WO2021032144A1 - 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 - Google Patents
一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 Download PDFInfo
- Publication number
- WO2021032144A1 WO2021032144A1 PCT/CN2020/110149 CN2020110149W WO2021032144A1 WO 2021032144 A1 WO2021032144 A1 WO 2021032144A1 CN 2020110149 W CN2020110149 W CN 2020110149W WO 2021032144 A1 WO2021032144 A1 WO 2021032144A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- plate
- shaped
- section
- shaped steel
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
- E04H9/024—Structures with steel columns and beams
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04H—BUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
- E04H9/00—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
- E04H9/02—Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2406—Connection nodes
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2415—Brackets, gussets, joining plates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2439—Adjustable connections, e.g. using elongated slots or threaded adjustment elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2442—Connections with built-in weakness points
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/18—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
- E04B1/24—Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
- E04B1/2403—Connection details of the elongated load-supporting parts
- E04B2001/2463—Connections to foundations
Definitions
- the invention relates to the field of earthquake resistance of building structures, in particular to a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam.
- the self-resetting structure is a new type of structural system that can realize the rapid reset of the structure after an earthquake.
- the technical idea is to adopt Set additional pre-stress reset elements (pre-stressed steel strands, etc.) in the beam-column joints to apply pre-compression to the beam (as shown in Figures 1 and 2). Under a small earthquake, the contact surface of the preloaded member maintains a greater connection stiffness through preloading to resist the earthquake.
- the pre-compressed member Under a large earthquake, when the internal force generated at the contact surface exceeds its pre-compression, the pre-compressed member can undergo relative prying deformation to release the rigidity of the connection surface, reduce the seismic effect and internal force of the main structure, and avoid plastic damage State, and dissipate seismic energy through the energy dissipating unit set at the prying deformation position, and self-reset through the reset unit to overcome the residual deformation of the structure after the earthquake. From the characteristics of the self-resetting structure, it can be seen that it still relies on the pre-stress technology in essence, which will cause the following problems:
- the overall structure self-resetting ability is weak: the existing self-resetting technology mainly stays at the self-resetting of the beam-column node level, but the actual earthquake damage shows that the steel frame column foot will also cause serious plastic damage and cause significant residual deformation in the earthquake Therefore, it is necessary to propose effective structural self-reset technology from the overall structure level.
- the purpose of the present invention is to provide a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam, which essentially solves the series of technical problems caused by the use of prestress in the traditional self-resetting steel structure, and realizes vibration from the overall structure level. After resetting automatically.
- a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam, comprising an elastic reset beam and two column-foot hinged box-shaped columns;
- the elastic reset beam includes two cantilevered I-shaped steel beams and a middle Section I-shaped steel beams and buckling-constrained high-strength steel bars, and the cantilever section I-shaped steel beams are fixed on the column-foot hinged box-shaped column, and the middle section I-shaped steel beams are connected between the two cantilever sections I-shaped steel beams, the buckling constraints
- the high-strength steel bars are symmetrically arranged on both sides of the web along the central axis of the beam, one end is fastened to the web of the cantilever section of the I-shaped steel beam, and the other end is fastened to the web of the middle section of the I-shaped steel beam;
- the prestress-free The ductile steel structure is arranged symmetrically, that is, the structure on the left and right sides is the same
- the buckling-constrained high-strength steel rod includes a high-strength screw, a fixed cylindrical nut, two constrained steel pipes, and a middle-section constrained short steel pipe; the fixed cylindrical nut is fixed at the midpoint of the high-strength screw through threads to restrain
- the steel pipes are arranged symmetrically on both sides of the fixed cylindrical nut, and are fastened to the fixed cylindrical nut through butt welds.
- the inner diameter of the two constrained steel pipes is larger than the diameter of the high-strength screw, ensuring that the high-strength screw and the two constrained steel pipes There is a gap; the middle section restrains the short steel pipe through the fixed cylindrical nut, and the two ends are respectively fastened with two restraint steel pipes through fillet welds, and the middle section of the restraint short steel pipe is aligned with the middle point of the high-strength screw.
- the two ends of the high-strength screw rod and the connecting steel plate are fixedly connected by high-strength nuts on both sides, that is, the two ends of the buckling-constrained high-strength steel bar and the connecting steel plate are fastened and connected by high-strength nuts on both sides, and the connecting steel plate and the two force-transmitting steel plates are butt welded
- the upper and lower edges of the connecting steel plates are respectively aligned with the upper edge of one force-transmitting steel plate and the lower edge of the other force-transmitting steel plate.
- the force-transmitting steel plate on the side of the I-shaped steel beam of the cantilever section is connected with the fillet welds on both sides.
- the I-beam webs of the cantilever section are tightly connected, and the force-transmitting steel plates on the side of the I-beam of the middle section are fastened to the webs of the I-beam of the middle section through fillet welds on both sides.
- the buckling restraint energy dissipation plate also includes a buckling restraint energy dissipation plate, and one end is fixed at the lower part of the lower flange of the cantilever section I-shaped steel beam, and the other end is fixed at the lower part of the lower flange of the middle section I-shaped steel beam;
- the buckling restraint energy dissipation plate consists of a It is composed of a glyph core plate, a first constrained steel plate, a second constrained steel plate and two limiting steel plates;
- the one-shaped core plate adopts a dog-bone shape, and the two sides of the length direction of the one-shaped core plate are processed with one and the limiting steel plate shape
- the grooves that match each other are slotted on the connecting sections at both ends along the length of the in-line core plate.
- the in-line core plate is positioned between the first restraint steel plate and the second restraint steel plate, and the limit steel plate is positioned at one
- the two sides of the glyph core plate and the structure of the limit steel plate and the straight core plate are matched.
