WO2021036056A1 - 一种基于上下钻孔电路板的孔位检测方法及检测设备 - Google Patents

一种基于上下钻孔电路板的孔位检测方法及检测设备 Download PDF

Info

Publication number
WO2021036056A1
WO2021036056A1 PCT/CN2019/121173 CN2019121173W WO2021036056A1 WO 2021036056 A1 WO2021036056 A1 WO 2021036056A1 CN 2019121173 W CN2019121173 W CN 2019121173W WO 2021036056 A1 WO2021036056 A1 WO 2021036056A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
hole position
target circuit
circle
backlight
Prior art date
Application number
PCT/CN2019/121173
Other languages
English (en)
French (fr)
Inventor
胡冰峰
张志军
陈朋飞
郭勇祥
杨红军
Original Assignee
苏州康代智能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州康代智能科技股份有限公司 filed Critical 苏州康代智能科技股份有限公司
Publication of WO2021036056A1 publication Critical patent/WO2021036056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/12Measuring arrangements characterised by the use of optical techniques for measuring diameters internal diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth

Definitions

  • the invention relates to the field of circuit board hole position detection, in particular to a hole position detection method and detection equipment based on upper and lower drilling circuit boards.
  • PCBs printed circuit boards
  • PCB drilling is a relatively advanced process in the printed circuit board.
  • the quality of the drilling directly affects the dozens of subsequent processes on the PCB board. Therefore, how to control the quality of the drilling is now the focus of PCB electronics manufacturers. .
  • the existing PCB drilling is mainly divided into mechanical drilling and laser drilling.
  • the existing high-precision PCB circuit boards mainly use laser drilling. It is mainly divided into through holes, blind holes, etc.
  • laser drilling is required from the upper and lower sides when processing the through holes. Since it is impossible to ensure that the upper and lower holes are completely aligned, the upper and lower holes will appear.
  • the publication number is CN 106257232 B, and the patent document named as the detection method of hole position information of printed circuit board and the detection equipment mentions a method that can detect the offset of the upper and lower hole positions, as shown in Figure 7, but this The method is only applicable when the upper hole is completely perpendicular to the PCB circuit board and the depth of the top hole and the bottom hole are the same (each occupies one-half of the thickness of the circuit board).
  • the upper hole or the lower hole is inclined (the same When the upper and lower circumferences of the tapered hole are not concentrically arranged) or the depth of the top hole and the bottom hole are inconsistent (as shown in Figure 4 and Figure 5), the calculation result will be deviated, which will affect the difference between the top hole and the bottom hole.
  • the present invention provides a hole position detection method and detection equipment based on the upper and lower drilling circuit boards, which can ensure that the top hole and the bottom hole are inclined regardless of whether the top hole or the bottom hole is drilled.
  • the technical solution is as follows:
  • the present invention provides a hole position detection method based on up and down drilling of a circuit board, which is used to perform hole position offset detection on a target circuit board that has completed up and down drilling.
  • the hole position detection method includes the following steps:
  • the method further includes:
  • the method further includes:
  • step S14 at least three points are respectively taken on the first arc and the second arc, and the first center and the second center of the circle where the first arc is located are determined by the coordinate method or the perpendicular method. The second center of the circle where the arc is located.
  • the light supplement state in step S11 includes: simultaneously turning on the upper light source above the target circuit board and the backlight source below the target circuit board.
  • the size ratio of the front image to the actual target circuit board is obtained, and the first distance threshold and the second distance threshold are preset according to the size ratio or according to the The size ratio converts the distance data measured on the image into the distance data on the actual circuit board.
  • the present invention provides another hole position detection method based on the upper and lower drilling circuit board, which is used for detecting the hole position offset of the target circuit board after the upper and lower drilling is completed.
  • the hole position detection method includes the following steps :
  • the method further includes:
  • the smaller of the distance between the first circle center and the center of the complete circle and the distance between the second circle center and the center of the complete circle is less than or equal to the preset first distance threshold, and among them The larger distance is less than or equal to the preset second distance threshold, where the first distance threshold is less than or equal to the second distance threshold, then it is determined that the hole position of the target circuit board is qualified, otherwise the target circuit board is determined The hole position is unqualified.
  • the method further includes:
  • the present invention provides a hole position detection device based on up and down drilling circuit boards, including a backlight device, a plurality of upper light sources and an image acquisition device arranged above the backlight device, and the plurality of upper light sources emit The light is concentrated on the backlight device, and the image acquisition device is arranged above the light source where the upper light source converges; the backlight device includes a plurality of independently controlled backlight panels, and the backlight on each backlight panel The source can be turned on or off independently, a plurality of the backlight boards are spliced and arranged to form a variety of rectangular backlight areas of different sizes, and the hole position detection device uses the hole position detection method as described above to detect the hole position offset of the circuit board .
  • the required opening area of the backlight board can be determined, and the unnecessary light source in the backlight area can be turned off, saving energy and avoiding the damage of strong light to human eyes.
  • 1 is a flowchart of the first hole position detection method based on upper and lower drilling circuit boards provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a hole position detecting device for detecting holes on a circuit board provided by an embodiment of the present invention
  • FIG. 3 is a second hole position detection method based on upper and lower drilling circuit boards provided by an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the circuit board when the depth of the bottom hole is greater than the depth of the top hole according to an embodiment of the present invention
  • FIG. 5 is a cross-sectional view of the circuit board when the depth of the top hole is greater than the depth of the bottom hole according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a front image including a complete circle and two intersecting arcs provided by an embodiment of the present invention
  • Fig. 7 is a calculation principle diagram of a hole position detection method in the prior art
  • FIG. 8 is a schematic structural diagram of a hole position detection device with a light scattering layer provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of splicing backlight boards with L-shaped backlight boards provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the splicing of backlight panels with a back-shaped backlight panel provided by an embodiment of the present invention.
  • the reference signs include: 1-backlight device, 11-backlight board, 12-light-scattering layer, 2-upper light source, 3-image acquisition device, 4-circuit board, 5-pressing device, 6-film board.
