WO2021035917A1 - 一种高频线路板材料层结构的压合成型方法及其制品 - Google Patents
一种高频线路板材料层结构的压合成型方法及其制品 Download PDFInfo
- Publication number
- WO2021035917A1 WO2021035917A1 PCT/CN2019/112804 CN2019112804W WO2021035917A1 WO 2021035917 A1 WO2021035917 A1 WO 2021035917A1 CN 2019112804 W CN2019112804 W CN 2019112804W WO 2021035917 A1 WO2021035917 A1 WO 2021035917A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- frequency
- material layer
- cured
- semi
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
- H05K3/022—Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/06—Lamination
- H05K2203/068—Features of the lamination press or of the lamination process, e.g. using special separator sheets
Definitions
- the invention relates to the field of circuit boards, and in particular to a method for compacting a new material layer structure of a high-frequency circuit board and its products.
- the communication frequency is fully high-frequency, and high-speed and large-capacity applications are emerging one after another.
- the network frequency has continued to increase.
- the goal of the first phase is to increase the communication frequency to 6GHz by 2020
- the goal of the second phase is to further increase to 30-60GHz after 2020.
- the signal frequency of terminal antennas such as smart phones is constantly increasing, high frequency applications are increasing, and the demand for high speed and large capacity is increasing.
- soft boards, as antennas and transmission lines in terminal equipment will also usher in technological upgrades.
- the traditional soft board has a multilayer structure composed of copper foil, insulating base material, covering layer, etc., using copper foil as the conductor circuit material, PI film as the circuit insulating base material, PI film and epoxy resin adhesive as protection and isolation
- the cover layer of the circuit is processed into a PI soft board through a certain process. Since the performance of the insulating base material determines the final physical and electrical properties of the soft board, in order to adapt to different application scenarios and different functions, the soft board needs to use base materials with various performance characteristics.
- the most widely used soft board substrate is mainly polyimide (PI), but due to the large dielectric constant and loss factor of the PI substrate, high moisture absorption, and poor reliability, the PI soft board The high frequency transmission loss is serious and the structural characteristics are poor, and it has been unable to adapt to the current high frequency and high speed trend. Therefore, with the emergence of new 5G technology products, the signal transmission frequency and speed of existing circuit boards have been difficult to meet the requirements of 5G technology products.
- PI polyimide
- the purpose of the present invention is to provide a method for compacting a new material layer structure of a high-frequency circuit board and its products.
- the new material layer structure of a high-frequency circuit board produced has high-frequency characteristics and high-speed transmission.
- the signal performance can adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications, and is especially suitable for new 5G technology products; this new material layer structure of high-frequency circuit boards is used as a whole structure in the subsequent circuit board production process , Can be used as a material for circuit boards to produce circuit board structures such as single-layer circuit boards, multi-layer flexible circuit boards, and multi-layer flexible and rigid boards, which brings great convenience to the subsequent production of circuit boards and simplifies the production process , To speed up the production of circuit boards and reduce production costs.
- a layer of semi-cured high-frequency material is coated on the other surface of the film to form a new material layer structure for high-frequency circuit boards.
- the step (3) further includes the following step: spreading release paper or PET release film on the back of the semi-cured high-frequency material.
- the film is any one of PI film, MPI film, LCP film, TFP film and PTFE film.
- the semi-cured high-frequency material is MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional glue, or LDK high-frequency functional glue and resistance A mixture of copper ion migration glue.
- the LDK high-frequency functional glue is obtained by adding Teflon or LCP material to the AD glue
- the anti-copper ion migration glue is obtained by adding a copper ion trapping agent to the AD glue, and then highly purified obtain.
- the step (3) also includes the following steps: hot-press copper foil on the back of the semi-cured high-frequency material, solidify the semi-cured high-frequency material, and integrate it with the synthetic film to form a new circuit board Double-sided material layer structure.
- the semi-cured high frequency material is the same material as the film.
- a colored filler is added to at least one of the semi-cured high-frequency material and the film.
- the colored filler is carbide.
- the new material layer structure of the high-frequency circuit board prepared by implementing the above method is characterized in that it comprises an upper copper foil layer, a synthetic film layer and a semi-cured high-frequency material layer which are sequentially stacked from top to bottom.
- the synthetic film layer is any one of PI film, MPI film, LCP film, TFP film and PTFE film.
- the semi-cured high-frequency material layer is MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional glue, or a mixture of LDK high-frequency functional glue and anti-copper ion migration glue.
- a release paper or a PET release film is arranged on the back of the semi-cured high-frequency material layer.
- a copper foil layer is hot-pressed on the back of the semi-cured high-frequency material layer, the semi-cured high-frequency material layer is the same as the synthetic film layer, and the semi-cured high-frequency material layer is the same as the synthetic film layer.
- the film is laminated into one body.
- At least one of the semi-cured high-frequency material layer and the synthetic film layer is a colored layer.
- the new material layer structure of high-performance high-frequency circuit board is produced by the pressing process, and the prepared new material layer structure of the high-frequency circuit board as a whole structure can be used as a circuit board in the subsequent production process of the circuit board
- the production materials through subsequent processes such as direct hot pressing with other materials or circuit boards, can produce circuit board structures such as single-layer circuit boards, multilayer flexible circuit boards, and multilayer flexible and rigid boards. Production brings great convenience, simplifies the production process, speeds up circuit board production, shortens product processing time, improves process processing capabilities, and reduces production costs; moreover, the product structure is optimized and product performance is improved.
- Semi-cured high-frequency material can be MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional glue, or LDK high-frequency functional glue and
- the mixture of anti-copper ion migration glue makes the prepared high-frequency circuit board new material layer structure have high-frequency characteristics, can transmit high-frequency signals, and accelerate the transmission speed of high-frequency signals, realize high-speed transmission of high-frequency signals, and consume power Low volume and high-frequency signal transmission loss, and further improve the signal transmission performance of the circuit board, which can adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications, and is especially suitable for new 5G technology products.
- Figure 1 is a cross-sectional view of the structure in the first embodiment
- Figure 2 is a cross-sectional view of the structure in the second embodiment.
- This embodiment provides a compacting method for a new material layer structure of a high-frequency circuit board, which includes the following steps:
- a layer of semi-cured high-frequency material is coated on the other surface of the film to form a new material layer structure for high-frequency circuit boards.
- the step (3) also includes the following steps: apply release paper or PET release film on the back of the semi-cured high-frequency material, thereby obtaining a single-sided material layer structure of the circuit board, and the release paper Or PET release film to protect semi-cured high frequency materials.
- the new material layer structure of the high-frequency circuit board prepared in this embodiment is stacked and pressed in multiple groups to form a multi-layer flexible circuit board.
- the semi-cured high-frequency material of the first group of high-frequency circuit board new material layer structure and the copper foil of the second group of high-frequency circuit board new material layer structure with the circuit formed can be pressed together.
- the new material layer structure of the high-frequency circuit board is hot-pressed onto the double-sided glass fiber cloth, and then copper foil is hot-pressed on the side of the glass fiber cloth away from the new material layer structure of the high-frequency circuit board.
