyst in the V10 for the second elutriation to separate the regenerated catalyst fines. powder.
  • the regenerated catalyst is transferred to the lock hopper V11. In V11, the nitrogen environment is switched to the hydrogen environment.
  • the elevated gas heated by E02 is used to send the catalyst to the No. 1 reactor R1.
  • the catalyst enters the No. 2 reaction after participating in the reaction in R1.
  • Reactor R2, after participating in the reaction in R2 use the catalyst collector V01 to collect, and then use the catalyst collected in V01 to use the lift gas heated by the heat exchanger E01 to send the catalyst to the No. 3 reactor R3, where it will react at No. 3
  • the catalyst after the reaction in the reactor R3 is collected by the catalyst collector V02.
  • the catalyst can enter the No. 4 reactor R4A or R4B through two valves, and the catalyst after the R4A or R4B reaction is collected in the catalyst collector V03A/B.
  • the catalyst flows through the lock hopper V04A/B, where the hydrogen environment is converted to nitrogen environment in V04A/B, and then is sent to the separation hopper V05 for elutriation by the blower C03, thereby completing the catalyst regeneration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

本发明公开了一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺,它包括催化脱氢过程和催化剂再生过程,催化脱氢过程采用多台两级叠加式反应器串联模式,减少催化剂提升次数,降低催化剂磨损,减少催化剂粉尘,减少传统设计中催化剂先降温再升温的过程,避免催化剂温度反复升降导致催化剂爆裂。其中最后一台叠加式反应器下部反应器设置两台,分为运行反应器和备用反应器,两台反应器可以进行自由切换,从而提高运行周期。催化剂再生过程中在催化剂进入催化剂再生塔前后各进行一次淘析,采用双淘析可以有效减少催化剂粉尘。

