WO2019214287A1 - 检测装置及其检测方法、检测设备 - Google Patents

检测装置及其检测方法、检测设备 Download PDF

Info

Publication number
WO2019214287A1
WO2019214287A1 PCT/CN2019/071647 CN2019071647W WO2019214287A1 WO 2019214287 A1 WO2019214287 A1 WO 2019214287A1 CN 2019071647 W CN2019071647 W CN 2019071647W WO 2019214287 A1 WO2019214287 A1 WO 2019214287A1
Authority
WO
WIPO (PCT)
Prior art keywords
detected
detecting
light
resistance value
photoresistor
Prior art date
Application number
PCT/CN2019/071647
Other languages
English (en)
French (fr)
Inventor
李剑
王念仁
刘洋
宋雪欢
吴涛
王剑
张琪
徐奇
Original Assignee
京东方科技集团股份有限公司
福州京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 福州京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/642,344 priority Critical patent/US11635646B2/en
Publication of WO2019214287A1 publication Critical patent/WO2019214287A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N2021/9513Liquid crystal panels

Definitions

  • At least one embodiment of the present disclosure is directed to a detecting device, a detecting method thereof, and a detecting device.
  • the current apparatus and detection method for detecting the yield of the liquid crystal display panel are inefficient, and it is difficult to detect all of the produced liquid crystal display panels, so that the yield of the manufactured liquid crystal display panel cannot be guaranteed.
  • At least one embodiment of the present disclosure provides a detecting apparatus including a stage, a light detecting unit, and a first light source, the stage including a bearing surface for carrying a member to be detected, and the light detecting unit is located at the detecting part On one side, the first light source is located on a side of the to-be-detected component remote from the light detecting unit, and the light emitted by the first light source is at least partially directed to the light detecting unit.
  • the light detecting unit includes a light sensor array, the light sensor array includes a plurality of light sensors, wherein the to-be-detected member includes the first light source a bright first illumination area, wherein the orthographic projection of the photosensor array on the surface of the object to be inspected at least partially overlaps the first illumination area.
  • the orthographic projection of the photosensor array on the face on which the object to be detected is located coincides with the first illuminated region.
  • the orthographic projection of the photosensor array on the face of the object to be inspected is located within the first illuminated area.
  • the light detecting unit further includes a signal detecting unit that is connected to the photosensor array and configured to detect an electrical signal of the photosensor. .
  • the detecting apparatus provided by at least one embodiment of the present disclosure further includes a control module, and the control module is connected to the light detecting unit, and configured to determine whether the to-be-detected component is defective according to the detection result of the signal detecting unit. region.
  • the stage includes a first driving unit that is signally connected to the control module, and the first driving unit is configured to drive the to-be-detected member to be parallel to The first direction of the bearing surface moves.
  • a plurality of the photosensors are arranged in a row in a second direction; or a plurality of the photosensor arrays are arranged as a plurality of rows in the second direction, a plurality of columns in the first direction, wherein the first direction and the second direction are parallel to the bearing surface, and the first direction and the second direction intersect .
  • the first direction and the second direction are perpendicular, and in the second direction, the size of the photosensor array is greater than or equal to the waiting The size of the test piece.
  • the detecting apparatus further includes an image acquiring unit and a second light source, the image acquiring unit is located at one side of the object to be detected, and the second light source is located at a distance of the object to be detected One side of the image acquisition unit, the image acquisition unit is connected to the control module, and the light emitted by the second light source is at least partially directed to the image acquisition unit.
  • the detecting apparatus provided by at least one embodiment of the present disclosure further includes a second driving unit configured to fix the image acquiring unit and signally connect with the control module; wherein the second driving unit is configured to be in the control The image acquisition unit is driven to align with the defective area under the control of the module.
  • the to-be-detected component is a panel to be inspected, and the to-be-detected component is disposed on a bearing surface of the carrier.
  • At least one embodiment of the present disclosure provides a detecting apparatus comprising the detecting apparatus described in any of the foregoing embodiments.
  • At least one embodiment of the present disclosure provides a detecting method of a detecting device, wherein the detecting device includes a stage, a light detecting unit, and a first light source, the stage includes a bearing surface for carrying a member to be detected, a light detecting unit is located at one side of the object to be inspected, the first light source is located on a side opposite to the light detecting unit of the stage, and the light emitted by the first light source is at least partially directed toward the The light detecting unit; and the detecting method includes detecting the object to be detected by light of the first light source directed to the light detecting unit.
  • the detecting method provided by at least one embodiment of the present disclosure further includes: placing the to-be-detected component on the bearing surface; and the light emitted by the first light source is directed to the to-be-detected component.
  • the detecting, by the first light source, the light detected by the first light source to the light detecting unit includes: using the first light source to pass the waiting The light of the detecting member that is incident on the light detecting unit detects the object to be detected.
  • the detecting, by the first light source, the light to be detected by the detecting element to the light detecting unit includes: using the light The detecting unit detects the intensity of the light emitted by the object to be detected; and determines whether there is a defective area in the object to be detected according to the detection result.
  • the detecting method provided by at least one embodiment of the present disclosure includes moving the to-be-detected component, and repeating the steps of: the light emitted by the first light source is directed to the object to be detected, and the light detecting unit is used to detect the object to be detected.
  • the intensity of the light emitted by the piece is detected, and whether there is a defective area in the object to be detected is determined according to the detection result until the detection of the object to be detected is completed.
  • the light detecting unit includes a photosensor array including a plurality of photo sensors, the photo sensor is a photoresistor, and the utilizing the light Detecting, by the detecting unit, the intensity of the light emitted by the to-be-detected component includes: detecting a resistance value of each of the plurality of the photoresistors; determining, according to the detection result, whether the defective component exists in the to-be-detected component comprises: The detection result determines whether the resistance value of each of the photoresistors is an abnormal resistance value to determine whether the defective region exists in the to-be-detected member.
  • the determining, according to the detection result, whether the resistance value of each of the photoresistors is an abnormal resistance value to determine whether the defective region exists in the to-be-detected component includes: providing a first threshold range; determining that the photoresistor has an abnormal resistance value when the resistance value is greater than the first threshold range or less than the first threshold range, and determining that the abnormality is present in the to-be-detected component The area corresponding to the photoresistor of the resistance value is the defective area.
  • the determining, according to the detection result, whether the resistance value of each of the photoresistors is an abnormal resistance value to determine whether the defective region exists in the to-be-detected component includes: when the resistance values of all the photoresistors in the first region of the photosensor array are greater than or less than the resistance values of the photoresistors in other regions, and the number of photoresistors in the first region is less than the photoresistor When the total amount is 1/2, it is determined that the photoresistor of the first region has an abnormal resistance value, and it is determined that the region of the to-be-detected member corresponding to the first region is the defective region.
  • the difference between the resistance value of the photoresistor of the first region and the resistance value of the other photoresistor is not less than 3.2 of the resistance value of the other photoresistor. %.
  • the to-be-detected member includes a display area and a non-display area
  • the detecting the resistance value of the photoresistor includes: the corresponding to the display area The resistance value of the photoresistor is detected, and the detection of the resistance value of the photoresistor corresponding to the non-display area is shielded.
  • the detecting method provided by at least one embodiment of the present disclosure further includes obtaining a size and a position of the defective area in the object to be detected.
  • the to-be-detected member moves in a first direction parallel to the bearing surface, and the photoresistor is arranged in a second direction parallel to the bearing surface. And the first direction and the second direction intersect, the obtaining the size and the location of the defective area present in the to-be-detected component comprises: determining the photo-resistor according to the abnormal resistance value a first coordinate of the defective region corresponding to the photoresistor having the abnormal resistance value in the second direction; a moving speed of the to-be-detected member and the detected component to be detected Determining a difference between a time of the corresponding bad area and a start detection time, determining a second coordinate of the corresponding bad area in the first direction; determining, according to the first coordinate and the second coordinate Determining a position of the corresponding defective region, determining a size of the corresponding defective region according to a projected area of the photoresistor having the abnormal resistance value on the
  • the detecting method provided by at least one embodiment of the present disclosure further includes analyzing a resistance value of the photoresistor having the abnormal resistance value and a size of the defective region, and determining a type of the defective member to be detected.
  • the to-be-detected member includes a liquid crystal layer
  • the defective type includes doped solid foreign matter in the liquid crystal layer, and bubbles in the liquid crystal layer.
  • the detecting device further includes an image acquiring unit and a second light source respectively disposed on two sides of the object to be detected, and the light emitted by the second light source At least partially directed to the image acquisition unit, the detection method further includes: the light emitted by the second light source is directed to the object to be detected; moving the image acquisition unit to a position opposite to the defective area, utilizing The image acquisition unit acquires an image of the defective area.
  • FIG. 1 is a schematic structural diagram of a detecting apparatus according to an embodiment of the present disclosure
  • Figure 2 is a schematic view showing a partial structure of the detecting device shown in Figure 1;
  • Figure 3 is a plan view showing a partial structure of the detecting device shown in Figure 1;
  • FIG. 4 is a process diagram of a method for detecting a detecting device according to an embodiment of the present disclosure.
  • the quality of the display panel can be detected by manual visual inspection.
  • the detection method requires professionals to operate with professional equipment, and requires professional judges to have good judgment, which not only causes an increase in labor costs, but also inevitably leads to missed inspections, and long-term operation may cause damage to personnel's eyes and the like.
  • the efficiency of manual detection is low, and only sampling detection is possible. It is difficult to determine whether each display panel produced is defective, which makes it difficult to improve the yield of the factory display panel.
  • the display panel has many types of defects. Kinds of people need to judge according to specific situations, and the information between the inspectors is difficult to share quickly, and the analysis of bad types is inefficient.
  • At least one embodiment of the present disclosure provides a detecting device, a detecting method thereof, and a detecting device.
  • the detecting device comprises a loading platform, a light detecting unit and a first light source
  • the loading platform comprises a bearing surface for carrying the component to be detected
  • the light detecting unit is located at one side of the component to be detected
  • the first light source is located at the light detecting unit of the loading platform
  • the light emitted by the first source is at least partially directed toward the light detecting unit.
  • the light emitted by the first light source to the object to be detected and transmitted through the object to be detected is received by the light detecting unit, so that the light detecting unit can detect the distribution of the light transmittance of the object to be detected.
  • each produced product for example, a display panel
  • the to-be-detected component is a panel to be inspected, and the panel to be inspected is disposed on the bearing surface of the carrier during the detecting process.
  • the first light source is located on the side of the panel to be detected that faces away from the light detecting unit.
  • the type of panel to be inspected is not limited.
  • the panel to be detected may be a display panel such as a liquid crystal display panel, an OLED display panel, an electronic paper display panel, or the like.
  • the panel to be inspected may also be a transparent or translucent member such as a touch panel, a package cover, or a carrier substrate.
  • the transparent, translucent representation of the ability of the member to transmit light to the first source, the light emitted by the first source is not limited to visible light.
  • the detecting device the detecting method and the detecting device according to at least one embodiment of the present disclosure will be described in detail with reference to the accompanying drawings, taking the liquid crystal display panel as an example.
  • FIG. 1 is a schematic structural diagram of a detecting apparatus according to an embodiment of the present disclosure.
  • the detecting device includes a stage 100, a light detecting unit 200, and a first light source 310.
  • the loading platform 100 includes a bearing surface 110 for carrying the panel 10 to be inspected.
  • the light detecting unit 200 is located at one side of the panel 10 to be detected.
  • the first light source 310 is located on a side of the panel 10 to be detected that is remote from the light detecting unit 200. The light emitted by the light source 310 is at least partially directed toward the light detecting unit 200.
  • the light detecting unit 200 can detect the light transmittance of the area, and can determine whether the light transmittance of the area is abnormal, and accordingly Determine if there is any defect in the area.
  • the specific positions of the light detecting unit and the first light source are not limited as long as the light detecting unit and the first light source are respectively located on both sides of the panel to be detected.
  • the light detecting unit 200 is located on a side of the panel 10 to be detected that is away from the stage 100
  • the first light source 310 is located on a surface of the panel 10 to be detected facing the stage 100 . side.
  • the first light source 310 can be disposed in the stage 100.
  • the light detecting unit may be located on a side of the panel to be inspected facing the stage
  • the first light source may be located on a side of the panel to be detected that is away from the stage.