- the circuit is formed on the copper foil to form a multi-layer flexible and hard board.
- the adhesive of the glass fiber cloth double-sided tape is at least one of the anti-copper ion migration adhesive and the LDK high-frequency functional adhesive.
- the new material layer structure of the high-frequency circuit board can also be directly hot pressed to other circuit boards, and the semi-cured high-frequency material on the new material layer structure of the high-frequency circuit board is combined with other circuit boards by contact and hot pressing.
- the adhesive force generated by the TPI film as an intermediary is used to heat the film and the copper foil together.
- the TPI film is a thermoplastic polyimide film, which has excellent heat resistance, super dimensional stability, and excellent Mechanical properties, good flame retardancy, excellent electrical insulation properties and dimensional stability, excellent oil resistance and solvent resistance, and good radiation resistance. After hot pressing the copper foil on the semi-cured TPI film, the semi-cured TPI film is cured and combined with the film into an integrated structure to form a composite film.
- the film is any one of PI film, MPI film, LCP film, TFP film, and PTFE film.
- PI film, MPI film, LCP film, TFP film and PTFE film are as follows:
- PI film is a polyimide film (PolyimideFilm), which is a thin-film insulating material with good performance. It is made of pyromellitic dianhydride (PMDA) and diaminodiphenyl ether (DDE) in a strong polar solvent through condensation polymerization. Casting film and then imidization. PI film has excellent high and low temperature resistance, electrical insulation, adhesion, radiation resistance, and dielectric resistance. It can be used for a long time in the temperature range of -269°C ⁇ 280°C, and can reach a high temperature of 400°C in a short time. The glass transition temperatures are respectively 280°C (Upilex R), 385°C (Kapton) and above 500°C (Upilex S). The tensile strength is 200MPa at 20°C, and greater than 100MPa at 200°C. It is particularly suitable for use as a base material for flexible circuit boards.
- PMDA pyromellitic dianhydride
- DDE dia
- MPI Modified PI
- PI polyimide
- MPI is a non-crystalline material, it has a wide operating temperature, is easy to operate under low-temperature laminating copper foil, and its surface can be easily combined with copper, and it is inexpensive.
- the fluoride formula has been improved so that the MPI film can transmit high-frequency signals at 10-15 GHz.
- the MPI film is used as the base material required for the preparation of the new material layer structure of the high-frequency circuit board in this embodiment, which is particularly suitable for the preparation of flexible circuit boards to achieve the purpose of high-speed and stable reception and transmission of information.
- Terminal applications such as 5G mobile phones, high-frequency signal transmission Field, autonomous driving, radar, cloud server and smart home, etc.
- the use of MPI film as the base material required for the preparation of the new material layer structure of the high-frequency circuit board in this embodiment can not only improve the stability and dimensional stability of the overall performance of the circuit board, but also can transmit high-frequency signals and speed up high-frequency signals.
- the transmission speed, reduce power consumption and high-frequency signal transmission loss, improve the signal transmission performance of the circuit board, can adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications, and is especially suitable for new 5G technology products.
- LCP film is Liquid Crystal Polymer, which is a new type of thermoplastic organic material, which generally exhibits liquid crystallinity in the molten state.
- LCP film is a liquid crystal polymer film.
- LCP film has high strength, high rigidity, high temperature resistance, thermal stability, bendability, dimensional stability, good electrical insulation and other properties. Compared with PI film, it has better properties. It is a kind of film material that is more excellent than PI film because of its water resistance. LCP film can realize high frequency and high speed soft board under the premise of ensuring high reliability.
- the LCP film has the following excellent electrical characteristics:
- the thermal expansion characteristic is very small, and it can be used as an ideal high-frequency packaging material.
- LCP film as the base material required to prepare the new material layer structure of the high-frequency circuit board in this embodiment can not only improve the stability and dimensional stability of the overall performance of the circuit board, but also because the overall LCP film is smoother, the dielectric loss of the LCP film material is more Conductor loss is smaller, flexible and tight at the same time, it can transmit high-frequency signals and accelerate the transmission speed of high-frequency signals, improve the signal transmission performance of circuit boards, and adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications .
- the LCP film has a good application prospect for manufacturing high-frequency devices, and is particularly suitable for new 5G technology products.
- the LCP soft board made of LCP film as the base material has better flexibility and can further improve the space utilization rate compared to the PI soft board.
- Flexible electronics can make use of a smaller bending radius to be further thinner and lighter, so the pursuit of flexibility is also a manifestation of miniaturization.
- the LCP soft board can withstand more bending times and a smaller bending radius than the traditional PI soft board, so the LCP soft board has better Flexible performance and product reliability.
- the excellent flexibility allows the LCP soft board to freely design the shape, so as to make full use of the small space in the smart phone and further improve the space utilization efficiency.
- LCP film as the base material can be made into miniaturized high-frequency and high-speed LCP soft boards.
- TFP is a unique thermoplastic material. Compared with conventional PI materials, TFP has the following characteristics:
- Low dielectric constant low Dk value, the Dk value is specifically 2.55; and the Dk value of conventional PI is 3.2; therefore, the signal propagation speed is fast, the thickness is thinner, the interval is closer, and the power processing capability is higher;
- the use of TFP film as the substrate required for the preparation of the new material layer structure of the high-frequency circuit board in this embodiment can not only improve the stability and dimensional stability of the overall performance of the circuit board, but also transmit high-frequency signals and speed up high-frequency signals.
- the transmission speed, reduce power consumption and high-frequency signal transmission loss, improve the signal transmission performance of the circuit board, can adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications, and is especially suitable for new 5G technology products.
- PTFE Chinese name: Polytetrafluoroethylene, nicknames: Teflon, Teflon, Teflon, Teflon, Deflon.
- Polytetrafluoroethylene (PTFE) has excellent dielectric properties, chemical resistance, heat resistance, flame retardancy, low dielectric constant and dielectric loss and small changes in the high frequency range. The main performance is as follows:
- the use of PTFE film as the base material required for the preparation of the new material layer structure of the high-frequency circuit board in this embodiment can not only improve the stability and dimensional stability of the overall performance of the circuit board, but also transmit high-frequency signals and speed up high-frequency signals.
- the transmission speed, reduce power consumption and high-frequency signal transmission loss, improve the signal transmission performance of the circuit board, can adapt to the current high-frequency and high-speed trend from wireless networks to terminal applications, and is especially suitable for new 5G technology products.
- any one of the above-mentioned PI film, MPI film, LCP film, TFP film, and PTFE film as the substrate required for the preparation of the new material layer structure of the high-frequency circuit board in this embodiment is particularly suitable for flexible circuits.
- Boards, especially MPI film, LCP film, TFP film and PTFE film can not only improve the overall performance of flexible circuit boards, but also have high-frequency characteristics, which can greatly accelerate the transmission of high-frequency signals, realize high-speed transmission of high-frequency signals, and reduce Power consumption and high-frequency signal transmission loss are especially suitable for new 5G technology products.