Description

一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺 技术领域
本发明涉及丙烷脱氢生产制丙烯领域,具体的涉及一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺。
背景技术
目前世界范围内丙烷脱氢制丙烯工艺主要有两种,分别是美国UOP工艺及美国Lummus两种工艺。
两种工艺的主要差别是主要是在催化剂方面的不同。Lummus工艺固定床,采用铬系催化剂,有毒,催化剂报废后处理难度大。而UOP工艺采用铂系催化剂,无毒,热稳定性好,投资低,因此也是目前占据国内市场份额比较大的原因。
UOP工艺:丙烷与一定比例的氢气混合后依次经过第一反应器,第二反应器,第三反应器和第四反应器反应得到产品后,进入后续分离系统。催化剂的流动方向与原料一致再生后的催化剂依次进入第一反应器,第二反应器,第三反应器和第四反应器,然后进行催化剂淘析,进入再生塔,催化剂再生,再生后的催化剂进入反应器参与反应。工艺气经过前三个反应器反应后烯烃含量最高,此时催化剂上面含碳量最高催化剂活性最低,当烯烃含量高与催化剂活性最低相遇时,只能通过提高反应温度进行反应。高温容易导致积碳,所以在UOP传统设计工艺中第四反应器在线时间最短,严重影响到产能。同时UOP催化剂再生系统内只有一个在进入催化剂再生塔前的淘析系统,再生后的催化剂细粉无法进行淘析,很容易造成细粉累计效应,以粉尘为核心生焦胶黏堵塞内外网,造成催化剂不流动。UOP工艺流程中每个反应器下面都是催化剂提升器,每次提升依靠阀门的切换完成,造成催化剂的磨损,形成细粉。
上述UOP工艺催化剂易失活,运行周期短,终端反应器容易堵塞,从而影响到运行周期等缺点。
发明内容
本发明的目的是提供一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺,解决目前国际主流UOP丙烷脱氢制丙烯工艺存在的反应器运行周期短,检修频繁、催化剂易失活等问题,具有节约成本,减少积碳,降低运行苛刻度,减少催化剂粉尘,提高产量,增长运行周期等特点。
为达到上述目的,本发明采取的技术方案是:
一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其包括:原料通过换热器与产品气进行换热,随后经过加热炉加热后进入多台串联的两级叠加式反应器参与反应,两级叠加式反应器包括由上到下依次叠加的上部反应器和下部反应器,每一个反应器前配一台加热炉,原料经加热炉加热到反应温度进入到下一级反应器,从最后一级反应器流出的产品气与原料进行换热,之后再冷却,随后通过压缩机送往分离系统进行分离得到最终产物,其中最后一台叠加式反应器下部反应器设置两台,分为运行反应器和备用反应器,两台反应器可以自由切换。
当备用反应器需要切换为运行反应器之前,对备用反应器内的压力、温度进行调整,使之与运行反应器内的压力、温度相同后再进行切换。
含有积碳的待再生催化剂经过收集器收集,输送至第一闭锁料斗,再经风机提升到分离料斗,所述待再生催化剂经淘析、烧焦、再淘析,得到再生后催化剂,再生后催化剂利用加热到的提升气提升进入第一级反应器,随后依次经过各级反应器进行反应,到最后一级反应器中参与反应完成之后的含有积碳的待再生催化剂经过催化剂收集器进行收集,随后进入料斗中进行淘析,淘析之后进入催化剂再生塔进行催化再生,之后进行第二次淘析,从而实现催化剂的连续再生。
优选的,备用反应器在备用状态下反应器内部充入的气体为氮气。
优选的,对备用反应器中气体环境进行置换时使用的气体为干气,置换到氧气+氮气含量<5%,优选2%,置换出的气体排入湿火炬系统。
优选的,在进行切换前,使用干气对备用反应器进行充压,直至达到运行反应器内的压力。
优选的,在进行切换前,通过加热器对备用反应器进行预热,预热升温速度为20-30℃/h,直至达到运行反应器内的温度。
在本发明所述叠加式可在线切换流动床丙烷脱氢制丙烯工艺中,包括 以下步骤:
原料通过换热器与产品气进行换热,随后经过加热炉加热后进入多台串联的两级叠加式反应器参与反应,两级叠加式反应器包括由上到下依次叠加的上部反应器和下部反应器,每一个反应器前配一台加热炉,原料经加热炉加热到反应温度进入到下一级反应器,从最后一级反应器流出的产品气与原料进行换热,之后再冷却,随后通过压缩机送往分离系统进行分离得到最终产物,其中最后一台叠加式反应器下部反应器设置两台,分为运行反应器和备用反应器,两台反应器可以自由切换。
所述反应器采用多台两级叠加式反应器串联模式,这样设计可以有效的减少催化剂因传统反应器设计需要提升的路线长度,减少催化剂提升次数,降低高速提升催化剂与器壁的摩擦,降低催化剂磨损,减少催化剂粉尘,此反应器的设计打破传统顺流工艺设计,有效的降低反应器的总体高度。同时减少传统设计中催化剂先降温再升温的过程,避免催化剂反复升降温导致催化剂爆裂,有效的节约燃料18.5%左右。
所述最后一级反应器随着运行周期的增加,最后一级反应器中的运行反应器由于内外网压差大幅增加,反应温度持续降低,从而使运行反应器的运行状态不佳,这是就需要把运行反应器与备用反应器进行切换,实现装置的高效运行。运行反应器与备用反应器之间进行切换时,备用反应器不能直接切换,会因为温差太大,损伤反应器内部件。利用干气对备用反应器内的压力、温度进行调整,使之与运行反应器内的压力、温度相同后再进行切换。
