WO2021032043A1 - 纸基3d打印装置及打印方法 - Google Patents

纸基3d打印装置及打印方法 Download PDF

Info

Publication number
WO2021032043A1
WO2021032043A1 PCT/CN2020/109467 CN2020109467W WO2021032043A1 WO 2021032043 A1 WO2021032043 A1 WO 2021032043A1 CN 2020109467 W CN2020109467 W CN 2020109467W WO 2021032043 A1 WO2021032043 A1 WO 2021032043A1
Authority
WO
WIPO (PCT)
Prior art keywords
paper
printing
axis
glue
platform
Prior art date
Application number
PCT/CN2020/109467
Other languages
English (en)
French (fr)
Inventor
陈广学
蔡玲
陈琳轶
陈奇峰
袁江平
王笑春
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/294,395 priority Critical patent/US20220009160A1/en
Publication of WO2021032043A1 publication Critical patent/WO2021032043A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/188Processes of additive manufacturing involving additional operations performed on the added layers, e.g. smoothing, grinding or thickness control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00214Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/66Applications of cutting devices
    • B41J11/663Controlling cutting, cutting resulting in special shapes of the cutting line, e.g. controlling cutting positions, e.g. for cutting in the immediate vicinity of a printed image
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/28Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for printing downwardly on flat surfaces, e.g. of books, drawings, boxes, envelopes, e.g. flat-bed ink-jet printers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
    • B41J3/407Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
    • B41J3/4073Printing on three-dimensional objects not being in sheet or web form, e.g. spherical or cubic objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling

Definitions

  • the invention relates to the technical field of 3D printing equipment, in particular to a paper-based 3D printing device and a printing method.
  • Paper-based color 3D printing technology is mainly based on conventional paper (usually A4 paper) and water-based glue. This printing method makes the color of the model not limited to the color of the raw material, and realizes the full-color output of 3D printing. Paper-based color 3D printing can achieve high-precision color reproduction and delicate gradient colors, and it also has industrial advantages such as light weight, environmental protection and low cost, and broad application prospects.
  • the layered color model is printed and colored layer by layer with a printer.
  • a printer Take printing a blue cylinder model as an example, assuming that the height of the blue cylinder is H, after making the model diagram with software , Perform layered processing on the model diagram.
  • the printer After calculating the total number of papers required is n, the printer is used to print n sheets of paper one by one, the printed pattern is a circle filled with blue, and the outline of the preset model is a circle .
  • glue is applied, and then another is glued to form.
  • the other paper is cut, and so on, until all the paper is cut and glued to form, and finally the waste paper is peeled off to form a complete color 3D model.
  • layer-by-layer coloring does not make all the fibers in the paper completely adhered to by the ink, that is, the ink cannot penetrate the entire thickness of the paper, causing the model to separate from the waste paper edge, and there will be uncolored parts on the outer surface of the model, exposing Paper white, so that the color reproduction effect is greatly reduced.
  • the ink printed on the paper is finally glued inside the model and cannot be displayed, the ink is greatly wasted.
  • the paper-based 3D printing process of coloring layer by layer and then bonding and cutting layer by layer is cumbersome, making the entire printing speed extremely slow and printing efficiency low.
  • the first object of the present invention is to provide a paper-based 3D printing device to alleviate the technical problem of uncolored parts on the outer surface of the model existing in the prior art and waste of ink.
  • the second object of the present invention is to provide a paper-based 3D printing method to alleviate the technical problems in the prior art that the printing efficiency is low, the ink is wasted, and the outer surface of the printed model has uncolored parts.
  • the present invention provides a paper-based 3D printing device, including a printing platform, a three-axis linkage platform, a cutting head, and an inkjet head.
  • the printing platform is used to place paper, and the three-axis
  • the linkage platform is set to first drive the cutting head to cut the corresponding paper along the contour of the preset model to form a cutting seam, and then drive the inkjet head to follow the contour of the preset model to the Inkjet coloring at the cutting seams.
  • the paper-based 3D printing device further includes a housing, and the printing platform, the three-axis linkage platform, the cutting head and the inkjet head are all located in the The inside of the housing, wherein the three-axis linkage platform is installed on the bottom plate of the housing.
  • the paper-based 3D printing device further includes an ink cartridge, and the ink cartridge is connected to the inkjet head through an ink supply tube.
  • the ink in the ink cartridge is UV ink; two opposite side walls of the housing are respectively provided with UV lamp groups.
  • the paper-based 3D printing device further includes a drag chain, the material of the drag chain is a light-proof material, and the ink delivery tube is located inside the drag chain.
  • the paper-based 3D printing device further includes a waste ink cartridge and a cleaning tube, the waste ink cartridge is provided with an inlet and an outlet, and one end of the cleaning tube communicates with the inlet of the waste ink cartridge, The other end of the cleaning pipe is used to communicate with the inkjet head; the outlet of the waste ink cartridge is used to connect with a waste liquid container.
  • the three-axis linkage platform includes an X-axis drive device, a Y-axis drive device, and a Z-axis drive device.
  • the printing platform is mounted on the Z-axis drive device.
  • the driving device is used to drive the printing platform up or down; the cutting head and the inkjet head are both installed on the X-axis driving device, and the X-axis driving device is used to drive the cutting knife
  • the head and the inkjet head reciprocate along the X-axis direction, the X-axis driving device is connected to the Y-axis driving device, the Y-axis driving device is installed above the printing platform, and the Y-axis driving device It is used to drive the cutting head and the inkjet head to reciprocate along the Y axis.
  • the cutting head includes a mounting seat and a blade, the blade is connected to the lower end of the mounting seat, and the blade is triangular.
  • the paper-based 3D printing device further includes a glue running mechanism, and the glue running mechanism is connected to the three-axis linkage platform.
  • the glue running mechanism includes a driving mechanism, a glue bin, a glue plate, and a glue pipe, and the driving mechanism and the glue bin are both installed on the three-axis linkage platform ,
  • the driving mechanism is in transmission connection with the glue applicator to drive the glue applicator to rotate around its own axis, and the circumferential surface of the glue applicator is provided with a plurality of grooves at intervals; one end of the glue pipe Used to communicate with the rubber storage container, the other end of the rubber pipe is connected with the inlet of the rubber silo; the outlet of the rubber silo is located above the rubber coating pan, so that the rubber silo The glue flowing out of the outlet can enter the groove; the three-axis linkage platform can drive the glue application tray to roll on the paper.
