WO2024027530A1 - 对齐度检测装置、检测方法、电芯制造装置和制造方法 - Google Patents

对齐度检测装置、检测方法、电芯制造装置和制造方法 Download PDF

Info

Publication number
WO2024027530A1
WO2024027530A1 PCT/CN2023/109082 CN2023109082W WO2024027530A1 WO 2024027530 A1 WO2024027530 A1 WO 2024027530A1 CN 2023109082 W CN2023109082 W CN 2023109082W WO 2024027530 A1 WO2024027530 A1 WO 2024027530A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
unit
alignment
battery core
pole piece
Prior art date
Application number
PCT/CN2023/109082
Other languages
English (en)
French (fr)
Inventor
陈国�
孙振勇
Original Assignee
蔚来汽车科技(安徽)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔚来汽车科技(安徽)有限公司 filed Critical 蔚来汽车科技(安徽)有限公司
Publication of WO2024027530A1 publication Critical patent/WO2024027530A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a battery core alignment detection device and detection method for laminated batteries, as well as a battery core manufacturing device and manufacturing method.
  • the production process of laminated batteries mainly includes pole plate preparation, pole plate stacking, and pole plate hot pressing.
  • pole plate stacking process a preset number of positive electrode plates and negative electrode plates need to be and the diaphragm in between. If the relative position of each electrode piece (such as the positive/negative electrode piece relative to each other or the positive electrode piece relative to the negative electrode piece) cannot meet the production requirements, for example, the positive electrode active coating exceeds the negative electrode active coating, it will cause safety hazards to the battery. .
  • a laminated battery production process including pole piece alignment detection based on X-ray detection technology is known from the prior art.
  • the X-ray detection technology needs to be mounted on equipment that provides X-rays, so it may not be possible. Real-time detection of cell alignment during the lamination process.
  • the accuracy of this X-ray detection technology is lower and may cause misjudgments.
  • a cell alignment detection method using high-precision CT is also known from the prior art. However, this detection method is relatively expensive and its detection rate cannot meet the needs of mass production.
  • a cell alignment detection method based on image processing is also known from the existing technology, that is, during the pole piece stacking process, for example, a CCD camera (charge coupled device camera) is used to collect real-time cell images And the relative position of the positive/negative electrode plates is monitored through a pre-created image processing algorithm.
  • CCD camera charge coupled device camera
  • this detection method is relatively complex and places high demands on data processing load.
  • the object of the present invention is to provide an improved battery core alignment detection device, a corresponding detection method, and an improved battery core manufacturing device and battery core manufacturing method.
  • the present invention also aims to solve or alleviate other technical problems existing in the prior art.
  • the present invention solves the above problems by providing a battery core alignment detection device for a stacked battery.
  • the battery core includes a stacked arrangement of positive electrode plates, negative electrode plates and a separator therebetween, wherein , the detection device includes a pole piece processing unit, a light source, an optical detection unit, a judgment unit and a correction unit, wherein at least the positive pole piece and the negative pole piece are separately configured through the pole piece processing unit in the material preparation stage.
  • the light source and the optical detection unit are arranged oppositely with respect to the battery core, and the light from the light source passes through the detection hole and is received by the optical detection unit; the judgment unit and the optical detection unit
  • the detection unit is connected signal-technically and is arranged based on the The light received by the optical detection unit determines the alignment of the battery core; the correction unit is connected to the judgment unit through signal technology and is configured to adjust the battery core according to the result of the alignment determination.
  • one or more detection holes are respectively provided at the positive electrode piece and the negative electrode piece, and the judgment unit is configured to based on the detection signal received by the optical detection unit.
  • the size deviation between the actual size of the light spot formed by the light and the theoretical size and the positional deviation between the actual position of the light spot and the theoretical position are used to determine the alignment of the battery core.
  • a plurality of detection holes are provided at the positive electrode piece and/or the negative electrode piece, and the judgment unit is configured to based on the relative position of the plurality of detection holes relative to a predetermined The position deviation of the set theoretical boundary is used to judge the alignment of the battery core.
  • the size of the detection hole and the theoretical size of the light spot are set based on the pole piece specification value, and the pole piece specification value is used to represent the negative pole piece and the positive pole piece. Deviation in size.
  • the correction unit is configured as a stacked adjustment element for adjusting the position of the pole piece in response to the judgment unit detecting that the alignment of the battery core is unqualified, or the correction unit is configured as The removal clamp is used to remove the battery core in response to the determination unit detecting that the battery core alignment is unqualified.
  • the detection hole is configured in a triangular, circular or rectangular shape.
  • a detection method that can be performed by such a detection device is provided, which includes the following steps:
  • S200 Determine whether the cell alignment is qualified based on the light received by the optical detection unit, where the light is emitted by the light source and passes through the detection hole accordingly;
  • step S200 based on the size deviation between the actual size and the theoretical size of the light spot generated by the light received by the optical detection unit and the actual position of the light spot The position deviation from the theoretical position determines whether the cell alignment is qualified.
  • a plurality of detection holes are provided at the positive electrode piece and/or the negative electrode piece.
  • step S200 based on the plurality of detection holes relative to the preset The position deviation of the set theoretical boundary is used to judge the alignment of the battery core.
  • the size of the detection hole and the theoretical size of the light spot are set based on a pole piece specification value, where the pole piece specification value is used to represent the negative pole piece and Positive electrode piece in terms of size deviation value.
  • steps S200 and S300 are performed during the pole piece stacking process and in step S300, the pole piece position is adjusted in response to detecting that the alignment of the battery core is unqualified; or step S200 and step S300 are performed after the hot pressing process and in step S300, the battery core is removed in response to detecting that the alignment of the battery core is unqualified.
  • the detection hole is shaped into a triangle, a circle or a rectangle.
  • a cell manufacturing device for a stacked battery which includes a material preparation unit for preparing pole pieces, a stacking unit for stacking pole pieces and separators, and a stacking unit for stacking pole pieces and separators.
  • a cell manufacturing method for a stacked battery is provided, which can be implemented by the cell manufacturing device described above.
  • this alignment detection device based on optical physical detection technology significantly reduces the cost of cell production and can achieve higher detection efficiency.