首先备用反应器中的氮气需要置换为工艺气,利用42℃的干气先对备用反应器中的氮气进行置换,置换到氧气+氮气含量<5%,优选2%以下,置换出来的气体排入湿火炬系统。置换合格后,利用干气把备用反应器与运行反应器压力充成一样后,把备用反应器的出口打开,继续充入干气,当干气流量到达一定流量之后,通过蒸汽加热器控制升温速度在20-30℃/h加热到380-400℃,之后经过加热器加热到反应温度600-650℃,使备用反应器的温度与运行反应器的温度一致。然后把工艺气经过手阀切换到备用的反应器,把原运行的反应器出入口手阀关闭。这样就完成了备用反应器到运行状态的切换。
干气经过蒸汽加热器,加热器,流量计,阀进入备用反应器,打开备用反应器的出口之后,经过备用反应器的干气进入缓冲罐与工艺气混合后进入分离系统。
原运行反应器停止运行之后利用上述干气流程,对原运行的反应器进行降温,氮气置换等操作。之后对原运行反应器进行在线检修等作业,不影响装置的连续在线运行。
含有积碳的待再生催化剂经过收集器收集,输送至第一闭锁料斗,再经风机提升到分离料斗,所述待再生催化剂经淘析、烧焦、再淘析,得到再生后催化剂,再生后催化剂利用加热到的提升气提升进入第一级反应器,随后依次经过各级反应器进行反应,到最后一级反应器中参与反应完成之后的含有积碳的待再生催化剂经过催化剂收集器进行收集,随后进入料斗中进行第一次淘析,第一次淘析之后进入催化剂再生塔进行催化再生,之后进行第二次淘析,从而实现催化剂的连续再生。
催化剂再生阶段,待再生催化剂进入再生塔前后各进行一次淘析,两者淘析的意义在于前者是淘析含有积碳的催化剂,后者不含有积碳。突破传统一个淘析设计,可以有效减少催化剂粉尘积累98.5%以上,比传统淘析高出50%左右。
与现有技术相比,本发明的优点在于:
本发明所述叠加式可在线切换流动床丙烷脱氢制丙烯工艺,第一次在丙烷脱氢工艺中采用叠加式反应器,可以有效减少催化剂摩擦,减少催化剂粉尘,降低反应器堵塞,同时可以有效的节约燃料18.5%。
本发明工艺中采用最后一级反应器可以自由切换的模式,在保证催化剂连续再生的前提下,避免因最后一级反应器堵塞问题影响装置长周期运行,降低了装置检修的次数,从而使装置的运行周期变长,提高产量,降低检修费用,运行周期可以提升到原来的3.5倍左右,彻底解决传统设计运行周期短问题。
本发明工艺催化剂再生阶段采用再生塔双淘析模式,可以有效的淘析粉尘达到98.5%以上,优于传统设计的50%左右。
附图说明
图1为本发明实施例的催化制氢工艺流程图
图2为本发明实施例的催化剂循环再生流程图
具体实施方式
本发明的一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其具体包括以下步骤:
原料从换热器E01A(E01B备用)壳程进入,经过加热炉H1加热,进入反应器R1,后通过加热炉H2加热,进入反应器R2,再通过加热炉H3加热进入反应器R3,再后来经过加热炉H4加热进入反应器R4A(R4B备用),从反应器R4A流出的产品气经过缓冲罐进入换热器E01A管程,与原料进行换热之后经过水冷却器E02A,之后通过压缩机送往分离系统进行分离得到最终产物丙烯。利用反应器切换操作,可以使丙烷脱氢反应设备延长3-5倍在线运行时间,相当于300天切换一次R4反应器,保持R1-R3不变,可以有效延长原反应器运行时间,相当于可以把工业化运行装置的运行时间提高到3-5年检修一次,达到长周期运行。
首先利用干气经过蒸汽加热器E03,加热器H,流量计FI,阀V1B,V2B,V3B,V4B,V5B(R4A为备用反应器时对应阀V1A,V2A,V3A,V4A,V5A)进入备用R4B,先对备用反应器R4B中的氮气进行置换,置换到氧气+氮气含量体积比<1.5%,置换出来的气体排入湿火炬系统WF。置换合格后,利用干气把备用反应器R4B与运行反应器R4A压力充成一样后,把备用反应器R4B的出口打开,继续充入干气,当干气流量到达一定流量之后,通过蒸汽加热器E03控制升温速度在20℃/h加热到380℃,之后经过加热器H01加热到反应温度650℃,使备用反应器R4B的温度与运行反应器R4A的温度一致;然后把工艺气经过手阀切换到备用反应器R4B,经过备用反应器的干气进入缓冲罐L与产品气混合后进入分离系统GS。把原运行的反应器R4A出入口手阀关闭。这样就完成了备用反应器到运行状态的切换。
原运行反应器R4A停止运行之后利用上述干气流程,对原运行的反应器R4A进行降温,氮气置换等操作;之后对原运行反应器R4A进行在线检修等作业,不影响装置的连续在线运行。
催化剂再生:反应后带有积碳的待再生催化剂经过中间分离料斗V05,之后由V05进入分离料斗V06利用风机C01进行催化剂细粉第一次淘析,去除多余粉尘,最后去往催化剂再生塔V07进行烧焦去除积碳,通过流量控制料斗V08控制催化剂循环速率,经过氮气环境的闭锁料斗V09进入分离料斗V10中,在V10中利用风机C02催化剂进行第二次淘析,分离出再生后催化剂细粉。然后再生后催化剂转移到闭锁料斗V11中,在V11中将氮气环境切换成氢气环境,利用E02加热过的提升气将催化剂送往1号反应器R1,催化剂在R1中参与反应后进入2号反应器R2,在R2中参与完反应之后,利用催化剂收集器V01进行收集,之后在V01中收集的催化剂利用换热器E01加热过的提升气将催化剂送往3号反应器R3,在3号反应器R3中反应后的催化剂利用催化剂收集器V02进行收集,经过两个阀门可以使催化剂进入到4号反应器R4A或者R4B,经过R4A或R4B反应后的催化剂在催化剂收集器V03A/B中收集,然后催化剂流经闭锁料斗V04A/B,在V04A/B中氢气环境转换成氮气环境,然后利用风机C03被送往分离料斗V05进行淘析,从而完成催化剂再生。