- the semi-cured high-frequency material is MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional glue, or LDK high-frequency functional glue and anti-copper ion migration glue mixture.
- MPI film, LCP film, TFP film and PTFE film are all high-frequency film materials that can speed up signal transmission frequency and speed, transmit high-frequency signals, and improve the signal transmission performance of circuit boards, which can not only improve the overall flexible circuit board. Performance and high-frequency characteristics can greatly accelerate the transmission of high-frequency signals and realize high-speed transmission of high-frequency signals. It is especially suitable for new 5G technology products.
- the LDK high-frequency functional adhesive As for the LDK high-frequency functional adhesive, it is obtained by adding Teflon or LCP material to the conventional AD adhesive. Makes the molecular distribution inside the semi-cured LDK high-frequency functional adhesive more compact and uniform, and does not consume energy.
- LDK high-frequency functional adhesive has the function of increasing the signal transmission frequency and anti-magnetic interference to improve the signal transmission performance of the circuit board. Specifically, It can effectively improve the speed of the circuit board in the working state to convey the instructions issued by the central area (chip), and quickly transmit it to each component, so that the equipment (such as mobile phones, communication base station equipment) can operate quickly without sluggishness, crashes, etc. , To make the communication process of new 5G technology products smooth as a whole.
- the anti-copper ion migration glue it is obtained by adding reagents such as copper ion trapping agent to the AD glue, and then highly purified.
- the liquid AD glue may be a conventional AD glue.
- Inorganic ion exchangers such as IXE-700F, IXE-750, etc.
- Inorganic ion exchangers have the ability to trap copper ions, which can prevent copper ions from migrating from line to line to the AD glue.
- the copper ion trapping agent After adding the copper ion trapping agent, the copper ion trapping agent has no effect on the performance of the AD glue, but can improve the performance stability of the AD glue.
- the conventional AD glue contains epoxy resin, tackifier, plasticizer and various fillers. After a high degree of purification process, the purity of the epoxy resin component in the AD glue can be improved, and the copper between the circuit and the circuit can be improved. The possibility of ion migration from AD glue is significantly reduced, and the purpose of anti-copper ion migration is achieved. Specifically, there is a certain gap between the two components in the conventional AD glue, and copper ions can migrate through the gap. After the concentration of the conventional AD glue is purified, the concentration of the other components decreases significantly, and the concentration of the other components decreases significantly. The gaps between other components are greatly reduced, thereby reducing the gaps available for the migration of copper ions, so as to achieve the purpose of resisting the migration of copper ions.
- the anti-copper ion migration adhesive Since the anti-copper ion migration adhesive has the function of low particle material anti-copper ion migration, it can effectively ensure that the circuit can work safely and effectively in the working state, and there will be no ion migration phenomenon between the circuit and the circuit, and prevent the circuit and the circuit from appearing during the use of the equipment.
- the conduction and collision between the lines cause the circuit short circuit, combustion, fire and explosion, etc., so the lines play a good role in protection and protection.
- the semi-cured high-frequency material is a mixture of LDK high-frequency functional glue and anti-copper ion migration glue, it is enough to mix LDK high-frequency functional glue and anti-copper ion migration glue, so that the semi-cured high-frequency material has high-speed transmission at the same time. Frequency signal and anti-copper ion migration performance.
- the film and the semi-cured high-frequency material may be the same material or different materials.
- both the film and the semi-cured high-frequency material are thin films, or the film is thin-film, and the semi-cured high-frequency material is glue.
- the best way is that the film and the semi-cured high-frequency material are both MPI films, or both the film and the semi-cured high-frequency material are LCP films, or the film and the semi-cured high-frequency materials are both LCP films.
- the frequency materials are all TFP films, or both the film and the semi-cured high frequency materials are PTFE films.
- the semi-cured high-frequency material and film may be the color of the material itself, or may be a transparent color.
- a colored filler can also be added to at least one of the semi-cured high-frequency material and the film.
- the colored filler may be carbide or other colored fillers.
- Semi-cured high-frequency material specifically, MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional adhesive, or a mixture of LDK high-frequency functional adhesive and copper ion migration adhesive
- film specifically, PI film
- the black semi-cured high-frequency material and film have a shielding effect on the circuit , Can prevent the internal circuit from being exposed, prevent outsiders from seeing the internal circuit from the outside, play the role of concealing and protecting the circuit on the circuit board; at the same time, it can conceal the impurity or defect of the circuit board or circuit.
- This embodiment also provides a new material layer structure for a high-frequency circuit board prepared by implementing the above method. As shown in FIG. 1, it includes an upper copper foil layer 1, a synthetic film layer 2, and a semi-cured layer stacked from top to bottom. High-frequency material layer 3.
- the synthetic film layer 2 is any one of PI film, MPI film, LCP film, TFP film, and PTFE film.
- PI film, MPI film, LCP film, TFP film and PTFE film as the base material of the new material layer structure of the circuit board mat of this embodiment is particularly suitable for flexible circuit boards, especially MPI film, LCP Film, TFP film and PTFE film can not only improve the overall performance of flexible circuit boards, but also have high-frequency characteristics, which can greatly accelerate the transmission of high-frequency signals and realize high-speed transmission of high-frequency signals, which are especially suitable for new 5G technology products.
- the semi-cured high-frequency material layer 3 is MPI film, LCP film, TFP film, PTFE film, LDK high-frequency functional glue, or a mixture of LDK high-frequency functional glue and anti-copper ion migration glue.
- MPI film, LCP film, TFP film, PTFE film and LDK high-frequency functional adhesive can all speed up the signal transmission frequency and speed, transmit high-frequency signals, and improve the signal transmission performance of the circuit board. Not only can it improve the overall performance of the flexible circuit board, but also High-frequency characteristics can greatly accelerate the transmission of high-frequency signals and realize high-speed transmission of high-frequency signals, which is especially suitable for new 5G technology products.
- the mixture of LDK high-frequency functional glue and anti-copper ion migration glue has both high-speed transmission of high-frequency signals and anti-copper ion migration properties.
- the synthetic film layer 2 and the semi-cured high-frequency material layer 3 may be of the same material or different materials.
- the synthetic film layer 2 and the semi-cured high-frequency material layer 3 are both thin films, or the synthetic film layer 2 is a thin film, and the semi-cured high-frequency material layer 3 is glue.
- the synthetic film layer 2 and the semi-cured high-frequency material layer 3 are both thin films, the best way is that the synthetic film layer 2 and the semi-cured high-frequency material layer 3 are both MPI films, or the synthetic film layer 2 and the semi-cured high-frequency material layer are both MPI films.
- the frequency material layer 3 is LCP film, or the synthetic film layer 2 and the semi-cured high frequency material layer 3 are both TFP films, or the synthetic film layer 2 and the semi-cured high frequency material layer 3 are both PTFE films.