  • Figure 1 shows a schematic diagram of an embodiment of a cell alignment detection device according to the present invention
  • Figure 2 shows the main steps of the cell alignment detection method according to the present invention
  • Figure 3 shows an example of qualified cell alignment measured by the cell alignment detection method according to the present invention
  • FIG. 4 shows an example of unqualified cell alignment measured by the cell alignment detection method according to the present invention.
  • FIG. 1 a block diagram schematically shows an alignment detection device according to an aspect of the present invention, which is used to conduct testing on the cells 100 of a stacked battery (hereinafter also referred to as a battery for convenience).
  • Detection wherein the battery core 100 is stacked by a predetermined number of sets of positive electrode pieces, negative electrode pieces and separators therebetween and can be, for example, rectangular.
  • a positive electrode tab extends from one end of the cell 100 of the stacked battery and a negative electrode tab extends from the other end.
  • the detection device as a whole includes a pole piece processing unit, a light source 210, an optical detection unit 220, a judgment unit 230 and a correction unit 240.
  • the pole piece processing unit is used to at least drill holes for the positive/negative pole pieces during the pole piece preparation stage.
  • the detection hole 110 is located in the active coating area of the pole piece, the tab area, or the transition area between the tab and the active coating area.
  • the detection hole is located in the tab area.
  • the position of the detection hole is not limited to the solution proposed above. It can be set at any position allowed by production technology on the premise that light can pass through.
  • the detection hole penetrates at least the positive and negative pole pieces and optionally the separator (this can depend on the material of the separator). If the separator is made of a light-transmitting material, it may optionally not penetrate or completely penetrate the separator.
  • the light source 210 is used to project light toward the battery cores 100 that are being stacked or have been stacked.
  • the light passes through the detection holes 110 of the positive/negative electrode sheets and is received by the optical detection unit 220 opposite the light source 210 .
  • the light source 210 is arranged on the front side of the battery core 100
  • the optical detection unit 220 is arranged on the back side of the battery core 100 .
  • the light source 210 can be a conventional incandescent lamp, an infrared light source, an ultraviolet light source or other types of radiation light sources that can pass through the membrane or membrane coating.
  • One end of the optical detection unit 220 is connected to the judgment unit 230 in a signal technology for transmitting parameters about the light received by it to the next-level judgment unit 230 in the form of a signal, and the judgment unit is configured to be based on The signal about the received light determines whether the alignment of the battery core is qualified.
  • the other end of the judgment unit 230 is connected to the correction unit 240 through signal technology (such as a wired connection or a wireless connection) and controls the correction unit 240 to adjust the battery core.
  • the optical detection unit can be designed as an optical sensor.
  • this alignment detection device based on optical physical detection technology significantly reduces the cost of cell production and can achieve higher detection efficiency.
  • the alignment detection device can detect the relative position of the pole pieces in real time during the stacking process of the pole pieces. If the judgment unit 230 determines that the alignment is unqualified, the correction unit 240 is controlled to determine the relative position between the pole pieces. Make adjustments.
  • the correction unit 240 may be configured as a stack adjustment element that repositions each pole piece by moving each pole piece.
  • the alignment detection device can detect the alignment after the stacking is completed or after the pole piece is heated and pressed. If the judgment unit 230 determines that the alignment is unqualified, the correction unit 240 is controlled to move the battery core. Except for, for example, removal from a conveyor line, in which case the correction unit 240 may be configured to remove clamps, robotic arms, or other types of clamping moving parts. This method can avoid the following situation: due to external influences, the relative position of the pole pieces of the stacked but not hot-pressed battery cells will change during transportation or the pole pieces of the stacked battery cells will change during the hot-pressing process. The chip is displaced, which has a certain impact on the safety of the battery.
  • the alignment detection device can also be used to detect the battery core during the stacking process of the pole pieces or after the hot pressing process.
  • battery core alignment should specifically be understood as the alignment between the components of the battery core, that is, it can be understood as the alignment of the stacked positive electrode sheets relative to each other, the positive electrode electrode The alignment of the tab relative to the adjacent negative electrode tab or its alignment relative to the separator.
  • cell alignment may also be referred to as pole piece alignment.
  • the size of the above-mentioned detection hole can be flexibly designed according to the current collection capacity of the pole piece, that is, it can be designed according to needs or production process requirements on the premise of meeting the current collection capacity.
  • the judgment unit 230 performs alignment qualification judgment based on relevant parameters of the light spot formed by the light received by the optical detection unit 220 . Specifically, the judgment unit 230 calculates the size deviation between the actual size of the formed light spot and the preset theoretical size and the position deviation between the actual position of the formed light spot and the preset theoretical position. If the size deviation and position deviation are within the preset threshold, the alignment of the battery core is determined to be qualified; otherwise, the alignment of the battery core is determined to be unqualified and the correction unit 240 is controlled to adjust or remove the battery core 100 .
  • the theoretical size of the light spot can be that after the light from the light source 210 passes through the detection hole 110 without obstruction (that is, when the detection holes 110 of each pole piece are completely aligned), it passes through the optical detection unit 220 The size of the light spot formed there.
  • the theoretical position of the light spot is the theoretical position of the light spot formed at the optical detection unit 220 in this case, or the theoretical position can also relate to the position of the center point of the light spot. . If the size of the light spot received by the optical detection unit 220 is small, it is determined that the alignment of the cell is unqualified. If the actual position of the light spot deviates greatly, the alignment of the cell is determined to be unqualified.
  • the optical detection unit 220 can transmit parameters related to the light spot to the next-level judgment unit 230 in the form of electrical signals.
  • the alignment qualification determination process performed by the determination unit 230 can also be based on other parameters, such as the brightness of the light passing through the detection hole 110 or the brightness of the light passing through the detection hole 110 The intensity of rays will not be discussed again. In an extreme case, if the optical detection unit 220 does not detect the light passing through the detection hole 110, the determination unit 230 directly determines that the alignment of the battery core is unqualified.