  • the present invention also provides a paper-based 3D printing method, which includes the following steps:
  • Cutting step the cutting head cuts the corresponding paper along the contour of the preset model to form a cutting seam
  • the coloring step the inkjet head inks and colorizes the cutting seam along the outline of the preset model.
  • the method further includes: before the cutting step, making a model diagram according to the paper-based 3D model to be printed, and performing layering processing on the model diagram to obtain the Describe the total number of sheets required for the paper-based 3D model to be printed and the contour of the preset model corresponding to each sheet.
  • the method further includes: after the coloring step, peeling off the edges of the waste paper to obtain a paper-based 3D model.
  • the paper-based 3D printing device includes a printing platform, a three-axis linkage platform, a cutter head, and an inkjet head.
  • the printing platform is used to place paper, and the three-axis linkage platform is set to drive the
  • the cutting head cuts the corresponding paper along the contour of the preset model to form a cutting seam, and then drives the inkjet head to ink and color the cutting seam along the contour of the predetermined model.
  • the paper-based 3D printing device when in use, the paper is placed on the printing platform, the first paper is placed first, and then the three-axis linkage platform first drives the cutting head to follow the contour of the preset model. Cut, and then drive the inkjet head to spray color along the contour of the preset model to the cutting seam.
  • This method not only saves ink, but the ink is sprayed directly at the cutting seam, which is equivalent to coloring the outer surface of the model. The coloring effect is effectively improved, and the outer surface of the model is uniformly colored.
  • the first sheet is colored
  • put the second sheet of paper cut and colored, until a complete 3D model is formed.
  • the paper-based 3D printing method provided by the present invention is applied to the above-mentioned paper-based 3D printing device, and the method includes the following steps:
  • Cutting step the cutting head cuts the corresponding paper along the contour of the preset model to form a cutting seam
  • Coloring step the inkjet head inks and colorizes the cutting seam along the outline of the preset model.
  • the paper-based 3D printing method provided by the present invention not only saves ink, but also can spray the ink directly on the cutting seam, which is equivalent to coloring the outer surface of the model, effectively improving the coloring effect, and making the outer surface of the model uniformly colored. And it saves the step of printing one by one, and the printing efficiency is high.
  • FIG. 1 is a schematic structural diagram of a paper-based 3D printing device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a modification of the paper-based 3D printing device according to the first embodiment of the present invention (the casing is not shown);
  • FIG. 3 is a front view of the glue-feeding mechanism in the paper-based 3D printing device according to the first embodiment of the present invention
  • FIG. 4 is a left side view of the glue-feeding mechanism in the paper-based 3D printing device according to the first embodiment of the present invention
  • FIG. 5 is a schematic diagram of the positional relationship between the inkjet head, the waste ink cartridge of the cutter head and the glue feeding mechanism in the paper-based 3D printing device according to the first embodiment of the present invention (top view);
  • FIG. 6 is a schematic diagram of another positional relationship between the inkjet head, the waste ink cartridge of the cutter head and the glue feeding mechanism in the paper-based 3D printing device according to the first embodiment of the present invention (a top view);
  • FIG. 7 is a schematic structural diagram of a housing in a paper-based 3D printing device according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic structural diagram of a waste ink cartridge in a paper-based 3D printing device according to Embodiment 1 of the present invention.
  • FIG. 9 is a schematic diagram of the structure of the cutting head in the paper-based 3D printing device according to the first embodiment of the present invention.
  • FIG. 10 is a flowchart of a paper-based 3D printing method according to Embodiment 2 of the present invention.
  • Icon 101-Printing platform; 102-Cutter head; 103-Inkjet head; 104-Glue pipe; 105-Glue bin; 106-Glue tray; 107-Drive mechanism; 108-Glue storage container; 109 -Mounting seat; 110-blade; 111-housing; 112-cartridge; 113-UV lamp set; 114-cooling hole; 115-towing chain; 116- waste cartridge; 117-inlet; 118-outlet; 119-Z axis Screw; 120-Z-axis motor; 121-Y-axis screw; 122-Y-axis motor; 123-drive shaft; 124-X-axis screw; 125-base plate; 126-gluing mechanism; 127-groove.
  • this embodiment provides a paper-based 3D printing device, including a printing platform 101, a three-axis linkage platform, a cutting knife head 102 and an inkjet head 103, on the printing platform 101 for placing
  • the three-axis linkage platform is set to first drive the cutting head 102 to cut the corresponding paper along the contour of the preset model to form a slit, and then drive the inkjet head 103 to cut along the contour of the preset model Inkjet coloring at seams.
  • the paper-based 3D printing device when in use, the paper is placed on the printing platform 101, the first paper is placed first, and then the three-axis linkage platform first drives the cutting head 102 along the contour of the preset model. The paper is cut, and then the inkjet head 103 is driven to inject ink along the outline of the preset model to the cutting seam.
  • This method not only saves ink, but also sprays the ink directly on the cutting seam, which is equivalent to outside the model.
  • the surface is colored, which effectively improves the coloring effect and makes the outer surface of the model uniformly colored. After the first sheet is colored, put the second sheet of paper, cut and colored, until a complete 3D model is formed.
  • the cutting head includes a mounting seat 109 and a blade 110, the blade 110 is connected to the lower end of the mounting seat 109, and the blade 110 is triangular.
  • the paper-based 3D printing device further includes a glue running mechanism 126.
  • the glue running mechanism 126 is connected to a three-axis linkage platform.
  • the three-axis linkage platform drives the glue running mechanism 126 to move. Glue on. Then put a piece of paper on the glued paper and glue it on the glued paper below, and then the three-axis linkage platform continues to drive the cutting head 102 to follow the contour of the preset model to perform After cutting, the inkjet head 103 is driven to inject ink to the cutting seam along the contour of the preset model.
  • the glue running mechanism 126 is located behind the inkjet head 103, so that the space can be used reasonably.