  • a spatial Cartesian coordinate system is established with reference to the bearing surface of the stage to provide a directional indication of the position of each component in the detection device.
  • the X-axis and the Y-axis of the spatial Cartesian coordinate system are parallel to the bearing surface 110, and the Z-axis is perpendicular to the bearing surface 110.
  • the surface on which the panel 10 to be inspected is located and the bearing surface 110 of the stage 100 are parallel to each other.
  • "corresponding" may mean that the two portions coincide or partially overlap in the Z-axis direction.
  • Fig. 2 is a schematic view showing a partial configuration of the detecting device shown in Fig. 1.
  • the light detecting unit includes a photosensor array.
  • the light sensor array includes a plurality of light sensors
  • the panel to be detected includes a first illuminated area illuminated by the first light source
  • the orthographic projection of the light sensor array on the surface of the panel to be detected at least partially overlaps the first illuminated area .
  • light detecting unit 200 includes a light sensor array that includes a plurality of light sensors 210.
  • Each of the photosensors 210 can detect the light transmittance of the corresponding portion of the panel 10 to be detected, and the plurality of photosensors 210 can simultaneously detect a plurality of regions of the panel 10 to be detected, thereby improving the detection efficiency.
  • the area of the panel to be detected 10 illuminated by the light emitted by the first light source 310 is the first illuminated area 11, and the orthographic projection of the light sensor array (the light sensor 210) on the surface of the panel 10 to be detected and the first illuminated area 11 At least partially overlapping, such that the photosensor array (light sensor 210) can receive the light emitted by the first light source 310 such that the light transmittance of the panel 10 to be detected can be detected.
  • the photosensor can be a photoresistor.
  • the resistance value of the photoresistor varies with the intensity of the light to be irradiated, so the resistance value of the photoresistor can reflect the light transmittance of the panel to be inspected.
  • the resistance value of the photoresistor decreases as the light intensity increases, and increases as the light intensity decreases.
  • the light transmittance of the defective area may increase or decrease as compared with the normal area of the panel to be detected, and the intensity of light transmitted through the bad area may be greater or less than a normal value, and accordingly, the light sensitive corresponding to the defective area
  • the resistance value of the resistor also has an abnormality (greater than or less than the normal value).
  • the material of the photoresistor is not limited as long as the resistivity of the material (resistance of the photoresistor) may vary with changes in illumination intensity.
  • the material of the photoresistor may include cadmium sulfide, selenium, aluminum sulfide, lead sulfide, barium sulfide or the like.
  • the orthographic projection of the photosensor array on the face of the panel to be detected coincides with the first illuminated region; or the orthographic projection of the photosensor array on the face of the panel to be detected Located within the first illuminated area.
  • the orthographic projection of the photosensor array (light sensor 210) on the panel 10 to be detected is located within the first illuminated area 11, such that the light sensor All parts of the 210 can receive the light emitted by the first light source 310, which can improve the detection accuracy of the light sensor 210, thereby improving the detection effect of the panel 10 to be detected.
  • the light detecting unit further includes a signal detecting unit that is connected to the photosensor array signal and configured to detect an electrical signal of the photosensor.
  • the light detecting unit 200 includes a signal detecting unit 220 that is signally coupled to the photosensor array (light sensor 210).
  • the signal detecting unit 220 can convert the resistance value of the photoresistor for reflecting the light transmittance of the panel 10 to be detected into a corresponding electrical signal. In this way, by analyzing the electrical signal, it can be determined whether there is a defect in the panel 10 to be detected.
  • the detecting apparatus further includes a control module, and the control module is connected to the photo detecting unit, and is configured to determine whether the panel to be detected has a defective area according to the detection result of the signal detecting unit.
  • the detecting device includes a signal connection control module 400 with the light detecting unit 200.
  • the control module 400 may analyze the electrical signal sent by the signal detecting unit 220 that reflects the light transmittance of the panel 10 to be detected to determine whether there is a defect in the panel 10 to be detected; and the control module 400 determines the analysis result according to the electrical signal.
  • Information such as the position, size, and the like of the defective area in the panel 10 to be detected may also be controlled in accordance with the analysis result for the operation of other devices (for example, the image acquisition unit in the following embodiment).
  • the type of the control module is not limited as long as the control module can receive signals, analyze data, and can send instructions.
  • the control module may include a memory and a processor, the memory storing instructions for operating in accordance with an instruction stored in the memory to perform determination of whether the panel to be detected has a defective area or the like according to a detection result of the signal detecting unit.
  • the control module can include hardware circuitry as well as programmable hardware devices and the like.
  • the hardware circuitry may include conventional Very Large Scale Integration (VLSI) circuits or gate arrays and existing semiconductors such as logic chips, transistors, or other discrete components; programmable hardware devices may include field programmable gate arrays, programmable array logic , programmable logic devices, etc.
  • VLSI Very Large Scale Integration
  • programmable hardware devices may include field programmable gate arrays, programmable array logic , programmable logic devices, etc.
  • Fig. 3 is a plan view showing a partial structure of the detecting device shown in Fig. 1.
  • the stage includes a first driving unit that is signally coupled to the control module, and the first driving unit is configured to drive the panel to be detected to move in a first direction parallel to the carrying surface.
  • the stage 100 includes a first driving unit 510 that drives the panel 10 to be detected along a first direction parallel to the carrying surface 110 (the direction of the arrow indicated by V) )mobile.
  • the first direction can be parallel to the X axis.
  • the technical solution in at least one embodiment of the present disclosure will be described by taking the first direction as the negative X-axis direction as an example.
  • the first driving unit may include a clamping device to fix the panel to be inspected, thereby driving the panel to be detected to move.
  • the clamping device may be a vacuum adsorption device, and the vacuum adsorption device may be disposed on both sides of the panel to be inspected to fix and drive the panel to be inspected to move in the first direction.
  • a vacuum adsorption hole may be disposed in the clamping device, and the size (eg, diameter, width, length, etc.) of the vacuum adsorption hole may be 1 to 3 mm, for example, further 1.5 mm, 2 mm, 2.5 mm, etc.; the vacuum adsorption pressure is less than atmospheric pressure,
  • the pressure of vacuum adsorption may be -100 KPa to -50 KPa with respect to atmospheric pressure, for example, further -90 KPa, -85 KPa, -80 KPa, -75 KPa, -70 KPa, -60 KPa, or the like.
  • the first driving unit may include a scale
  • the scale may be used for calibrating the initial position of the panel to be detected, and used to record the real-time position of the panel to be detected, and may assist the control module to determine the specific location of the defective area in the panel to be detected.
  • an air bearing structure may be provided in the stage to carry the test to be tested.
  • the air floating structure can suspend the panel to be detected, thereby reducing the resistance when the panel to be detected moves, reducing the risk of the panel to be detected being scratched during the movement, and increasing the waiting time. Detect panel moving speed and increase detection efficiency.
  • the air floating structure may include an air floating hole 810 and a gas pipe 820 communicating with each other. The air floating hole 810 is in communication with the bearing surface 110 , and the gas input from the air pipe 820 to the air floating hole 810 is ejected from the bearing surface 110 . Thereby the panel 10 to be inspected is suspended.
  • the size of the air floating hole may be 0.2 to 0.8 mm, for example, further 0.4 mm, 0.5 mm, 0.6 mm, etc.; the air floating hole pitch may be set to 10 to 30 mm, for example, further 15 mm, 20 mm, 30 mm, etc.;
  • the gas pressure value may be greater than atmospheric pressure, for example, 200 KPa to 500 KPa, for example, further 250 KPa, 300 KPa, 340 KPa, 400 KPa, 450 KPa, or the like.
  • the gas injected by the air floating holes suspends the panel to be inspected, and the distance between the panel to be inspected and the bearing surface is 0.2 to 0.8 mm, for example, further 0.4 mm, 0.6 mm, or the like. It should be noted that the specific size of the air floating hole, the spacing between the air floating holes, and the air pressure value in the air floating hole may be set according to actual needs, which is not limited in at least one embodiment of the present disclosure.
  • the arrangement of the photosensors in the photosensor array is not limited, and the arrangement of the photosensors may be set according to the moving direction of the panel to be detected.
  • the plurality of photosensors are arranged in a row in the second direction; or the plurality of photosensor arrays are arranged in the second direction.
  • a plurality of columns in the first direction wherein the first direction and the second direction are parallel to the bearing surface, and the first direction and the second direction intersect.
  • the width of the scanning can be increased, thereby improving the detection efficiency.
  • a plurality of rows of photosensors are disposed along the second direction, which is equivalent to multiple scans of the panel to be detected, which can improve the accuracy of detection and reduce errors.
  • the light sensors located in different rows in the second direction may be alternately arranged, so that errors due to the size, arrangement, and the like of the photosensors may be reduced, thereby further improving the accuracy of detection.
  • the linear coordinate is established based on the second direction, and the detection accuracy of the light detecting unit is related to the number of light sensors located at different coordinates of the linear coordinate in the second direction. The more the number of light sensors having different coordinates, the light detection The higher the accuracy of the unit. Since the photosensor has a certain volume, in the second direction, the number of photosensors disposed in each row is limited, that is, the light sensors of different rows are located at different coordinates of the linear coordinates without being interlaced.
  • the number of sensors is small or even equal to the number of light sensors provided in each row, which limits the detection accuracy of the light detecting unit.
  • the number of light sensors included in the light detecting unit at different coordinates may increase, and accordingly, the detection accuracy of the light detecting unit is also increased.
  • the light sensors in the light detecting unit are arranged in two rows in the second direction, and the light sensors in the first row and the second row are staggered, ie in the first row
  • the coordinates of the light sensor and the second row of light sensors in the above linear coordinate system are alternately arranged. Since the light sensors in the first row are spaced apart and the light sensor has a certain size, the light transmittance of the region of the panel to be detected that corresponds to the interval region and the edge portion of the light sensor in the first row cannot be The light sensor in the first row detects, but the light transmittance of this region can be detected by the light sensor in the second row.
  • the second direction can be perpendicular to the first direction.
  • the first direction is the negative X-axis direction
  • the second direction is parallel to the Y-axis. In this way, the number of photosensors can be reduced and the cost can be reduced while maintaining the scanning width of the photosensor array in the second direction.
  • the size of the photosensor is not limited.
  • the size of the photoresistor can be set to 0.5 mm to 2 mm, for example, further 0.8 mm, 1 mm, 1.2 mm, 1.5 mm, or the like.
  • the size of the photosensor array is greater than or equal to the size of the panel to be inspected in the direction.
  • the light sensor in the photosensor array can complete the detection of the entire panel to be detected only by one scan, thereby improving the detection efficiency.
  • the to-be-detected panel 10 may be provided with a display area 10b for displaying an image, and a non-display area 10a for including a dummy area and a circuit area, etc. The area can be cut off in a subsequent cutting process.
  • the calculation of the size of the panel to be inspected does not include the non-display area 10a located at the edge of the panel 10 to be inspected, that is, the panel 10 to be inspected
  • the size for comparison may be the size of the area A in the second direction.
  • the signal detecting unit in the light detecting unit may be configured to detect a resistance value of the photoresistor corresponding to the display area, and shield the resistance value of the photoresistor corresponding to the non-display area Detection.
  • the control module transmits the signal detection unit.
  • the difficulty of analyzing and calculating the incoming electrical signal improves the accuracy of the calculation result of the control module (data reflecting the position, size, etc. of the defective area).
  • the detecting apparatus further includes an image acquiring unit and a second light source, the image acquiring unit is located at one side of the panel to be detected, and the second light source is located at a side of the panel to be detected away from the image acquiring unit, and the image The acquiring unit is connected to the control module, and the light emitted by the second light source is at least partially directed to the image acquiring unit.
  • the image acquisition unit may be located on the same side of the panel to be inspected as the light detection unit. Except for the image acquisition unit 600 and the control module The signal is connected, and the light emitted by the second light source 320 is at least partially directed to the image acquisition unit 600.
  • the image acquisition unit 600 can obtain an image reflecting the light transmittance distribution of the panel 10 to be detected, and the image can be uploaded by the control module to analyze and store the image. In this way, the remote operator can judge the image to further determine whether the panel to be detected is defective or to judge the type of the defect.
  • the image acquisition unit 600 may be a device such as a video camera that can acquire an image or a video.
  • the luminance of the second source is the same as the luminance of the first source.
  • the transmittance of the panel to be detected reflected by the image data obtained by the image acquisition unit is the same as the transmittance of the panel to be detected reflected by the signal data detected by the light detecting unit, which is advantageous for the operator to further analyze the image data and improve the image data.
  • the accuracy of the judgment of the detection panel (whether it is a bad type, a bad type, etc.).
  • the detecting apparatus further includes a second driving unit configured to fix the image acquiring unit and be connected to the control module, and the second driving unit is configured to drive the image acquiring unit and the defect under the control of the control module.
  • Area alignment Exemplarily, as shown in FIG. 1 , the second driving unit 520 is signally connected to the control module 400 and can drive the image acquiring unit 600 to move.