  • the size of the detection hole 110 and the theoretical size of the light spot can be selected depending on the pole piece specification value, where the pole piece specification value is used to represent the size deviation value of the negative pole piece and the positive pole piece. .
  • the negative electrode piece should be designed redundantly in size relative to the positive electrode piece, so that the negative electrode piece covers the positive electrode piece in the stacked state.
  • the diameter of the detection hole 110 is at least equal to the specification value of the pole piece, preferably equal to the specification value.
  • the diameter of the circular detection hole can be 0.2-10mm, preferably 0.5-5mm.
  • the detection hole at the positive/negative pole piece can have an aperture of approximately 1mm, if the size of each light spot formed through the detection hole 110 is not smaller than the detection hole 110 The difference between the hole diameter and the specification value of the pole piece (i.e. not less than 0.5mm) will determine that the alignment of the pole piece is qualified. It should be understood that in the case of complete alignment, the size of the spot (i.e. the theoretical size) should be 1 mm.
  • Multiple detection holes 110 may be provided on the positive/negative electrode plates, for example, there are two detection holes 110 as shown in FIG. 3 and FIG. 4 respectively.
  • two detection holes 110 are provided with an interval of 10 mm, if the distance between the light spots passing through the two detection holes 110 is not less than the difference between the above-mentioned distance and the specification value of the pole piece, it is determined that the pole piece is aligned. Qualified.
  • the detection hole 110 can also be designed as a special shape other than regular shapes such as triangles, circles, rectangles, etc., and the special shape is asymmetrical.
  • the judgment unit 230 can be more accurate. Determine whether the alignment of the pole piece is qualified. Further, the judgment unit 230 is also configured to determine the alignment between pole pieces of opposite polarity (that is, the alignment of the positive pole piece relative to the negative pole piece). This is achieved in the following manner, That is, a plurality of detection holes 110 are provided at the positive electrode piece and/or the negative electrode piece, and the judgment unit 230 is configured to judge whether the alignment of the battery core is qualified based on the positional deviation of the plurality of detection holes 110 relative to the preset theoretical boundary.
  • the judgment unit 230 determines that the alignment of the battery core is unqualified and controls the correction unit to correct the battery core using signal technology. Adjustment.
  • the present invention also relates to a detection method that can be performed by the above-mentioned battery core alignment detection device, which mainly includes the following steps as shown in Figure 2:
  • S200 Determine whether the cell alignment is qualified based on the light received by the optical detection unit, where the light is emitted by the light source and passes through the detection hole accordingly;
  • step names mentioned above are only used to distinguish between steps and facilitate the reference of steps, and do not represent the sequential relationship between steps, including the flow of the drawings.
  • the figure is also just an example of how to implement this method. Steps can be performed in various orders or simultaneously without apparent conflict.
  • this alignment detection method based on optical physical detection technology significantly reduces the cost of cell production and can achieve higher detection efficiency.
  • a mechanical die cutting or laser cutting forming method may be used for the detection hole 110.
  • the detection hole 110 can be processed in a separate process after the pole piece is formed, or it can be integrally formed at the same time during the stamping process of the pole piece. The latter is more suitable because it saves processes and the dimensional accuracy of the formed detection hole is high. preferred.
  • step S200 the battery core alignment is determined based on the size deviation between the actual size of the light spot generated by the light received by the optical detection unit 220 and the theoretical size and the position deviation between the actual position of the light spot and the theoretical position. Eligibility. The combination of dimensional deviations and positional deviations can effectively avoid misjudgments and thereby increase detection efficiency.
  • a plurality of detection holes 110 are provided at at least one of the positive pole piece and the negative pole piece (that is, on the positive pole piece or on the negative pole piece or on both), wherein pole pieces of the same polarity are configured identically. and molding.
  • the alignment qualification of the battery core is determined based on the position deviation of the plurality of detection holes relative to the preset theoretical boundary.
  • the alignment detection method according to the present invention can be executed during the stacking process of the pole pieces, that is, steps S200 and S300 are executed during the stacking process of the pole pieces, so as to make timely adjustments to the stacking process of the pole pieces; or the detection method can be performed during hot pressing.
  • the molding is carried out in a state where the position between each pole piece cannot be changed, so as to eliminate the impact of the hot pressing and transportation process on the alignment of the battery core.
  • the description of the alignment detection method according to the present invention can refer to the above description of the alignment detection device accordingly, which will not be described again.
  • the present invention also provides a cell manufacturing device for a stacked battery, which includes a material preparation unit for preparing pole pieces and separators in preset sizes, a stacking unit for assembling pole pieces and separators in a stacked manner,
  • the hot pressing unit is used to heat press and assemble the stacked electric cores
  • the transport unit is used to transport the pole pieces or electric cores between various processes
  • the detection device described above is used to monitor the alignment of the electric cores.
  • the pole piece processing unit of the detection device is arranged adjacent to the stock preparation unit. It can be integrated in the stock preparation unit (for example, in a configuration in which the detection hole and the pole piece are integrally formed) or it can be arranged in the stock preparation unit.
  • the battery core manufacturing device can have the features and advantages explained above, for which reference can be made to the description of the alignment detection device and the detection method according to the present invention, which will not be described again.
  • the invention relates to a cell manufacturing method for laminated batteries, which can be carried out by means of the cell manufacturing device explained above.
  • the battery core manufacturing method can have the above-mentioned features and advantages, for which reference can be made to the description of the alignment detection device, the detection method and the battery core manufacturing device according to the present invention, which will not be described again.
  • the alignment detection device based on optical physical detection technology significantly reduces the cost of battery core production and can achieve higher detection efficiency.
  • the alignment of the pole pieces of the same polarity can be detected.
  • the alignment of the pole pieces of opposite polarity can be detected.
  • the probability of misjudgment can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种用于叠片电池的电芯(100)对齐度检测装置,其中,电芯(100)包括堆叠地布置的正极极片、负极极片和处于其间的隔膜,其中,检测装置包括极片处理单元、光源(210)、光学检测单元(220)、判断单元(230)以及纠偏单元(240),其中,通过极片处理单元在备料阶段至少给正极极片和负极极片分别设有检测孔(110);光源(210)和光学检测单元(220)关于电芯(100)对置地进行布置,来自光源(210)的光线穿过检测孔(110)并且由光学检测单元(220)接收;判断单元(230)与光学检测单元(220)信号技术地连接并且设置成基于由光学检测单元(220)接收到的光线对电芯(100)进行对齐度合格判断;纠偏单元(240)与判断单元(230)信号技术地连接并且设置成根据对齐度合格判断的结果对电芯(100)进行调整。还提供一种检测方法、一种电芯(100)制造装置、一种制造方法。