  • positional relationship between the glue running mechanism 126 and the inkjet head 103 and the positional relationship between the cutting head 102 and the inkjet head 103 are not limited to the above one, and can be arranged reasonably according to actual needs. For example, see the form shown in Figure 6.
  • the glue running mechanism 126 includes a glue pipe 104, a glue bin 105, a glue plate 106 and a driving mechanism 107.
  • One end of the glue pipe 104 is used to communicate with the rubber storage container 108, and the glue pipe 104
  • the other end of the rubber silo 105 is connected to the inlet 117 of the rubber silo 105, and the rubber in the rubber storage container 108 can be transported to the rubber silo 105 by a transfer pump (not shown); the outlet of the rubber silo 105 is located at the rubber coating tray 106
  • the circumferential surface of the glue applicator 106 is provided with a plurality of grooves 127 at intervals.
  • the driving mechanism 107 is in transmission connection with the glue applicator 106 to drive the glue applicator 106 to rotate around its own axis, thereby driving the glue applicator 106 Rolling on the paper, the glue flowing out of the outlet of the glue bin 105 enters the groove 127. As the glue plate 106 rolls on the paper, the glue in the groove 127 and the circumferential surface of the glue plate 106 The glue can be spread on paper.
  • the size of the outlet of the rubber silo 105 is not greater than the size of the notch of the groove 127, so as to ensure that the glue flowing from the outlet of the rubber silo 105 can enter the groove 127 or flow onto the circumferential surface of the glue pan 106, It will not flow down along the surface of the glue spreader 106, ensuring a good glue spreading effect.
  • the outlet of the rubber silo 105 is provided with a valve, such as a solenoid valve.
  • the grooves 127 are spherical grooves, and the spherical grooves are evenly spaced along the circumferential surface of the rubber coating disk 106.
  • groove 127 may also be a groove of other shapes.
  • the glue used is the same as the glue used in current common paper-based 3D printing devices, such as water-based glue.
  • the paper-based 3D printing device further includes a paper storage bin and a paper transfer gripper. Before printing, all the paper required for the paper-based 3D model to be printed is placed in the paper storage bin, and the paper transfer gripper The tooth picks up a piece of paper from the paper storage bin and places it on the printing platform 101, and then performs cutting, coloring and gluing, and then the next piece of paper is picked up by the delivery paper and placed on the printing platform 101. Cut, color and glue, and so on, until a complete 3D model is formed.
  • paper feeding bin and the paper feeding gripper in this embodiment are the same as the paper feeding bin and the paper feeding gripper structure in the current common paper-based 3D printing device, and will not be described in detail here.
  • the paper-based 3D printing device further includes a housing 111.
  • the printing platform 101, the three-axis linkage platform, the cutting head 102, and the inkjet head 103 are all located inside the housing 111, wherein the three-axis linkage The platform is installed on the bottom plate 125 of the housing 111.
  • a housing 111 is usually provided, and a window may be provided on the side wall of the housing 111 to facilitate observation of the printing situation.
  • the rubber silo 105 and the driving mechanism 107 are fixedly installed inside the housing 111.
  • the paper storage bin and the paper delivery gripper are also fixedly installed inside the housing 111.
  • the inkjet head 103 in this embodiment may be an inkjet head in a current common digital printer, such as an inkjet head in EPSONSTYLUS PRO 7600.
  • the paper-based 3D printing device further includes an ink cartridge 112, and the ink cartridge 112 is connected to the inkjet head 103 through an ink supply tube.
  • the ink cartridge 112 is installed on the bottom plate 125 of the housing 111.
  • the ink cartridge 112 is a six-color ink cartridge, including black, cyan, magenta, yellow, light cyan and spot colors, so that more levels of color effects can be reproduced.
  • the number of ink delivery tubes is six, and each color ink is dedicated to one ink delivery tube and cannot be mixed.
  • the ink cartridge 112 is not limited to six-color ink cartridges, and the colors are not limited to the above six types, and can be selected according to actual printing requirements.
  • the ink in the ink cartridge 112 is UV ink; two opposite side walls of the housing 111 are respectively provided with a UV lamp group 113.
  • UV (ultraviolet curing) ink refers to an ink that uses ultraviolet light of different wavelengths and energy to polymerize monomers in the ink binder into a polymer under ultraviolet irradiation, so that the ink can be filmed and dried. UV inks are also inks, which not only have bright colors (except in special cases), good printability and suitable curing and drying rate, but also have good adhesion, and have the characteristics of wear resistance, corrosion resistance, and weather resistance.
  • UV ink is used.
  • the UV ink penetrates into the cutting gap, it can be dried quickly, which ensures that the color of the outer surface of the model has a higher gloss and a good color rendering effect.
  • the two opposite side walls of the housing 111 are respectively provided with UV lamp groups 113.
  • each side wall is provided with three UV lamp groups 113, and three UV lamps
  • the groups 113 are arranged at intervals along the height direction of the housing 111, and the UV lamp groups 113 on the two side walls correspond one-to-one in the horizontal direction.
  • the three UV lamp groups 113 can be arranged at even intervals along the height direction of the housing 111, so that the UV inks in different positions of the entire model can be evenly illuminated to achieve The best color rendering effect.
  • the UV lamp group 113 in this embodiment includes one or more ultraviolet lamp tubes.
  • the number of UV lamp groups 113 is not limited to three, and the arrangement of the UV lamp groups 113 is not limited to the above one, and can be reasonably selected according to the overall size of the paper-based 3D printing device.
  • the paper-based 3D printing device further includes a drag chain 115, the drag chain 115 is made of light-proof material, and the ink delivery tube is located inside the drag chain 115.
  • wires in the paper-based 3D printing device are also located inside the drag chain 115.
  • the ink delivery tubes and wires are evenly spaced and arranged side by side in the drag chain 115, which is convenient for fault diagnosis during operation and targeted maintenance.
  • the material of the drag chain 115 can be made of a tough black resin material, so as to ensure that the entire paper-based 3D printing device can be flexibly stretched and moved in three-dimensional space, and it can also protect the delivered UV ink from sunlight, fluorescent lamps, etc. The influence of lighting factors ensures the high precision of coloring.
  • the side wall of the housing 111 is further provided with a heat dissipation hole 114.