  • the control module 400 may determine the position of the defective area on the panel to be detected 10 after analyzing the data detected by the light detecting unit 200, and thus, the control module 400 controls the second driving unit 520 to move to move the image acquiring unit 600 to the same. The position corresponding to the defective area, thereby obtaining an image of the defective area.
  • the image acquisition unit 600 can acquire only the image of the defective area, reduce the amount of data input to the control module 400, and reduce the workload of the remote operator, without performing all the images related to the defective panel to be detected. Analysis improves the detection efficiency.
  • a polarizing plate may be disposed on both sides of the panel to be detected, so that it can be predicted whether the liquid crystal display panel will still be mounted after the polarizing plate is mounted. There is a bad.
  • a first polarizing plate 710 is disposed between the light detecting unit 200 and the panel to be detected 10, between the image acquiring unit 600 and the panel to be detected 10; at the first light source 310 and the panel to be detected
  • a second polarizing plate 720 is disposed between 10, the second light source 320, and the panel to be inspected 10.
  • the polarization direction of the first polarizing plate 710 and the polarization direction of the second polarizing plate 720 may be the same or different.
  • An alignment layer is disposed in the liquid crystal display panel to pre-align the liquid crystal molecules in the liquid crystal layer, and the first polarizing plate 710 and the second polarizing plate 720 can be used to detect whether the pre-orientation is uniformly distributed, thereby determining the practical application of the liquid crystal display panel. Whether there is a display failure in the middle.
  • the polarization direction of the first polarizing plate 710 and the polarization direction of the second polarizing plate 720 are different, and the included angle may be set to 30 degrees, 45 degrees, 60 degrees, or the like.
  • At least one embodiment of the present disclosure provides a detection apparatus comprising the detection apparatus of any of the foregoing embodiments.
  • an output unit and an output unit may be provided in the detecting device, and the input unit and the output unit may put the panel to be detected into the detecting device or take out the panel to be detected from the detecting device.
  • the output unit may be connected to the control module of the detecting device, and when it is determined that there is a defect in the panel to be detected, the panel to be detected is stored to a specific area (for example, a storage device) for further verification by the person; When there is a defect, the panel to be detected is input into the downstream device.
  • At least one embodiment of the present disclosure provides a detecting method of a detecting device, wherein the detecting device includes a stage, a light detecting unit, and a first light source, the stage includes a bearing surface for carrying the member to be detected, and the light detecting unit is located to be detected.
  • a first light source is located on a side of the object to be detected that is away from the light detecting unit, and the light emitted by the first light source is at least partially directed toward the light detecting unit; and the detecting method comprises: directing the light detecting unit to the light detecting unit by using the first light source The light detects the object to be tested.
  • the object to be detected is a panel to be inspected.
  • the light detecting unit can detect the light transmittance of the panel to be detected, and accordingly, whether or not a defect occurs in the panel to be detected can be detected.
  • the detection method it is possible to complete the automatic detection of whether the panel to be inspected is defective without human intervention, thereby improving the detection efficiency and reducing the cost. In this way, in the actual production process, each produced product (for example, a display panel) can be inspected to improve the yield of the manufactured product.
  • the detecting method provided by at least one embodiment of the present disclosure further includes: placing a panel to be detected on a bearing surface; and emitting light emitted by the first light source to the panel to be detected.
  • the detecting the panel to be detected by the light source that is directed to the light detecting unit by using the first light source includes: detecting, by the first light source, the light detecting unit that is incident on the light detecting unit through the panel to be detected. panel.
  • detecting the to-be-detected panel by using the first light source through the panel to be detected to the light detecting unit includes: detecting the intensity of the light to be detected by the detecting unit by using the light detecting unit Determining whether there is a defective area in the panel to be detected according to the detection result. According to the above detection method, it is possible to detect whether or not a defect occurs in the panel to be detected.
  • the detecting method includes moving the panel to be detected, and repeating the steps: the light emitted by the first light source is directed to the panel to be detected, and the intensity of the light to be detected by the light detecting unit is detected by the light detecting unit, according to the detecting. As a result, it is determined whether there is a defective area in the panel to be inspected until the detection of the panel to be detected is completed. In this way, only the moving of the panel to be inspected is required to enable the light detecting unit to perform scanning detection on the detecting panel, which simplifies the structure of the detecting device, and accordingly simplifies the operation process of the detecting method.
  • the light detecting unit includes a light sensor array including a plurality of light sensors, and the light sensor is a photoresistor, and the light detecting unit is used to detect the intensity of light emitted by the panel.
  • the detecting comprises: detecting a resistance value of each of the plurality of photoresistors; determining whether there is a defective area in the panel to be detected according to the detection result, comprising: determining, according to the detection result, whether the resistance value of each photoresistor is an abnormal resistance value to determine the to-be-detected Is there a bad area in the panel?
  • the resistance value of the photoresistor if there is an abnormal resistance value of the photoresistor, there is a defective area in the panel to be detected.
  • the specific method of determining whether the photoresistor has an abnormal resistance value is not limited, and may be designed according to an actual process.
  • determining whether the resistance value of each photoresistor is an abnormal resistance value according to the detection result to determine whether there is a defective area in the panel to be detected includes: providing a first threshold range; When the resistance value is greater than the first threshold range or less than the first threshold range, it is determined that the photoresistor has an abnormal resistance value, and the region corresponding to the photoresistor having the abnormal resistance value in the panel to be detected is determined to be a defective region.
  • the first threshold range indicates the resistance value of the photoresistor when there is no defect in the panel to be detected, and the first threshold range may be a fixed resistance value or a floating value based on a fixed resistance value.
  • the value interval of the first threshold range is [A, B], and the resistance value of the photoresistor corresponding to the normal area of the panel to be detected (there is no defect) is between A and B, during the detection process, if When the resistance value of the photoresistor is less than A or greater than B, the photoresistor has an abnormal resistance value, and accordingly, whether or not a defective region exists in the panel to be detected can be determined.
  • whether the resistance value of each photoresistor is an abnormal resistance value according to the detection result to determine whether there is a defective area in the panel to be detected including: when adjacent to each other Determining the plurality of photoresistors adjacent to each other when the difference between the resistance value of the photoresistor and the resistance value of the other photoresistor is within a certain range, and the number of the plurality of photoresistors adjacent to each other is less than 1/2 of the total number of the photoresistors Having an abnormal resistance value, it is determined that a region of the panel to be inspected corresponding to the plurality of photoresistors adjacent to each other is a defective region.
  • the photoresistor of the first region has an abnormal resistance value, and determines that a region of the to-be-detected portion corresponding to the first region is a defective region.
  • the first area is a continuous area or includes a plurality of discrete sub-areas.
  • the area occupied by the defective area is usually small, and accordingly, in the case where there is a defective area in the panel to be inspected, the proportion of the photoresistor having the abnormal resistance value is less than 1 in all the photoresistors. /2.
  • the photoresistors having different resistance values and a small number for example, less than 1/2 of the total number of the photoresistors are determined to have an abnormal resistance value, and accordingly, the panel to be detected can be determined. Whether there is a bad area.
  • the difference between the resistance value of the photoresistor of the first region and the resistance value of the other photoresistor is not less than 3.2% of the resistance value of the other photoresistors.
  • the photoresistor has a first resistance value under illumination conditions, and if the photoresistor value is less than or equal to 96.8% of the resistance value or greater than or equal to 113.2% of the first resistance value during the detection process, Then, it is determined that the photoresistor has an abnormal resistance value, and a region of the to-be-detected component corresponding to the photoresistor is a defective region.
  • the panel to be detected includes a display area and a non-display area
  • detecting the resistance value of the photoresistor includes: detecting a resistance value of the photoresistor corresponding to the display area, and shielding Detection of the resistance value of the photoresistor corresponding to the non-display area.
  • the detecting method provided by at least one embodiment of the present disclosure further includes obtaining a size and a position of a defective area in the panel to be detected.
  • the image acquisition unit may be used to obtain an image of the bad area to enable the remote operator to perform further analysis; and the type of the defect in the detection panel may be treated accordingly. Make a judgment.
  • the panel to be detected moves in a first direction parallel to the bearing surface, and the photoresistor is arranged in a second direction parallel to the bearing surface, the first direction and the second direction.
  • Crossing obtaining the size and position of the defective area existing in the panel to be detected includes: determining, according to the photoresistor having the abnormal resistance value, the defective area corresponding to the photosensitive resistor having the abnormal resistance value in the panel to be detected in the second direction a coordinate; determining a second coordinate of the corresponding bad region in the first direction according to a moving speed of the panel to be detected and a difference between a time when the corresponding defective region in the panel to be detected is detected and the start detecting time; according to the first coordinate And determining the position of the corresponding defective area with the second coordinate, and determining the size of the corresponding defective area according to the projected area of the photoresistor having the abnormal resistance value on the panel to be detected.
  • the detecting method further includes counting the size of all corresponding defective areas and determining the position within a period from the start of the detection to the end of the detection.
  • the first direction is the negative direction of the X-axis
  • the second direction is parallel to the Y-axis.
  • each defective area is related to the accuracy of the light detecting unit (for example, the size of the photoresistor). Regardless of the size of the photoresistor, each defective area represents only one coordinate point, so that after the statistically bad area, the area defined by all the defective areas adjacent to the coordinate point can indicate that there is a panel to be inspected. Bad part.
  • the detecting method provided by at least one embodiment of the present disclosure further includes analyzing the resistance value of the photoresistor having the abnormal resistance value and the size of the defective region, and determining the type of the defect of the panel to be detected.
  • the liquid crystal display panel as an example, if the liquid crystal layer is doped with foreign matter (for example, a solid foreign matter such as particles), the light transmittance of the region is lowered, and accordingly, the resistance value of the photoresistor corresponding to the region is increased. If a bubble (for example, a nitrogen bubble or a vacuum bubble) is mixed in the liquid crystal layer, the light transmittance of the region is increased, and accordingly, the resistance value of the photoresistor corresponding to the region is decreased.
  • foreign matter for example, a solid foreign matter such as particles
  • the specific defect type It is necessary to judge according to the actual situation of the detecting device, and it is necessary to accumulate the relationship between the type of defect and the change of the photoresistor in the detection process before before, and record and store the corresponding data as a basis for judging the bad type in the subsequent detecting process.
  • the detecting device further includes an image acquiring unit and a second light source respectively disposed on two sides of the panel to be detected, and the light emitted by the second light source is at least partially directed to the image capturing.
  • the detecting method further includes: the light emitted by the second light source is directed to the panel to be detected; moving the image acquiring unit to a position opposite to the defective area, and acquiring an image of the defective area by using the image acquiring unit.
  • the image acquisition unit can obtain an image of the defective area, and the remote operator can judge the image to further determine whether the panel to be detected is defective or judges the type of the defect.
  • the specific structure of the detecting device may refer to the foregoing embodiment (for example, the embodiment of the structure of the detecting device shown in FIG. 1 to FIG. 3). The relevant content in this article will not be described here.
  • FIG. 4 is a process diagram of a method for detecting a detecting device according to an embodiment of the present disclosure.
  • the detecting method of the detecting device may include the following process.
  • the initial coordinate may be a coordinate in a plane rectangular coordinate system established with reference to the panel to be detected
  • the coordinate axis of the planar right angle system may be the X axis and the Y axis of the spatial rectangular coordinate system in the foregoing embodiment.
  • the first direction is the negative direction of the X axis.
  • S3 Analyze the detection data of the light detecting unit to determine whether there is a bad area in the panel to be detected.
  • the drive image acquisition unit moves to a position opposite to the defective area of the panel to be detected to acquire an image of the defective area. Images of bad areas can be uploaded to the far end for the operator to further identify and analyze the identification of bad areas and the types of defects.
  • At least one embodiment of the present disclosure provides a detecting device, a detecting method thereof, and a detecting device, and may have at least one of the following beneficial effects:
  • the light detecting unit may detect the distribution of the light transmittance of the panel to be detected, thereby detecting whether a defect occurs in the panel to be detected, and thus the detecting device may It can complete the automatic detection of the defective test panel without human intervention, improve the detection efficiency and reduce the cost.
  • each of the produced products (for example, a display panel) can be inspected to improve the yield of the manufactured product.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