  • the hole position detection method based on the upper and lower drilling circuit boards provided by the present invention not only detects the deviation between the upper and lower holes, but also detects the depth of the upper and lower holes, that is, even if the upper and lower holes are coaxially arranged, if the upper hole is drilled very deep, If the lower hole is drilled very shallowly, such a hole position is also unqualified; on the contrary, even if the depth of the upper and lower holes are half the thickness of the circuit board, if the center of the two holes deviates too much, such a hole position is also unqualified.
  • Such circuit boards need to be overhauled.
  • a hole position detection method based on up and down drilling of a circuit board is provided, which is used to perform hole position offset detection on a target circuit board that has completed up and down drilling.
  • the hole position offset is first detected. , After detecting the depth of the hole position, see Fig. 1.
  • the method for detecting the hole position includes the following steps:
  • the hole position detection equipment includes a backlight device 1, a plurality of upper light sources 2 arranged above the backlight device 1, and an image acquisition device 3.
  • the light rays emitted by the plurality of upper light sources 2 are converged on the backlight device 1, the image acquisition device 3 is arranged above the light converging point of the upper light source 2, and the image acquisition device 3 is preferably a CCD camera.
  • the backlight device 1 includes a plurality of independently controlled backlight panels 11, the backlight source on each backlight panel 11 can be independently turned on or off, and the plurality of backlight panels 11 are spliced and formed.
  • the backlight device 1 further includes an astigmatism layer 12 arranged on the backlight plate 11, and the astigmatism layer 12 supports the circuit board 4 to be inspected, as shown in FIG. 8,
  • the light scattering layer 12 is preferably an optical glass layer with a flatness requirement of 0.05 mm.
  • the astigmatism layer 12 ensures the uniformity of the light emitted from the backlight plate 11 irradiated on each hole to be tested, no black spots, bright spots, etc. appear, and the authenticity of the detected hole position information is guaranteed.
  • the plurality of upper light sources 2 are linear light sources, the number of the upper light sources 2 is three or more, and the plurality of upper light sources 2 are on the backlight device 1.
  • the light incident angles are the same (preferably, each upper light source 2 can independently adjust the light emission direction), and the light source brightness of the multiple upper light sources 2 can be adjusted to ensure that the hole position information is correctly fed back to the CCD camera.
  • the plurality of upper light sources 2 can move simultaneously in a plane, and/or the backlight device 1 can move in a plane.
  • the upper light source 2 and the backlight device 1 can move relative to each other.
  • the PCB circuit board 4 with the drilled holes is placed on the backlight board 11 (more preferably placed on the astigmatism layer 12), and the size of the area corresponding to the backlight source is adjusted according to the size of the PCB circuit board 4.
  • the pressing device 5 uses the pressing device 5 to press the PCB circuit board 4 to be tested on the backlight device 1, and then adjust and move the upper light source 2 or move the backlight device 1 (the backlight device 1 moves with the circuit board 4), possibly It is necessary to adjust the height distance between the upper light source 2 and the backlight device 1 until the convergence of the light emitted by the upper light source 2 is located in the area corresponding to the hole position of the circuit board 4 on the pressing device 5 (if there is no pressing device 5 , The light emitted by the upper light source 2 directly converges at the hole position of the circuit board 4).
  • the pressing device 5 is preferably glass, so as not to affect the image acquisition by the image acquisition device 3.
  • the inspection equipment can record the hole position picture and identify the coordinate information of each hole position to prepare for the subsequent determination of the quality of the hole.
  • the splicing arrangement of the plurality of backlight plates 11 can form a variety of rectangular backlight areas of different sizes.
  • the implementation methods include but are not limited to the following two:
  • the backlight plate 11 includes a rectangular backlight plate and one or more L-shaped backlight plates of different sizes. As shown in FIG. 9, the rectangular backlight plate is adjacent to the smallest size L-shaped backlight plate. The L-shaped backlight plates are joined adjacently according to the size, and the outer edge of the smaller L-shaped backlight plate is joined with the inner edge of the larger L-shaped backlight plate.
  • the backlight board 11 includes a rectangular backlight board and one or more different sizes of the back-shaped backlight board, as shown in FIG. 10, the rectangular backlight board and the inner edge of the smallest-sized back-shaped backlight board Adjacent splicing, the back-shaped backlight panels are connected adjacently according to the size, and the outer edge of the smaller back-shaped backlight board is spliced with the inner edge of the larger back-shaped backlight board.
  • the embodiment of the present invention determines the required area of the backlight board according to the size of the PCB to be detected, turns off the light source in the backlight area that is not needed, and combines the illumination of the light source to ensure that the hole position information is correctly fed back to the image acquisition device.
  • the subsequent hole position inspection provides a good lighting environment to improve the accuracy of hole position quality inspection.
  • the hole position of the target circuit board there are two necessary and insufficient conditions for the hole position of the target circuit board to be qualified.
  • One is that two circles can be seen from the top of the circuit board (that is, the front image), and the large circle is the upper circumference of the top hole.
  • the small circle may be the lower circumference of the top hole or the upper circumference of the bottom hole; in another case, you can see a circle that is two arcs in this circle when looking down on the circuit board, where the complete circle is
  • the front image of the image is a circle
  • the other front image is a complete circle and a hole with an arc is judged to be unqualified.
  • the first distance threshold is the same as the first distance threshold in S15 below, and is an allowable range for judging whether the borehole is inclined, that is, the offset of the upper edge and the lower edge of the top hole.
  • the method further includes:
  • the hole on the circuit board is a tapered hole, as shown in Figure 4 and Figure 5.
  • the ratio of the circumference of the upper and lower edges of the hole reflects the depth of the hole.
  • a minimum standard is set. The ratio of the smaller radius to the larger radius of a circle is lower than this minimum standard, indicating that the smaller radius is too small, that is, the hole is drilled too deep, and the hole depth is unqualified, that is, the hole is unqualified.
  • At least three points are respectively taken on each intersecting arc to determine the first center of the circle where the first arc is located and the second center of the circle where the second arc is located.
  • a circle and its center can be determined according to three points (not in a straight line). For example, two of the three points are connected to form a line segment. The intersection of the three line segments is the center of the circle. The intersection point The distance to any one of the three points is the radius. Or establish a coordinate system to obtain the coordinates of three points, and establish a two-dimensional quadratic equation system. The coordinate point with the same distance to these three points is the center of the circle, and the calculated equal distance is the radius.