Description

对齐度检测装置、检测方法、电芯制造装置和制造方法 技术领域
本发明涉及一种用于叠片电池的电芯对齐度检测装置和检测方法以及电芯制造装置和制造方法。
背景技术
叠片式电池、例如叠片锂离子电池的生产工艺主要包括极片制备、极片堆叠、极片热压,其中,在极片堆叠过程中需要将预设数量的正极极片、负极极片和处于其间的隔膜进行堆叠。若各极片(例如正/负极极片相对于彼此或正极极片相对于负极极片)的相对位置无法满足生产要求,例如正极活性涂层超出负极活性涂层,则会给电池造成安全隐患。
基于此,从现有技术中已知一种包含基于X射线检测技术的极片对齐度检测的叠片电池生产工艺,其中,X射线检测技术需要搭载在提供X射线的设备上,从而可能无法实现在叠片过程中对电芯对齐度的实时检测。另外,随着电极层数增多且集流体变薄,该X射线检测技术的准确度较低并且可能会造成误判。与此相似地,从现有技术中还已知一种采用高精度CT的电芯对齐度检测方法,然而,这种检测方式价格相对较高并且其检测速率无法满足大规模生产的需求。
此外,从现有技术中还已知一种基于图像处理的电芯对齐度检测方法,即在极片堆叠过程中例如借助CCD相机(charge coupled device camera,电荷耦合器件相机)实时采集电芯图像并且通过预先创建的图像处理算法来监测正/负极片的相对位置。然而,这种检测方法是相对复杂的并且对数据处理负荷提出了较高的要求。
发明内容
根据不同的方面,本发明的目的在于提供一种改善的电芯对齐度检测装置、相应的检测方法以及一种改善的电芯制造装置和电芯制造方法。
此外,本发明还旨在解决或者缓解现有技术中存在的其它技术问题。
本发明通过提供一种用于叠片电池的电芯对齐度检测装置来解决上述问题,具体而言,所述电芯包括堆叠地布置的正极极片、负极极片和处于其间的隔膜,其中,所述检测装置包括极片处理单元、光源、光学检测单元、判断单元以及纠偏单元,其中,通过所述极片处理单元在备料阶段至少给所述正极极片和所述负极极片分别设有检测孔;所述光源和所述光学检测单元关于电芯对置地进行布置,来自所述光源的光线穿过所述检测孔并且由所述光学检测单元接收;所述判断单元与所述光学检测单元信号技术地连接并且设置成基于由所述 光学检测单元接收到的光线对电芯进行对齐度合格判断;所述纠偏单元与所述判断单元信号技术地连接并且设置成根据所述对齐度合格判断的结果对所述电芯进行调整。
根据本发明的一方面所提出的检测装置,在所述正极极片和所述负极极片处分别设有一个或多个检测孔,所述判断单元设置成基于通过由光学检测单元接收到的光线所形成的光斑的实际尺寸与理论尺寸的尺寸偏差和所述光斑的实际位置与理论位置的位置偏差对电芯进行对齐度合格判断。
根据本发明的一方面所提出的检测装置,在所述正极极片和/或所述负极极片处设有多个检测孔,所述判断单元设置成基于所述多个检测孔相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。
根据本发明的一方面所提出的检测装置,所述检测孔的尺寸和所述光斑的理论尺寸基于极片规格值进行设定,所述极片规格值用于表示负极极片与正极极片在尺寸方面的偏差值。
根据本发明的一方面所提出的检测装置,所述纠偏单元构造为堆叠调整元件用于响应于所述判断单元检测出电芯对齐度不合格而调整极片位置,或所述纠偏单元构造为移除夹具用于响应于所述判断单元检测出电芯对齐度不合格而将所述电芯移除。
根据本发明的一方面所提出的检测装置,所述检测孔构造为三角形、圆形或矩形。
根据本发明的另一方面,提供了一种可由这样的检测装置执行的检测方法,其包括如下步骤:
S100:在极片备料阶段,至少在正极极片和负极极片处分别成型有一个或多个检测孔;
S200:基于由光学检测单元接收到的光线,判断电芯对齐度是否合格,其中,所述光线由光源发出并且相应地穿过检测孔;以及
S300:响应于判断出所述电芯对齐度不合格,对所述电芯进行调整。
根据本发明的另一方面所提出的检测方法,在步骤S200中,基于通过由光学检测单元接收到的光线所产生的光斑的实际尺寸与理论尺寸之间的尺寸偏差和所述光斑的实际位置与理论位置的位置偏差,判断电芯对齐度是否合格。
根据本发明的另一方面所提出的检测方法,在所述正极极片和/或所述负极极片处设有多个检测孔,在步骤S200中,基于所述多个检测孔相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。
根据本发明的另一方面所提出的检测方法,基于极片规格值来设定所述检测孔的尺寸和所述光斑的理论尺寸,其中,所述极片规格值用于表示负极极片与正极极片在尺寸方面 的偏差值。
根据本发明的另一方面所提出的检测方法,步骤S200和步骤S300在极片堆叠过程中执行并且在步骤S300中响应于检测出所述电芯对齐度不合格而调整极片位置;或步骤S200和步骤S300在热压过程之后执行并且在步骤S300中响应于检测出所述电芯对齐度不合格而将所述电芯移除。
根据本发明的另一方面所提出的检测方法,在步骤S100中,将所述检测孔成型为三角形、圆形或矩形。
根据本发明的再一方面,提供了一种用于叠片电池的电芯制造装置,其包括用于制备极片的备料单元、用于将极片和隔膜进行堆叠的堆叠单元、用于将堆叠好的电芯进行热压的热压单元、用于运输电芯的输送单元以及上面所阐述的电芯对齐度检测装置。
根据本发明的另一方面,提供了一种用于叠片电池的电芯制造方法,其能够由上面所阐述的电芯制造装置来实现。
代替现有技术中的CT式对齐度检测方式或图像处理式对齐度检测方式,该基于光学的物理检测技术的对齐度检测装置显著降低了电芯生产成本并且能够实现较高的检测效率。
附图说明
参考附图,本发明的上述以及其它的特征将变得显而易见,其中,
图1示出了根据本发明的电芯对齐度检测装置的一实施例的简图;
图2示出了根据本发明的电芯对齐度检测方法的主要步骤;
图3示出了借助根据本发明的电芯对齐度检测方法所测定的电芯对齐度合格的示例;
图4示出了借助根据本发明的电芯对齐度检测方法所测定的电芯对齐度不合格的示例。
具体实施方式
容易理解,根据本发明的技术方案,在不变更本发明实质精神下,本领域的一般技术人员可以提出可相互替换的多种结构方式以及实现方式。因此,以下具体实施方式以及附图仅是对本发明的技术方案的示例性说明,而不应当视为本发明的全部或者视为对本发明技术方案的限定或限制。