- At least one of the semi-cured high-frequency material layer 3 and the synthetic film layer 2 is a colored layer. Specifically, it can be black, and the colored layer can block, protect, and conceal the internal circuit.
- a release layer 5 is provided on the back of the semi-cured high-frequency material layer 3.
- the release layer 5 is a release paper or a PET release film to protect the semi-cured high-frequency material layer 3. During processing, the release layer 5 may be peeled off.
- step (3) also includes the following steps: hot pressing copper foil on the back of the semi-cured high-frequency material, curing the semi-cured high-frequency material, and integrating it with the synthetic film , Forming a new double-sided material layer structure for the circuit board. Instead of applying release paper or PET release film on the back of the semi-cured high-frequency material.
- the semi-cured high-frequency material in this embodiment is the same as the material of the film. Therefore, when the film is any one of PI film, MPI film, LCP film, TFP film, and PTFE film, the semi-cured high-frequency material is also a corresponding material.
- both the film and the semi-cured high-frequency material are MPI films, or the film and the semi-cured high-frequency material are both LCP films, or the film and the semi-cured high-frequency material are both TFP films, or both the film and the semi-cured high-frequency material are MPI films.
- the double-sided new material layer structure of the high-frequency circuit board can be prepared by the above method, and a copper foil layer 5 is hot pressed on the back of the semi-cured high-frequency material layer 3, as shown in FIG. 2, to form a circuit board New double-sided material layer structure.
- the semi-cured high-frequency material layer 3 is made of the same material as the synthetic film layer 2, and both are thin films. Since the lower copper foil layer 5 is heated and pressed, the semi-cured high-frequency material layer 3 is cured and integrated with the synthetic film layer 2 to form a synthetic film layer 2'.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Laminated Bodies (AREA)
Abstract
一种高频线路板材料层结构的压合成型方法,包括以下步骤:(1)在薄膜上涂布半固化TPI膜,形成TPI薄膜;(2)将铜箔放到TPI薄膜上热压,半固化TPI膜固化与薄膜合为一体,形成合成薄膜;(3)在薄膜另一表面涂覆一层半固化高频材料,形成高频线路板材料层结构。以及由上述方法制备出的高频线路板材料层结构,该结构具有高速传输高频信号的性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于5G科技产品;可作为线路板的制作材料,制作出单层线路板、多层柔性线路板与多层软硬结合板等线路板结构,给线路板的后续制作带来很大的便利性,简化工序。
Description
本发明涉及线路板领域,尤其涉及一种高频线路板新型材料层结构的压合成型方法及其制品。
目前,从通信网络到终端应用,通信频率全面高频化,高速大容量应用层出不穷。近年来随着无线网络从4G向5G过渡,网络频率不断提升。根据相关资料中显示的5G发展路线图,未来通信频率将分两个阶段进行提升。第一阶段的目标是在2020年前将通信频率提升到6GHz,第二阶段的目标是在2020年后进一步提升到30-60GHz。在市场应用方面,智能手机等终端天线的信号频率不断提升,高频应用越来越多,高速大容量的需求也越来越多。为适应当前从无线网络到终端应用的高频高速趋势,软板作为终端设备中的天线和传输线,亦将迎来技术升级。
传统软板具有由铜箔、绝缘基材、覆盖层等构成的多层结构,使用铜箔作为导体电路材料,PI膜作为电路绝缘基材,PI膜和环氧树脂粘合剂作为保护和隔离电路的覆盖层,经过一定的制程加工成PI软板。由于绝缘基材的性能决定了软板最终的物理性能和电性能,为了适应不同应用场景和不同功能,软板需要采用各种性能特点的基材。目前应用较多的软板基材主要是聚酰亚胺(PI),但是由于PI基材的介电常数和损耗因子较大、吸潮性较大、可靠性较差,因此PI软板的高频传输损耗严重、结构特性较差,已经无法适应当前的高频高速趋势。因此,随着新型5G科技产品的出现,现有线路板的信号传输频率与速度已经难以满足5G科技产品的要求。
同时,在制备工艺上,不管是传统的多层柔性线路板,还是多层软硬结合板,普遍存在工艺流程多,制作复杂,在线路板性能方面,耗电及信号传输损耗增大等问题。
发明内容
针对上述不足,本发明的目的在于提供一种高频线路板新型材料层结构的压合成型方法及其制品,制作出的高频线路板新型材料层结构具有高频特性,具有高速传输高频信号的性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品;这种高频线路板新型材料层结构作为一个整体结构,在后续线路板的制作工序中,可以作为线路板的制作材料,制作出单层线路板、多层柔性线路板与多层软硬结合板等线路板结构,给线路板的后续制作带来很大的便利性,简化制作工序,加快线路板制作速度,降低生产成本。
本发明为达到上述目的所采用的技术方案是:
一种高频线路板新型材料层结构的压合成型方法,其特征在于,包括以下步骤:
(1)在薄膜一表面上涂布一层半固化TPI膜,形成TPI薄膜;
(2)将TPI薄膜放到压合机的下载板上,将铜箔放到TPI薄膜上,且铜箔与半固化TPI膜接触;然后,启动压合机,以60℃-500℃的温度、80-500psi的压力热压10-60min;热压后,半固化TPI膜固化,与薄膜合为一体,形成合成薄膜;