  • the known least square method (Sun of Least Suqares) or Hough Transform (Hough Transform) can also be used to calculate the center of the circle where each arc is located.
  • the first center of the circle where the first arc is located is C2
  • the second center of the circle where the second arc is located is C3, determine the distance between the center of the circle
  • a first distance threshold and a second distance threshold are preset, wherein the first distance threshold is less than or equal to the second distance threshold, and the first distance threshold is used to determine whether the borehole is inclined, that is, the upper edge and the lower edge of the top hole The allowable range of edge offset.
  • the method further includes:
  • the above distance values need to be converted.
  • the size ratio of the front image to the actual target circuit board is obtained, and the first distance threshold is preset according to the size ratio
  • the second distance threshold or the distance data measured on the image is converted into distance data on the actual circuit board according to the size ratio. That is, for example, the size ratio of the front image to the actual target circuit board is N:1.
  • One conversion method is to convert the distance data measured on the image (divided by N) into the distance data on the actual circuit board, and then compare it with the actual standard threshold For comparison, another conversion method is to convert the actual standard threshold (multiplied by N) into a threshold for comparison with the distance data measured on the image.
  • the present invention provides another hole position detection method based on the upper and lower drilling circuit board, which is used to perform hole position offset detection on the target circuit board that has completed the upper and lower drilling holes. In case of position deviation, the depth of the hole position is detected afterwards, as shown in Fig. 3.
  • the hole position detection method includes the following steps:
  • the hole position detection device includes a backlight plate 1, an upper light source 2 arranged above the backlight plate 1, and an image acquisition device 3.
  • the light source 2 has a symmetrical structure.
  • the image acquisition device 3 is arranged above the backlight board 1 and at the symmetry axis of the upper light source 2.
  • the target circuit board is placed on the backlight board 1, and the upper light source 2 and the upper light source 2 are turned on at the same time.
  • the backlight plate 1, preferably, a layer of transparent thin plate (not shown) can be prevented between the circuit board and the backlight plate to disperse the light emitted by the backlight plate 1, so that the light is evenly distributed, and ensures that the backlight plate 1 emits light.
  • the uniformity of the light irradiated on the tested hole, no black spots and bright spots will appear, ensuring that the information of the hole position is accurately fed back to the image acquisition device 3 (such as a CCD camera).
  • S22 Analyze the front image. If the front image includes two circles, execute S23; if the front image includes a complete circle and two intersecting arcs, as shown in FIG. 6, execute S23.
  • S24 and S25 If the front image does not meet the above conditions, it is determined that the hole position of the target circuit board is unqualified.
  • the hole position of the target circuit board there are two necessary and insufficient conditions for the hole position of the target circuit board to be qualified.
  • One is that two circles can be seen from the top of the circuit board (that is, the front image), and the large circle is the upper circumference of the top hole.
  • the small circle may be the lower circumference of the top hole or the upper circumference of the bottom hole; in another case, you can see a circle that is two arcs in this circle when looking down on the circuit board, where the complete circle is
  • the upper circumference of the top hole one of the arcs is a part of the lower circumference of the top hole, and the other arc is a part of the upper circumference of the bottom hole.
  • Other situations are judged as unqualified hole positions, such as a blind hole whose front side is imaged as a circle, and a hole whose front side is imaged as a complete circle and an arc, and so on.
  • the hole on the circuit board is a tapered hole, as shown in Figure 4 and Figure 5.
  • the ratio of the circumference of the upper and lower edges of the hole reflects the depth of the hole.
  • a minimum standard is set. The ratio of the smaller radius to the larger radius of a circle is lower than this minimum standard, indicating that the smaller radius is too small, that is, the hole is drilled too deep, and the hole depth is unqualified, that is, the hole is unqualified.
  • the method further includes:
  • the first distance threshold here is the same as the first distance threshold in S262 below, and is an allowable range for judging whether the borehole is inclined, that is, the offset between the upper edge and the lower edge of the top hole.
  • the coordinate method establish a coordinate system, get the coordinates of three points, establish a two-dimensional quadratic equation system, find the coordinate point with the same distance to the three points is the center of the circle, and the calculated equal distance is the radius .
  • the known least squares method (Sun of Least Suqares) or Hough Transform (Hough Transform) can be used to calculate the center of the circle where each arc is located, and then the first arc of the circle where the first arc is located is calculated. The radius and the second radius of the circle where the second arc is located.
  • the method further includes:
  • the center of the complete circle is C1
  • the first center of the circle where the first arc is located is C2
  • the second center of the circle where the second arc is located is C3, determine the distance between the center of the circle
  • a first distance threshold and a second distance threshold are preset, wherein the first distance threshold is less than or equal to the second distance threshold, and the first distance threshold is used to determine whether the borehole is inclined, that is, the upper edge and the lower edge of the top hole The allowable range of edge offset. If
  • 0, it means that the drilling is not inclined; if
  • the second distance threshold is the allowable range for judging the offset of the top hole and the bottom hole. If
  • 0, then the two holes have no offset.
  • the invention discloses a hole position detection method and detection equipment based on upper and lower drilling circuit boards, which judge whether the hole positions are qualified from the deviation degree and hole depth of the upper and lower drilling holes, and the detection equipment provides an upper and lower light source supplementary light environment for the circuit board imaging , Use the front imaging information of the circuit board to determine whether the hole position is penetrated, the deviation degree is qualified, and the hole depth is qualified.
  • the present invention comprehensively detects the hole position quality of the circuit board. Using the detection method of the present invention, even when the top hole or bottom hole is drilled inclined or the depth of the top hole and the bottom hole are inconsistent, it can also accurately Measure the hole quality of the circuit board.
  • any reference signs placed between parentheses shall not be regarded as restrictive claims.
  • the word “comprising” does not exclude the existence of other elements or steps listed in the claims.
  • the term “a” or “an” as used herein is defined as one or more than one.
  • the use of introductory phrases such as “at least one” and “one or more” in a claim statement should not be interpreted as implying that the introduction of the indefinite article "a” or “an” into another claim element will include such introduction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Drilling And Boring (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