  • the paper-based 3D printing device further includes a waste ink cartridge 116 and a cleaning tube.
  • the waste ink cartridge 116 is provided with an inlet 117 and an outlet 118, and one end of the cleaning tube is connected to the inlet 117 of the waste ink cartridge 116.
  • the other end of the cleaning tube is used to communicate with the inkjet head 103; the outlet 118 of the waste ink cartridge 116 is used to connect with the waste liquid container.
  • the inkjet head 103 needs normal maintenance. For this reason, the paper-based 3D printing device is also provided with a cleaning tube and a waste ink cartridge 116.
  • the inkjet head 103 needs to be cleaned, the inkjet head 103 is connected to the cleaning tube, and the ink cartridge 112 is used The ink flushes the inkjet head 103, and the flushed waste ink enters the waste ink cartridge 116 through the cleaning tube.
  • the waste ink cartridge 116 is full, the excess waste ink will flow to the waste liquid container to prevent direct overflow from the outlet 118 and contaminate the device.
  • the waste ink cartridge 116 is installed on a three-axis linkage platform.
  • the waste ink cartridge 116 is connected to the inkjet head 103 far from the cutting head 102.
  • One side is one side.
  • the waste ink cartridge 116 is arranged on the bottom plate 125 of the housing 111.
  • the cleaning tube is connected to the waste ink cartridge. Between the inlet 117 of 116 and the inkjet head 103. In this way, the waste ink cartridge 116 does not move along with the movement of the inkjet head 103 and prevents waste ink from overflowing.
  • FIG. 2 does not show the housing 111, the ink cartridge 112, the drag chain 115, and the waste ink cartridge 116. It should be understood that, in this other possible design, the feeder in the drag chain 115 The ink tube directly communicates with the inkjet head 103.
  • the paper-based 3D printing device further includes a controller, a three-axis linkage platform, a cutting head 102, an inkjet head 103, a paper gripper, a glue-feeding mechanism 126, and a UV lamp set 113 are respectively connected with the control ⁇ Connectors.
  • the controller can control the movement of the three-axis linkage platform, control the inkjet head 103 to eject ink, control the paper gripper to grip the paper on the printing platform 101, control the glue feeding mechanism 126 to apply glue on the paper surface, and control the UV lamp group 113 Turn on and off.
  • the three-axis linkage platform includes an X-axis drive device, a Y-axis drive device, and a Z-axis drive device.
  • the printing platform 101 is detachably mounted on the Z-axis drive device, and the Z-axis drive device is used to drive the printing platform. 101 rises or falls; the cutting head 102 and the inkjet head 103 can be detachably mounted on the X-axis driving device, the X-axis driving device is used to drive the cutting head 102 and the inkjet head 103 to reciprocate along the X-axis direction
  • the X-axis driving device is connected with the Y-axis driving device.
  • the Y-axis driving device is installed above the printing platform 101.
  • the Y-axis driving device is used to drive the cutting head 102 and the inkjet head 103 to reciprocate along the Y-axis direction.
  • the X-axis driving device, the Y-axis driving device, and the Z-axis driving device are respectively connected to the controller, and the controller respectively controls the movement of the X-axis driving device, the Y-axis driving device and the Z-axis driving device.
  • the Z-axis driving device includes a Z-axis screw 119 and a Z-axis motor 120.
  • the printing platform 101 is mounted on the Z-axis screw 119.
  • the Z-axis motor 120 drives the Z-axis screw 119 to rotate along its own axis to make the printing platform 101 It rises or falls along the length of the Z-axis screw 119.
  • the X-axis driving device includes an X-axis screw 124 and an X-axis motor.
  • the cutting head 102 and the inkjet head 103 are both mounted on the X-axis screw 124.
  • the X-axis motor drives the X-axis screw 124 to rotate along its own axis. , So that the cutting head 102 and the inkjet head 103 reciprocate along the axis of the X-axis screw 124.
  • the Y-axis driving device includes a Y-axis motor 122, a transmission shaft 123, and a Y-axis screw 121.
  • the Y-axis motor 122 is drivingly connected to the Y-axis screw 121 through the transmission shaft 123.
  • the transmission shaft 123 and the Y-axis screw 121 can pass through A pair of bevel gears are connected in transmission; the X-axis screw 124 is mounted on the Y-axis screw 121, and the X-axis screw 124 can reciprocate along the axis of the Y-axis screw 121, so that the cutting head 102 and the ink jet The head 103 reciprocates in the Y-axis direction.
  • the contours of the preset models on each sheet of paper are different.
  • the contours of the preset model on each sheet of paper are diameters.
  • the controller controls the X-axis driving device and the Y-axis driving device, and first makes the cutting head 102 cut the corresponding paper along the contour of the preset model to form a cutting seam;
  • the ink head 103 inks and colorizes along the contour of the preset model toward the cutting seam.
  • X-axis motor Y-axis motor 122 and Z-axis motor 120 are all servo motors.
  • the controller in this embodiment is a PLC controller, such as Siemens PLC S7-200.
  • the control program of the controller for the three-axis linkage platform in this embodiment can adopt the control program of the current common 3D printer on the three-axis linkage platform, so that the cutting head 102 can cut the corresponding paper along the contour of the preset model.
  • the inkjet head 103 is then made to inject coloring along the contour of the preset model toward the cutting seam.
  • the movement path of the inkjet head 103 is substantially the same as the movement path of the cutting head 102.
  • the three-axis linkage platform can also adopt other common forms of platforms, such as a three-axis linkage platform driven by a synchronous belt, as long as it can realize movement in the three directions of X, Y, and Z.
  • this embodiment provides a paper-based 3D printing method, which is applied to the paper-based 3D printing device provided in Embodiment 1 of the present invention, and the method includes the following steps:
  • Cutting step the cutting head 102 cuts the corresponding paper along the contour of the preset model to form a cutting seam
  • Coloring step the inkjet head 103 inks and colorizes along the contour of the preset model toward the cutting seam.
  • the paper-based 3D printing method provided by the embodiments of the present invention not only saves ink, but also can spray the ink directly on the cutting seam, which is equivalent to coloring the outer surface of the model, effectively improving the coloring effect, and making the outer surface of the model color It is uniform and saves the step of printing one by one, and the printing efficiency is high.