(3)在薄膜另一表面上涂覆上一层半固化高频材料,形成高频线路板新型材料层结构。
作为本发明的进一步改进,所述步骤(3)还包括以下步骤:在半固化高频材料背面上敷上离型纸或PET离型膜。
作为本发明的进一步改进,在所述步骤(1)中,所述薄膜为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种。
作为本发明的进一步改进,在所述步骤(3)中,所述半固化高频材料为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。
作为本发明的进一步改进,所述LDK高频功能胶通过在AD胶中添加铁弗龙或LCP材料获得,所述抗铜离子迁移胶通过在AD胶中添加铜离子捕捉 剂,然后再高度提纯获得。
作为本发明的进一步改进,所述步骤(3)还包括以下步骤:在半固化高频材料背面上热压上铜箔,半固化高频材料固化,与合成薄膜合为一体,形成线路板新型双面材料层结构。
作为本发明的进一步改进,所述半固化高频材料与薄膜的材料相同。
作为本发明的进一步改进,在所述步骤(3)中,所述半固化高频材料与薄膜中至少有一者中添加有有色填充剂。
作为本发明的进一步改进,所述有色填充剂为碳化物。
实施上述方法制备出的高频线路板新型材料层结构,其特征在于,包括由上至下依次层叠设置的一上铜箔层、一合成薄膜层与一半固化高频材料层。
作为本发明的进一步改进,所述合成薄膜层为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种。
作为本发明的进一步改进,所述半固化高频材料层为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。
作为本发明的进一步改进,在所述半固化高频材料层背面上设置有一离型纸或一PET离型膜。
作为本发明的进一步改进,在所述半固化高频材料层背面上热压有一下铜箔层,该半固化高频材料层与合成薄膜层材料相同,且该半固化高频材料层与合成薄膜层合为一体。
作为本发明的进一步改进,所述半固化高频材料层与合成薄膜层中至少有一者为有色层。
本发明的有益效果为:
(1)通过压合工艺制作高性能高频线路板新型材料层结构,制备出的这种高频线路板新型材料层结构作为一个整体结构,在后续线路板的制作工序中,可以作为线路板的制作材料,经过后续与其他材料或线路板的直接热压等工序,即可制作出单层线路板、多层柔性线路板与多层软硬结合板等线路板结构,给线路板的后续制作带来很大的便利性,简化制作工序,加快线路 板制作速度,缩短产品加工时间,提升制程加工能力,降低生产成本;而且,优化了产品结构,提升产品性能。
(2)采用MPI薄膜、LCP薄膜、TFP薄膜或PTFE薄膜代替传统的PI薄膜,作为制备高频线路板新型材料层结构所需基材,不但可提高线路板整体性能的稳定性与尺寸稳定性,而且具有高频特性,可传输高频信号、及加快高频信号的传输速度,实现高频信号的高速传输,耗电量及高频信号传输损耗低,提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品。
(3)采用半固化高频材料代替传统的半固化AD胶,半固化高频材料具体可以为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物,使得制备出的高频线路板新型材料层结构具有高频特性,可传输高频信号、及加快高频信号的传输速度,实现高频信号的高速传输,耗电量及高频信号传输损耗低,进一步提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品。
上述是发明技术方案的概述,以下结合附图与具体实施方式,对本发明做进一步说明。
图1为实施例一中的结构剖面图;
图2为实施例二中的结构剖面图。
为更进一步阐述本发明为达到预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明的具体实施方式详细说明。
实施例一:
本实施例提供一种高频线路板新型材料层结构的压合成型方法,包括以下步骤:
(1)在薄膜一表面上涂布一层半固化TPI膜,形成TPI薄膜;
(2)将TPI薄膜放到压合机的下载板上,将铜箔放到TPI薄膜上,且铜 箔与半固化TPI膜接触;然后,启动压合机,以60℃-500℃的温度、80-500psi的压力热压10-60min;热压后,半固化TPI膜固化,与薄膜合为一体,形成合成薄膜;
(3)在薄膜另一表面上涂覆上一层半固化高频材料,形成高频线路板新型材料层结构。
在本实施例中,所述步骤(3)还包括以下步骤:在半固化高频材料背面上敷上离型纸或PET离型膜,由此获得线路板单面材料层结构,由离型纸或PET离型膜,对半固化高频材料进行保护。
本实施例制备出的高频线路板新型材料层结构,在后期工序中,只要在铜箔上成型线路,然后在成型了线路的铜箔上依次热压上一层PI膜与一层胶,即可形成单层线路板。
同时,在铜箔上成型线路后,将本实施例制备出的高频线路板新型材料层结构进行多组叠加压合,即可形成多层柔性线路板。在具体压合时,第一组高频线路板新型材料层结构的半固化高频材料与第二组高频线路板新型材料层结构中成型了线路的铜箔压合在一起即可。
同时,将高频线路板新型材料层结构整体热压到双面带胶的玻纤布上,然后在玻纤布远离高频线路板新型材料层结构一侧面上热压上铜箔,再在铜箔上成型线路,即可形成多层软硬结合板,玻纤布双面带的胶为抗铜离子迁移胶与LDK高频功能胶两种胶中的至少一种。
当然,还可以将高频线路板新型材料层结构直接热压到其他线路板上,高频线路板新型材料层结构上的半固化高频材料与其他线路板接触热压结合为一体。
本实施例采用TPI膜作为中介产生的粘结力将薄膜与铜箔热压在一起,TPI膜为热塑性聚酰亚胺薄膜,其具有优异的耐热性能、超强的尺寸稳定性、优异的力学性能、良好的阻燃性、优良的电绝缘性能和尺寸稳定性、优良的耐油性和耐溶剂性、良好的耐辐射性能。在半固化TPI膜上热压上铜箔之后,半固化TPI膜固化,与薄膜合为一体结构,形成合成薄膜。
具体的,在所述步骤(1)中,所述薄膜为PI薄膜、MPI薄膜、LCP薄 膜、TFP薄膜与PTFE薄膜中的任意一种。PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜的特性与优点分别为:
PI薄膜为聚酰亚胺薄膜(PolyimideFilm),是性能良好的薄膜类绝缘材料,由均苯四甲酸二酐(PMDA)和二胺基二苯醚(DDE)在强极性溶剂中经缩聚并流延成膜再经亚胺化而成。PI薄膜具有优良的耐高低温性、电气绝缘性、粘结性、耐辐射性、耐介质性,能在-269℃~280℃的温度范围内长期使用,短时可达到400℃的高温。玻璃化温度分别为280℃(Upilex R)、385℃(Kapton)和500℃以上(Upilex S)。20℃时拉伸强度为200MPa,200℃时大于100MPa。特别适宜用作柔性线路板的基材。
MPI(Modified PI)为改性聚酰亚胺,即对聚酰亚胺(PI)的配方进行改进而成。MPI因为是非结晶性的材料,所以操作温度宽,在低温压合铜箔下易操作,表面能够与铜易结合,且价格便宜。具体为,改善了氟化物配方,因此MPI薄膜可传输10-15GHz的高频信号。采用MPI薄膜作为本实施例制备高频线路板新型材料层结构所需基材,特别适用于制备柔性线路板,达到高速、平稳接收及传送信息的目的,终端应用如5G手机、高频信号传输领域、自动驾驶、雷达、云服务器和智能家居等。
通过测速,MPI薄膜的技术指标为:
由上述可知,MPI薄膜具有以下特性:
(1)低Dk值、低Df值;
(2)优异的耐热老化性;
(3)优异的尺寸稳定性;
(4)优良的耐化性。
因此,采用MPI薄膜作为本实施例制备高频线路板新型材料层结构所需基材,不但可提高线路板整体性能的稳定性与尺寸稳定性,而且可传输高频信号、及加快高频信号的传输速度,降低耗电量及高频信号传输损耗,提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品。
LCP全称为液晶高分子聚合物(Liquid Crystal Polymer),是一种新型热塑性有机材料,在熔融态时一般呈现液晶性。LCP薄膜为液晶聚合物薄膜,LCP薄膜具备高强度、高刚性、耐高温、热稳定性、可弯折性、尺寸稳定性、良好的电绝缘性等性能,相较于PI薄膜,具备更好的耐水性,因此是一种比PI薄膜更优异的薄膜型材料。LCP薄膜可在保证较高可靠性的前提下实现高频高速软板。LCP薄膜具有以下优异的电学特征:
(1)在高达110GHz的全部射频范围几乎能保持恒定的介电常数,一致性好,介电常数Dk值具体为2.9;
(2)正切损耗非常小,仅为0.002,即使在110GHz时也只增加到0.0045,非常适合毫米波应用;
(3)热膨胀特性非常小,可作为理想的高频封装材料。
采用LCP薄膜作为本实施例制备高频线路板新型材料层结构所需基材,不但可提高线路板整体性能的稳定性与尺寸稳定性,而且由于LCP薄膜整体更平滑,LCP薄膜材料介质损耗与导体损耗更小,同时具备灵活性、密封性,可传输高频信号、及加快高频信号的传输速度,提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势。
具体的,可有效提高线路板在工作状态中传达中心区域(芯片)下达指 令的速度,快速的传递至各个部件,使设备(如手机、通讯基站设备)快速运作,而没有迟钝及死机卡死等现象出现,通讯过程整体流畅。因此,LCP薄膜具有很好的制造高频器件应用前景,特别适用于新型5G科技产品。
同时,采用LCP薄膜作为基材制成的LCP软板,具有更好的柔性性能,相比PI软板可进一步提高空间利用率。柔性电子可利用更小的弯折半径进一步轻薄化,因此对柔性的追求也是小型化的体现。以电阻变化大于10%为判断依据,同等实验条件下,LCP软板相比传统的PI软板可以耐受更多的弯折次数和更小的弯折半径,因此LCP软板具有更好的柔性性能和产品可靠性。优良的柔性性能使LCP软板可以自由设计形状,从而充分利用智能手机中的狭小空间,进一步提高空间利用效率。
因此,采用LCP薄膜作为基材可制成小型化的高频高速LCP软板。
TFP是一种独特的热塑性材料,相较于常规的PI材料,具有以下特性:
(1)低介电常数:低Dk值,Dk值具体为2.55;而常规PI的Dk值为3.2;因此,信号传播速度快,厚度更薄,间隔更紧密,功率处理能力更高;
(2)超低的材料损耗;
(3)超高温性能,可耐受300℃的高温;
(4)吸湿率相对较低。
因此,采用TFP薄膜作为本实施例制备高频线路板新型材料层结构所需基材,不但可提高线路板整体性能的稳定性与尺寸稳定性,而且可传输高频信号、及加快高频信号的传输速度,降低耗电量及高频信号传输损耗,提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品。
PTFE,中文名:聚四氟乙烯,别称:特富龙、特氟龙、铁氟龙、陶氟隆、德氟隆。聚四氟乙烯(PTFE)具有优异的介电性能,耐化学腐蚀,耐热,阻燃,高频率范围内介电常数和介电损耗小且变化小。主要性能如下:
1、电气性能
(1)介电常数:2.1;
(2)介电损耗:5×10
-4;
(3)体积电阻:1018Ω·cm;
2、化学性能:耐酸碱、耐有机溶剂、抗氧化;
3、热稳定性:在-200℃~260℃温度范围内长期工作;
4、阻燃性:UL94V-0;
5、耐候性:户外20年以上不会有机械性能的明显损失。
因此,采用PTFE薄膜作为本实施例制备高频线路板新型材料层结构所需基材,不但可提高线路板整体性能的稳定性与尺寸稳定性,而且可传输高频信号、及加快高频信号的传输速度,降低耗电量及高频信号传输损耗,提高线路板的信号传输性能,可适应当前从无线网络到终端应用的高频高速趋势,特别适用于新型5G科技产品。
5G基站的集成化使得高频覆铜板的需求增长迅速,聚四氟乙烯作为5G高频高速覆铜板的主流高频基材之一,在5G时代将迎来巨大的市场增长。
由此可知,采用上述PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜五者中任意一者作为本实施例制备高频线路板新型材料层结构所需基材,都特别适合于柔性线路板,特别是MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜,不但可以提高柔性线路板的整体性能,还具有高频特性,可大幅加快高频信号的传输,实现高频信号的高速传输,降低耗电量及高频信号传输损耗,特别适用于新型5G科技产品。
具体的,在所述步骤(3)中,所述半固化高频材料为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。
由上述可知,MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜均为可加快信号传输频率与速度,传输高频信号,提高线路板信号传输性能的高频薄膜材料,不但可以提高柔性线路板的整体性能,还具有高频特性,可大幅加快高频信号的传输,实现高频信号的高速传输,特别适用于新型5G科技产品。
而对于LDK高频功能胶,通过在常规AD胶中添加铁弗龙或LCP材料获得。使得半固化LDK高频功能胶内部分子分布更紧密、均匀,且不消耗能量,LDK高频功能胶具有提高信号传输频率、及抗磁性干扰功能,以提高 电路板的信号传输性能,具体的,可有效提高电路板在工作状态中传达中心区域(芯片)下达指令的速度,快速的传递至各个部件,使设备(如手机、通讯基站设备)快速运作,而没有迟钝及死机卡死等现象出现,使新型5G科技产品通讯过程整体流畅。
而对于抗铜离子迁移胶,通过在AD胶中添加铜离子捕捉剂等试剂,然后再高度提纯获得。具体的,液态AD胶可以为常规AD胶。铜离子捕捉剂可选用无机离子交换剂(例如,IXE-700F、IXE-750等),无机离子交换剂具有捕获铜离子的能力,可防止铜离子从线路与线路之间迁移,往AD胶中添加铜离子捕捉剂后,铜离子捕捉剂对AD胶的性能无影响,反而可以提高AD胶的性能稳定性。常规的AD胶中含有环氧树脂、增粘剂、增塑剂与各种填料,通过高度提纯工艺后,可使AD胶中的环氧树脂成分的纯度提高,则线路与线路之间的铜离子从AD胶中迁移的可能性明显降低,起到抗铜离子迁移的目的。具体的,常规AD胶中两两成分之间具有一定的间隙,铜离子可通过间隙发生迁移,而对常规AD胶进行提纯环氧树脂浓度提高后,别的成分浓度明显降低,环氧树脂与别的成分之间存在的间隙大幅减小,由此,可供铜离子迁移的间隙减小,从而达到抗铜离子迁移的目的。由于抗铜离子迁移胶具有低粒子材料抗铜离子迁移功能,可有效保证在工作状态中线路能够安全有效工作,线路与线路之间不会出现离子迁移现象,防止在设备使用过程中出现线路与线路之间导通碰撞造成电路短路及燃烧起火爆炸等危险,从而线路起到很好的防护及保护作用。
当半固化高频材料为LDK高频功能胶与抗铜离子迁移胶的混合物时,只要将LDK高频功能胶与抗铜离子迁移胶混合即可,使得半固化高频材料同时具有高速传输高频信号与抗铜离子迁移性能。
在本实施例中,所述薄膜与半固化高频材料可以为同一种材质,也可以为不同种材质。例如:薄膜与半固化高频材料都为薄膜类,或者薄膜为薄膜类,半固化高频材料为胶类。当薄膜与半固化高频材料都为薄膜类时,最优方式为,薄膜与半固化高频材料都为MPI薄膜,或薄膜与半固化高频材料都为LCP薄膜,或薄膜与半固化高频材料都为TFP薄膜、或薄膜与半固化高 频材料都为PTFE薄膜。
在所述步骤(3)中,所述半固化高频材料与薄膜可以为材料本身的颜色,也可以为透明色。
当然,还可以在所述半固化高频材料与薄膜中至少有一者中添加有有色填充剂。具体的,有色填充剂可以为碳化物或其他有色填充剂。半固化高频材料(具体可以为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物)与薄膜(具体可以为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种)中添加了有色填充剂之后,可呈现出黑色。不管是将本实施例制备出的线路板材料层结构制作成单层线路板、多层柔性线路板,还是多层软硬结合板,黑色的半固化高频材料与薄膜对线路都具有遮挡作用,可防止内部线路暴露出来,防止外人从外部看到内部线路,起到隐蔽及保护线路板上线路的作用;同时,对于有杂质或瑕疵的线路板或线路,起到遮瑕的作用。
本实施例还提供了实施上述方法制备出的高频线路板新型材料层结构,如图1所示,包括由上至下依次层叠设置的一上铜箔层1、合成薄膜层2与一半固化高频材料层3。