- a number of bolt holes are set on the limit steel plate, and bolts are set at the positions of the first and second restraint steel plates respectively corresponding to the limit steel plates.
- the in-line core plate is fixed by bolt connection, the first restraining steel plate and the two limit steel plates are fastened by fillet welds, and the left side, right side, upper side and lower side of the in-line core plate are all With or without bonding material, the thickness of the in-line core plate is different from the thickness of the two limiting steel plates, so as to ensure that there is a gap between the upper and lower surfaces of the in-line core plate and the first and second constrained steel plates, respectively; A gap is reserved between the limiting steel plate and the yield section of the inline core plate to ensure that there is a gap between the left and right sides of the inline core plate and the limiting steel plate.
- the expanded sections at both ends of the inline core plate extend into the interior of the restraining steel plate, and the extension length is not less than the width of the expanded sections at both ends of the inline core plate, so as to prevent the inline core plate from deforming out-of-plane when receiving out-of-plane forces.
- the buckling restraint energy dissipation plate further includes two lower friction pads, and the lower friction pads are fastened to both ends of the in-line core plate by fillet welds and butt welds, and the upper surfaces of the two lower friction pads Sandblasting is used, and the friction coefficient is not less than 0.45.
- the grooved screw holes on the two lower friction pads correspond to the grooved screw holes at both ends of the in-line core plate; the I-shaped steel beam of the cantilever section and the middle section
- the lower flanges of the lower flanges of the zigzag steel beams are connected to the upper friction pad by welding seams, and the circular screw holes of the lower flange of the cantilevered I-shaped steel beam and the middle section of the I-shaped steel beam are connected to the circular screw of the upper friction pad.
- the holes correspond to each other.
- the lower surface of the upper friction pad is sandblasted, and the friction coefficient is not less than 0.45; the upper friction pad is in contact with the lower friction pad, and the in-line core plate, lower friction pad, and upper friction pad are in contact with each other.
- the lower flanges of the cantilever section I-shaped steel beam or the middle section I-shaped steel beam are arranged from bottom to top and connected by bolts.
- suspension connector also includes a suspension connector.
- One end of the suspension connector is fixed to the upper flange of the I-shaped steel beam of the cantilever section, and the other end is fixed to the upper flange of the middle section of the I-shaped steel beam; the suspension connector includes two vertical resistances.
- the short side plate of the first splicing angle steel and the second splicing angle steel are fastened to the vertical anti-shear plate by high-strength bolts.
- the first spliced angle steel short side plate and the second spliced angle steel short side plate are symmetrically arranged on both sides of the anti-shear plate; the first spliced steel plate is respectively connected to the cantilever
- the upper flange of the section I-shaped steel beam and the upper flange of the middle section I-shaped steel beam and the first spliced angle steel long side plate are fastened by high-strength bolts.
- the I-shaped steel beam upper flange is located between the first spliced steel plate and the first spliced angle steel long side plate ;
- the second spliced steel plate is fastened with the upper flange of the I-beam of the cantilever section and the upper flange of the middle section of the I-beam and the second spliced angle steel long side plate by high-strength bolts.
- the upper flange of the I-beam is located on the second spliced steel plate and the Between two splicing angle steel long side plates.
- the column-foot hinged box-shaped column includes a box-shaped column, a backing plate, an anchor bolt, and a bottom plate.
- the box-shaped column is fastened to the bottom plate through fillet welds, and the anchor bolt passes through the backing plate to connect the periphery of the bottom plate to the foundation soil. Fastening connection; box-shaped column and cantilever section I-shaped steel beam are connected by welding.
- the high-strength screw is made of high-strength bolts of grade 14.9.
- the working principle of the invention is: under the action of vertical load, the suspension connector mainly bears the vertical shear force at the end of the beam; under the action of small earthquakes, the buckling restraint energy dissipation plate and the buckling restraint high-strength steel bar both maintain elasticity, and both Jointly bear the beam end bending moment generated by the horizontal earthquake; while the suspension connector mainly bears the additional beam end shear force generated by the horizontal earthquake; the buckling energy dissipation restraint plate takes the lead in yielding energy dissipation (the arm length And the yield strength is low), the relative rotational rigidity of the beam-column joints becomes smaller, which reduces the seismic action of the structure and buckles the high-strength steel bar (short arm and large elastic deformation capacity) and the main structure maintains an elastic state.
- the setting of the buckling-constrained high-strength steel bars also increases the second stiffness of the nodes after yielding, avoiding the phenomenon of concentrated deformation on a certain floor, and reducing the residual deformation of the main frame after the earthquake.
- the design of the slotted holes at both ends of the buckling-constrained energy dissipation plate can be used.
- the bolt pre-tightening force of the buckling-constrained energy dissipation plate and the beam can be released, and the chute can be used to release the energy dissipation plate to the cantilever section and the middle section.
- the internal force constraint of the zigzag steel beam realizes the self-reset of the node through the elastic restoring force of the high-strength steel bar through the buckling constraint, and the bending rigidity of the bottom plate in the column-foot hinged box-shaped column is weak and cannot restrict the rotation and deformation of the box-shaped column (as shown in the figure) 9), to realize the whole structure without prestressing and self-resetting.
- the hinged column should be used in conjunction with the elastic reset beam to avoid serious plastic damage to the column foot under strong earthquakes.
- the weak bending rigidity of the column foot bottom plate releases the restraint stiffness of the bottom plate to the column foot.
- the elastic reset beam reset unit The elastic reset bending moment realizes the overall self-reset of nodes and columns without prestress.
- the splicing angle steel at the top of the upper flange of the beam provides the steel beam with a shear bearing capacity, which solves the problem of shear failure caused by the traditional self-resetting joints only relying on friction to transmit the vertical shear force.