一种基于上下钻孔电路板的孔位检测方法及检测设备,从上下钻孔的偏移度和孔深度判断孔位是否合格,检测设备为电路板成像提供上下光源补光环境,利用电路板的正面成像信息,判断孔位是否贯穿、偏移度是否合格、孔位深度是否合格,全面检测电路板的孔位质量。利用该检测方法,即使在顶孔或底孔发生钻孔倾斜或者顶孔与底孔的钻孔深度不一致的情况,同样能够准确地测量电路板的孔位质量。

Description

一种基于上下钻孔电路板的孔位检测方法及检测设备 技术领域
本发明涉及电路板孔位检测领域,尤其涉及一种基于上下钻孔电路板的孔位检测方法及检测设备。
背景技术
现如今在高度发展的电子工业时代,印刷电路板(Printed Circuit Board,简称PCB)已成为计算机、电子通信等产品上必不可缺的一样重要部件之一。PCB钻孔是印刷电路板中比较靠前的一道工序,钻孔的质量的好坏直接影响到PCB板后续的几十道工序,因此如何控制好钻孔质量是现在PCB电子厂商重点关注的点。
现有PCB钻孔主要分为机械式钻孔以及激光钻孔,由于PCB电路板要求精度越来越高,且厚度越来越薄,现有高精度的PCB电路板主要使用激光钻孔,其主要分为通孔、盲孔等,为了得到更好的孔径要求,在加工通孔时需要从上下两面分别使用激光钻孔,由于无法确保上下钻的孔完全正对,会出现上面孔与下面孔偏移的现象,当上下孔之间的偏移量超过可以接受的范围时,该PCB电路板就需要检修或者报废处理。
公开号为CN 106257232 B,名称为印刷电路板的孔位信息的检测方法及检测设备的专利文献中提及了一种可以检测上下孔位偏移量的方法,如图7所示,但是该方法仅适用于上面孔完全垂直于PCB电路板且顶孔与底孔深度一致(各占电路板厚度的二分之一)的情况,一旦所述上面孔或者下面孔发生钻孔倾斜(同一个锥形孔的上圆周和下圆周非同心设置)或者顶孔与底孔钻孔深度不一致时(如图4和图5所示),计算结果会出现偏差,从而影响对顶部孔和底部孔之间真实偏移量的判断。事实上,很难确保上下钻孔深度完全一致,而这一定会影响以上这个现有技术中的孔位信息检测精度:以图4和图5中同轴孔为例,按照该现有技术中的检测方法可以得到第一孔及所述第二孔的孔位偏移量d的孔位信息:d=D1–(2*D13S)–D3,其结果是不为零的(图4中为大于0,图5中为小于0),而实际上,图4和图5中顶孔和底孔的圆心是同轴的,即偏移量实际为0,因此,现有技术中缺少一种精准检测孔位合格与否的方法和设备。
发明内容
为了解决现有技术的问题,本发明提供了一种基于上下钻孔电路板的孔位检测方法及检 测设备,无论顶部孔或者底部孔是否发生钻孔倾斜,均可以确保顶部孔和底部孔之间偏移量的检测精度,所述技术方案如下:
一方面,本发明提供了一种基于上下钻孔电路板的孔位检测方法,用于对完成上下钻孔的目标电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
S11、在补光状态下,获取目标电路板的正面图像;
S12、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S13;若所述正面图像中包括一个完整圆及两条相交圆弧,则执行S14和S15;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
S13、计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格;
S14、确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
S15、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格。
进一步地,步骤S15中判定所述目标电路板的孔位对准度合格之后还包括:
计算所述第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径,若所述第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
进一步地,步骤S13中判定所述目标电路板的孔位对准度合格之后还包括:
计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
进一步地,步骤S14中,在所述第一圆弧和第二圆弧上分别各取至少三个点,通过坐标法或者中垂线法确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心。
进一步地,步骤S11中的补光状态包括:同时打开所述目标电路板上方的上光源及所述目标电路板下方的背光源。
进一步地,根据用于获取目标电路板正面图像的摄像参数,得到正面图像与实际目标电路板的尺寸比例,并根据所述尺寸比例预设置所述第一距离阈值和第二距离阈值或者根据所述尺寸比例将图像上测量的距离数据转化为实际电路板上的距离数据。
另一方面,本发明提供了另一种基于上下钻孔电路板的孔位检测方法,用于对完成上下钻孔的目标电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
S21、在补光状态下,获取目标电路板的正面图像;
S22、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S23;若所述正面图像中包括一个完整圆及两条相交圆弧,则执行S24和S25;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
S23、计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位深度不合格;
S24、确定第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径;
S25、若第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格。
进一步地,步骤S25中判定所述目标电路板的孔位深度合格之后还包括:
确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
进一步地,步骤S23中判定所述目标电路板的孔位深度合格之后还包括:
计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
再一方面,本发明提供了一种基于上下钻孔电路板的孔位检测设备,包括背光装置、设置在所述背光装置上方的多个上光源和图像采集装置,所述多个上光源发射的光线在所述背光装置上进行汇聚,所述图像采集装置设置在所述上光源的光线汇聚处的上方;所述背光装置包括多个受独立控制的背光板,每个背光板上的背光源能够独立打开或者关闭,多个所述背光板拼接设置而形成多种不同尺寸的矩形背光区,所述孔位检测设备利用如上所述的孔位检测方法对电路板进行孔位偏移检测。
本发明具有如下有益效果:
a.既检测顶孔与底孔之间的偏移度,又检测孔深度,全面检测孔位质量;
b.无论顶孔、底孔是否发生钻孔倾斜,都能确保孔位质量检测的准确性;
c.无论顶孔、底孔的钻孔深度是否一致,都能确保孔位质量检测的准确性;
d.能够根据PCB板材的大小确定背光板所需打开区域,关闭不需要的背光区光源,节约能源且避免强光对人眼的伤害。
附图说明
被视为本发明的主题在说明书的结论部分中被特别指出并清楚地主张权利。然而,当结合附图一起参阅时,通过参考以下详细描述可以最佳地理解本发明的组织、操作方法,以及主题、特征和优点,其中:
图1是本发明实施例提供的第一种基于上下钻孔电路板的孔位检测方法的流程图;
图2是本发明实施例提供的用于检测电路板上下钻孔的孔位检测设备的结构示意图;
图3是本发明实施例提供的第二种基于上下钻孔电路板的孔位检测方法;
图4是本发明实施例提供的底孔深度大于顶孔深度情况下电路板的剖视图;
图5是本发明实施例提供的顶孔深度大于底孔深度情况下电路板的剖视图;
图6是本发明实施例提供的包括一个完整圆与两条相交弧线的正面图像示意图;
图7是现有技术中孔位检测方法的计算原理图;
图8是本发明实施例提供的具有散光层的孔位检测设备的结构示意图;
图9是本发明实施例提供的具有L形背光板的背光板拼接示意图;
图10是本发明实施例提供的具有回字形背光板的背光板拼接示意图。
其中,附图标记包括:1-背光装置,11-背光板,12-散光层,2-上光源,3-图像采集装置,4-电路板,5-压紧装置,6-菲林板。