  • this embodiment also provides a paper-based 3D printing method, which further includes: before the cutting step, making a model diagram according to the paper-based 3D model to be printed, and dividing the model diagram Layer processing to obtain the total number of sheets required for the paper-based 3D model to be printed and the contour of the preset model corresponding to each sheet.
  • the method further includes: after the coloring step, peeling off the edges of the waste paper to obtain a paper-based 3D model.
  • the paper-based 3D printing method provided in this embodiment includes the following steps:
  • a piece of white paper can be placed on the printing platform 101 in advance, the four corners are fixed with transparent glue, the upper surface of the white paper is coated with glue, and then the first piece of paper picked up by the delivery paper is glued to the glued white On paper, ready for official printing.
  • the cutting head 102 cuts the corresponding paper along the contour of the preset model to form a cutting seam.
  • the inkjet head 103 inks and colorizes along the outline of the preset model toward the slit.
  • the entire model without waste paper edges is first removed from the printing platform 101, and then the waste paper edges are peeled off to obtain a paper-based 3D model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Coating Apparatus (AREA)

Abstract

本发明涉及3D打印设备技术领域,尤其是涉及一种纸基3D打印装置及打印方法。纸基3D打印装置,包括打印平台、三轴联动平台、裁切刀头和喷墨头,所述打印平台上用于放置纸张,且所述三轴联动平台设置成先驱动所述裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝,再驱动所述喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。本发明提供的纸基3D打印装置及打印方法,不仅节省油墨,而且能够将油墨直接喷在裁切缝处,相当于对模型外表面进行着色,有效地改善了着色效果,使得模型的外表面着色均匀,且省去了逐张打印的步骤,打印效率高。

Description

纸基3D打印装置及打印方法 技术领域
本发明涉及3D打印设备技术领域,尤其是涉及一种纸基3D打印装置及打印方法。
背景技术
纸基彩色3D打印技术主要基于常规纸张(通常为A4纸)和水性胶,此打印方式使得模型的颜色不受限于原材料的色彩,实现3D打印的全彩色输出。纸基彩色3D打印能够实现高精度的颜色再现以及细腻的渐变色,同时还具有质轻、环保与低成本等产业化优势以及广阔的应用前景。
现有的纸基3D打印装置在打印时,先用打印机对分层式彩色模型逐层打印着色,以打印蓝色圆柱模型为例,假设蓝色圆柱的高度为H,用软件制作模型图之后,对模型图进行分层处理,经计算需要的纸张总数为n,采用打印机对n张纸逐张打印,打印出来的图案为填充颜色为蓝色的圆,预设模型的轮廓即为圆形。将打印好的纸张逐张放在打印平台上,利用三轴联动平台驱动裁切刀头沿预设模型的轮廓进行切割,一张切割完毕后,涂胶,再放另一张胶黏成型,同时再对该另一张纸进行切割,以此类推,直至所有纸张都切割并粘合成型,最后剥离废纸边,形成完整的彩色3D模型。
由于逐层着色并不能使纸张内所有纤维完全被油墨附着,也就是说,油墨不能渗透纸张的整个厚度面,导致模型与废纸边分离之后,模型的外表面会出现没有着色的部分,露出纸白,从而使色彩再现效果大打折扣。同时,由于打印在纸面上的油墨最终是被粘合在模型内部的,并不能被显示出来,极大地浪费了油墨。此外,逐层着色后再进行逐层粘结切割的纸基3D打印工艺较为繁琐,使得整个打印速度极为缓慢,打印效率低。
发明内容
本发明的第一目的在于提供一种纸基3D打印装置,以缓解现有技术中存在的模型的外表面会出现没有着色的部分且浪费油墨的技术问题。
本发明的第二目的在于提供一种纸基3D打印方法,以缓解现有技术中存在的打印效率低、油墨浪费多且打印出来的模型的外表面会出现没有着色的部分的技术问题。
基于上述第一目的,本发明提供了一种纸基3D打印装置,包括打印平台、三轴联动平台、裁切刀头和喷墨头,所述打印平台上用于放置纸张,所述三轴联动平台设置成先驱动所述裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝,再驱动所述喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
进一步地,在某些实施例中,所述纸基3D打印装置还包括壳体,所述打印平台、所述三轴联动平台、所述裁切刀头和所述喷墨头均位于所述壳体的内部,其中,所述三轴联动平台安装在所述壳体的底板上。