Claims (5)

  1. 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其特征在于,包括以下步骤:
    原料通过换热器与产品气进行换热,随后经过加热炉加热后进入多台串联的两级叠加式反应器参与反应,两级叠加式反应器包括由上到下依次叠加的上部反应器和下部反应器,每一个反应器前配一台加热炉,原料经加热炉加热到反应温度进入到下一级反应器,从最后一级,随后反应器流出的产品气与原料进行换热,之后再冷却通过压缩机送往分离系统进行分离得到最终产物,其中最后一台叠加式反应器下部反应器(最后一级反应器)设置两台,分为运行反应器和备用反应器,两台反应器可以自由切换;
    当备用反应器需要切换为运行反应器之前,对备用反应器内的压力、温度进行调整,使之与运行反应器内的压力、温度相同后再进行切换;
    含有积碳的待再生催化剂经过收集器收集,输送至第一闭锁料斗,再经风机提升到分离料斗,所述待再生催化剂经淘析、烧焦、再淘析,得到再生后催化剂,再生后催化剂利用加热到的提升气提升进入第一级反应器,随后依次经过各级反应器进行反应,到最后一级反应器中参与反应完成之后的含有积碳的待再生催化剂经过催化剂收集器进行收集,随后进入料斗中进行淘析,淘析之后进入催化剂再生塔进行催化再生,之后进行第二次淘析,从而实现催化剂的连续再生。
  2. 如权利要求1所述的叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其特征在于,备用反应器在备用状态下反应器内部充入的气体为氮气。
  3. 如权利要求1所述的叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其特征在于,对备用反应器中气体环境进行置换时使用的气体为干气,置换到氧气+氮气含量<5%,优选2%,置换出的气体排入湿火炬系统。
  4. 如权利要求1所述的叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其特征在于,对备用反应器进行充压,使用的气体为干气。
  5. 如权利要求1所述的叠加式可在线切换流动床丙烷脱氢制丙烯工艺,其特征在于,在对备用反应器进行预热时,预热升温速度为20-30℃/h。
PCT/CN2019/124936 2019-08-26 2019-12-12 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺 WO2021036096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910793382.0 2019-08-26
CN201910793382.0A CN111170822A (zh) 2019-08-26 2019-08-26 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺

Publications (1)

Publication Number Publication Date
WO2021036096A1 true WO2021036096A1 (zh) 2021-03-04

Family

ID=70617713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124936 WO2021036096A1 (zh) 2019-08-26 2019-12-12 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺

Country Status (2)