具体实施方式
在以下详细描述中,阐述了许多具体细节以便提供对本发明的透彻理解。然而,本领域技术人员将理解,可以在没有这些具体细节的情况下实践本发明。在其他情况下,没有详细描述众所周知的方法,过程和组件,以免模糊本发明。
被视为本发明的主题在说明书的结论部分中被特别指出并清楚地主张权利。然而,当结合附图一起参阅时,通过参考以下详细描述可以最佳地理解本发明的组织、操作方法,以及主题、特征和优点。
应当理解,为了说明的简单和清楚,图中所示的元件不一定按比例绘制。例如,为了清楚起见,一些元件的尺寸可能相对于其他元件被放大。
由于本发明的说明性实施例在很大程度上可使用本领域技术人员熟知的电子元件和电路来实施,如上文所述,在认为必要的范围之外,不会对细节作更大的解释,以便理解和体会本发明的基本概念,以免混淆或分散本发明的教导。
在电路板上进行钻孔得到的锥形孔,即越往下钻,孔下圆周越小。本发明提供的基于上下钻孔电路板的孔位检测方法既检测上下孔之间的偏移度,又检测上下孔的深度,即即使上下孔为同轴设置,若上孔钻得很深,下孔钻得很浅,这样的孔位也是不合格的;反之,即使上下孔位的深度均为电路板厚度的一半,若两孔圆心偏移过多,这样的孔位也是不合格的, 这样的电路板需要检修。
在本发明的一个实施例中,提供了一种基于上下钻孔电路板的孔位检测方法,用于对完成上下钻孔的目标电路板进行孔位偏移检测,先检测孔位偏移情况,后检测孔位深度,参见图1,所述孔位检测方法包括以下步骤:
S11、在补光状态下,获取目标电路板的正面图像。
将目标电路板放置在如图2所示的孔位检测设备上,所述孔位检测设备包括背光装置1、设置在所述背光装置1上方的多个上光源2和图像采集装置3,所述多个上光源2发射的光线在所述背光装置1上进行汇聚,所述图像采集装置3设置在所述上光源2的光线汇聚处的上方,所述图像采集装置3优选为CCD相机。
如图9和10所示,所述背光装置1包括多个受独立控制的背光板11,每个背光板11上的背光源能够独立打开或者关闭,多个所述背光板11拼接设置而形成多种不同尺寸的矩形背光区。
在本发明的一个优选实施例中,所述背光装置1还包括设置在所述背光板11上的散光层12,所述散光层12托载待检测的电路板4,如图8所示,所述散光层12优选为平面度要求达到0.05mm的光学玻璃层。所述散光层12保证了背光板11出来的光照射在每个被测孔上面的一致性,不会出现黑点、亮点等情况,保证检测的孔位信息的真实性。
如图2或图8所示,所述多个上光源2为线性光源,所述上光源2的个数为三个或者三个以上,所述多个上光源2在所述背光装置1上的光线入射角度相同(优选地,每个上光源2能够单独调节光线的射出方向),所述多个上光源2的光源亮度可调,保证将孔位的信息正确的反馈到CCD相机中。
可选地,所述多个上光源2能够同步平面移动,和/或所述背光装置1能够平面移动,总之,所述上光源2与背光装置1之间能够发生相对移动。比如:在检测之前,将已经钻好孔的PCB电路板4放置在背光板11(更优选地放置在散光层12)上面,根据PCB电路板4的大小,调节背光源相对应的区域尺寸,并利用压紧装置5将待检测的PCB电路板4压紧在背光装置1上面,然后调节移动上光源2或者移动背光装置1(背光装置1带着电路板4一起移动),有可能地还需要调节上光源2与背光装置1之间的高度距离,直至上光源2发射的光线的汇聚处位于所述压紧装置5上对应于电路板4的孔位的区域(若没有压紧装置5,则上光源2发射的光线直接汇聚于所述电路板4的孔位处)。所述压紧装置5优选为玻璃,从而不会影响图像采集装置3采集图像。
CCD相机通过采集PCB板上面的孔位的信息后,检测设备从而可以记录孔位图片,并标识出每个孔位的坐标信息,为后续的判定孔的质量做准备。
如上所述,所述多个所述背光板11拼接设置可以形成多种不同尺寸的矩形背光区,其实 施方式包括但不限定于以下两种:
第一种方式:所述背光板11包括一个矩形背光板及一个或多个不同尺寸的L形背光板,如图9所示,所述矩形背光板与最小尺寸的L形背光板相邻拼接,所述L形背光板按照尺寸大小相邻拼接,较小L形背光板的外边缘与较大L形背光板的内边缘拼接。
第二种方式:所述背光板11包括一个矩形背光板及一个或多个不同尺寸的回字形背光板,如图10所示,所述矩形背光板与最小尺寸的回字形背光板的内边缘相邻拼接,所述回字形背光板按照尺寸大小相邻拼接,较小回字形背光板的外边缘与较大回字形背光板的内边缘拼接。
即本发明实施例根据待检测的PCB板材大小,确定背光板所需区域,关闭不需要的背光区光源,结合上光源的照射,能够确保将孔位信息正确地反馈到图像采集装置中,为后续的孔位检测提供良好的光照环境,以提高孔位质量检测的准确性。
S12、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S13;若所述正面图像中包括一个完整圆及两条相交圆弧,如图6所示,则执行S14和S15;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格。
也就是说,目标电路板的孔位合格的必要不充分条件有两种情况,一种是俯视电路板(即所述正面图像)可以看到两个圆,其中,大圆为顶孔的上圆周,小圆可能为顶孔的下圆周,也可能是底孔的上圆周;另一种情况是俯视电路板可以看到一个圆即在这个圆内的两条弧线,其中,完整的圆为顶孔的上圆周,其中一条弧线为顶孔的下圆周的一部分,另一条弧线为底孔的上圆周的一部分。除此以外的情形,比如盲孔,其成像的正面图像为一个圆,另一种正面图像为一个完整圆及一条圆弧的孔都判定为孔位不合格。
S13、计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格。
所述第一距离阈值与下述S15中的第一距离阈值相同,为用于判断钻孔是否倾斜即顶孔上边缘和下边缘的偏移量的允许范围。
正如实施例一开始所说,除了判断孔位对准度,还需要判断钻孔深度是否合格,只有孔位对准度与钻孔深度均合格,才可以判断电路板的孔位合格,因此,步骤S13中判定所述目标电路板的孔位对准度合格之后还包括:
计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。正如上述,电路板上的钻孔为锥形孔,如图4和图5所示,孔的上下边缘的圆周大小比例体现了钻孔的深度,设定一个最低标准(比例阈值),若两个圆的较小半径与较大半径的比值低于这个最低标准,则说 明较小半径过小,即钻孔过深,孔位深度不合格,即孔位不合格。
S14、在相交的每一条圆弧上分别取至少三个点,以确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心。
针对正面图像中有一个完整圆和两条弧线的情况,由于两条弧线相交是顶孔的下圆与底孔的上圆相交的结果,因此,其肯定是贯穿孔,且公知的是,根据(不在一直线的)三个点可以确定一个圆及其圆心,比如,三个点中的点两两连成线段,三个线段的中垂线汇交点即为圆心,所述汇交点到三个点中任意一个点的距离即为半径。或者建立坐标系,得到三个点的坐标,建立二元二次方程组,求取到这三个点的距离相等的坐标点即为圆心,所计算的相等的距离即为半径。或者,还可以采用已知的最小二乘法(Sun of Least Suqares)或是霍夫变换(Hough Transform),计算出每个弧的所在圆的圆心。
S15、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格。
假定完整圆的圆心为C1,所述第一圆弧所在圆的第一圆心为C2,所述第二圆弧所在圆的第二圆心为C3,判断圆心之间的距离|C2-C1|与|C3-C1|的大小,假如|C2-C1|较小,则判定C2为顶孔的下圆周圆心,而C3为底孔的上圆周圆心。预先设有第一距离阈值和第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,所述第一距离阈值为用于判断钻孔是否倾斜即顶孔上边缘和下边缘的偏移量的允许范围,若|C2-C1|=0,则说明钻孔没有倾斜,若|C2-C1|超出第一距离阈值,则判定电路板的孔位不合格;所述第二距离阈值为用于判断顶部孔与底部孔错位偏移量的允许范围,若|C3-C1|=0,则说明两孔没有偏移,若|C3-C1|超出第二距离阈值,则判定电路板的孔位不合格;只有同时满足|C2-C1|≤第一距离阈值,且|C3-C1|≤第二距离阈值,则判定电路板的孔位对准度合格。