在本说明书中提到或者可能提到的上、下、左、右、前、后、正面、背面、顶部、底部等方位用语是相对于各附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。此外,术语“第一”、“第二”、“第三”等或类似表述仅用于描述与区分目的,而不能理解为指示或暗示相应的构件的相对重要性。
参考图1,其以框图示意性地示出了根据本发明一方面所提出的对齐度检测装置,其用于对叠片电池(为了方便起见在下文中还被简称为电池)的电芯100进行检测,其中,该电芯100由预设数量的多组正极极片、负极极片和处于其间的隔膜堆叠而成并且能够例如呈矩形。在叠片电池的电芯100的其中一端伸出有正极极耳并且在其另一端伸出有负极极耳。该检测装置整体上包括极片处理单元、光源210、光学检测单元220、判断单元230以及纠偏单元240,其中,该极片处理单元在极片备料阶段用于至少给正/负极极片钻孔以形成检测孔110(参见图3和图4),然而,由于其在流水线生产设备中距离该检测装置较远而未在图1中示出。该检测孔110位于极片的活性涂层区、极耳区域或极耳与活性涂层区的过渡区域中,在此,优选的是,该检测孔位于极耳区域中。该检测孔的位置并不限于上面所提出的方案,其在满足光线可穿过的前提下能够设置在生产技术上所允许的任意位置处。此外,应该说明的是,该检测孔至少穿透正极极片和负极极片并且可选地穿过隔膜(这能够取决于隔膜的材料)。若隔膜为透光材料,则可选地不穿透或不完全穿透隔膜。
在此,光源210用于朝向正在堆叠中的或已完成堆叠的电芯100投射光线,所述光线穿过正/负极片的检测孔110并且由对置于光源210的光学检测单元220接收。在图1中,光源210布置在电芯100的正面,而光学检测单元220布置在电芯100的背面。光源210能够涉及通常的白炽灯、红外线光源、紫外线光源或其他类型的可穿过隔膜或隔膜涂层的射线光源。
光学检测单元220一端与判断单元230信号技术地连接,以用于将关于由其接收到的光线的参数以信号的方式传输给下一级的判断单元230,所述判断单元配置成用于基于所述关于接收到的光线的信号判断电芯对齐度是否合格。该判断单元230以其另一端与纠偏单元240信号技术地连接(例如有线连接或无线连接)并且操控纠偏单元240对电芯进行调整。在此,光学检测单元可构造为光学传感器。
代替现有技术中的CT式对齐度检测方式或图像处理式对齐度检测方式,该基于光学的物理检测技术的对齐度检测装置显著降低了电芯生产成本并且能够实现较高的检测效率。
例如,该对齐度检测装置可在极片堆叠过程中实时地对极片的相对位置进行检测,若其判断单元230测定出对齐度不合格时,则操控纠偏单元240对极片间的相对位置进行调节。在这种情况下,该纠偏单元240可构造为堆叠调整元件,其通过移动各极片来重新定位各极片。
在另一示例中,该对齐度检测装置能够在堆叠完成之后或在极片热压工艺之后对其进行对齐度检测。若判断单元230测定出对齐度不合格,则操控纠偏单元240将该电芯移 除,例如从输送线上移除,在这种情况下,该纠偏单元240可构造为移除夹具、机械臂或其他类型的夹持运动部件。这种方式可避免如下情况的发生,即由于外界影响,在运输过程中堆叠好的而未热压的电芯的极片相对位置会发生变化或在热压过程中堆叠好的电芯的极片发生移位,从而对电池安全性造成一定的影响。当然,该对齐度检测装置也能够用于同时在极片的堆叠过程中或在热压过程之后对电芯进行检测。
在此应该说明的是,“电芯对齐度”这一概念具体地应该理解为电芯的组成部分间的对齐度,即其可理解为堆叠的正极极片相对于彼此的对齐度、正极极片相对于相邻的负极极片的对齐度或其相对于隔膜的对齐度。在下文中,“电芯对齐度”也可以被称为极片对齐度。另外应该说明的是,上述检测孔的尺寸能够根据极片的集流能力灵活地进行设计,即在满足集流能力的前提下可根据需要或生产工艺上的要求进行设计。
下面对该对齐度检测装置的具体工作方式进行阐述。可选地,该判断单元230基于由光学检测单元220所接收到的光线所形成的光斑的相关参数来进行对齐度合格判断。具体地,该判断单元230计算所形成的光斑的实际尺寸与预设的理论尺寸之间的尺寸偏差以及所形成的光斑的实际位置与预设的理论位置之间的位置偏差。若该尺寸偏差和位置偏差处于预设阈值内,则判定该电芯对齐度合格,否则判定该电芯对齐度不合格并且操控纠偏单元240对该电芯100进行调整或将其移除。在此,光斑的理论尺寸能够为来自光源210的光线在无遮挡的情况下(也就是说,在各极片的检测孔110完全对齐的情况下)穿过检测孔110之后在光学检测单元220处所形成的光斑的尺寸,与此相应地,所述光斑的理论位置为在这种情况下在光学检测单元220处所形成的光斑的理论位置,或该理论位置还能够涉及到光斑中心点的位置。若光学检测单元220所接收的光斑的尺寸较小,则判定该电芯对齐度不合格。若该光斑的实际位置偏离较大,则判定该电芯对齐度不合格。在该检测过程中,光学检测单元220能够将关于光斑的参数以电信号的方式传输给下一级的判断单元230。
在此,应该说明的是,除了上述光斑参数之外,由判断单元230所执行的对齐度合格判断过程还能够基于其他参数,例如穿过检测孔110的光线的亮度或穿过该检测孔110的射线强度,对此不再赘述。在极端的情况下,若光学检测单元220没有检测到穿过该检测孔110的光线,那么判断单元230直接判定该电芯对齐度不合格。
在此可选地,该检测孔110的尺寸、光斑的理论尺寸能够取决于极片规格值进行选择,其中,该极片规格值用于表示负极极片与正极极片在尺寸方面的偏差值。对于叠片过程来说,负极极片相对于正极极片在尺寸方面应该冗余地进行设计,以便在堆叠好的状态下负极极片包覆住正极极片。该检测孔110的直径至少等于该极片规格值,优选等于该规格值。 对于作为动力电池的叠片电池来说,圆形的检测孔的直径能够为0.2-10mm,优选地为0.5-5mm。例如,在极片规格值为0.5mm的情况下,正/负极极片处的检测孔可具有大约为1mm的孔径,若穿过检测孔110所形成的各光斑的尺寸不小于检测孔110的孔径与该极片规格值之差(即不小于0.5mm),则判定该极片对齐度合格。应该理解的是,在完全对齐的情况下,该光斑的尺寸(即理论尺寸)应为1mm。