一种检测装置及其检测方法、检测设备,检测装置包括载台(100)、光检测单元(200)和第一光源(310),载台(100)包括用于承载待检测件(10)的承载面(110),光检测单元(200)位于待检测件(10)的一侧,第一光源(310)位于载台(100)的与光检测单元(200)的相反的一侧,第一光源(310)发射出的光线至少部分射向光检测单元(200)。检测装置可以对待检测件(10)的良率进行自动化检测,提高了检测效率,降低成本。

Description

检测装置及其检测方法、检测设备
本申请要求于2018年5月9日递交的中国专利申请第201810437048.7号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种检测装置及其检测方法、检测设备。
背景技术
电子显示产品例如液晶显示面板在生产过程中容易出现不良,例如在对盒工艺中,液晶显示面板中容易出现气泡。上述不良会影响液晶显示面板的显示效果,降低用户的视觉体验,所以,在实际生产工艺中,需要对液晶显示面板进行检测以保证液晶显示面板的良率。
但是,当前用于检测液晶显示面板的良率的装置和检测方法的效率很低,难以对生产的全部液晶显示面板进行检测,从而仍不能保证出厂的液晶显示面板的良率。
发明内容
本公开至少一个实施例提供一种检测装置,包括载台、光检测单元和第一光源,所述载台包括用于承载待检测件的承载面,所述光检测单元位于所述待检测件的一侧,所述第一光源位于所述待检测件的远离所述光检测单元的一侧,所述第一光源发射出的光线至少部分射向所述光检测单元。
例如,在本公开至少一个实施例提供的检测装置中,所述光检测单元包括光传感器阵列,所述光传感器阵列包括多个光传感器,其中所述待检测件包括被所述第一光源照亮的第一照亮区域,所述光传感器阵列在所述待检测件所在面上的正投影与所述第一照亮区域至少部分交叠。
例如,在本公开至少一个实施例提供的检测装置中,所述光传感器阵列在所述待检测件所在面上的正投影与所述第一照亮区域重合。
例如,在本公开至少一个实施例提供的检测装置中,所述光传感器阵 列在所述待检测件所在面上的正投影位于所述第一照亮区域之内。
例如,在本公开至少一个实施例提供的检测装置中,所述光检测单元还包括信号检测单元,所述信号检测单元与所述光传感器阵列信号连接且配置为检测所述光传感器的电信号。
例如,本公开至少一个实施例提供的检测装置还包括控制模块,所述控制模块与所述光检测单元信号连接,配置为根据所述信号检测单元的检测结果判断所述待检测件是否存在不良区域。
例如,在本公开至少一个实施例提供的检测装置中,所述载台包括与所述控制模块信号连接的第一驱动单元,所述第一驱动单元配置为驱动所述待检测件沿平行于所述承载面的第一方向移动。
例如,在本公开至少一个实施例提供的检测装置中,在所述光传感器阵列中,多个所述光传感器在第二方向上排布为一行;或者多个所述光传感器阵列排布为第二方向上的多行、所述第一方向上的多列,其中,所述第一方向和所述第二方向平行于所述承载面,所述第一方向和所述第二方向交叉。
例如,在本公开至少一个实施例提供的检测装置中,所述第一方向和所述第二方向垂直,以及在所述第二方向上,所述光传感器阵列的尺寸大于或者等于所述待检测件的尺寸。
例如,本公开至少一个实施例提供的检测装置还包括图像获取单元和第二光源,所述图像获取单元位于所述待检测件的一侧,所述第二光源位于所述待检测件的远离所述图像获取单元的一侧,所述图像获取单元与所述控制模块信号连接,所述第二光源发射出的光线至少部分射向所述图像获取单元。
例如,本公开至少一个实施例提供的检测装置还包括第二驱动单元,配置为固定所述图像获取单元并与所述控制模块信号连接;其中,所述第二驱动单元配置为在所述控制模块的控制下驱动所述图像获取单元与所述不良区域对准。
例如,在本公开至少一个实施例提供的检测装置中,所述待检测件为待检测面板,所述待检测件设置在所述载台的承载面上。
本公开至少一个实施例提供一种检测设备,包括前述任一实施例中所述的检测装置。
本公开至少一个实施例提供一种检测装置的检测方法,其中,所述检测装置包括载台、光检测单元和第一光源,所述载台包括用于承载待检测件的承载面,所述光检测单元位于所述待检测件的一侧,所述第一光源位于所述载台的与所述光检测单元的相反的一侧,所述第一光源发射出的光线至少部分射向所述光检测单元;以及所述检测方法包括:利用所述第一光源射向所述光检测单元的光检测所述待检测件。
例如,本公开至少一个实施例提供的检测方法还包括:将所述待检测件放在所述承载面上;所述第一光源发射的光线射向所述待检测件。
例如,在本公开至少一个实施例提供的检测方法中,所述利用所述第一光源射向所述光检测单元的光检测所述待检测件包括:利用所述第一光源通过所述待检测件射向所述光检测单元的光检测所述待检测件。
例如,在本公开至少一个实施例提供的检测方法中,所述利用所述第一光源通过所述待检测件射向所述光检测单元的光检测所述待检测件包括:利用所述光检测单元对所述待检测件出射的光的强度进行检测;根据检测结果确定所述待检测件中是否存在不良区域。
例如,本公开至少一个实施例提供的检测方法包括移动所述待检测件,重复步骤:所述第一光源发射的光线射向所述待检测件、利用所述光检测单元对所述待检测件出射的光的强度进行检测、根据检测结果确定所述待检测件中是否存在不良区域,直到所述待检测件检测完成。
例如,在本公开至少一个实施例提供的检测方法中,所述光检测单元包括光传感器阵列,所述光传感器阵列包括多个光传感器,所述光传感器为光敏电阻,所述利用所述光检测单元对所述待检测件出射的光的强度进行检测包括:检测多个所述光敏电阻中每个的电阻值;所述根据检测结果确定所述待检测件中是否存在不良区域包括:根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域。
例如,在本公开至少一个实施例提供的检测方法中,所述根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域,包括:提供第一阈值范围;当电阻值大于所述第一阈值范围或者小于所述第一阈值范围时,确定所述光敏电阻具有异常电阻值,确定所述待检测件中与具有所述异常电阻值的所述光敏电阻对应 的区域为所述不良区域。
例如,在本公开至少一个实施例提供的检测方法中,所述根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域,包括:当所述光传感器阵列的第一区域内的所有光敏电阻的电阻值都大于或者都小于其它区域的光敏电阻的电阻值,且所述第一区域的光敏电阻的数量小于所述光敏电阻总数量的1/2时,确定所述第一区域的光敏电阻具有异常电阻值,并确定所述待检测件的对应于所述第一区域的区域为所述不良区域。
例如,在本公开至少一个实施例提供的检测方法中,所述第一区域的所述光敏电阻的电阻值与其它光敏电阻的电阻值的差值不小于所述其它光敏电阻的电阻值的3.2%。
例如,在本公开至少一个实施例提供的检测方法中,所述待检测件包括显示区域和非显示区域,所述检测所述光敏电阻的电阻值包括:对与所述显示区域对应的所述光敏电阻的电阻值进行检测,并且屏蔽对与所述非显示区域对应的所述光敏电阻的电阻值的检测。
例如,本公开至少一个实施例提供的检测方法还包括获得所述待检测件中的所述不良区域的尺寸以及位置。
例如,在本公开至少一个实施例提供的检测方法中,所述待检测件沿平行于所述承载面的第一方向移动,所述光敏电阻沿平行于所述承载面的第二方向排布,所述第一方向和所述第二方向交叉,所述获得所述待检测件中存在的所述不良区域的尺寸以及位置包括:根据具有所述异常电阻值的所述光敏电阻确定所述待检测件中的与具有所述异常电阻值的所述光敏电阻对应的不良区域在所述第二方向上的第一坐标;根据所述待检测件的移动速度和检测到所述待检测件中的所述对应的不良区域的时间与开始检测时间之差,确定所述对应的不良区域在所述第一方向上的第二坐标;根据所述第一坐标和所述第二坐标确定所述对应的不良区域的位置,根据具有所述异常电阻值的所述光敏电阻在所述待检测件上的投影面积确定所述对应的不良区域的尺寸;所述检测方法,还包括:在开始检测至检测结束的时间段内,统计所有所述对应的不良区域的尺寸,确定位置。
例如,本公开至少一个实施例提供的检测方法还包括对具有所述异常电阻值的所述光敏电阻的电阻值以及所述不良区域的尺寸进行分析,判定 所述待检测件的不良的类型。
例如,在本公开至少一个实施例提供的检测方法中,所述待检测件包括液晶层,所述的不良的类型包括所述液晶层中掺杂固体异物、所述液晶层中具有气泡。
例如,在本公开至少一个实施例提供的检测方法中,所述检测装置还包括分别设置于所述待检测件的两侧的图像获取单元和第二光源,所述第二光源发射出的光线至少部分射向所述图像获取单元,所述检测方法还包括:所述第二光源发射的光线射向所述待检测件;移动所述图像获取单元至与所述不良区域相对的位置,利用所述图像获取单元获取所述不良区域的图像。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一个实施例提供的一种检测装置的结构示意图;
图2为图1所示的检测装置的部分结构的示意图;
图3为图1所示的检测装置的部分结构的俯视图;以及
图4为本公开一个实施例提供的检测装置的检测方法的过程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、 “第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在显示面板的检测过程中,可以采用人工目视检查的方式对显示面板的质量进行检测。该检测方法需要专业人员利用专业设备进行操作,需要专业人员具有良好的判断力,不仅会造成人力成本的上升,而且不可避免会出现漏检的情况,同时长久操作会对人员的眼睛等造成损害;此外,人工检测的效率低,只能进行抽样检测,难以确定生产出的每个显示面板是否存在不良,从而难以提升出厂的显示面板的良率;再者,显示面板的不良的类型有多种,需要人员根据具体情况进行判断,而且检测人员之间的信息难以快速共享,对不良的类型等的分析效率低。
本公开至少一个实施例提供一种检测装置及其检测方法、检测设备。该检测装置包括载台、光检测单元和第一光源,载台包括用于承载待检测件的承载面,光检测单元位于待检测件的一侧,第一光源位于载台的与光检测单元的相反的一侧,第一光源发射出的光线至少部分射向光检测单元。在该检测装置中,第一光源向待检测件发射光线并且透过待检测件的光线会被光检测单元接收,如此,光检测单元可以对待检测件的光透过率的分布进行检测,据此可以检测待检测件中是否出现不良。该检测装置可以不需要人的干预就能完成对待检测件是否不良的自动化检测,提高检测效率,降低成本。如此,在实际生产工艺中,可以对每个生产出的产品(例如显示面板)进行检测,提高出厂的产品的良率。例如,该待检测件为待检测面板,在检测过程中,待检测面板设置在载台的承载面上。在待检测面板放置在承载面上时,第一光源位于待检测面板的背离光检测单元的一侧。
在本公开至少一个实施例中,对待检测面板的类型不做限制。例如,该待检测面板可以为显示面板,例如液晶显示面板、OLED显示面板、电子纸显示面板等。例如,待检测面板也可以为触控面板、封装盖板、承载基板等透明或者半透明的构件。例如,在本公开至少一个实施例中,透明、 半透明表示构件对第一光源发出的光线的透过能力,第一光源发出的光线不限于为可见光。
下面,以待检测面板为液晶显示面板为例,结合附图对根据本公开至少一个实施例中的检测装置及其检测方法、检测设备进行详细的说明。
图1为本公开一个实施例提供的一种检测装置的结构示意图。
在本公开至少一个实施例中,如图1所示,检测装置包括载台100、光检测单元200和第一光源310。载台100包括用于承载待检测面板10的承载面110,光检测单元200位于待检测面板10的一侧,第一光源310位于待检测面板10的远离光检测单元200的一侧,第一光源310发射出的光线至少部分射向光检测单元200。对于待检测面板10的与光检测单元200和第一光源310对应的区域,光检测单元200可以检测该区域的光透过率,进而可以判断该区域的光透过率是否异常,据此可以判断该区域是否出现不良。
在本公开至少一个实施例中,对光检测单元和第一光源的具体位置不做限制,只要光检测单元和第一光源分别位于待检测面板的两侧即可。例如,在本公开一些实施例中,如图1所示,光检测单元200位于待检测面板10的远离载台100的一侧,第一光源310位于待检测面板10的面向载台100的一侧。例如,第一光源310可以设置于载台100中。例如,在本公开另一些实施例中,光检测单元可以位于待检测面板的面向载台的一侧,第一光源可以位于待检测面板的远离载台的一侧。