进一步地,在某些实施例中,所述纸基3D打印装置还包括墨盒,所述墨盒通过送墨管与所述喷墨头连接。
进一步地,在某些实施例中,所述墨盒中的油墨为UV油墨;所述壳体的相对的两个侧壁分别设置有UV灯组。
进一步地,在某些实施例中,所述纸基3D打印装置还包括拖链,所述拖链的材质为避光材质,所述送墨管位于所述拖链的内部。
进一步地,在某些实施例中,所述纸基3D打印装置还包括废墨盒和清洗管,所述废墨盒设置有进口和出口,所述清洗管的一端与所述废墨盒的进口连通,所述清洗管的另一端用于与所述喷墨头连通;所述废墨盒的出口用于与废液容器连接。
进一步地,在某些实施例中,所述三轴联动平台包括X轴驱动装置、Y轴驱动装置和Z轴驱动装置,所述打印平台安装在所述Z轴驱动装置上,所述Z轴驱动装置用于驱动所述打印平台上升或下降;所述裁切刀头和所述喷墨头均安装在所述X轴驱动装置上,所述X轴驱动装置用于驱动所述裁切刀头和所述喷墨头沿X轴方向往复运动,所述X轴驱动装置与所述Y轴驱动装置连接,所述Y轴驱动装置安装在所述打印平台的上方,所述Y轴驱动装置用于驱动所述裁切刀头和所述喷墨头沿Y轴方向往复运动。
进一步地,在某些实施例中,所述裁切刀头包括安装座和刀片,所述刀片与所述安装座的下端连接,所述刀片呈三角形。
进一步地,在某些实施例中,所述纸基3D打印装置还包括走胶机构,所述走胶机构与所述三轴联动平台连接。
进一步地,在某些实施例中,所述走胶机构包括驱动机构、胶料仓、涂胶盘和输胶管,所述驱动机构和所述胶料仓均安装在所述三轴联动平台上,所述驱动机构与所述涂胶盘传动连接,以驱动所述涂胶盘绕其自身的轴线转动,所述涂胶盘的周向表面间隔设置有多个凹槽;所述输胶管的一端用于与胶料存放容器连通,所述输胶管的另一端与所述胶料仓的进口连通;所述胶料仓的出口位于所述涂胶盘的上方,以使从所述胶料仓的出口流出的胶能够进入所述凹槽中;所述三轴联动平台能够带动所述涂胶盘在纸面上滚动。
基于上述第二目的,本发明还提供了一种纸基3D打印方法,所述方法包括以下步骤:
裁切步骤:裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝;
着色步骤:喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
可选地,在某些实施例中,所述方法还包括:在所述裁切步骤之前,根据待打印纸基3D模型制作模型图,并对所述模型图进行分层处理,以获取所述待打印纸基3D模型所需纸张总数以及每张纸上所对应的预设模型的轮廓。
可选地,在某些实施例中,所述方法还包括:在所述着色步骤之后,剥离废纸边,获得纸基3D模型。
与现有技术相比,本发明的有益效果为:
本发明提供的纸基3D打印装置,包括打印平台、三轴联动平台、裁切刀头和喷墨头,所述打印平台上用于放置纸张,所述三轴联动平台设置成先驱动所述裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝,再驱动所述喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
本发明提供的纸基3D打印装置,在使用时,将纸张放置在打印平台上,先放第一张纸,然后三轴联动平台先驱动裁切刀头沿预设模型的轮廓对该纸张进行裁切,然后再驱动喷墨头沿预设模型的轮廓向裁切缝处喷墨着色,这样的方式不仅节省油墨,而且油墨直接喷在裁切缝处,相当于对模型外表面进行着色,有效地改善了着色效果,使得模型的外表面着色均匀。第一张着色完成后,再放第二张纸,进行裁切和着色,直到形成完整的3D模型。
本发明提供的纸基3D打印方法,应用于上述的纸基3D打印装置,所述方法包括以下步骤:
裁切步骤:所述裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝;
着色步骤:所述喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
本发明提供的纸基3D打印方法,不仅节省油墨,而且能够将油墨直接喷在裁切缝处,相当于对模型外表面进行着色,有效地改善了着色效果,使得模型的外表面着色均匀,且省去了逐张打印的步骤,打印效率高。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的纸基3D打印装置的结构示意图;
图2为本发明实施例一提供的纸基3D打印装置的一种变形例的结构示意图(壳体未示出);
图3为本发明实施例一提供的纸基3D打印装置中的走胶机构的主视图;
图4为本发明实施例一提供的纸基3D打印装置中的走胶机构的左视图;
图5为本发明实施例一提供的纸基3D打印装置中的喷墨头、裁切刀头废墨盒与走胶机构的位置关系示意图(俯视视角);
图6为本发明实施例一提供的纸基3D打印装置中的喷墨头、裁切刀头废墨盒与走胶机构的另一种位置关系示意图(俯视视角);
图7为本发明实施例一提供的纸基3D打印装置中的壳体的结构示意图;
图8为本发明实施例一提供的纸基3D打印装置中的废墨盒的结构示意图;
图9为本发明实施例一提供的纸基3D打印装置中的裁切刀头的结构示意图;
图10为本发明实施例二提供的纸基3D打印方法的流程图。
图标:101-打印平台;102-裁切刀头;103-喷墨头;104-输胶管;105-胶料仓;106-涂胶盘;107-驱动机构;108-胶料存放容器;109-安装座;110-刀片;111-壳体;112-墨盒;113-UV灯组;114-散热孔;115-拖链;116-废墨盒;117-进口;118-出口;119-Z轴丝杠;120-Z轴电机;121-Y轴丝杠;122-Y轴电机;123-传动轴;124-X轴丝杠;125-底板;126-走胶机构;127-凹槽。
具体实施方式
下面将结合实施例对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
参见图1至图9所示,本实施例提供了一种纸基3D打印装置,包括打印平台101、三轴联动平台、裁切刀头102和喷墨头103,打印平台101上用于放置纸张,三轴联动平台设置成先驱动裁切刀头102沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝,再驱动喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色。