- Figure 1 is a diagram of the positive bending moment deformation of the existing prestressed self-resetting beam-column joints
- Figure 2 is a negative bending moment deformation diagram of an existing prestressed self-resetting energy dissipation beam-column joint
- Figure 3a is a perspective view of the overall structure of the present invention.
- Figure 3b is a partial enlarged view of the overall structure of the present invention.
- Figure 4 is a three-dimensional schematic view of the elastic reset beam of the present invention.
- Figure 5 is a cross-sectional view of Figure 3b A-A;
- Figure 6 is a B-B cross-sectional view of Figure 3b;
- Figure 7 is a C-C cross-sectional view of Figure 3b;
- Figure 8 is a D-D sectional view of Figure 3b;
- Figure 9 is an E-E cross-sectional view of Figure 3a
- Figure 10 is a deformation diagram of a box-shaped column with a hinged column foot
- FIG. 11 is a schematic diagram of the first and second steps of the assembly of a prestress-free ductile steel structure composed of hinged columns and elastic reset beams according to the present invention
- FIG. 12 is a schematic diagram of the third and fourth steps of the assembly of a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam according to the present invention
- FIG. 13 is a schematic diagram of the fifth and sixth steps of the assembly of a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam according to the present invention
- FIG. 14 is a schematic diagram of the assembly of the buckling restraint energy dissipation plate in the present invention.
- 15 is a schematic diagram of the assembly of the buckling-constrained high-strength steel bar of the present invention.
- a prestress-free ductile steel structure composed of hinged columns and elastic reset beams includes an elastic reset beam 4, two column-foot hinged box-shaped columns 5; one elastic reset beam
- the beam 4 includes two cantilevered I-shaped steel beams 41, a middle I-shaped steel beam 42, two suspension connectors 43, four upper friction pads 44, two buckling restraint energy dissipation plates 45, and four buckling restraints High-strength steel bars 46; two cantilevered I-shaped steel beams 41 are connected to the middle section of I-shaped steel beams 42.
- buckling-constrained high-strength steel bars 46 are arranged symmetrically and fixedly on both sides of the beam web along the central axis of the beam.
- the prestress-free ductile steel structure is arranged symmetrically.
- One of the buckling-constrained high-strength steel bars 46 is fastened to the two connecting steel plates 471 with high-strength nuts (as shown in Figure 13), and the two connecting steel plates 471 are fastened to the two force-transmitting steel plates 472 through butt welds.
- the upper and lower edges of one of the connecting steel plates 471 are aligned with the upper edge of the force transmission steel plate 472 and the lower edge of the force transmission steel plate 472 respectively.
- the two force transmission steel plates 472 at the left end are connected to the cantilever through fillet welds on both sides.
- the webs of the I-shaped steel beam 41 are fastened and connected, and the two force-transmitting steel plates at the right end are fastened to the webs of the middle I-shaped steel beam 42 through fillet welds on both sides; the buckling-constrained high-strength steel bars 46 have the same structure.
- the four upper friction pads 44 are connected and fixed to the lower flanges at both ends of the two cantilevered I-shaped steel beams 41 and the middle I-shaped steel beam 42 by welding seams.
- the circular screw holes correspond to each other.
- the lower surface of the upper friction pad 44 is sandblasted, and the friction coefficient is not less than 0.45;
- two buckling restraint energy dissipation plates 45 are arranged at the lower part of the lower flange of the I-shaped steel beam, one of which is buckling restraint energy dissipation plate 45 at both ends They are respectively fastened with two upper friction pads 44 through a number of high-strength bolts;
- two ends of a suspension connector 43 are respectively fixed on the cantilever section I-shaped steel beam 41 and the middle section I-shaped steel beam 42; both sides of the structure
- the cantilever section of the I-shaped steel beam 41 is rigidly connected to the two column-foot hinged box-shaped columns 5 through welded joints.
- two cantilever sections of a prestress-free ductile steel structure composed of a hinged column and an elastic reset beam are combined.
- the central axis of the I-shaped steel beam 41 is aligned with the central axis of the I-shaped steel beam 42 in the middle section.
- a buckling-constrained high-strength steel rod 46 of this embodiment is composed of a high-strength screw 461, a fixed cylindrical nut 462, two constrained steel pipes 463 and a middle section constrained short steel pipe 464; the fixed cylindrical nut 462 is fixed at the midpoint of the high-strength screw 461 by threads.
- Two constrained steel pipes 463 are symmetrically arranged on both sides of the fixed cylindrical nut 462, and are fastened to the fixed cylindrical nut 462 through butt welds.
- the inner diameter is larger than the diameter of the high-strength screw 461 to ensure that there is a gap of 1-2mm between the high-strength screw 461 and the two constrained steel pipes 463; the two ends of the middle constrained short steel pipe 464 are fastened to the two constrained steel pipes 463 through fillet welds. Connection, where the midpoint of the constrained short steel pipe 464 in the middle section is aligned with the midpoint of the high-strength bolt 461.
- the four buckling-constrained high-strength steel bars 46 of the overall structure are all arranged in this way. This arrangement has a simple structure and can effectively solve the problem of the overall instability of the high-strength bolt 461 under compression.
- the other embodiments are the same as above.
- the buckling restraint energy dissipation plate 45 is composed of a straight core plate 451, a first restraining steel plate 4521, a second restraining steel plate 4522, two limit steel plates 453 and two lower friction pads. 454 composition; the in-line core plate 451 adopts a dog bone shape, and on both sides of the in-line core plate 451 in the length direction, a groove that matches the shape of the two limit steel plates 453 is processed.
- the first constrained steel plate 4521 and The two limit steel plates 453 are fastened by fillet welds. A number of bolt holes are provided on the limit steel plates 453.
- the screw holes on the first constrained steel plate 4521 and the second constrained steel plate 4522 are connected to the two limit steel plates 453.