正如实施例一开始所说,除了判断孔位对准度,还需要判断钻孔深度是否合格,只有孔位对准度与钻孔深度均合格,才可以判断电路板的孔位合格,因此,步骤S15中判定所述目标电路板的孔位对准度合格之后还包括:
计算所述第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径,若所述第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
以上距离数值都需要进行转化,具体地,根据用于获取目标电路板正面图像的摄像参数,得到正面图像与实际目标电路板的尺寸比例,并根据所述尺寸比例预设置所述第一距离阈值和第二距离阈值或者根据所述尺寸比例将图像上测量的距离数据转化为实际电路板上的距离 数据。即比如正面图像与实际目标电路板的尺寸比例为N:1,一种转化方式是将图像上测量得到的距离数据(除以N)转化为实际电路板上的距离数据,然后和实际标准阈值比较,另一种转化方式就是将实际标准阈值(乘以N)转化为与图象上测量得到的距离数据作比较的阈值。
在本发明的另一个实施例中,本发明提供了另一种基于上下钻孔电路板的孔位检测方法,用于对完成上下钻孔的目标电路板进行孔位偏移检测,先检测孔位偏移情况,后检测孔位深度,参见图3,所述孔位检测方法包括以下步骤:
S21、在补光状态下,获取目标电路板的正面图像。
将目标电路板放置在如图2所示的孔位检测设备上,所述孔位检测设备包括背光板1、设置在所述背光板1上方的上光源2和图像采集装置3,所述上光源2为对称设置结构,所述图像采集装置3设置在背光板1上方且在所述上光源2的对称轴线处,将所述目标电路板放置在背光板1上,同时打开上光源2和背光板1,优选地,在电路板与背光板之间还可以防止一层透明薄板(未图示),以将背光板1发出的光打散,使得光均匀分布,确保背光板1发出的光照射在被测孔的一致性,不会出现黑点、亮点情况,确保将孔位的信息准确地反馈到图像采集装置3(比如CCD相机)中。
S22、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S23;若所述正面图像中包括一个完整圆及两条相交圆弧,如图6所示,则执行S24和S25;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格。
也就是说,目标电路板的孔位合格的必要不充分条件有两种情况,一种是俯视电路板(即所述正面图像)可以看到两个圆,其中,大圆为顶孔的上圆周,小圆可能为顶孔的下圆周,也可能是底孔的上圆周;另一种情况是俯视电路板可以看到一个圆即在这个圆内的两条弧线,其中,完整的圆为顶孔的上圆周,其中一条弧线为顶孔的下圆周的一部分,另一条弧线为底孔的上圆周的一部分。除此以外的情形都判定为孔位不合格的情况,比如正面成像为一个圆的盲孔,以及正面成像为一个完整圆和一条圆弧的孔等等。
S23、计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格。
正如上述,电路板上的钻孔为锥形孔,如图4和图5所示,孔的上下边缘的圆周大小比例体现了钻孔的深度,设定一个最低标准(比例阈值),若两个圆的较小半径与较大半径的比值低于这个最低标准,则说明较小半径过小,即钻孔过深,孔位深度不合格,即孔位不合格。
正如实施例一开始所说,除了判断钻孔深度,还需要判断孔位对准度是否合格,只有孔位对准度与钻孔深度均合格,才可以判断电路板的孔位合格,因此,步骤S23中判定所述目 标电路板的孔位深度合格之后还包括:
计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。此处的所述第一距离阈值与下述S262中的第一距离阈值相同,为用于判断钻孔是否倾斜即顶孔上边缘和下边缘的偏移量的允许范围。
S24、在相交的每一条圆弧上分别取至少三个点,以确定第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径。
针对正面图像中有一个完整圆和两条弧线的情况,由于两条弧线相交是顶孔的下圆与底孔的上圆相交的结果,因此,其肯定是贯穿孔,且公知的是,根据(不在一直线的)三个点可以确定一个圆及其圆心,比如,利用中垂法:三个点中的点两两连成线段,三个线段的中垂线汇交点即为圆心,所述汇交点到三个点中任意一个点的距离即为半径。或者利用坐标法:建立坐标系,得到三个点的坐标,建立二元二次方程组,求取到这三个点的距离相等的坐标点即为圆心,所计算的相等的距离即为半径。或者,还可以采用已知的最小二乘法(Sun of Least Suqares)或是霍夫变换(Hough Transform),计算出每个弧的所在圆的圆心,随后计算出第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径。
S25、若第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格。
正如实施例一开始所说,除了判断钻孔深度,还需要判断孔位对准度是否合格,只有孔位对准度与钻孔深度均合格,才可以判断电路板的孔位合格,因此,步骤S25中判定所述目标电路板的孔位深度合格之后还包括:
S261、确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
S262、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
假定完整圆的圆心为C1,所述第一圆弧所在圆的第一圆心为C2,所述第二圆弧所在圆的第二圆心为C3,判断圆心之间的距离|C2-C1|与|C3-C1|的大小,其中,|C2-C1|为圆心C1与圆心C2之间的距离,|C3-C1|为圆心C3与圆心C1之间的距离,假如|C2-C1|较小,则判定C2为顶孔的下圆周圆心,而C3为底孔的上圆周圆心。预先设有第一距离阈值和第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,所述第一距离阈值为用于判断钻孔是否倾斜即顶孔上边缘和下边缘的偏移量的允许范围,若|C2-C1|=0,则说明钻孔没有倾斜,若|C2-C1|超出第一距离阈值,则判定电路板的孔位不合格;所述第二距离阈值为用于判断顶部 孔与底部孔错位偏移量的允许范围,若|C3-C1|=0,则说明两孔没有偏移,若|C3-C1|超出第二距离阈值,则判定电路板的孔位不合格;只有同时满足|C2-C1|≤第一距离阈值,且|C3-C1|≤第二距离阈值,则判定电路板的孔位对准度合格。
本发明公开了一种基于上下钻孔电路板的孔位检测方法及检测设备,从上下钻孔的偏移度和孔深度判断孔位是否合格,检测设备为电路板成像提供上下光源补光环境,利用电路板的正面成像信息,判断孔位是否贯穿、偏移度是否合格、孔位深度是否合格。本发明全面检测电路板的孔位质量,利用本发明的检测方法,即使在顶孔或底孔发生钻孔倾斜的情况下或者顶孔与底孔的钻孔深度不一致的情况,同样能够准确地测量电路板的孔位质量。
此外,本领域技术人员将意识到,上述操作之间的界限仅为示例性的。多个操作可以合并为单个操作,单个操作可以分布于额外操作中,且可在至少部分重叠的时间下执行操作。此外,可选实施例可包括特定操作的多个举例说明,并且操作顺序可在各种其他实施例中变化。
然而,其他修改、变化及替代也是可能的。因此,应在示例性意义上而非限制性意义上看待说明书及附图。
在权利要求声明中,置于圆括号之间的任何参考符号不应被视为限制请求项。词语“包括”并不排除那些列在权利要求声明中的其他元件或步骤的存在。此外,本文所使用的术语“一”或“一个”,被定义为一个或多于一个。而且,引言短语例如权利要求声明中的“至少一个”及“一个或多个”的使用不应该解释为暗示不定冠词“一”或“一个”引入另一个权利要求要素将包含这种引入的权利要求的任何特定权利要求限制于仅包含一个这样的要素的发明,即使同一权利要求包括引言短语“一个或多个”或“至少一个”和不定冠词,如“一个”或“一个”。使用定冠词也是如此。除非另有说明,否则诸如“第一”和“第二”之类的术语用于任意区分这些术语所描述的元素。因此,这些术语不一定旨在表示这些元素的时间或其他优先级。在彼此不同的权利要求中叙述某些措施的仅有事实并不表示这些措施的组合不能加以利用。
虽然本文已经说明和描述了本发明的某些特征,但是本领域普通技术人员现在将想到许多修改、替换、改变和等同物。因此,应该理解,所附权利要求旨在覆盖落入本发明的真正精神内的所有这些修改和变化。