在正/负极极片上可设有多个检测孔110,例如3和图4中所示出的那样分别具有两个检测孔110。例如在设置有两个间隔为10mm的检测孔110的情况下,若穿过这两个检测孔110的光斑之间的间距不小于上述间隔与极片规格值之差,则判定该极片对齐度合格。在具有多个检测孔的设计方案中,能够避免将极片相对于同极性的其它极片发生一定的转动,而检测孔保持彼此对齐的情况误判为极片对齐度合格,由此能够提高检测效率。这在检测孔位于从电芯本体处伸出的极耳区域中的布置方案中尤其是有利的。
可选地,为了避免上面所提及的这种类型的误判,还能够将检测孔110设计为除了三角形、圆形、矩形等规则图形之外的异形形状,该异形形状是不对称的。
对于相同极性的极片,通过测定穿过其检测孔110的光斑的尺寸参数以及该光斑的位置参数或穿过相邻检测孔110的光斑之间的间距,所述判断单元230能够较准确地测定该极片对齐度是否合格。进一步地,所述判断单元230还配置成用于测定相反极性的极片之间的对齐度(也就是说,正极极片相对于负极极片的对齐度),这通过如下方式来实现,即在正极极片和/或负极极片处设有多个检测孔110并且判断单元230设置成基于多个检测孔110相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。这种情况在图3和图4(为了便于理解以真实的电芯为例进行说明)中示意性地示出,其中,在正极极耳和负极极耳处分别设置有两个检测孔110,其尺寸如上面阐述地那样基于极片规格值进行设定。若光线穿过这四个检测孔110分别形成的光斑的中心点处于该以虚线表示的矩形理论界限的四个角时,则判断单元230判定该电芯对齐度合格。若这四个光斑的中心点中的至少一个与该理论界线的角偏移超出预设范围,则判断单元230判定该电芯对齐度不合格,其中,该预设范围能够取决于极片规格值。例如,若这四个光斑的中心点中的至少一个与该理论界线的角偏移超出0.5mm,则判断单元230判定该电芯对齐度不合格并且信号技术地操纵纠偏单元对该电芯进行调整。
此外,本发明还涉及一种可由上述电芯对齐度检测装置来执行的检测方法,其如图2所示出的那样主要包括如下步骤:
S100:在极片备料阶段,至少在正极极片和负极极片处分别成型有一个或多个检测孔;
S200:基于由光学检测单元接收到的光线,判断电芯对齐度是否合格,其中,所述光线由光源发出并且相应地穿过检测孔;以及
S300:响应于判断出所述电芯对齐度不合格,对所述电芯进行调整。
需要说明的是,上文提到的(以及下面还要提到的)步骤名称仅仅用于步骤之间的区分和便于步骤的引用,并不代表步骤之间的顺序关系,包括附图的流程图也仅仅是执行本方法的示例。在没有明显冲突的情况下,步骤之间可以用各种顺序或者同时执行。
代替现有技术中的CT式对齐度检测方式或图像处理式对齐度检测方式,该基于光学的物理检测技术的对齐度检测方法显著降低了电芯生产成本并且能够实现较高的检测效率。
在步骤S100中,对于检测孔110,可采用机械模切的成型方式或激光切割的成型方式。该检测孔110可在极片成型后采用单独工序加工而成,或在极片冲压过程中同时一体化地成型,其中,后者由于节省工序并且所成型的检测孔的尺寸精度较高是较优选的。
在步骤S200中,基于通过由光学检测单元220接收到的光线所产生的光斑的实际尺寸与理论尺寸之间的尺寸偏差和所述光斑的实际位置与理论位置的位置偏差,判断电芯对齐度是否合格。通过尺寸偏差与位置偏差的组合能够有效地避免误判并且由此提高检测效率。
正极极片和负极极片中的至少一个处(即在正极极片上或在负极极片上或在这两者上)设有多个检测孔110,其中,相同极性的极片相同地进行构造和成型。相应地,在步骤S200中,基于所述多个检测孔相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。在此,通过给极片配属有多个检测孔和测定相反极性的极片的检测孔的位置信息,能够有效地识别出正极极片相对于负极极片是否对齐,从而实现对电芯对齐度的全面检测。
此外,根据本发明的对齐度检测方法能够在极片堆叠过程中执行,即步骤S200和S300在极片堆叠过程中执行,以便对极片的堆叠过程及时进行调整;或该检测方法在热压成型并且各极片之间的位置不可变化的状态下执行,以便消除热压和输送过程对电芯对齐度的影响。为了简单明了起见,关于根据本发明的对齐度检测方法的描述能够相应地参考上面关于对齐度检测装置的描述,对此不再赘述。
此外,本发明还提供一种用于叠片电池的电芯制造装置,其包括有备料单元用于以预设尺寸制备极片和隔膜、堆叠单元用于将极片和隔膜层叠地进行组装、热压单元用于将堆叠好的电芯进行热压组装、输送单元用于在各个工序间运输极片或电芯以及上面所阐述的用于对电芯对齐度进行监测的检测装置。在此,该检测装置的极片处理单元邻近备料单元地进行布置,其能够集成在所述备料单元中(例如在检测孔与极片一体成型地构造方案中)或其布置在所述备料单元之后(例如在检测孔以单独工序来生产的方案中)。该检测装置的除了 该极片处理单元之外的其它部件能够邻近堆叠单元进行布置或布置在热压单元之后。该堆叠单元能够以机械臂或夹具的类型进行构造;该输送单元能够例如构造为传送带。该电芯制造装置能够具有上面所阐释的特征和优点,关于其能够相应地参考关于根据本发明的对齐度检测装置和检测方法的描述,对此不再赘述。
最后,本发明涉及一种用于叠片电池的电芯制造方法,其能够借助于上面所阐述的电芯制造装置来执行。该电芯制造方法能够具有上述特征和优点,关于其能够相应地参考关于根据本发明的对齐度检测装置、检测方法和电芯制造装置的描述,对此不再赘述。
综上所述,代替现有技术中的CT式对齐度检测方式或图像处理式对齐度检测方式,该基于光学的物理检测技术的对齐度检测装置显著降低了电芯生产成本并且能够实现较高的检测效率。在本发明的一实施例中,通过评估穿过相同极性的极片的检测孔的光线的相关参数,能够实现对相同极性的极片对齐度的检测。在本发明的另一实施例中,通过评估穿过相反极性的极片的检测孔的光线的相关参数,能够实现对相反极性的极片对齐度的检测。在本发明的另一实施例中,通过对同一极片设置多个检测孔,能够减小误判概率。
应当理解的是,所有以上的优选实施例都是示例性而非限制性的,本领域技术人员在本发明的构思下对以上描述的具体实施例做出的各种改型或变形都应在本发明的法律保护范围内。