在本公开至少一个实施例中,以载台的承载面为基准建立空间直角坐标系,以对检测装置中的各个构件的位置进行指向性说明。示例性的,如图1所示,空间直角坐标系的X轴和Y轴(参考图3)平行于承载面110,Z轴垂直于承载面110。例如,待检测面板10所在面与载台100的承载面110彼此平行。此外,在本公开至少一个实施例中,“对应”可以表示两个部分在Z轴方向上重合或者部分重叠。
图2为图1所示的检测装置的部分结构的示意图。
例如,在本公开至少一个实施例提供的检测装置中,光检测单元包括光传感器阵列。该光传感器阵列包括多个光传感器,待检测面板包括被第一光源照亮的第一照亮区域,光传感器阵列在待检测面板所在面上的正投影与第一照亮区域至少部分交叠。示例性的,如图1和图2所示,光检测 单元200包括光传感器阵列,光传感器阵列包括多个光传感器210。每个光传感器210都可以对待检测面板10的相应部分的光透过率进行检测,设置多个光传感器210可以对待检测面板10的多个区域同时检测,提高检测效率。待检测面板10中被第一光源310发射的光线照射的区域为第一照亮区域11,光传感器阵列(光传感器210)在待检测面板10所在面上的正投影与第一照亮区域11至少部分交叠,使得光传感器阵列(光传感器210)可以接收第一光源310发射的光,从而可以对待检测面板10的光透过率进行检测。
例如,在本公开至少一个实施例中,光传感器可以为光敏电阻。光敏电阻的电阻值随被照射的光的强度变化,所以,光敏电阻的电阻值可以反映待检测面板的光透过率。例如,光敏电阻的电阻值随着光照强度的增加而减小,随着光照强度的减小而增大。例如,与待检测面板的正常区域相比,不良区域的光透过率会增加或减小,透过不良区域的光的强度也会大于或者小于正常值,相应地,与不良区域对应的光敏电阻的电阻值也会出现异常(大于或者小于正常值)。在本公开至少一个实施例中,对光敏电阻的材料不做限制,只要该材料的电阻率(光敏电阻的电阻值)可以随光照强度的变化而变化即可。例如,光敏电阻的材料可以包括硫化镉、硒、硫化铝、硫化铅、硫化铋或其它类似的材料。
例如,在本公开至少一个实施例提供的检测装置中,光传感器阵列在待检测面板所在面上的正投影与第一照亮区域重合;或者光传感器阵列在待检测面板所在面上的正投影位于第一照亮区域之内。示例性的,如图1和图2所示,在Z轴方向上,光传感器阵列(光传感器210)在待检测面板10上的正投影位于第一照亮区域11之内,如此,光传感器210的所有部分都可以接收第一光源310发出的光线,可以提高光传感器210的检测精度,进而提高对待检测面板10的检测效果。
例如,在本公开至少一个实施例提供的检测装置中,光检测单元还包括信号检测单元,该信号检测单元与光传感器阵列信号连接且配置为检测光传感器的电信号。示例性的,如图1所示,光检测单元200包括信号检测单元220,信号检测单元220与光传感器阵列(光传感器210)信号连接。以光传感器210为光敏电阻为例,信号检测单元220可以将光敏电阻的用于反映待检测面板10的光透过率的电阻值转换为相对应的电信号。如此, 对电信号进行分析,可以判定待检测面板10中是否存在不良。
例如,本公开至少一个实施例提供的检测装置还包括控制模块,控制模块与光检测单元信号连接,配置为根据信号检测单元的检测结果判断待检测面板是否存在不良区域。示例性的,如图1所示,检测装置包括与光检测单元200信号连接控制模块400。控制模块400可以对信号检测单元220发送的反映待检测面板10的光透过率的电信号进行分析,以判定待检测面板10中是否存在不良;而且控制模块400根据对电信号的分析结果确定待检测面板10中的不良区域的位置、尺寸等信息,还可以根据分析结果以对其它的器件(例如下述实施例中的图像获取单元)的运行进行控制。
在本公开至少一个实施例中,对控制模块的类型不做限制,只要控制模块可以接收信号、分析数据并且能够发送指令即可。例如,控制模块可以包括存储器和处理器,存储器中存储有指令,处理器用于受控于存储器存储的指令进行操作,以执行根据信号检测单元的检测结果判断待检测面板是否存在不良区域等。示例性地,控制模块可以包括硬件电路以及可编程硬件设备等。硬件电路可以包括常规的超大规模集成(VLSI)电路或者门阵列以及诸如逻辑芯片、晶体管之类的现有半导体或者其它分立的元件;可编程硬件设备可以包括现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备等。
图3为图1所示的检测装置的部分结构的俯视图。
例如,在本公开至少一个实施例提供的检测装置中,载台包括与控制模块信号连接的第一驱动单元,第一驱动单元配置为驱动待检测面板沿平行于承载面的第一方向移动。示例性,如图1和图3所示,载台100包括第一驱动单元510,第一驱动单元510驱动待检测面板10沿着平行于承载面110的第一方向(以V表示的箭头方向)移动。如此,可以不需要移动第一光源310和光检测单元200,就可以使得光检测单元200对待检测面板10进行扫描式的检测,简化了检测装置的结构。例如,第一方向可以与X轴平行。
下面,以第一方向为X轴负方向为例,对本公开下述至少一个实施例中的技术方案进行说明。
例如,在本公开至少一个实施例中,第一驱动单元可以包括夹持器件以固定待检测面板,从而驱动待检测面板移动。例如,该夹持器件可以为 真空吸附器件,真空吸附器件可以设置在待检测面板的两侧从而固定并驱动待检测面板沿着第一方向移动。夹持器件中可以设置真空吸附孔,真空吸附孔的尺寸(例如直径、宽度、长度等)可以为1~3mm,例如进一步为1.5mm、2mm、2.5mm等;真空吸附的压强小于大气压强,例如真空吸附的压强相对于大气压强可以为-100KPa~-50KPa,例如进一步为-90KPa、-85KPa、-80KPa、-75KPa、-70KPa、-60KPa等。例如,第一驱动单元中可以包括标尺,标尺可以用于对待检测面板的初始位置进行标定,并且用于记录待检测面板的实时位置,可以辅助控制模块确定不良区域在待检测面板中的具体位置。
例如,在本公开至少一个实施例中,载台中可以设置气浮结构以承载待测试。在第一驱动单元驱动待检测面板移动的过程中,气浮结构可以使得待检测面板悬浮,从而降低待检测面板移动时的阻力,降低待检测面板在移动过程中被划伤的风险,增加待检测面板移动速度,增加检测效率。示例性的,如图1所示,气浮结构可以包括彼此连通的气浮孔810和气管820,气浮孔810与承载面110连通,气管820向气浮孔810输入的气体从承载面110喷射出来,从而使得待检测面板10悬浮。
例如,气浮孔的尺寸可以为0.2~0.8mm,例如进一步为0.4mm、0.5mm、0.6mm等;气浮孔间距可以设置为10~30mm,例如进一步为15mm、20mm、30mm等;气浮孔中的气压值可以大于大气压,例如为200KPa~500KPa,例如进一步为250KPa、300KPa、340KPa、400KPa、450KPa等。气浮孔喷射的气体使得待检测面板悬浮,并且使得待检测面板与承载面之间的间隔距离为0.2~0.8mm,例如进一步为0.4mm、0.6mm等。需要说明的是,气浮孔的具体尺寸、气浮孔之间的间距、气浮孔中的气压值可以根据实际需要进行设置,在本公开至少一个实施例中对此不做限制。
在本公开至少一个实施例中,对光传感器阵列中的光传感器的排布不做限制,光传感器的排布可以根据待检测面板的移动方向进行设置。例如,在本公开至少一个实施例提供的检测装置中,在光传感器阵列中,多个光传感器在第二方向上排布为一行;或者多个光传感器阵列排布为第二方向上的多行、第一方向上的多列,其中,第一方向和第二方向平行于承载面,第一方向和第二方向交叉。如此,在利用多个光传感器对待检测面板进行扫描式检测的过程中,可以增加扫描的宽度,从而提高检测效率。沿着第 二方向设置多行光传感器,相当于对待检测面板实现多次扫描,可以提高检测的精度从而减小误差。
例如,在第二方向上位于不同行的光传感器可以交错设置,如此,可以降低因光传感器的尺寸、设置方式等带来的误差,从而进一步提高检测的精度。以第二方向为基准建立直线坐标,光检测单元的检测精度与在第二方向上位于该直线坐标的不同坐标处的光传感器的数量相关,具有不同坐标的光传感器的数量越多,光检测单元的精度越高。因为光传感器具有一定的体积,在第二方向上,每行设置的光传感器的数量是有限的,即不同行的光传感器在未交错设置的情况下,位于该直线坐标的不同坐标处的光传感器的数量较少甚至只等于每一行中设置的光传感器的数量,这限制了光检测单元的检测精度。在不同行的光传感器彼此交错设置的情况下,光检测单元包括的位于不同坐标处的光传感器的数量会增加,相应地,也增加了光检测单元的检测精度。
示例性的,在第二方向上,光检测单元中的光传感器在第二方向上设置为两行,并且第一行和第二行中的光传感器是交错排布的,即第一行中的光传感器与第二行的光传感器在上述直线坐标系中的坐标是交替排布的。因为第一行中的光传感器是间隔排布的且光传感器有一定的尺寸,所以待检测面板的与第一行中的光传感器的间隔区域以及边缘部分对应的区域的光透过率不能被第一行中的光传感器检测,但是该区域的光透过率可以被第二行中的光传感器检测。如此,与光检测单元中只设置一行光传感器或者第一行和第二行中的光传感器没有交错设置的情况相比,在第一行和第二行中的光传感器交错设置的情况下,光检测单元的检测精度可以增加一倍。
例如,在本公开至少一个实施例中,第二方向可以与第一方向垂直。示例性的,在空间直角坐标系中,在第一方向为X轴负方向的情况下,第二方向平行于Y轴。如此,可以保持光传感器阵列在第二方向上的扫描宽度的同时,减小光传感器的数量,降低成本。
在本公开至少一个实施例中,对光传感器的尺寸不做限制。例如,以光传感器为光敏电阻为例,光敏电阻的尺寸可以设置为0.5mm~2mm,例如进一步为0.8mm、1mm、1.2mm、1.5mm等。光敏电阻的尺寸越小,可以在第二方向上排布更多的光敏电阻,增加光敏电阻的排布的密度,从而 提高检测精度。
例如,在本公开至少一个实施例提供的检测装置中,在第二方向上,光传感器阵列的尺寸大于或者等于待检测面板在该方向上的尺寸。如此,光传感器阵列中的光传感器只需要一次扫描即可完成对整个待检测面板的检测,提高检测效率。需要说明的是,如图3所示,待检测面板10中可以设置有显示区域10b和非显示区域10a,显示区域10b用于显示图像,非显示区域10a可以包括虚设区域以及电路区域等,虚设区域可以在后续的切割工艺中切除。在上述情况下,在比较光传感器阵列的尺寸和待检测面板的尺寸的关系时,待检测面板10的尺寸的计算不包括位于待检测面板10的边缘的非显示区域10a,即待检测面板10的用于比较的尺寸可以为区域A在第二方向上的尺寸。
例如,在本公开至少一个实施中,光检测单元中的信号检测单元可以配置为对与显示区域对应的光敏电阻的电阻值进行检测,并且屏蔽对与非显示区域对应的光敏电阻的电阻值的检测。如此,只需要对显示区域的光透过率进行检测,可以消除非显示区域和显示区域的光透过率不同而带来的误差或者数据分析复杂化等问题,降低控制模块对信号检测单元传入的电信号分析和计算的难度,提高控制模块的计算结果(反映不良区域的位置、尺寸等的数据)的准确度。
例如,本公开至少一个实施例提供的检测装置还包括图像获取单元和第二光源,图像获取单元位于待检测面板的一侧,第二光源位于待检测面板的远离图像获取单元的一侧,图像获取单元与控制模块信号连接,第二光源发射出的光线至少部分射向图像获取单元。例如,图像获取单元可以与光检测单元位于待检测面板的同一侧。示例性的,如图1所示,图像获取单元600位于待检测面板10的一侧,第二光源320位于待检测面板10的远离图像获取单元600的一侧,图像获取单元600与控制模块400信号连接,第二光源320发射出的光线至少部分射向图像获取单元600。图像获取单元600可以获得反映待检测面板10的光透过率分布的图像,并且该图像可以通过控制模块上传,以对图像进行分析和储存。如此,远端操作人员可以对图像进行判断,从而进一步确定待检测面板是否出现不良或者对不良的类型进行判断。例如,图像获取单元600可以为摄像机等可以获取图像或者视频的器件。
例如,在本公开至少一个实施例中,第二光源的发光亮度与第一光源的发光亮度相同。如此,图像获取单元获得的图像数据反映的待检测面板的透过率与光检测单元检测的信号数据反映的待检测面板的透过率是相同的,有利于操作人员对图像数据进一步分析,提高对待检测面板的不良的判断(是否为不良、不良的类型等)的准确度。