Claims (12)

  1. 一种基于上下钻孔电路板的孔位检测方法,其特征在于,用于对完成上下钻孔的目标电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
    S11、将目标电路板(4)放置在孔位检测设备上,获取目标电路板的正面图像,所述孔位检测设备包括背光装置(1)、设置在所述背光装置(1)上方的多个上光源(2)和图像采集装置(3),所述上光源(2)与背光装置(1)之间能够发生相对移动,所述多个上光源(2)发射的光线在所述背光装置(1)上进行汇聚,所述图像采集装置(3)设置在所述上光源(2)的光线汇聚处的上方,所述图像采集装置(3)为CCD相机;所述背光装置(1)包括多个受独立控制的背光板(11),每个背光板(11)上的背光源能够独立打开或者关闭,多个所述背光板(11)拼接设置而形成多种不同尺寸的矩形背光区,进而根据电路板(4)的大小,调节背光源相对应的区域尺寸;所述背光装置(1)还包括设置在所述背光板(11)上的散光层(12),所述散光层(12)托载待检测的电路板(4),所述散光层(12)优选为平面度要求达到0.05mm的光学玻璃层;
    S12、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S13;若所述正面图像中包括一个完整圆及两条相交圆弧,则执行S14和S15;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
    S13、计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格;步骤S13中判定所述目标电路板的孔位对准度合格之后还包括:计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格;
    S14、在相交的每一条圆弧上分别取至少三个点,以确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
    S15、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格;步骤S15中判定所述目标电路板的孔位对准度合格之后还包括:计算所述第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径,若所述第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
  2. 一种基于上下钻孔电路板的孔位检测方法,其特征在于,用于对完成上下钻孔的目标 电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
    S21、将目标电路板(4)放置在孔位检测设备上,获取目标电路板的正面图像,所述孔位检测设备包括背光装置(1)、设置在所述背光装置(1)上方的多个上光源(2)和图像采集装置(3),所述上光源(2)与背光装置(1)之间能够发生相对移动,所述多个上光源(2)发射的光线在所述背光装置(1)上进行汇聚,所述图像采集装置(3)设置在所述上光源(2)的光线汇聚处的上方,所述图像采集装置(3)为CCD相机;所述背光装置(1)包括多个受独立控制的背光板(11),每个背光板(11)上的背光源能够独立打开或者关闭,多个所述背光板(11)拼接设置而形成多种不同尺寸的矩形背光区,进而根据电路板(4)的大小,调节背光源相对应的区域尺寸;所述背光装置(1)还包括设置在所述背光板(11)上的散光层(12),所述散光层(12)托载待检测的电路板(4),所述散光层(12)优选为平面度要求达到0.05mm的光学玻璃层;
    S22、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S23;若所述正面图像中包括一个完整圆及两条相交圆弧,则执行S24和S25;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
    S23、计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格;步骤S23中判定所述目标电路板的孔位深度合格之后还包括:计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格;
    S24、在相交的每一条圆弧上分别取至少三个点,以确定第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径;
    S25、若第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格;步骤S25中判定所述目标电路板的孔位深度合格之后还包括:S261、确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;S262、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
  3. 一种基于上下钻孔电路板的孔位检测方法,其特征在于,用于对完成上下钻孔的目标电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
    S11、在补光状态下,获取目标电路板的正面图像;
    S12、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S13;若所述正 面图像中包括一个完整圆及两条相交圆弧,则执行S14和S15;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
    S13、计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格;
    S14、确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
    S15、若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位对准度合格,否则判定所述目标电路板的孔位不合格。
  4. 根据权利要求3所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S15中判定所述目标电路板的孔位对准度合格之后还包括:
    计算所述第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径,若所述第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
  5. 根据权利要求3所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S13中判定所述目标电路板的孔位对准度合格之后还包括:
    计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则所述目标电路板的孔位合格,否则所述目标电路板的孔位不合格。
  6. 根据权利要求3所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S14中,在所述第一圆弧和第二圆弧上分别各取至少三个点,通过坐标法或者中垂线法确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心。
  7. 根据权利要求3所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S11中的补光状态包括:同时打开所述目标电路板上方的上光源及所述目标电路板下方的背光源。
  8. 根据权利要求3所述的基于上下钻孔电路板的孔位检测方法,其特征在于,根据用于获取目标电路板正面图像的摄像参数,得到正面图像与实际目标电路板的尺寸比例,并根据所述尺寸比例预设置所述第一距离阈值和第二距离阈值或者根据所述尺寸比例将图像上测量的距离数据转化为实际电路板上的距离数据。
  9. 一种基于上下钻孔电路板的孔位检测方法,其特征在于,用于对完成上下钻孔的目标电路板进行孔位偏移检测,所述孔位检测方法包括以下步骤:
    S21、在补光状态下,获取目标电路板的正面图像;
    S22、对所述正面图像进行分析,若所述正面图像中包括两个圆,则执行S23;若所述正 面图像中包括一个完整圆及两条相交圆弧,则执行S24和S25;若所述正面图像不满足上述条件,则判定所述目标电路板的孔位不合格;
    S23、计算所述两个圆的半径,若较小半径与较大半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格;
    S24、确定第一圆弧所在圆的第一半径及第二圆弧所在圆的第二半径;
    S25、若第一半径与第二半径中的较小半径与所述完整圆的半径的比值大于或等于预设的比例阈值,则判定所述目标电路板的孔位深度合格,否则所述目标电路板的孔位不合格。
  10. 根据权利要求9所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S25中判定所述目标电路板的孔位深度合格之后还包括:
    确定第一圆弧所在圆的第一圆心及第二圆弧所在圆的第二圆心;
    若第一圆心与所述完整圆的圆心之间的距离及第二圆心与所述完整圆的圆心之间的距离中的较小距离小于或等于预设的第一距离阈值,且其之中的较大距离小于或等于预设的第二距离阈值,其中,所述第一距离阈值小于或等于第二距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
  11. 根据权利要求9所述的基于上下钻孔电路板的孔位检测方法,其特征在于,步骤S23中判定所述目标电路板的孔位深度合格之后还包括:
    计算所述正面图像中两个圆的圆心距离,若所述两个圆的圆心距离小于或等于预设的第一距离阈值,则判定所述目标电路板的孔位合格,否则判定所述目标电路板的孔位不合格。
  12. 一种基于上下钻孔电路板的孔位检测设备,其特征在于,包括背光装置(1)、设置在所述背光装置(1)上方的多个上光源(2)和图像采集装置(3),所述多个上光源(2)发射的光线在所述背光装置(1)上进行汇聚,所述图像采集装置(3)设置在所述上光源(2)的光线汇聚处的上方;所述背光装置(1)包括多个受独立控制的背光板(11),每个背光板(11)上的背光源能够独立打开或者关闭,多个所述背光板(11)拼接设置而形成多种不同尺寸的矩形背光区,所述孔位检测设备利用如权利要求1-11中任意一项所述的孔位检测方法对电路板进行孔位偏移检测。
PCT/CN2019/121173 2019-08-30 2019-11-27 一种基于上下钻孔电路板的孔位检测方法及检测设备 WO2021036056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910812486.1 2019-08-30
CN201910812486.1A CN110567369B (zh) 2019-08-30 2019-08-30 一种基于上下钻孔电路板的孔位检测方法及检测设备

Publications (1)

Publication Number Publication Date
WO2021036056A1 true WO2021036056A1 (zh) 2021-03-04

Family

ID=68777006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121173 WO2021036056A1 (zh) 2019-08-30 2019-11-27 一种基于上下钻孔电路板的孔位检测方法及检测设备

Country Status (3)

Country Link
CN (1) CN110567369B (zh)
TW (1) TWI747464B (zh)
WO (1) WO2021036056A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111601A (zh) * 2021-12-07 2022-03-01 合肥工业大学智能制造技术研究院 一种利用线阵ccd技术检测装配孔位置偏移量的方法
CN114633304A (zh) * 2022-03-31 2022-06-17 重庆市和鑫达电子有限公司 一种pcb板钻靶机运维系统
CN114877821A (zh) * 2022-05-31 2022-08-09 苏州浪潮智能科技有限公司 一种pcb板的背钻深度检测系统及方法
CN115082478A (zh) * 2022-08-23 2022-09-20 凤芯微电子科技(聊城)有限公司 一种集成电路板质量分选系统
CN115342725A (zh) * 2022-08-03 2022-11-15 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法
CN115841488A (zh) * 2023-02-21 2023-03-24 聊城市飓风工业设计有限公司 一种基于计算机视觉的pcb板的检孔方法
CN116698879A (zh) * 2023-08-03 2023-09-05 深圳市至诚合电子科技有限公司 一种pcb电路板质检用测试机