- the screw holes correspond one to one; the inline core plate 451 is installed between the two limit steel plates 453 through the groove, and is positioned between the first constrained steel plate 4521 and the second constrained steel plate 4522, and the second constrained steel plate 4522 passes through several
- the high-strength bolts are fastened to the two limiting steel plates 453 and the first restraining steel plate 4521, and fix the in-line core plate 451.
- the left, right, upper and lower sides of the in-line core plate 451 are all With or without bonding material, the thickness of the inline core plate 451 differs from the thickness of the two limiting steel plates 453 by 2mm, ensuring that the upper and lower surfaces of the inline core plate 451 are respectively aligned with the first restraining steel plate 4521 and the second restraining steel plate 4522
- the gap between the two limiting steel plates 453 in the width direction is 4mm different from the width of the yield section of the inline core plate 451, ensuring that the left and right sides of the inline core plate 451 and the limiting steel plates are respectively
- the gap between 453 is 2mm; the two lower friction pads 454 are fastened to the two ends of the in-line core plate 451 through fillet welds and butt welds, and the upper surfaces of the two lower friction pads 454 are treated with sandblasting ,
- the friction coefficient is not less than 0.45, and the groove-shaped screw holes on the two lower friction
- the lower flanges of the cantilever section I-shaped steel beam 41 and the middle section I-shaped steel beam 42 are connected by welding to fix the upper friction pad 44, and the cantilever section I-shaped steel beam 41 and the middle section I-shaped steel beam 42 are lower wing.
- the circular screw holes on the edge correspond to the circular screw holes of the upper friction pad 44.
- the lower surface of the upper friction pad 44 is sandblasted, and the friction coefficient is not less than 0.45; the upper friction pad 44 and the lower friction pad
- the plates 454 are in contact, and the inline core plate 451, the lower friction pad 454, the upper friction pad 44 and the lower flange of the cantilever section I-shaped steel beam 41 or the middle section I-shaped steel beam 42 are arranged in sequence from bottom to top, and pass Bolted.
- one end of the suspension connector 43 is fixed to the upper flange of the cantilever section I-shaped steel beam 41, and the other end is fixed to the upper flange of the middle section I-shaped steel beam 42. ; Including two vertical anti-shear plates 431, a first splicing angle steel 4321, a second splicing angle steel 4322, a first splicing steel plate 4331 and a second splicing steel plate 4332; the first splicing angle steel 4321, the second splicing angle steel 4322.
- the lengths of the first spliced steel plate 4331 and the second spliced steel plate 4332 are equal, and the length is equal to twice the length of the vertical anti-shear plate 431 plus the middle section I-shaped steel beam 42 and the cantilever section I-shaped steel beam 41 along the axis
- the two vertical anti-shear plates 431 are respectively fastened to the cantilever section I-shaped steel beam 41 and the middle section I-shaped steel beam 42 through butt welds; the short side plates and the first splicing angle steel 4321
- the short side plates of the two-spliced angle steel 4322 are fastened to the two anti-shear plates 431 by high-strength bolts.
- the circular screw holes on the short side plates of the first spliced angle steel 4321 and the second spliced angle steel 4322 are connected with two anti-shear plates.
- the circular screw holes on the shear plate 431 correspond one-to-one and are fixed by high-strength bolts, and the first spliced angle steel 4321 short side plate and the second spliced angle steel 4322 short side plate are symmetrically arranged on both sides of the anti-shear plate 431;
- the first spliced steel plate 4331 is fastened to the upper flange of the cantilever section I-shaped steel beam 41 and the upper flange of the middle section I-shaped steel beam 42 and the first spliced angle steel 4321 long side plate by high-strength bolts.
- the upper wing of the I-shaped steel beam The flange is located between the first spliced steel plate 4331 and the first spliced angle steel 4321 long side plate; the second spliced steel plate 4332 is connected to the upper flange of the cantilever section I-beam 41 and the upper flange of the middle section I-beam 42 and the second
- the long side plates of the spliced angle steel 4322 are fastened and connected by high-strength bolts, and the upper flange of the I-shaped steel beam is located between the second spliced steel plate 4332 and the second spliced angle steel 4322 long side plate.
- the two suspension connectors 43 of the overall structure are all arranged in this way. With this arrangement, the structure is simple, easy to install, and there is no restriction on the function of the building.
- the other embodiments are the same.
- a column-foot hinged box-shaped column 5 of this embodiment is composed of a box-shaped column 51, four backing plates 52, four anchor bolts 53 and a bottom plate 54.
- the box-shaped column 51 passes The fillet weld is tightly connected to the bottom plate 54, and the bottom plate 54 is fastened to the foundation soil through four anchor bolts 53, and the four backing plates 52 play the role of expanding the force area and make the force more uniform.
- the two column-foot hinged box-shaped columns are arranged in this way. With this arrangement, the structure is simple to ensure that the column foot does not transmit bending moment, and the bottom plate 54 cannot restrain the deformation of the box-shaped column 51, and plays the role of hinged column foot.
- the box-shaped column 51 and the cantilever section I-shaped steel beam 41 are connected by welding.
- the method for processing a prestress-free ductile steel structure composed of hinged columns and elastic reset beams of the present invention is implemented in the following steps: step one, two box-shaped columns 51 and two Two cantilevered I-shaped steel beams 41 are rigidly connected by welding, two box-shaped columns 51 and two bottom plates 54 are tightly connected by fillet welds, and then the two bottom plates 54 are tightly connected to the foundation through anchor bolts 53 and backing plates 52.