例如,本公开至少一个实施例提供的检测装置还包括第二驱动单元,配置为固定图像获取单元并与控制模块信号连接,第二驱动单元配置为在控制模块的控制下驱动图像获取单元与不良区域对准。示例性的,如图1所示,第二驱动单元520与控制模块400信号连接并且可以驱动图像获取单元600移动。控制模块400在对光检测单元200检测的数据进行分析之后可以确定不良区域在待检测面板10上的位置,如此,控制模块400控制第二驱动单元520移动以将图像获取单元600移动至与该不良区域对应的位置,从而获取不良区域的图像。如此,图像获取单元600可以只获取不良区域的图像,减少向控制模块400输入的数据量,而且减轻了远端操作人员的工作量,不需要对与存在不良的待检测面板相关的全部图像进行分析,提高了检测效率。
例如,在本公开至少一个实施例中,待检测面板可以为液晶显示面板的情况下,可以在待检测面板的两侧设置偏振片,从而可以预判液晶显示面板在安装偏振片后是否仍会存在不良。示例性的,如图1所示,在光检测单元200和待检测面板10之间、图像获取单元600和待检测面板10之间设置第一偏振片710;在第一光源310和待检测面板10之间、第二光源320和待检测面板10之间设置第二偏振片720。第一偏振片710的偏振方向和第二偏振片720的偏振方向可以相同也可以不相同。液晶显示面板中会设置取向层以对液晶层中的液晶分子进行预取向,利用第一偏振片710和第二偏振片720可以对预取向是否均匀分布进行检测,从而确定液晶显示面板在实际应用中是否会存在显示不良。例如,第一偏振片710的偏振方向和第二偏振片720的偏振方向不相同,且夹角可以设置为30度、45度、60度等。
本公开至少一个实施例提供一种检测设备,包括前述任一实施例中的检测装置。例如,该检测设备中可以设置输出单元和输出单元,输入单元和输出单元可以将待检测面板放入检测装置或者将待检测面板从检测装置 中取出。例如,输出单元可以与检测装置的控制模块连接,在判定待检测面板中存在不良时,将该待检测面板存放至特定区域(例如存储装置)以待人员进一步核查;在判定待检测面板中没有存在不良时,将该待检测面板输入下游设备中。
本公开至少一个实施例提供一种检测装置的检测方法,其中,检测装置包括载台、光检测单元和第一光源,载台包括用于承载待检测件的承载面,光检测单元位于待检测件的一侧,第一光源位于待检测件的远离光检测单元的一侧,第一光源发射出的光线至少部分射向光检测单元;以及检测方法包括:利用第一光源射向光检测单元的光检测待检测件。例如,待检测件为待检测面板。
在该检测方法中,利用光检测单元可以对待检测面板的光透过率进行检测,据此可以检测待检测面板中是否出现不良。在该检测方法中,可以不需要人的干预就能完成对待检测面板是否不良的自动化检测,提高检测效率,降低成本。如此,在实际生产工艺中,可以对每个生产出的产品(例如显示面板)进行检测,提高出厂的产品的良率。
例如,本公开至少一个实施例提供的检测方法还包括:将待检测面板放在承载面上;以及第一光源发射的光线射向待检测面板。例如,在本公开至少一个实施例提供的检测方法中,利用第一光源射向光检测单元的光检测待检测面板包括:利用第一光源通过待检测面板射向光检测单元的光检测待检测面板。例如,在本公开至少一个实施例提供的检测方法中,利用第一光源通过待检测面板射向光检测单元的光检测待检测面板包括:利用光检测单元对待检测面板出射的光的强度进行检测;根据检测结果确定待检测面板中是否存在不良区域。根据上述检测方法,据此可以检测待检测面板中是否出现不良。
例如,本公开至少一个实施例提供的检测方法包括移动待检测面板,重复步骤:第一光源发射的光线射向待检测面板、利用光检测单元对待检测面板出射的光的强度进行检测、根据检测结果确定待检测面板中是否存在不良区域,直到待检测面板检测完成。如此,只需要移动待检测面板就可以使得光检测单元对待检测面板进行扫描式的检测,简化了检测装置的结构,相应地,也简化了检测方法的操作过程。
例如,在本公开至少一个实施例提供的检测方法中,光检测单元包括 光传感器阵列,光传感器阵列包括多个光传感器,光传感器为光敏电阻,利用光检测单元对待检测面板出射的光的强度进行检测包括:检测多个光敏电阻中每个的电阻值;根据检测结果确定待检测面板中是否存在不良区域包括:根据检测结果判断每个光敏电阻的电阻值是否为异常电阻值以确定待检测面板中是否存在不良区域。如此,根据对光敏电阻的电阻值进行分析,如果存在光敏电阻具有异常电阻值,则待检测面板中存在不良区域。
在公开至少一个实施例中,对判定光敏电阻是否具有异常电阻值的具体方法不作限制,可以根据实际工艺进行设计。
例如,在本公开至少一个实施例提供的检测方法中,根据检测结果判断每个光敏电阻的电阻值是否为异常电阻值以确定待检测面板中是否存在不良区域,包括:提供第一阈值范围;当电阻值大于第一阈值范围或者小于第一阈值范围时,确定光敏电阻具有异常电阻值,确定待检测面板中与具有异常电阻值的光敏电阻对应的区域为不良区域。例如,第一阈值范围表示待检测面板未存在不良时光敏电阻的电阻值,第一阈值范围可以为一固定电阻值,也可以以一固定电阻值为基准的浮动值。示例性的,第一阈值范围的数值区间为[A,B],与待检测面板的正常区域(未存在不良)对应的光敏电阻的电阻值在A~B之间,在检测过程中,如果光敏电阻的电阻值小于A或者大于B时,则该光敏电阻具有异常电阻值,据此可以确定待检测面板中是否存在不良区域。
例如,在本公开至少一个实施例提供的检测方法中,根据检测结果判断每个光敏电阻的电阻值是否为异常电阻值以确定待检测面板中是否存在不良区域,包括:当彼此邻近的多个光敏电阻的电阻值与其他光敏电阻的电阻值的差值在某一范围内,且彼此邻近的多个光敏电阻的数量小于光敏电阻总数量的1/2时,确定彼此邻近的多个光敏电阻具有异常电阻值,确定待检测面板的对应于该彼此邻近的多个光敏电阻的区域为不良区域。例如,当光传感器阵列的第一区域内的所有光敏电阻的电阻值都大于或者都小于其它区域的光敏电阻的电阻值,且第一区域的光敏电阻的数量小于光敏电阻总数量的1/2时,确定第一区域的光敏电阻具有异常电阻值,并确定待检测件的对应于第一区域的区域为不良区域。例如,该第一区域为一个连续的区域,或者包括多个分散的子区域。在待检测面板中,不良区域所占的面积通常比较小,相应地,在待检测面板中存在不良区域的情况下, 具有异常电阻值的光敏电阻的数量在所有光敏电阻中的占比小于1/2。如此,只需要对光敏电阻的电阻值进行比较,具有不同电阻值且数量较小(例如小于光敏电阻的总数的1/2)的光敏电阻判定为具有异常电阻值,据此可以确定待检测面板中是否存在不良区域。
例如,在本公开至少一个实施例提供的检测方法中,第一区域的光敏电阻的电阻值与其它光敏电阻的电阻值的差值不小于其它光敏电阻的电阻值的3.2%。例如,在面板没有发生不良的情况下,光敏电阻在光照条件下具有第一电阻值,在检测过程中,如果光敏电阻值小于等于电阻值的96.8%或者大于等于第一电阻值的113.2%,则该判定该光敏电阻具有异常电阻值,待检测件的对应于该光敏电阻的区域为不良区域。
例如,在本公开至少一个实施例提供的检测方法中,待检测面板包括显示区域和非显示区域,检测光敏电阻的电阻值包括:对与显示区域对应的光敏电阻的电阻值进行检测,并且屏蔽对与非显示区域对应的光敏电阻的电阻值的检测。如此,只需要对显示区域的光透过率进行检测,可以消除非显示区域和显示区域的光透过率不同而带来的误差或者数据分析复杂化等问题,降低数据分析的难度,提高检测结果的准确度。
例如,本公开至少一个实施例提供的检测方法还包括获得待检测面板中的不良区域的尺寸以及位置。如此,可以有助于后续工艺中对不良区域进行进一步分析,例如可以利用图像获取单元获取不良区域的图像以使得远端操作人员进行进一步的分析;还可以据此对待检测面板中的不良的类型进行判断。
例如,在本公开至少一个实施例提供的检测方法中,待检测面板沿平行于承载面的第一方向移动,光敏电阻沿平行于承载面的第二方向排布,第一方向和第二方向交叉,获得待检测面板中存在的不良区域的尺寸以及位置包括:根据具有异常电阻值的光敏电阻确定待检测面板中的与具有异常电阻值的光敏电阻对应的不良区域在第二方向上的第一坐标;根据待检测面板的移动速度和检测到待检测面板中的对应的不良区域的时间与开始检测时间之差,确定对应的不良区域在第一方向上的第二坐标;根据第一坐标和第二坐标确定对应的不良区域的位置,根据具有异常电阻值的光敏电阻在待检测面板上的投影面积确定对应的不良区域的尺寸。例如,检测方法还包括在开始检测至检测结束的时间段内,统计所有对应的不良区域 的尺寸,确定位置。
例如,第一方向为X轴的负方向,第二方向平行于Y轴,在开始检测时,确定待检测面板的初始坐标,在检测过程中,待检测面板可以匀速运动。如此,根据检测开始的时间以及待检测面板的运动速度可以确定具有异常电阻值的光敏电阻与待检测面板的相对坐标,据此定位不良区域在待检测面板中的位置。在完成检测之后,统计所有不良区域在待检测面板上的坐标可以确定不良区域在待检测面板上的分布。需要说明的是,每个不良区域的尺寸与光检测单元的精度(例如光敏电阻的尺寸)相关。在不考虑光敏电阻的尺寸的情况下,每个不良区域仅代表一个坐标点,如此,在统计不良区域之后,由坐标点相邻的所有不良区域所限定的面积可以表示待检测面板中的具有不良的部分。
例如,本公开至少一个实施例提供的检测方法还包括对具有异常电阻值的光敏电阻的电阻值以及不良区域的尺寸进行分析,判定待检测面板的不良的类型。以待检测面板为液晶显示面板为例,如果液晶层中掺杂异物(例如颗粒等固体异物),该区域的光透过率会降低,相应地,与该区域对应的光敏电阻的电阻值增加;如果液晶层中混入气泡(例如氮气泡或者真空泡,则该区域的光透过率会增加,相应地,与该区域对应的光敏电阻的电阻值减小。需要说明的是,具体不良类型需要根据检测装置的实际情况进行判断,可以需要积累之前检测过程中的不良类型与光敏电阻变化的关系,记录存储相应数据并作为判断后续检测过程中的不良类型的依据。
例如,在本公开至少一个实施例提供的检测方法中,检测装置还包括分别设置于待检测面板的两侧的图像获取单元和第二光源,第二光源发射出的光线至少部分射向图像获取单元,检测方法还包括:第二光源发射的光线射向待检测面板;移动图像获取单元至与不良区域相对的位置,利用图像获取单元获取不良区域的图像。利用图像获取单元可以获得不良区域的图像,远端操作人员可以对图像进行判断,从而进一步确定待检测面板是否出现不良或者对不良的类型进行判断。
需要说明的是,在本公开至少一个实施例提供的检测装置的检测方法中,检测装置的具体结构可以参考前述实施例(例如图1~图3所示的关于检测装置的结构的实施例)中的相关内容,在此不做赘述。
图4为本公开一个实施例提供的检测装置的检测方法的过程图。下面, 在本公开至少一个实施例中,结合图1所示的检测装置,如图4所示,检测装置的检测方法可以包括如下过程。
S1:将待检测面板放在载台的承载面上,并且记录待检测面板的初始坐标。例如,该初始坐标可以为以待检测面板为基准建立的平面直角坐标系中的坐标,该平面直角系的坐标轴可以为前述实施例中的空间直角坐标系的X轴和Y轴。
S2:驱动待检测面板沿第一方向匀速运动,使得光检测单元可以对待检测面板的全部区域进行检测。例如,第一方向为X轴负方向。
S3:对光检测单元的检测数据进行分析,判定待检测面板中是否存在不良区域。
S4:在待检测面板中存在不良区域的情况下,根据初始坐标以及检测数据进行分析以计算不良区域的尺寸以及在待检测面板中的位置。
对待检测面板中是否存在不良区域的判定以及对不良区域的尺寸和位置的确定方法可以参考前述实施例(关于检测装置的检测方法的实施例)中的相关说明,在此不做赘述。
S5:驱动图像获取单元移动至与待检测面板的不良区域相对的位置,以获取不良区域的图像。不良区域的图像可以上传至远端以供操作人员对不良区域的认定以及不良的类型进行进一步判断和分析。
本公开至少一个实施例提供一种检测装置及其检测方法、检测设备,并且可以具有以下至少一项有益效果:
(1)在本公开至少一个实施例提供的检测装置中,光检测单元可以对待检测面板的光透过率的分布进行检测,据此可以检测待检测面板中是否出现不良,如此,检测装置可以不需要人的干预就能完成对待检测面板是否不良的自动化检测,提高检测效率,降低成本。
(2)在本公开至少一个实施例提供的检测装置中,可以对每个生产出的产品(例如显示面板)进行检测,提高出厂的产品的良率。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (28)