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI768701B (zh) * 2021-02-05 2022-06-21 大量科技股份有限公司 印刷電路板內層深度量測光學系統
CN113280737B (zh) * 2021-05-14 2023-08-29 惠州中京电子科技有限公司 高阶hdi印制电路板盲孔偏移检测方法
TWI792823B (zh) * 2021-12-30 2023-02-11 大量科技股份有限公司 印刷電路板內層深度測量光纖系統
TWI836744B (zh) * 2022-11-22 2024-03-21 金寶電子工業股份有限公司 影像追蹤方法及影像追蹤系統

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121122A (ja) * 2001-10-18 2003-04-23 Ryoei Engineering Kk 穴検査方法
CN1641315A (zh) * 2004-01-16 2005-07-20 牧德科技股份有限公司 印刷电路板的盲孔质量分析方法
CN102301225A (zh) * 2009-01-31 2011-12-28 玛机统丽公司 通孔检查装置
CN102607368A (zh) * 2012-03-20 2012-07-25 昆山鼎鑫电子有限公司 一种hdi板激光钻孔偏移检查方法
CN202735264U (zh) * 2012-08-27 2013-02-13 罗艺 一种贴片工具的检测装置
CN104764712A (zh) * 2015-04-29 2015-07-08 浙江工业大学 一种pcb过孔内壁质量的检测方法
CN106257232A (zh) * 2015-06-18 2016-12-28 牧德科技股份有限公司 印刷电路板的孔位信息的检测方法及检测设备
CN109253702A (zh) * 2018-11-08 2019-01-22 东莞职业技术学院 一种pcb钻孔快速检修方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3019059B2 (ja) * 1998-04-20 2000-03-13 日本電気株式会社 ブラインドビアホール加工方法
JP2009122089A (ja) * 2007-11-12 2009-06-04 Ajuhitek Inc プリント回路基板の光学検査装置及びその方法
CN102189282B (zh) * 2010-03-12 2013-03-06 宏恒胜电子科技(淮安)有限公司 电路板短槽孔的制作系统及制作方法
CN102221556B (zh) * 2011-03-15 2012-11-14 中国计量学院 基于机器视觉的小型连接件外观缺陷在线检测装置与方法
CN102927899B (zh) * 2012-10-08 2015-03-11 东南大学 一种柔性肩关节运动传感器及其测量方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121122A (ja) * 2001-10-18 2003-04-23 Ryoei Engineering Kk 穴検査方法
CN1641315A (zh) * 2004-01-16 2005-07-20 牧德科技股份有限公司 印刷电路板的盲孔质量分析方法
CN102301225A (zh) * 2009-01-31 2011-12-28 玛机统丽公司 通孔检查装置
CN102607368A (zh) * 2012-03-20 2012-07-25 昆山鼎鑫电子有限公司 一种hdi板激光钻孔偏移检查方法
CN202735264U (zh) * 2012-08-27 2013-02-13 罗艺 一种贴片工具的检测装置
CN104764712A (zh) * 2015-04-29 2015-07-08 浙江工业大学 一种pcb过孔内壁质量的检测方法
CN106257232A (zh) * 2015-06-18 2016-12-28 牧德科技股份有限公司 印刷电路板的孔位信息的检测方法及检测设备
CN109253702A (zh) * 2018-11-08 2019-01-22 东莞职业技术学院 一种pcb钻孔快速检修方法及设备

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114111601A (zh) * 2021-12-07 2022-03-01 合肥工业大学智能制造技术研究院 一种利用线阵ccd技术检测装配孔位置偏移量的方法
CN114111601B (zh) * 2021-12-07 2024-01-30 合肥工业大学智能制造技术研究院 一种利用线阵ccd技术检测装配孔位置偏移量的方法
CN114633304A (zh) * 2022-03-31 2022-06-17 重庆市和鑫达电子有限公司 一种pcb板钻靶机运维系统
CN114633304B (zh) * 2022-03-31 2024-04-05 重庆市和鑫达电子有限公司 一种pcb板钻靶机运维系统
CN114877821A (zh) * 2022-05-31 2022-08-09 苏州浪潮智能科技有限公司 一种pcb板的背钻深度检测系统及方法
CN114877821B (zh) * 2022-05-31 2023-09-22 苏州浪潮智能科技有限公司 一种pcb板的背钻深度检测系统及方法
CN115342725A (zh) * 2022-08-03 2022-11-15 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法
WO2024027530A1 (zh) * 2022-08-03 2024-02-08 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法
CN115082478A (zh) * 2022-08-23 2022-09-20 凤芯微电子科技(聊城)有限公司 一种集成电路板质量分选系统
CN115841488A (zh) * 2023-02-21 2023-03-24 聊城市飓风工业设计有限公司 一种基于计算机视觉的pcb板的检孔方法
CN116698879A (zh) * 2023-08-03 2023-09-05 深圳市至诚合电子科技有限公司 一种pcb电路板质检用测试机
CN116698879B (zh) * 2023-08-03 2023-10-03 深圳市至诚合电子科技有限公司 一种pcb电路板质检用测试机

Also Published As

Publication number Publication date
CN110567369A (zh) 2019-12-13
TWI747464B (zh) 2021-11-21
TW202109353A (zh) 2021-03-01
CN110567369B (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
WO2021036056A1 (zh) 一种基于上下钻孔电路板的孔位检测方法及检测设备
US7417721B2 (en) Defect detector and defect detecting method
US9874436B2 (en) Hole inspection method and apparatus
US9791725B2 (en) Method and system for repairing defective pixel, and display panel
CN108901119B (zh) 用于测量激光钻机孔位精度的治具及方法
TWI773032B (zh) 一種拱形照明裝置、具有其之成像系統及成像方法
CN206020294U (zh) 光学检测设备
KR20100023258A (ko) 평판디스플레이 패널 검사 장비 및 방법
WO2019214287A1 (zh) 检测装置及其检测方法、检测设备
TW201700966A (zh) 印刷電路板之孔位資訊的檢測方法及檢測設備
TW200819770A (en) Adjustable illumination apparatus and AOI system using the same
CN204421844U (zh) 一种用于精确检测锡膏厚度的检测装置
CN210533279U (zh) 用于检测pcb上下钻孔孔位检测设备及菲林板检测设备
CN102128838A (zh) 基板内部缺陷检查装置及方法
CN203396397U (zh) 激光指示器装置
JPH10332792A (ja) 基板検査用カメラの照明装置
CN116678895B (zh) 一种屏幕划痕检测方法、系统及存储介质
KR100952703B1 (ko) 듀얼 카메라를 이용한 기판 검사장치
TWI579538B (zh) 發光強度檢測裝置及發光強度檢測方法
CN204831212U (zh) 自动检测光学薄膜翘曲的检测系统
KR20110130572A (ko) 프로브 유닛의 블럭 베이스 검사장치, 및 이를 이용한 프로브 유닛의 블럭 베이스 검사방법
KR100478448B1 (ko) 액정 패널의 에지면 검사 방법
JP2008091843A (ja) 基板の圧着状態検査装置
CN205245992U (zh) 一种影像测量仪
TWI548875B (zh) Optical needle detection system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942650

Country of ref document: EP

Kind code of ref document: A1