- step two the two ends of the middle section of the I-shaped steel beam 42 are respectively connected with the two cantilever section I-shaped steel beams 41 through two suspension connectors 43; step three, four upper friction pads 44 according to the bolt holes one by one
- the corresponding principle determines the installation position, and the lower flange of the two cantilever sections of I-shaped steel beam 41 and the lower flange of the middle section of I-shaped steel beam 42 are fastened by butt welds and fillet welds, and the main vertical load After all are applied to the beams (such as cast-in-place concrete floors, partition walls, etc.), two buckling restraint energy dissipation plates 45 are passed through high-strength bolts, two cantilevered I-shaped steel beams 41 and an intermediate I-shaped steel beam 42 The lower flanges are tightly connected, wherein the groove-shaped bolt holes of the lower friction pad 454 on the buckling restraint energy dissipation plate 45 correspond to the circular bolt holes on the upper
- a buckling-constrained high-strength steel bar 46 is fastened to a connecting steel plate 471 through two high-strength nuts, the two high-strength nuts are symmetrically arranged on both sides of the connecting steel plate 471, and the other is completed according to the corresponding process.
- One end connects the steel plate 471, the two force transmission steel plates 472 and the middle section I-shaped steel beam 42 to join and fix each other, and use high-strength bolts to complete the buckling-constrained high-strength steel rod 46 at the other end of the fastening connection, and the other three
- the process of fastening and connecting the buckling-constrained high-strength steel bar 46 is the same.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Joining Of Building Structures In Genera (AREA)
- Rod-Shaped Construction Members (AREA)
Abstract
Description
Claims (8)
- 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,包括一个弹性复位梁(4)和两个柱脚铰接箱型柱(5);所述弹性复位梁(4)包括两个悬臂段工字形钢梁(41)、一个中间段工字形钢梁(42)和屈曲约束高强钢棒(46),且悬臂段工字形钢梁(41)固定在柱脚铰接箱型柱(5)上,两悬臂段工字形钢梁(41)之间连接中间段工字形钢梁(42),所述屈曲约束高强钢棒(46)沿梁中轴线对称布置于腹板两侧,一端与悬臂段工字形钢梁(41)腹板紧固连接,另一端与中间段工字形钢梁(42)的腹板紧固连接;所述免预应力韧性钢结构左右对称设置。
- 根据权利要求1所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,所述屈曲约束高强钢棒(46)包括一个高强度螺杆(461)、一个固定圆柱形螺母(462)、两个约束钢管(463)和一个中间段约束短钢管(464);固定圆柱形螺母(462)通过螺纹固定在高强度螺杆(461)中点位置,约束钢管(463)对称布置在固定圆柱形螺母(462)两侧,并通过对接焊缝与固定圆柱形螺母(462)紧固连接,两个约束钢管(463)的内径大于高强度螺杆(461)的直径,保证高强度螺杆(461)与两个约束钢管(463)之间 预留有间隙;中间段约束短钢管(464)穿过固定圆柱形螺母(462),两端通过角焊缝分别与两个约束钢管(463)紧固连接,其中中间段约束短钢管(464)中点位置与高强度螺杆(461)中点位置对齐。
- 根据权利要求1所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,屈曲约束高强钢棒(46)两端与连接钢板(471)通过两侧高强螺母紧固连接,连接钢板(471)与两块传力钢板(472)通过对接焊缝紧固连接,连接钢板(471)的上下边缘分别与一个传力钢板(472)的上边缘以及另一个传力钢板(472)的下边缘一一对齐,悬臂段工字形钢梁(41)侧的传力钢板(472)通过两侧角焊缝与悬臂段工字形钢梁(41)腹板紧固连接,中间段工字形钢梁(42)侧的传力钢板(472)通过两侧角焊缝与中间段工字形钢梁(42)腹板紧固连接。
- 根据权利要求1所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,还包括屈曲约束耗能板(45),且一端固定在悬臂段工字形钢梁(41)下翼缘的下部,另一端固定在中间段工字形钢梁(42)下翼缘的下部;屈曲约束耗能板(45)由一字形芯板(451)、第一约束钢板(4521)、第二约束钢板(4522)和两个限位钢板(453)组成;一字形芯板(451)采用狗骨形状,在一字形芯板(451)的长度方向的两个侧面各加工一个与限位钢板(453)形状相吻合的凹槽,沿一字形芯板(451)长度方向的两端连接段上均开有槽孔,一字形芯板(451)定位于第一约束钢板(4521)与第二约束钢板(4522)之间,且限位钢板(453)定位于一字形芯板(451)两侧,以及限位钢板(453)与一字形芯板(451)结构相匹配,在限位钢板(453)上设置若干螺栓孔 ,以及在第一约束钢板(4521)、第二约束钢板(4522)分别与限位钢板(453)对应的位置设置螺栓孔,通过螺栓连接将一字形芯板(451)固定,第一约束钢板(4521)与两个限位钢板(453)通过角焊缝紧固连接,其中一字形芯板(451)的左侧面、右侧面、上侧面以及下侧面均粘有无粘结材料,一字形芯板(451)的厚度与两个限位钢板(453)的厚度不同,保证一字形芯板(451)上表面和下表面分别与第一约束钢板(4521)和第二约束钢板(4522)之间预留间隙;限位钢板(453)与一字形芯板(451)的屈服段间均预留间隙,保证一字形芯板的左侧面和右侧面分别与限位钢板之间均预留有间隙。