  1. 一种检测装置,包括:
    载台,包括用于承载待检测件的承载面;
    光检测单元,位于所述载台的一侧;
    第一光源,位于所述载台的与所述光检测单元的相反的一侧,
    其中,所述第一光源发射出的光线至少部分射向所述光检测单元。
  2. 根据权利要求1所述的检测装置,其中,所述光检测单元包括:
    光传感器阵列,包括多个光传感器,
    其中,所述待检测件包括被所述第一光源照亮的第一照亮区域,所述光传感器阵列在所述待检测件所在面上的正投影与所述第一照亮区域至少部分交叠。
  3. 根据权利要求2所述的检测装置,其中,
    所述光传感器阵列在所述待检测件所在面上的正投影与所述第一照亮区域重合。
  4. 根据权利要求2所述的检测装置,其中,
    所述光传感器阵列在所述待检测件所在面上的正投影位于所述第一照亮区域之内。
  5. 根据权利要求2-4中任一项所述的检测装置,其中,所述光检测单元还包括:
    信号检测单元,与所述光传感器阵列信号连接,且配置为检测所述光传感器的电信号。
  6. 根据权利要求5所述的检测装置,还包括:
    控制模块,与所述光检测单元信号连接,配置为根据所述信号检测单元的检测结果判断所述待检测件是否存在不良区域。
  7. 根据权利要求6所述的检测装置,其中,
    所述载台包括与所述控制模块信号连接的第一驱动单元,所述第一驱动单元配置为驱动所述待检测件沿平行于所述承载面的第一方向移动。
  8. 根据权利要求7所述的检测装置,其中,在所述光传感器阵列中,
    多个所述光传感器在第二方向上排布为一行;或者
    多个所述光传感器阵列排布为第二方向上的多行、所述第一方向上的 多列;
    其中,所述第一方向和所述第二方向平行于所述承载面,所述第一方向和所述第二方向交叉。
  9. 根据权利要求8所述的检测装置,其中,
    所述第一方向和所述第二方向垂直,以及
    在所述第二方向上,所述光传感器阵列的尺寸大于或者等于所述待检测件的尺寸。
  10. 根据权利要求6-9中任一项所述的检测装置,还包括:
    图像获取单元,位于所述待检测件的一侧;
    第二光源,位于所述待检测件的远离所述图像获取单元的一侧;
    其中,所述图像获取单元与所述控制模块信号连接,所述第二光源发射出的光线至少部分射向所述图像获取单元。
  11. 根据权利要求10所述的检测装置,还包括:
    第二驱动单元,配置为固定所述图像获取单元并与所述控制模块信号连接;
    其中,所述第二驱动单元配置为在所述控制模块的控制下驱动所述图像获取单元与所述不良区域对准。
  12. 根据权利要求1-11任一所述的检测装置,其中,
    所述待检测件为待检测面板,所述待检测件设置在所述载台的承载面上。
  13. 一种检测设备,包括权利要求1-12中任一项所述的检测装置。
  14. 一种检测装置的检测方法,其中,所述检测装置包括:
    载台,包括用于承载待检测件的承载面;
    光检测单元,位于所述待检测件的一侧;
    第一光源,位于所述载台的与所述光检测单元的相反的一侧,其中,所述第一光源发射出的光线至少部分射向所述光检测单元;以及
    所述检测方法包括:
    利用所述第一光源射向所述光检测单元的光检测所述待检测件。
  15. 根据权利要求14所述的检测方法,还包括:
    将所述待检测件放在所述承载面上;
    所述第一光源发射的光线射向所述待检测件。
  16. 根据权利要求14或15所述的检测方法,其中,所述利用所述第一光源射向所述光检测单元的光检测所述待检测件,包括:利用所述第一光源通过所述待检测件射向所述光检测单元的光检测所述待检测件。
  17. 根据权利要求16所述的检测方法,其中,所述利用所述第一光源通过所述待检测件射向所述光检测单元的光检测所述待检测件包括:
    利用所述光检测单元对所述待检测件出射的光的强度进行检测;
    根据检测结果确定所述待检测件中是否存在不良区域。
  18. 根据权利要求17所述的检测方法,包括:
    移动所述待检测件,重复步骤:所述第一光源发射的光线射向所述待检测件、利用所述光检测单元对所述待检测件出射的光的强度进行检测、根据检测结果确定所述待检测件中是否存在不良区域,
    直到所述待检测件检测完成。
  19. 根据权利要求17或18所述的检测方法,其中,所述光检测单元包括光传感器阵列,所述光传感器阵列包括多个光传感器,所述光传感器为光敏电阻,
    所述利用所述光检测单元对所述待检测件出射的光的强度进行检测包括:
    检测多个所述光敏电阻中每个的电阻值;
    所述根据检测结果确定所述待检测件中是否存在不良区域包括:
    根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域。
  20. 根据权利要求19所述的检测方法,其中,所述根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域,包括:
    提供第一阈值范围;
    当电阻值大于所述第一阈值范围或者小于所述第一阈值范围时,确定所述光敏电阻具有异常电阻值,确定所述待检测件中与具有所述异常电阻值的所述光敏电阻对应的区域为所述不良区域。
  21. 根据权利要求19所述的检测方法,其中,所述根据检测结果判断每个所述光敏电阻的电阻值是否为异常电阻值以确定所述待检测件中是否存在所述不良区域,包括:
    当所述光传感器阵列的第一区域内的所有光敏电阻的电阻值都大于或者都小于其它区域的光敏电阻的电阻值,且所述第一区域的光敏电阻的数量小于所述光敏电阻总数量的1/2时,确定所述第一区域的光敏电阻具有异常电阻值,并确定所述待检测件的对应于所述第一区域的区域为所述不良区域。
  22. 根据权利要求21所述的检测方法,其中,
    所述第一区域的所述光敏电阻的电阻值与其它光敏电阻的电阻值的差值不小于所述其它光敏电阻的电阻值的3.2%。
  23. 根据权利要求19-22中任一项所述的检测方法,其中,所述待检测件包括显示区域和非显示区域,所述检测所述光敏电阻的电阻值包括:
    对与所述显示区域对应的所述光敏电阻的电阻值进行检测,并且屏蔽对与所述非显示区域对应的所述光敏电阻的电阻值的检测。
  24. 根据权利要求19-23中任一项所述的检测方法,还包括:
    获得所述待检测件中的所述不良区域的尺寸以及位置。
  25. 根据权利要求24所述的检测方法,其中,所述待检测件沿平行于所述承载面的第一方向移动,所述光敏电阻沿平行于所述承载面的第二方向排布,所述第一方向和所述第二方向交叉,所述获得所述待检测件中存在的所述不良区域的尺寸以及位置包括:
    根据具有所述异常电阻值的所述光敏电阻确定所述待检测件中的与具有所述异常电阻值的所述光敏电阻对应的不良区域在所述第二方向上的第一坐标;
    根据所述待检测件的移动速度和检测到所述待检测件中的所述对应的不良区域的时间与开始检测时间之差,确定所述对应的不良区域在所述第一方向上的第二坐标;
    根据所述第一坐标和所述第二坐标确定所述对应的不良区域的位置,根据具有所述异常电阻值的所述光敏电阻在所述待检测件上的投影面积确定所述对应的不良区域的尺寸;
    所述检测方法,还包括:
    在开始检测至检测结束的时间段内,统计所有所述对应的不良区域的尺寸,确定位置。
  26. 根据权利要求24或25所述的检测方法,还包括:
    对具有所述异常电阻值的所述光敏电阻的电阻值以及所述不良区域的尺寸进行分析,判定所述待检测件的不良的类型。
  27. 根据权利要求24或25所述的检测方法,其中,
    所述待检测件包括液晶层,所述的不良的类型包括所述液晶层中掺杂固体异物、所述液晶层中具有气泡。
  28. 根据权利要求24-27中任一项所述的检测方法,其中,所述检测装置还包括分别设置于所述待检测件的两侧的图像获取单元和第二光源,所述第二光源发射出的光线至少部分射向所述图像获取单元,所述检测方法还包括:
    所述第二光源发射的光线射向所述待检测件;以及
    移动所述图像获取单元至与所述不良区域相对的位置,利用所述图像获取单元获取所述不良区域的图像。
PCT/CN2019/071647 2018-05-09 2019-01-14 检测装置及其检测方法、检测设备 WO2019214287A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/642,344 US11635646B2 (en) 2018-05-09 2019-01-14 Detecting device and detecting method thereof, and detecting apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810437048.7 2018-05-09
CN201810437048.7A CN108628015B (zh) 2018-05-09 2018-05-09 检测装置及其检测方法、检测设备