Claims (14)

  1. 一种用于叠片电池的电芯对齐度检测装置,其特征在于,所述电芯包括堆叠地布置的正极极片、负极极片和处于其间的隔膜,其中,所述检测装置包括极片处理单元、光源、光学检测单元、判断单元以及纠偏单元,其中,通过所述极片处理单元在备料阶段至少给所述正极极片和所述负极极片分别设有检测孔;所述光源和所述光学检测单元关于电芯对置地进行布置,来自所述光源的光线穿过所述检测孔并且由所述光学检测单元接收;所述判断单元与所述光学检测单元信号技术地连接并且设置成基于由所述光学检测单元接收到的光线对电芯进行对齐度合格判断;所述纠偏单元与所述判断单元信号技术地连接并且设置成根据所述对齐度合格判断的结果对所述电芯进行调整。
  2. 根据权利要求1所述的检测装置,其特征在于,在所述正极和所述负极处分别设有一个或多个检测孔,所述判断单元设置成基于通过由光学检测单元接收到的光线所形成的光斑的实际尺寸与理论尺寸的尺寸偏差和所述光斑的实际位置与理论位置的位置偏差对电芯进行对齐度合格判断。
  3. 根据权利要求2所述的检测装置,其特征在于,在所述正极极片和/或所述负极极片处设有多个检测孔,所述判断单元设置成基于所述多个检测孔相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。
  4. 根据权利要求2所述的检测装置,其特征在于,所述检测孔的尺寸和所述光斑的理论尺寸基于极片规格值进行设定,所述极片规格值用于表示负极极片与正极极片在尺寸方面的偏差值。
  5. 根据权利要求1至4中任一项所述的检测装置,其特征在于,所述纠偏单元构造为堆叠调整元件用于响应于所述判断单元检测出电芯对齐度不合格而调整极片位置,或所述纠偏单元构造为移除夹具用于响应于所述判断单元检测出电芯对齐度不合格而将所述电芯移除。
  6. 根据权利要求1至4中任一项所述的检测装置,其特征在于,所述检测孔构造为三角形、圆形或矩形。
  7. 一种用于叠片电池的电芯对齐度检测方法,其特征在于,所述检测方法可由根据权利要求1至6中任一项所述的检测装置来执行,所述检测方法包括如下步骤:
    S100:在极片备料阶段,至少在正极极片和负极极片处分别成型有一个或多个检测孔;
    S200:基于由光学检测单元接收到的光线,判断电芯对齐度是否合格,其中,所述光线由光源发出并且相应地穿过检测孔;以及
    S300:响应于判断出所述电芯对齐度不合格,对所述电芯进行调整。
  8. 根据权利要求7所述的检测方法,其特征在于,在步骤S200中,基于通过由光学检测单 元接收到的光线所产生的光斑的实际尺寸与理论尺寸之间的尺寸偏差和所述光斑的实际位置与理论位置的位置偏差,判断电芯对齐度是否合格。
  9. 根据权利要求8所述的检测方法,其特征在于,在所述正极极片和/或所述负极极片处设有多个检测孔,在步骤S200中,基于所述多个检测孔相对于预设的理论界线的位置偏差对电芯进行对齐度合格判断。
  10. 根据权利要求8所述的检测方法,其特征在于,基于极片规格值来设定所述检测孔的尺寸和所述光斑的理论尺寸,其中,所述极片规格值用于表示负极极片与正极极片在尺寸方面的偏差值。
  11. 根据权利要求7至10中任一项所述的检测方法,其特征在于,步骤S200和步骤S300在极片堆叠过程中执行并且在步骤S300中响应于检测出所述电芯对齐度不合格而调整极片位置;或步骤S200和步骤S300在热压过程之后执行并且在步骤S300中响应于检测出所述电芯对齐度不合格而将所述电芯移除。
  12. 根据权利要求7至10中任一项所述的检测方法,其特征在于,在步骤S100中,将所述检测孔成型为三角形、圆形或矩形。
  13. 一种用于叠片电池的电芯制造装置,其特征在于,所述电芯制造装置包括用于制备极片的备料单元、用于将极片和隔膜进行堆叠的堆叠单元、用于将堆叠好的电芯进行热压的热压单元、用于运输电芯的输送单元以及根据权利要求1至6中任一项所述的电芯对齐度检测装置。
  14. 一种用于叠片电池的电芯制造方法,其特征在于,所述电芯制造方法可由根据权利要求13所述的电芯制造装置来执行。
PCT/CN2023/109082 2022-08-03 2023-07-25 对齐度检测装置、检测方法、电芯制造装置和制造方法 WO2024027530A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210927485.3 2022-08-03
CN202210927485.3A CN115342725A (zh) 2022-08-03 2022-08-03 对齐度检测装置、检测方法、电芯制造装置和制造方法