- 根据权利要求4所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,屈曲约束耗能板(45)还包括两个下摩擦垫板(454),且下摩擦垫板(454)通过角焊缝以及对接焊缝紧固连接在一字形芯板(451)的两端,两个下摩擦垫板(454)上表面采用喷砂处理,其摩擦系数不低于0.45,两个下摩擦垫板(454)上的槽形螺孔和一字形芯板(451)两端的槽形螺孔一一对应;悬臂段工字形钢梁(41)和中间段工字形钢梁(42)下翼缘的下部均通过焊缝连接固定上摩擦垫板(44),且悬臂段工字形钢梁(41)和中间段工字形钢梁(42)下翼缘的圆形螺孔与上摩擦垫板(44)的圆形螺孔一一对应,上摩擦垫板(44)下表面采用喷砂处理,其摩擦系数不低于0.45;上摩擦垫板(44)与下摩擦垫板(454)接触,且一字形芯板(451)、下摩擦垫板(454)、上摩擦垫板(44)和悬臂段工字形钢梁(41)或中间段工字形钢梁(42)的下翼缘从下至上依次排列,并通过螺栓连接。
- 根据权利要求1所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,还包括悬挂连接件(43),悬挂连接件(43)一端固定在悬臂段工字形钢梁(41)的上翼缘,另一端固定在中间段工字形钢梁(42)的上翼缘;悬挂连接件43包括两个竖向抗剪切板(431)、一个第一拼接角钢(4321)、一个第二拼接角钢(4322)、一个第一拼接钢板(4331)和一个第二拼接钢板(4332);第一拼接角钢(4321)、第二拼接角钢(4322)、第一拼接钢板(4331)和一个第二拼接钢板(4332)的长度相等,且长度等于竖向抗剪切板(431)长度的两倍加上中间段工字形钢梁(42)与悬臂段工字形钢梁(41)沿轴线方向的间隙 ;一个竖向抗剪切板(431)通过对接焊缝与悬臂段工字形钢梁(41)上翼缘上表面紧固连接,另一个竖向抗剪切板(431)通过对接焊缝与中间段工字形钢梁(42)上翼缘上表面紧固连接,第一拼接角钢(4321)的短侧板和第二拼接角钢(4322)的短侧板通过高强螺栓与竖向抗剪切板(431)紧固连接,其中第一拼接角钢(4321)短侧板和第二拼接角钢(4322)短侧板对称布置在抗剪切板(431)两侧;第一拼接钢板(4331)分别与悬臂段工字形钢梁(41)上翼缘和中间段工字形钢梁(42)上翼缘以及第一拼接角钢(4321)长侧板通过高强螺栓紧固连接,其中工字形钢梁上翼缘位于第一拼接钢板(4331)与第一拼接角钢(4321)长侧板之间;第二拼接钢板(4332)分别与悬臂段工字形钢梁(41)上翼缘和中间段工字形钢梁(42)上翼缘以及第二拼接角钢(4322)长侧板通过高强螺栓紧固连接,其中工字形钢梁上翼缘位于第二拼接钢板(4332)与第二拼接角钢(4322)长侧板之间。
- 根据权利要求1所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,所述柱脚铰接箱型柱(5)包括箱型柱(51)、垫板(52)、锚栓(53)和底板(54),箱型柱(51)通过角焊缝与底板(54)紧固连接,锚栓(53)穿过垫板(52)将底板(54)的四周与地基土紧固连接;箱型柱(51)与悬臂段工字形钢梁(41)通过焊缝连接。
- 根据权利要求2所述的一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构,其特征在于,所述高强度螺杆(461)采用14.9级的高强螺栓制作。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/598,887 US11808026B2 (en) | 2019-08-20 | 2020-08-20 | Resilient prestress-free steel structure formed by combining pin-ended columns with elastic centering beam |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910770775.XA CN110439112B (zh) | 2019-08-20 | 2019-08-20 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
CN201910770775.X | 2019-08-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021032144A1 true WO2021032144A1 (zh) | 2021-02-25 |
Family
ID=68436717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/110149 WO2021032144A1 (zh) | 2019-08-20 | 2020-08-20 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11808026B2 (zh) |
CN (1) | CN110439112B (zh) |
WO (1) | WO2021032144A1 (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113123463A (zh) * | 2021-04-15 | 2021-07-16 | 重庆大学 | 一种可恢复耗能能力增强的钢框架 |
CN114232464A (zh) * | 2021-12-31 | 2022-03-25 | 云南省交通规划设计研究院有限公司 | 高阻尼橡胶-沙漏型钢支撑组合式耗能构造及方法 |
CN114876063A (zh) * | 2022-05-30 | 2022-08-09 | 重庆科技学院 | 一种削弱式连接盖板屈曲约束系统 |
CN115110632A (zh) * | 2022-08-10 | 2022-09-27 | 福建江夏学院 | 一种自复位装配式混凝土梁柱耗能节点及施工方法 |
CN116005881A (zh) * | 2023-02-03 | 2023-04-25 | 华侨大学 | 一种带防屈曲盖板的功能可恢复铰接钢梁 |
CN117182374A (zh) * | 2023-09-12 | 2023-12-08 | 湖北中凌建筑科技工程有限公司 | 一种钢结构方管柱焊接结构及焊接工艺 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110439112B (zh) * | 2019-08-20 | 2024-05-28 | 华南理工大学 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
CN111852069B (zh) * | 2020-08-20 | 2024-06-04 | 西安建筑科技大学 | 隐蔽式清式柱头科斗栱挑檐枋自复位耗能连接节点及方法 |
CN112102699B (zh) * | 2020-08-27 | 2022-04-22 | 浙江水利水电学院 | 应用于教学树状水配系统的灌区活水动态分配装置 |
US20220333369A1 (en) * | 2021-04-14 | 2022-10-20 | Durafuse Frames, Llc | Structural fuses and connection systems including the same |