本实施例提供的纸基3D打印装置,在使用时,将纸张放置在打印平台101上,先放第一张纸,然后三轴联动平台先驱动裁切刀头102沿预设 模型的轮廓对该纸张进行裁切,然后再驱动喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色,这样的方式不仅节省油墨,而且油墨直接喷在裁切缝处,相当于对模型外表面进行着色,有效地改善了着色效果,使得模型的外表面着色均匀。第一张着色完成后,再放第二张纸,进行裁切和着色,直到形成完整的3D模型。
在某些实施例中,参见图9所示,裁切刀头包括安装座109和刀片110,刀片110与安装座109的下端连接,刀片110呈三角形。
在某些实施例中,纸基3D打印装置还包括走胶机构126,走胶机构126和三轴联动平台连接,三轴联动平台驱动走胶机构126运动,在已经经过裁切和着色的纸张上进行涂胶。然后再在已涂胶的纸上放一张纸,粘合在下面的已涂胶的纸上,然后三轴联动平台继续驱动裁切刀头102沿预设模型的轮廓对位于上面的纸张进行裁切,然后再驱动喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色。
参见图5所示,走胶机构126位于喷墨头103的后方,这样能够合理利用空间。
需要说明的是,走胶机构126与喷墨头103的位置关系以及裁切刀头102与喷墨头103的位置关系不仅局限于以上一种,还可以根据实际需要合理布置。例如,参见图6所示的形式。
参见图3和图4所示,走胶机构126包括输胶管104、胶料仓105、涂胶盘106和驱动机构107,输胶管104的一端用于与胶料存放容器108连通,输胶管104的另一端与胶料仓105的进口117连通,可以通过输送泵(未示出)将胶料存放容器108中的胶料输送至胶料仓105;胶料仓105的出口位于涂胶盘106的上方,涂胶盘106的周向表面间隔设置有多个凹槽127,驱动机构107与涂胶盘106传动连接,以驱动涂胶盘106绕其自身的轴线转动,从而带动涂胶盘106在纸面上滚动,从胶料仓105的出口流出的胶进入凹槽127中,随着涂胶盘106在纸面上滚动,凹槽127中的胶以及涂胶盘106的周向表面上的胶能够涂在纸面上。
胶料仓105的出口的大小不大于凹槽127的槽口的大小,以保证从胶料仓105的出口流出的胶能够进入凹槽127中或者流到涂胶盘106的周向表面上,而不会沿着涂胶盘106盘面流下去,保证了良好的涂胶效果。
可选地,胶料仓105的出口设置有阀门,例如电磁阀。
本实施例中,凹槽127为球形槽,球形槽沿涂胶盘106的周向表面均匀间隔设置。通过设置球形槽,便于对涂胶盘106进行清洗,避免出现难以清洗的死角。
需要说明的是,凹槽127也可以为其他形状的槽。
需要说明的是,所用的胶与目前常见的纸基3D打印装置所用的胶相同,例如水性胶。
在某些实施例中,纸基3D打印装置还包括放纸仓和递纸叼牙,在打印前,将待打印纸基3D模型所需的所有纸张放置在放纸仓中,由递纸叼牙从放纸仓中叼起一张纸,放在打印平台101上,然后进行裁切、着色和涂胶,再由递纸叼牙叼起下一张纸,放在打印平台101上,然后进行裁切、着色和涂胶,以此类推,直到形成完整的3D模型。
需要说明的是,本实施例中的放纸仓和递纸叼牙,与目前常见的纸基3D打印装置中的放纸仓和递纸叼牙结构相同,在此不再详细描述。
参见图1和图7所示,其中,为了清楚示出内部结构,图1未示出壳体的侧板。在某些实施例中,纸基3D打印装置还包括壳体111,打印平台101、三轴联动平台、裁切刀头102和喷墨头103均位于壳体111的内部,其中,三轴联动平台安装在壳体111的底板125上。
为了保证打印过程在一个相对封闭的环境中进行,通常设置一个壳体111,壳体111的侧壁上可以设置一个视窗,便于观察打印情况。
胶料仓105和驱动机构107固定安装在壳体111的内部。放纸仓和递纸叼牙也固定安装在壳体111的内部。
本实施例中的喷墨头103可以采用目前常见的数码打印机中的喷墨头,例如EPSONSTYLUS PRO 7600中的喷墨头。
在某些实施例中,参见图1所示,纸基3D打印装置还包括墨盒112,墨盒112通过送墨管与喷墨头103连接。
可选地,墨盒112安装在壳体111的底板125上。
本实施例中,墨盒112为六色墨盒,包括黑、青、品、黄、淡青和专色,由此可再现更多层次的色彩效果。相应地,送墨管的数量为六个,每种颜色的油墨专用一个送墨管,不能混用。
需要说明的是,墨盒112不仅局限于六色墨盒,颜色也不仅局限于以上六种,可以根据实际打印需求进行选择。
在某些实施例中,墨盒112中的油墨为UV油墨;壳体111的相对的两个侧壁分别设置有UV灯组113。
UV(紫外光固化)油墨是指在紫外线照射下,利用不同波长和能量的紫外光使油墨连接料中的单体聚合成聚合物,使油墨成膜和干燥的油墨。UV油墨也属于油墨,其不仅具备艳丽的颜色(特殊情况除外),良好的印刷适性以及适宜的固化干燥速率,同时也具有良好的附着力,并具备耐磨、耐蚀、耐候等特性。
本实施例中采用UV油墨,当UV油墨渗入裁切缝隙后,能够快速干燥,保证了模型外表面的颜色具有较高的光泽度,呈色效果好。
本实施例中,壳体111的相对的两个侧壁分别设置有UV灯组113,具体而言,参见图7所示,每个侧壁各设置三个UV灯组113,三个UV灯组113沿壳体111的高度方向间隔设置,两个侧壁上的UV灯组113在水平方向上一一对应。
随着打印的进行,打印平台101上的纸越来越多,三个UV灯组113可以沿壳体111的高度方向均匀间隔设置,使得整个模型不同位置的UV油墨能够均匀地受到光照从而达到最佳的呈色效果。
本实施例中的UV灯组113包括一个或多个紫外灯管。
需要说明的是,UV灯组113的数量不仅局限于三个,UV灯组113的布置方式也不仅局限于以上一种,还可以根据纸基3D打印装置的整体尺寸进行合理选择。
在某些实施例中,参见图1所示,纸基3D打印装置还包括拖链115,拖链115的材质为避光材质,送墨管位于拖链115的内部。
通过设置拖链115,能够方便送墨管随喷墨头103的运动而运动。
另外,纸基3D打印装置中的电线也位于拖链115的内部。
各个送墨管、电线均匀间隔且并列排布在拖链115中,方便操作中的故障诊断并进行有针对性的维修。
拖链115的材质可以采用韧度较强的黑色树脂材料,从而保证整个纸基3D打印装置在三维空间可灵活地伸展移动,也可保护所输送的UV油 墨能不受太阳光、日光灯等外界灯光照因素的影响,从而保证了着色的高精度。
在某些实施例中,参见图7所示,壳体111的侧壁还设置有散热孔114。
在某些实施例中,纸基3D打印装置还包括废墨盒116和清洗管,参见图7所示,废墨盒116设置有进口117和出口118,清洗管的一端与废墨盒116的进口117连通,清洗管的另一端用于与喷墨头103连通;废墨盒116的出口118用于与废液容器连接。