Publications (1)

Publication Number Publication Date
WO2019214287A1 true WO2019214287A1 (zh) 2019-11-14

Family

ID=63692262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071647 WO2019214287A1 (zh) 2018-05-09 2019-01-14 检测装置及其检测方法、检测设备

Country Status (3)

Country Link
US (1) US11635646B2 (zh)
CN (1) CN108628015B (zh)
WO (1) WO2019214287A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108628015B (zh) 2018-05-09 2022-05-17 京东方科技集团股份有限公司 检测装置及其检测方法、检测设备
CN109990979B (zh) * 2019-04-11 2021-12-03 业成科技(成都)有限公司 检测治具及检测系统
CN110780476B (zh) * 2019-11-13 2022-03-08 Tcl华星光电技术有限公司 显示面板对组设备以及显示面板对位检测方法
CN111897154B (zh) * 2020-08-21 2023-08-18 京东方科技集团股份有限公司 透过率测试治具及测试方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201333445A (zh) * 2012-01-11 2013-08-16 Sumitomo Chemical Co 檢查裝置及光學部材貼合體之製造裝置
CN104819985A (zh) * 2015-03-30 2015-08-05 智机科技(深圳)有限公司 用于检测可透光材质表面图像的方法及检测设备
CN105784723A (zh) * 2014-12-24 2016-07-20 日东电工株式会社 透射式缺陷检查装置和透射式缺陷检查方法
CN105954900A (zh) * 2016-07-08 2016-09-21 京东方科技集团股份有限公司 基板检测方法及基板检测设备
CN107084927A (zh) * 2017-06-12 2017-08-22 信利(惠州)智能显示有限公司 基板色度检测方法及装置
CN108628015A (zh) * 2018-05-09 2018-10-09 京东方科技集团股份有限公司 检测装置及其检测方法、检测设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50113144D1 (de) * 2000-06-28 2007-11-29 Bosch Gmbh Robert Vorrichtung zum bildlichen Erfassen von Stückgütern
DE102005055655A1 (de) * 2005-11-22 2007-05-31 Siemens Ag Vorrichtung zum Ermitteln des Zustandes eines Förderbandes
KR101286534B1 (ko) 2008-02-29 2013-07-16 엘지디스플레이 주식회사 액정표시장치의 검사장치 및 검사방법
KR101291843B1 (ko) 2008-12-19 2013-07-31 엘지디스플레이 주식회사 액정표시장치의 검사장치 및 그의 검사방법
CN102043266B (zh) * 2009-10-21 2012-08-01 北京京东方光电科技有限公司 检测薄膜场效应晶体管阵列基板的设备及方法
TW201423089A (zh) * 2012-12-12 2014-06-16 Utechzone Co Ltd 檢測裝置
CN105182616B (zh) * 2015-08-28 2018-10-09 京东方科技集团股份有限公司 取向膜涂敷检测设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201333445A (zh) * 2012-01-11 2013-08-16 Sumitomo Chemical Co 檢查裝置及光學部材貼合體之製造裝置
CN105784723A (zh) * 2014-12-24 2016-07-20 日东电工株式会社 透射式缺陷检查装置和透射式缺陷检查方法
CN104819985A (zh) * 2015-03-30 2015-08-05 智机科技(深圳)有限公司 用于检测可透光材质表面图像的方法及检测设备
CN105954900A (zh) * 2016-07-08 2016-09-21 京东方科技集团股份有限公司 基板检测方法及基板检测设备
CN107084927A (zh) * 2017-06-12 2017-08-22 信利(惠州)智能显示有限公司 基板色度检测方法及装置
CN108628015A (zh) * 2018-05-09 2018-10-09 京东方科技集团股份有限公司 检测装置及其检测方法、检测设备

Also Published As

Publication number Publication date
CN108628015A (zh) 2018-10-09
US11635646B2 (en) 2023-04-25
US20200264459A1 (en) 2020-08-20
CN108628015B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2019214287A1 (zh) 检测装置及其检测方法、检测设备
KR20030093956A (ko) 편광 필름의 검사법 및 검사 장치
US20200378899A1 (en) Glass processing apparatus and methods
US20070115464A1 (en) System and method for inspection of films
KR20190055546A (ko) 검사 장치
KR20030093957A (ko) 편광 필름의 검사 방법 및 검사 장치
KR20110078958A (ko) 엘시디 패널 외관 검사장치
JPWO2012153718A1 (ja) ガラスシートの端面検査方法、及びガラスシートの端面検査装置
KR101977243B1 (ko) 글라스 기판의 검사장치, 이를 이용한 검사방법 및 증착장치
TWI470210B (zh) 顯示裝置之光學層件之缺陷檢測方法
TW202127012A (zh) 光學檢測設備與光學檢測方法
JP2007212690A (ja) 液晶パネルの検査装置及びその検査方法
KR102034042B1 (ko) 평판 디스플레이 패널의 외관 스크래치 검사 방법
TWI464377B (zh) 測試裝置、檢測系統及其自動檢測之方法
KR101188404B1 (ko) 디스플레이 패널 글라스 표면의 결함 검사 방법
TWI584399B (zh) Electronic parts conveyor and electronic parts inspection device
TWM477571U (zh) 一種用以擷取一物件影像的擷取裝置以及影像檢測裝置
KR102063680B1 (ko) 표시 패널의 검사 장치 및 검사 방법
KR100478448B1 (ko) 액정 패널의 에지면 검사 방법
KR102495565B1 (ko) 광학 표시 패널의 손상 검사 방법
KR101046566B1 (ko) 기판 검사 장치 및 이를 이용한 기판 검사 방법
US11692947B2 (en) Die bonding apparatus and manufacturing method for semiconductor device
JP3700486B2 (ja) 密着型イメージセンサic実装位置検査方法及び密着型イメージセンサic実装位置検査装置
CN116678895B (zh) 一种屏幕划痕检测方法、系统及存储介质
KR20190016368A (ko) 평판 디스플레이 패널의 엣지면 검사 방법 및 기록매체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800787

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19800787

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19800787

Country of ref document: EP

Kind code of ref document: A1