US20220333397A1 (en) * | 2021-04-14 | 2022-10-20 | Durafuse Frames, Llc | Base connections and structures including the base connections, kits for forming and methods of repairing the same |
CN113175078B (zh) * | 2021-04-21 | 2022-11-01 | 哈尔滨工业大学 | 新型装配式屈曲约束支撑钢框架结构转动连接节点单元 |
CN113216645B (zh) * | 2021-06-01 | 2022-09-09 | 中国建筑第二工程局有限公司 | 一种冷弯型大跨度钢骨结构架的施工方法 |
CN115324362B (zh) * | 2022-08-16 | 2024-06-21 | 广西天正钢结构有限公司 | 一种高稳定型钢结构空中对接工艺 |
CN115162517B (zh) * | 2022-09-08 | 2022-12-02 | 中冶建筑研究总院有限公司 | 锈损钢结构梁柱节点防腐加固装置、锈损钢结构梁柱节点 |
CN116517131A (zh) * | 2022-12-01 | 2023-08-01 | 北京工业大学 | 一种变滞回性能自复位组合碟簧u型金属耗能阻尼器 |
CN116257981A (zh) * | 2022-12-02 | 2023-06-13 | 华南理工大学 | 考虑双向地震作用的防屈曲支撑平面外稳定设计方法 |
US12091879B1 (en) * | 2024-03-12 | 2024-09-17 | King Saud University | Beam-column moment connection structure |
CN117966895B (zh) * | 2024-03-29 | 2024-06-11 | 华侨大学 | 一种损伤可控的钢结构耗能节点装置及施工方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002004418A (ja) * | 2000-06-27 | 2002-01-09 | Takenaka Komuten Co Ltd | Rc系構造物の自己免震構法及び自己免震構造 |
KR20180072947A (ko) * | 2016-12-22 | 2018-07-02 | 영산대학교산학협력단 | 댐퍼를 활용한 연쇄붕괴 저항형 철골 모멘트 보-기둥의 접합 시스템 |
CN109057014A (zh) * | 2018-07-22 | 2018-12-21 | 北京工业大学 | 震后自复位可装配多段梁钢框架 |
CN109113189A (zh) * | 2018-09-18 | 2019-01-01 | 西安建筑科技大学 | 一种腹板带耗能件的自复位圆钢管混凝土框架梁柱节点 |
CN208701908U (zh) * | 2018-06-22 | 2019-04-05 | 西安建筑科技大学 | 一种带栅式耗能板的柱外预应力自复位梁柱节点 |
CN109629762A (zh) * | 2019-01-25 | 2019-04-16 | 北京工业大学 | 一种附加抗侧连梁的震后可恢复功能十字型柱脚节点 |
CN109853733A (zh) * | 2019-01-25 | 2019-06-07 | 北京工业大学 | 一种可恢复功能的装配式自复位防屈曲倒l型腹板剪切件框架体系 |
CN110080463A (zh) * | 2019-03-01 | 2019-08-02 | 北京工业大学 | 一种附加抗侧耗能装置的震后可恢复功能框架体系 |
CN110439112A (zh) * | 2019-08-20 | 2019-11-12 | 华南理工大学 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5660017A (en) * | 1994-12-13 | 1997-08-26 | Houghton; David L. | Steel moment resisting frame beam-to-column connections |
JP4355673B2 (ja) * | 2005-03-15 | 2009-11-04 | 東海ゴム工業株式会社 | 建物の制震構造 |
JP5528792B2 (ja) * | 2009-12-28 | 2014-06-25 | 岡部株式会社 | 梁貫通孔補強装置及び梁構造 |
US9580924B1 (en) * | 2013-06-21 | 2017-02-28 | Taylor Devices, Inc. | Motion damping system designed for reducing obstruction within open spaces |
US20160138263A1 (en) * | 2013-07-09 | 2016-05-19 | Asahi Kasei Homes Corporation | Damping device |
CN106320517B (zh) * | 2016-11-01 | 2019-12-03 | 华南理工大学 | 震后可替换的上端悬挂式钢框架耗能梁柱节点 |
WO2019055818A1 (en) * | 2017-09-14 | 2019-03-21 | South Dakota Board Of Regents | APPARATUS, SYSTEMS, AND METHODS FOR REPAIRABLE REPEATABLE REPRESENTATIVE BUILDINGS WHICH ARE RESISTANT AT THE MOMENT |
SG11202003238SA (en) * | 2017-10-13 | 2020-05-28 | Building System Design Co Ltd | Joint structure for h-beam |
CN108590300B (zh) * | 2018-03-30 | 2019-11-12 | 东南大学 | 自复位金属耗能拉索 |
CN208137148U (zh) * | 2018-04-18 | 2018-11-23 | 山东大学 | 基于sma棒材的自复位梁柱节点和钢结构建筑 |
CN108755954B (zh) * | 2018-05-25 | 2020-04-17 | 西安建筑科技大学 | 一种单边预应力全装配式自复位钢框架节点 |
CN109057026B (zh) * | 2018-09-21 | 2020-06-23 | 湖南大学 | 一种基于奥氏体sma-钢板组及马氏体sma棒的装配式节点 |
US11162260B2 (en) * | 2018-10-09 | 2021-11-02 | Simpson Strong-Tie Company Inc. | Moment frame including lateral bracing system and coped beam |
US11299903B2 (en) * | 2018-11-19 | 2022-04-12 | Yangzhou University | Prestress-free self-centering energy-dissipative tension-only brace |
CN211816916U (zh) * | 2019-08-20 | 2020-10-30 | 华南理工大学 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
-
2019
- 2019-08-20 CN CN201910770775.XA patent/CN110439112B/zh active Active
-
2020
- 2020-08-20 WO PCT/CN2020/110149 patent/WO2021032144A1/zh active Application Filing