具体的,所述合成薄膜层2为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种。采用PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜五者中任意一者作为本实施例线路板席新型材料层结构的基材,都特别适合于柔性线路板,特别是MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜,不但可以提高柔性线路板的整体性能,还具有高频特性,可大幅加快高频信号的传输,实现高频信号的高速传输,特别适用于新型5G科技产品。
具体的,所述半固化高频材料层3为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜与LDK高频功能胶均可加快信号传输频率与速度,传输高频信号,提高线路板信号传输性能,不但可以提高柔性线路板的整体性能,还具有高频特性,可大幅加快高频信号的传 输,实现高频信号的高速传输,特别适用于新型5G科技产品。而LDK高频功能胶与抗铜离子迁移胶的混合物同时具有高速传输高频信号与抗铜离子迁移性能。
在本实施例中,所述合成薄膜层2与半固化高频材料层3可以为同一种材质,也可以为不同种材质。例如:合成薄膜层2与半固化高频材料层3都为薄膜类,或者合成薄膜层2为薄膜类,半固化高频材料层3为胶类。当合成薄膜层2与半固化高频材料层3都为薄膜类时,最优方式为,合成薄膜层2与半固化高频材料层3都为MPI薄膜,或合成薄膜层2与半固化高频材料层3都为LCP薄膜,或合成薄膜层2与半固化高频材料层3都为TFP薄膜,或合成薄膜层2与半固化高频材料层3都为PTFE薄膜。
具体的,所述半固化高频材料层3与合成薄膜层2中至少有一者为有色层。具体可以为黑色,有色层对内部线路起到遮挡、保护、遮瑕等作用。
本实施例在所述半固化高频材料层3背面上设置有离型层5,该离型层5为离型纸或PET离型膜,对半固化高频材料层3进行保护,在后续加工时,将离型层5剥离即可。
实施例二:
本实施例与实施例一的主要区别在于:所述步骤(3)还包括以下步骤:在半固化高频材料背面上热压上铜箔,半固化高频材料固化,与合成薄膜合为一体,形成线路板新型双面材料层结构。而不在半固化高频材料背面上敷上离型纸或PET离型膜。
同时,本实施例所述半固化高频材料与薄膜的材料相同。因此,在所述薄膜为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种的情况下,半固化高频材料也为相对应的材料。例如:薄膜与半固化高频材料都为MPI薄膜,或薄膜与半固化高频材料都为LCP薄膜,或薄膜与半固化高频材料都为TFP薄膜,或薄膜与半固化高频材料都为PTFE薄膜。
因此,由上述方法可制备出高频线路板双面新型材料层结构,在所述半固化高频材料层3背面上热压上了一下铜箔层5,如图2所示,形成线路板 新型双面材料层结构。同时,该半固化高频材料层3与合成薄膜层2材料相同,均为薄膜类。由于热压上了下铜箔层5,则半固化高频材料层3固化,与合成薄膜层2合为一体,即合为合成薄膜层2'。
以上所述,仅是本发明的较佳实施例而已,并非对本发明的技术范围作任何限制,故采用与本发明上述实施例相同或近似的技术特征,而得到的其他结构,均在本发明的保护范围之内。
Claims (15)
- 一种高频线路板新型材料层结构的压合成型方法,其特征在于,包括以下步骤:(1)在薄膜一表面上涂布一层半固化TPI膜,形成TPI薄膜;(2)将TPI薄膜放到压合机的下载板上,将铜箔放到TPI薄膜上,且铜箔与半固化TPI膜接触;然后,启动压合机,以60℃-500℃的温度、80-500psi的压力热压10-60min;热压后,半固化TPI膜固化,与薄膜合为一体,形成合成薄膜;(3)在薄膜另一表面上涂覆上一层半固化高频材料,形成高频线路板新型材料层结构。
- 根据权利要求1所述的高频线路板新型材料层结构的压合成型方法,其特征在于,所述步骤(3)还包括以下步骤:在半固化高频材料背面上敷上离型纸或PET离型膜。
- 根据权利要求1所述的高频线路板新型材料层结构的压合成型方法,其特征在于,在所述步骤(1)中,所述薄膜为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种。
- 根据权利要求1所述的高频线路板新型材料层结构的压合成型方法,其特征在于,在所述步骤(3)中,所述半固化高频材料为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。
- 根据权利要求4所述的高频线路板新型材料层结构的压合成型方法,其特征在于,所述LDK高频功能胶通过在AD胶中添加铁弗龙或LCP材料获得,所述抗铜离子迁移胶通过在AD胶中添加铜离子捕捉剂,然后再高度提纯获得。
- 根据权利要求3所述的高频线路板新型材料层结构的压合成型方法,其特征在于,所述步骤(3)还包括以下步骤:在半固化高频材料背面上热压上铜箔,半固化高频材料固化,与合成薄膜合为一体,形成线路板新型双面 材料层结构。
- 根据权利要求6所述的高频线路板新型材料层结构的压合成型方法,其特征在于,所述半固化高频材料与薄膜的材料相同。
- 根据权利要求1所述的高频线路板新型材料层结构的压合成型方法,其特征在于,在所述步骤(3)中,所述半固化高频材料与薄膜中至少有一者中添加有有色填充剂。
- 根据权利要求8所述的高频线路板新型材料层结构的压合成型方法,其特征在于,所述有色填充剂为碳化物。
- 实施权利要求1至9中任一所述方法制备出的高频线路板新型材料层结构,其特征在于,包括由上至下依次层叠设置的一上铜箔层、一合成薄膜层与一半固化高频材料层。
- 根据权利要求10所述的高频线路板新型材料层结构,其特征在于,所述合成薄膜层为PI薄膜、MPI薄膜、LCP薄膜、TFP薄膜与PTFE薄膜中的任意一种。
- 根据权利要求10所述的高频线路板新型材料层结构,其特征在于,所述半固化高频材料层为MPI薄膜、LCP薄膜、TFP薄膜、PTFE薄膜、LDK高频功能胶、或LDK高频功能胶与抗铜离子迁移胶的混合物。
- 根据权利要求10所述的高频线路板新型材料层结构,其特征在于,在所述半固化高频材料层背面上设置有一离型纸或一PET离型膜。
- 根据权利要求11所述的高频线路板新型材料层结构,其特征在于,在所述半固化高频材料层背面上热压有一下铜箔层,该半固化高频材料层与合成薄膜层材料相同,且该半固化高频材料层与合成薄膜层合为一体。
- 根据权利要求10所述的高频线路板新型材料层结构,其特征在于,所述半固化高频材料层与合成薄膜层中至少有一者为有色层。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910785118.2A CN110677983A (zh) | 2019-08-23 | 2019-08-23 | 一种高频线路板新型材料层结构的压合成型方法及其制品 |
CN201910785118.2 | 2019-08-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021035917A1 true WO2021035917A1 (zh) | 2021-03-04 |
Family
ID=69075642
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/112804 WO2021035917A1 (zh) | 2019-08-23 | 2019-10-23 | 一种高频线路板材料层结构的压合成型方法及其制品 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN110677983A (zh) |
WO (1) | WO2021035917A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114025516B (zh) * | 2021-11-19 | 2024-07-23 | 深圳市领晟芯技术有限公司 | 高频混压板的制作方法 |
CN116321760B (zh) * | 2022-12-06 | 2023-11-24 | 世大新材料(深圳)有限公司 | 一种高频线路板材料层的压合成型方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129922A1 (en) * | 2005-05-30 | 2006-12-07 | Korea Research Institute Of Chemical Technology | Method of surface modification of polyimide film using ethyleneimines coupling agent, manufacturing method of flexible copper clad laminate and its product thereby |