Publications (1)

Publication Number Publication Date
WO2024027530A1 true WO2024027530A1 (zh) 2024-02-08

Family

ID=83949715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109082 WO2024027530A1 (zh) 2022-08-03 2023-07-25 对齐度检测装置、检测方法、电芯制造装置和制造方法

Country Status (2)

Country Link
CN (1) CN115342725A (zh)
WO (1) WO2024027530A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115342725A (zh) * 2022-08-03 2022-11-15 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法
CN116295220B (zh) * 2023-05-15 2023-08-15 上海君屹工业自动化股份有限公司 一种lctp模组堆叠电芯柔性对中设备
CN116499411B (zh) * 2023-06-28 2023-09-05 苏州宇量电池有限公司 一种极片对齐度的检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041852A (ko) * 2017-10-13 2019-04-23 주식회사 엘지화학 가이드 부재, 상기 가이드 부재를 사용하여 스택형 전지를 제조하는 방법 및 이로부터 제조된 스택형 전지
CN209588954U (zh) * 2019-04-11 2019-11-05 桑顿新能源科技有限公司 一种锂离子电池微孔极片叠片的检测装置
KR20200073381A (ko) * 2018-12-14 2020-06-24 주식회사 엘지화학 전극 조립체 정렬 불량 판단 장치 및 방법
CN212432027U (zh) * 2020-07-31 2021-01-29 江西迪比科股份有限公司 一种可检视电芯整齐度的刀模切板结构
WO2021036056A1 (zh) * 2019-08-30 2021-03-04 苏州康代智能科技股份有限公司 一种基于上下钻孔电路板的孔位检测方法及检测设备
CN115342725A (zh) * 2022-08-03 2022-11-15 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627022B (zh) * 2020-07-20 2021-03-02 宁波格劳博智能工业有限公司 一种叠片裸电芯离线AC Overhang测量机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041852A (ko) * 2017-10-13 2019-04-23 주식회사 엘지화학 가이드 부재, 상기 가이드 부재를 사용하여 스택형 전지를 제조하는 방법 및 이로부터 제조된 스택형 전지
KR20200073381A (ko) * 2018-12-14 2020-06-24 주식회사 엘지화학 전극 조립체 정렬 불량 판단 장치 및 방법
CN209588954U (zh) * 2019-04-11 2019-11-05 桑顿新能源科技有限公司 一种锂离子电池微孔极片叠片的检测装置
WO2021036056A1 (zh) * 2019-08-30 2021-03-04 苏州康代智能科技股份有限公司 一种基于上下钻孔电路板的孔位检测方法及检测设备
CN212432027U (zh) * 2020-07-31 2021-01-29 江西迪比科股份有限公司 一种可检视电芯整齐度的刀模切板结构
CN115342725A (zh) * 2022-08-03 2022-11-15 蔚来汽车科技(安徽)有限公司 对齐度检测装置、检测方法、电芯制造装置和制造方法

Also Published As

Publication number Publication date
CN115342725A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2024027530A1 (zh) 对齐度检测装置、检测方法、电芯制造装置和制造方法
EP2696431B1 (en) Electrode stacking device and electrode stacking method
EP3001493B1 (en) Electrode assembly production method
KR101992467B1 (ko) 극판 검사 기능을 포함하는 2차전지 제조장치의 극판이송장치
US20240196112A1 (en) Battery cell appearance defect detection apparatus and detection device
WO2023217040A1 (zh) 一种纠偏装置和卷绕机
CN114096799B (zh) 用于测量单元电池的厚度的设备和方法
KR102287768B1 (ko) 전극 조립체 제조방법 및 이차전지 제조방법
US20240154149A1 (en) Electrode plate stacking method and apparatus, and stacking machine
CN115824062A (zh) 尺寸检测装置及检测方法、叠片设备
KR20220011029A (ko) 단위 셀 제조 장치 및 방법
JP2015176699A (ja) シート状物の積層装置
CN115336059A (zh) 包括电极对准单元的电极制造设备和包括该电极制造设备的电极组件制造设备
KR102036544B1 (ko) 비전 검사부를 포함하고 있는 전극 탭 용접 장치
TWI529993B (zh) 電芯的檢測方法
US20230184690A1 (en) System for Detecting Defect of Electrode Tab and Method for Detecting Defect of Electrode Tab Using the Same
JP2020064826A (ja) 電池、積層電池、及び電池の製造方法
KR102259233B1 (ko) 다기종 2차전지 적층장치 및 그 제어방법
EP4287347A1 (en) Apparatus and method for inspecting electrode cell
EP4398409A1 (en) Lead supply system and control method therefor
KR20240100652A (ko) 이차전지용 전극조립체의 제조방법
CN117015896A (zh) 用于检查电极单体的装置和方法
KR102084087B1 (ko) 열 흡수율 센싱부재를 포함하는 용접 장치 및 이를 이용한 전지셀의 적층 적합성 검증 방법
CA3218672A1 (en) Method for testing at least one battery cell stack with regard to the position of battery cell layers
KR20230059584A (ko) 전극 조립체의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23849238

Country of ref document: EP

Kind code of ref document: A1