- 2020-08-20 US US17/598,887 patent/US11808026B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002004418A (ja) * | 2000-06-27 | 2002-01-09 | Takenaka Komuten Co Ltd | Rc系構造物の自己免震構法及び自己免震構造 |
KR20180072947A (ko) * | 2016-12-22 | 2018-07-02 | 영산대학교산학협력단 | 댐퍼를 활용한 연쇄붕괴 저항형 철골 모멘트 보-기둥의 접합 시스템 |
CN208701908U (zh) * | 2018-06-22 | 2019-04-05 | 西安建筑科技大学 | 一种带栅式耗能板的柱外预应力自复位梁柱节点 |
CN109057014A (zh) * | 2018-07-22 | 2018-12-21 | 北京工业大学 | 震后自复位可装配多段梁钢框架 |
CN109113189A (zh) * | 2018-09-18 | 2019-01-01 | 西安建筑科技大学 | 一种腹板带耗能件的自复位圆钢管混凝土框架梁柱节点 |
CN109629762A (zh) * | 2019-01-25 | 2019-04-16 | 北京工业大学 | 一种附加抗侧连梁的震后可恢复功能十字型柱脚节点 |
CN109853733A (zh) * | 2019-01-25 | 2019-06-07 | 北京工业大学 | 一种可恢复功能的装配式自复位防屈曲倒l型腹板剪切件框架体系 |
CN110080463A (zh) * | 2019-03-01 | 2019-08-02 | 北京工业大学 | 一种附加抗侧耗能装置的震后可恢复功能框架体系 |
CN110439112A (zh) * | 2019-08-20 | 2019-11-12 | 华南理工大学 | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113123463A (zh) * | 2021-04-15 | 2021-07-16 | 重庆大学 | 一种可恢复耗能能力增强的钢框架 |
CN113123463B (zh) * | 2021-04-15 | 2022-11-29 | 重庆大学 | 一种可恢复耗能能力增强的钢框架 |
CN114232464A (zh) * | 2021-12-31 | 2022-03-25 | 云南省交通规划设计研究院有限公司 | 高阻尼橡胶-沙漏型钢支撑组合式耗能构造及方法 |
CN114232464B (zh) * | 2021-12-31 | 2024-05-14 | 云南省交通规划设计研究院股份有限公司 | 高阻尼橡胶-沙漏型钢支撑组合式耗能构造及方法 |
CN114876063A (zh) * | 2022-05-30 | 2022-08-09 | 重庆科技学院 | 一种削弱式连接盖板屈曲约束系统 |
CN115110632A (zh) * | 2022-08-10 | 2022-09-27 | 福建江夏学院 | 一种自复位装配式混凝土梁柱耗能节点及施工方法 |
CN115110632B (zh) * | 2022-08-10 | 2023-05-12 | 福建江夏学院 | 一种自复位装配式混凝土梁柱耗能节点及施工方法 |
CN116005881A (zh) * | 2023-02-03 | 2023-04-25 | 华侨大学 | 一种带防屈曲盖板的功能可恢复铰接钢梁 |
CN117182374A (zh) * | 2023-09-12 | 2023-12-08 | 湖北中凌建筑科技工程有限公司 | 一种钢结构方管柱焊接结构及焊接工艺 |
CN117182374B (zh) * | 2023-09-12 | 2024-02-13 | 湖北中凌建筑科技工程有限公司 | 一种钢结构方管柱焊接工艺及焊接结构 |
Also Published As
Publication number | Publication date |
---|---|
US11808026B2 (en) | 2023-11-07 |
CN110439112A (zh) | 2019-11-12 |
CN110439112B (zh) | 2024-05-28 |
US20220154445A1 (en) | 2022-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021032144A1 (zh) | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 | |
CN113235776B (zh) | 一种可恢复功能装配式抗震剪力墙结构 | |
US3971179A (en) | Non-bonded framing system | |
US7637076B2 (en) | Moment-resistant building column insert system and method | |
CN211816916U (zh) | 一种由铰接柱与弹性复位梁组合的免预应力韧性钢结构 | |
CN109113189B (zh) | 一种腹板带耗能件的自复位圆钢管混凝土框架梁柱节点 | |
CN106401018B (zh) | 一种装配式自复位摇摆钢板墙结构体系 | |
CN212613073U (zh) | 一种具有预压碟簧组的装配式自复位梁柱节点 | |
JPH0721259B2 (ja) | エネルギー吸収組立体及び該エネルギー吸収組立体を備える構築物 | |
CN108412040B (zh) | 带暗牛腿-变摩擦耗能的自复位预制混凝土梁柱节点装置 | |
CN114809277B (zh) | 一种装配式自复位预应力混凝土框架双重耗能节点 | |
CN112854440A (zh) | 装配式混凝土框架梁柱自复位转动节点连接结构及拼装方法 | |
Ingham et al. | Seismic retrofit of the golden gate bridge | |
KR100492335B1 (ko) | 교량하부구조물 내진보강방법 및 그 장치 | |
CN210288683U (zh) | 一种提高pc框架节点抗震性能的连接结构 | |
JP7116400B2 (ja) | トラス梁 | |
JP2507596Y2 (ja) | 複合構造物 | |
CN115748960A (zh) | 梁柱节点的梁端可更换耗能装置 | |
CN114232464B (zh) | 高阻尼橡胶-沙漏型钢支撑组合式耗能构造及方法 | |
KR100492336B1 (ko) | 교량하부구조물 내진보강방법 및 그 장치 | |
JP3859218B2 (ja) | 建造物の鉄骨柱脚部の耐震補強構造、及び建造物の鉄骨柱脚部の耐震補強方法 | |
CN211421609U (zh) | 一种钢筋连接件组件及其应用的连接节点 | |
CN113863490A (zh) | 装配式自复位转动约束型混凝土梁柱节点连接结构及拼装方法 | |
JP3392027B2 (ja) | ブレース | |
JP7426253B2 (ja) | トラス梁 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20854094 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20854094 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 12.10.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20854094 Country of ref document: EP Kind code of ref document: A1 |