CN101045358A (zh) * | 2007-03-07 | 2007-10-03 | 东华大学 | 一种柔性聚酰亚胺覆铜箔板(fccl)的制备方法 |
CN103144376A (zh) * | 2013-03-15 | 2013-06-12 | 松扬电子材料(昆山)有限公司 | 具有电磁屏蔽效应的复合式铜箔基板及其制造方法 |
CN108099304A (zh) * | 2018-01-08 | 2018-06-01 | 烟台智本知识产权运营管理有限公司 | 一种两层无胶型双面挠性覆铜板及其制备方法 |
CN108156751A (zh) * | 2018-02-02 | 2018-06-12 | 李龙凯 | 防短路柔性线路板及其生产工艺 |
CN208273347U (zh) * | 2018-01-18 | 2018-12-21 | 李龙凯 | 具有抗铜粒子迁移功能的材料层结构 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101166392A (zh) * | 2006-10-18 | 2008-04-23 | 比亚迪股份有限公司 | 一种积层式多层柔性印刷线路板及其制造方法 |
JP2013151638A (ja) * | 2011-12-27 | 2013-08-08 | Yamaichi Electronics Co Ltd | カバーレイフィルム、フレキシブル配線板およびその製造方法 |
CN108307579B (zh) * | 2017-01-11 | 2024-08-30 | 昆山雅森电子材料科技有限公司 | 具有复合式叠构的低介电损耗frcc基板及其制备方法 |
CN206525089U (zh) * | 2017-01-13 | 2017-09-26 | 上海量子绘景电子股份有限公司 | 一种铁氧体基材的fccl材料 |
CN108419362A (zh) * | 2017-02-09 | 2018-08-17 | 昆山雅森电子材料科技有限公司 | 一种具有高散热效率的frcc基材及其制作方法 |
CN106827716A (zh) * | 2017-03-20 | 2017-06-13 | 成都三益新材料有限公司 | 一种薄型可挠性覆铜板及其制备方法 |
CN108012414B (zh) * | 2018-01-08 | 2024-07-30 | 昆山雅森电子材料科技有限公司 | 具有frcc的高频高传输fpc及制备方法 |
-
2019
- 2019-08-23 CN CN201910785118.2A patent/CN110677983A/zh active Pending
- 2019-10-23 WO PCT/CN2019/112804 patent/WO2021035917A1/zh active Application Filing
-
2020
- 2020-08-21 CN CN202010849610.4A patent/CN111867242A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006129922A1 (en) * | 2005-05-30 | 2006-12-07 | Korea Research Institute Of Chemical Technology | Method of surface modification of polyimide film using ethyleneimines coupling agent, manufacturing method of flexible copper clad laminate and its product thereby |
CN101045358A (zh) * | 2007-03-07 | 2007-10-03 | 东华大学 | 一种柔性聚酰亚胺覆铜箔板(fccl)的制备方法 |
CN103144376A (zh) * | 2013-03-15 | 2013-06-12 | 松扬电子材料(昆山)有限公司 | 具有电磁屏蔽效应的复合式铜箔基板及其制造方法 |
CN108099304A (zh) * | 2018-01-08 | 2018-06-01 | 烟台智本知识产权运营管理有限公司 | 一种两层无胶型双面挠性覆铜板及其制备方法 |
CN208273347U (zh) * | 2018-01-18 | 2018-12-21 | 李龙凯 | 具有抗铜粒子迁移功能的材料层结构 |
CN108156751A (zh) * | 2018-02-02 | 2018-06-12 | 李龙凯 | 防短路柔性线路板及其生产工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN111867242A (zh) | 2020-10-30 |
CN110677983A (zh) | 2020-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021035916A1 (zh) | 一种高频线路板新型材料层结构的涂布成型方法及其制品 | |
WO2021035914A1 (zh) | 一种多层柔性线路板的制作方法及其制品 | |
CN110769594A (zh) | 具高Dk和低Df特性的LCP高频基板及制备方法 | |
WO2021035917A1 (zh) | 一种高频线路板材料层结构的压合成型方法及其制品 | |
TWM616306U (zh) | 一種線路板材料層結構 | |
TWI664086B (zh) | 具有氟系聚合物且具高頻高傳輸特性之雙面銅箔基板及製備方法及複合材料 | |
CN212344178U (zh) | 一种多层双面软硬结合板 | |
WO2021035915A1 (zh) | 一种多层双面软硬结合板的制作方法及其制品 | |
TWI722309B (zh) | 高頻高傳輸雙面銅箔基板、用於軟性印刷電路板之複合材料及其製法 | |
WO2021035918A1 (zh) | 一种高频线路板层结构及其制备方法 | |
US20240284599A1 (en) | Method for preparing novel material layer structure of circuit board and article thereof | |
US20240244763A1 (en) | Method for coating and forming novel material layer structure of high-frequency circuit board and article thereof | |
TWM634320U (zh) | 一種高頻線路板材料層結構(一) | |
CN212344177U (zh) | 一种多层柔性线路板 | |
US20240244764A1 (en) | Method for manufacturing multi-layer flexible circuit board and article thereof | |
CN212463642U (zh) | 一种高频线路板新型材料层结构 | |
TWI666122B (zh) | 用於軟性印刷電路板之複合材料及其製法 | |
CN116330765A (zh) | 一种多层结构的高频柔性覆铜板材料及其制备方法 | |
CN117384563A (zh) | 一种具有相分离结构的粘结膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19943097 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19943097 Country of ref document: EP Kind code of ref document: A1 |