Country Link
CN (1) CN111170822A (zh)
WO (1) WO2021036096A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114700005B (zh) * 2022-06-06 2022-09-13 天津渤海石化有限公司 Pdh工艺中反应器台数可变的自适应控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978150A (en) * 1975-03-03 1976-08-31 Universal Oil Products Company Continuous paraffin dehydrogenation process
CN103232312A (zh) * 2013-05-07 2013-08-07 青岛京齐新材料科技有限公司 异丁烷脱氢制备异丁烯的装置及工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105441119B (zh) * 2014-08-21 2017-11-14 中国石化工程建设有限公司 烃类连续重整工艺
CN106586570B (zh) * 2015-10-14 2019-11-15 中国石油化工股份有限公司 临氢环境下卸粉尘的系统和方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3978150A (en) * 1975-03-03 1976-08-31 Universal Oil Products Company Continuous paraffin dehydrogenation process
CN103232312A (zh) * 2013-05-07 2013-08-07 青岛京齐新材料科技有限公司 异丁烷脱氢制备异丁烯的装置及工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BHASIN, M.M. MCCAIN, J.H. VORA, B.V. IMAI, T. PUJADO, P.R.: "Dehydrogenation and oxydehydrogenation of paraffins to olefins", APPLIED CATALYSIS A: GENERAL, ELSEVIER, AMSTERDAM, NL, vol. 221, no. 1-2, 30 November 2001 (2001-11-30), AMSTERDAM, NL, pages 397 - 419, XP004326658, ISSN: 0926-860X, DOI: 10.1016/S0926-860X(01)00816-X *
CHEN JIANJIU, SHI HAIYING, WANGYONG: "Process of Producing Propylene by Propane Dehydrogenation", ADVANCES IN FINE PETROCHEMICALS, 1 December 2000 (2000-12-01), pages 23 - 28, XP055785919 *
LIU YUCHUN, LIU CHUN-YAN: "New Technique of Large CCR Platforming Process", JOURNAL OF CHENGDE PETROLEUM COLLEGE, vol. 11, no. 2, 1 June 2009 (2009-06-01), pages 35 - 38, XP055785923 *

Also Published As

Publication number Publication date
CN111170822A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021036096A1 (zh) 一种叠加式可在线切换流动床丙烷脱氢制丙烯工艺
CN105749818A (zh) 一种低温甲烷化反应器及工作过程
CN1057486A (zh) 用于热态直接还原铁的生产方法和装置
WO2021036097A1 (zh) 一种联合反应进料与催化剂再生逆流接触脱氢制丙烯工艺
WO2021036098A1 (zh) 一种涉及催化剂再生及反应器双在线切换的丙烷脱氢工艺
CN100404137C (zh) 颗粒状铁基费托合成催化剂的工业还原方法
CN115193343B (zh) 一种甲醇制烯烃装置及其开工方法
CN111534659A (zh) 一种并联蓄热式气基竖炉及生产直接还原铁方法
CN208098029U (zh) 丙烷脱氢装置
CN210700147U (zh) 催化剂连续再生系统
CN104341259B (zh) 一种合成气催化甲烷化方法及装置
CN107446636B (zh) 一种高温甲烷合成系统及工艺
CN102218354B (zh) 一种烃转化催化剂再生烧焦方法及再生器烧焦区结构
CN215364900U (zh) 一种化学环制氢的工艺系统
CN113023696B (zh) 一种单晶硅制备中排放氩气的回收方法与装置
CN204583210U (zh) 一种使用无水再生气的催化剂再生系统
CN108993327B (zh) 基于甲醇制芳烃的三段流化床的连续反应再生系统及方法
CN210103851U (zh) 一种低碳烷烃脱氢反应系统
CN109111967B (zh) 一种焦炉气制天然气的甲烷化系统及方法
CN115141903A (zh) 气基竖炉直接还原方法
CN214781945U (zh) 自加热气基竖炉直接还原装置
CN214863413U (zh) 一种低碳烷烃脱氢反应器
CN212199061U (zh) 一种能够实现连续生产的均四甲苯生产系统
CN216473302U (zh) 一种纯氢竖炉还原装置
CN220940632U (zh) 一种冷氢化升降温系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942696

Country of ref document: EP

Kind code of ref document: A1