喷墨头103需要正常维护,为此,纸基3D打印装置还设置了清洗管和废墨盒116,当需要清洗喷墨头103时,将喷墨头103与清洗管连通,利用墨盒112中的油墨对喷墨头103进行冲洗,冲洗后的废墨通过清洗管进入废墨盒116,当废墨盒116满了之后,多余的废墨会流向废液容器,防止直接从出口118溢出而污染装置。
参见图1所示,在本实施例的一种可能的设计中,废墨盒116安装在三轴联动平台上,可选地,废墨盒116连接在喷墨头103的远离裁切刀头102的一侧。
参见图2所示,在本实施例的另一种可能的设计中,废墨盒116设置在壳体111的底板125上,当需要清洗喷墨头103的时候,再将清洗管连接在废墨盒116的进口117与喷墨头103之间。这样的方式使得废墨盒116不随着喷墨头103的移动而移动,防止废墨溢出。
为了清楚示出三轴联动平台,图2未示出壳体111、墨盒112、拖链115与废墨盒116,应当理解的是,在该另一种可能的设计中,拖链115中的送墨管与喷墨头103直接连通。
在某些实施例中,纸基3D打印装置还包括控制器,三轴联动平台、裁切刀头102、喷墨头103、递纸叼牙、走胶机构126以及UV灯组113分别与控制器连接。控制器能够控制三轴联动平台的运动,控制喷墨头103喷墨,控制递纸叼牙向打印平台101上叼纸,控制走胶机构126在纸面上涂胶,控制UV灯组113的开启与关闭。
在某些实施例中,三轴联动平台包括X轴驱动装置、Y轴驱动装置和Z轴驱动装置,打印平台101可拆卸地安装在Z轴驱动装置上,Z轴 驱动装置用于驱动打印平台101上升或下降;裁切刀头102和喷墨头103均可拆卸地安装在X轴驱动装置上,X轴驱动装置用于驱动裁切刀头102和喷墨头103沿X轴方向往复运动,X轴驱动装置与Y轴驱动装置连接,Y轴驱动装置安装在打印平台101的上方,Y轴驱动装置用于驱动裁切刀头102和喷墨头103沿Y轴方向往复运动。
通过采用可拆卸的连接方式,例如采用螺栓和螺母的固定方式,便于打印平台101的安装与拆卸,也便于裁切刀头102和喷墨头103的更换与维修。
具体而言,X轴驱动装置、Y轴驱动装置和Z轴驱动装置分别与控制器连接,控制器分别对X轴驱动装置、Y轴驱动装置和Z轴驱动装置的运动进行控制。Z轴驱动装置包括Z轴丝杠119和Z轴电机120,打印平台101安装在Z轴丝杠119上,Z轴电机120驱动Z轴丝杠119沿其自身的轴线旋转,以使打印平台101沿Z轴丝杠119的长度方向上升或下降。X轴驱动装置包括X轴丝杠124和X轴电机,裁切刀头102和喷墨头103均安装在X轴丝杠124上,X轴电机驱动X轴丝杠124沿其自身的轴线旋转,以使裁切刀头102和喷墨头103沿X轴丝杠124的轴线往复运动。Y轴驱动装置包括Y轴电机122、传动轴123和Y轴丝杠121,Y轴电机122通过传动轴123与Y轴丝杠121传动连接,例如,传动轴123与Y轴丝杠121可以通过一对锥齿轮传动连接;X轴丝杠124安装在Y轴丝杠121上,X轴丝杠124能够沿着Y轴丝杠121的轴向往复运动,从而使裁切刀头102和喷墨头103沿Y轴方向往复运动。
通常情况下,除了直棱柱和圆柱外,划分到每张纸上的预设模型的轮廓是不同的,例如,待打印的模型为圆锥,则每张纸上的预设模型的轮廓分别为直径不同的圆形,控制器对X轴驱动装置和Y轴驱动装置进行控制,先使得裁切刀头102沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝;再使喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色。
需要说明的是,X轴电机、Y轴电机122和Z轴电机120均为伺服电机。
另外需要说明的是,本实施例中的控制器为PLC控制器,例如西门子PLC S7-200。本实施例中的控制器对三轴联动平台的控制程序可以采 用目前常见的3D打印机对三轴联动平台的控制程序,从而使裁切刀头102沿预设模型的轮廓对相应的纸张进行裁切,然后再使喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色,喷墨头103的运动路径与裁切刀头102的运动路径大体相同。
三轴联动平台还可以采用目前常见的其他形式的平台,例如同步带传动的三轴联动平台,只要能够实现X、Y、Z三个方向上的运动即可。
实施例二
参见图10所示,本实施例提供了一种纸基3D打印方法,该方法应用于本发明实施例一提供的纸基3D打印装置,该方法包括以下步骤:
裁切步骤:裁切刀头102沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝;
着色步骤:喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色。
本发明实施例提供的纸基3D打印方法,不仅节省油墨,而且能够将油墨直接喷在裁切缝处,相当于对模型外表面进行着色,有效地改善了着色效果,使得模型的外表面着色均匀,且省去了逐张打印的步骤,打印效率高。
实施例三
在实施例二的基础上,本实施例也提供了一种纸基3D打印方法,该方法还包括:在裁切步骤之前,根据待打印纸基3D模型制作模型图,并对模型图进行分层处理,以获取待打印纸基3D模型所需纸张总数以及每张纸上所对应的预设模型的轮廓。
在某些实施例中,该方法还包括:在着色步骤之后,剥离废纸边,获得纸基3D模型。
具体而言,本实施例提供的纸基3D打印方法,包括以下步骤:
S1.根据待打印纸基3D模型制作模型图,并对模型图进行分层处理,以获取待打印纸基3D模型所需纸张总数以及每张纸上所对应的预设模型的轮廓。
S2.将所需数量的纸张放置在放纸仓中。
S3.由递纸叼牙叼起一张纸,放在打印平台101上。
可选地,可以事先在打印平台101上放一张白纸,用透明胶固定四角,白纸的上表面涂胶,然后将递纸叼牙叼起的第一张纸粘在涂胶的白纸上,准备正式打印。
S4.裁切刀头102沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝。
S5.喷墨头103沿预设模型的轮廓向裁切缝处喷墨着色。
S6.重复上述步骤S3、S4和S5,直到放纸仓中的所有纸张都处理完。其中,在放置下一张纸之前,还包括涂胶步骤,即在已经着色的上一张纸的上表面涂胶,以将下一张纸粘在位于打印平台101的最上面的纸上,实现胶黏成型。
S7.剥离废纸边,获得纸基3D模型。
具体地,先将整个未去废纸边的模型从打印平台101上取下,然后在将废纸边剥离,获得纸基3D模型。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种纸基3D打印装置,其特征在于,包括打印平台、三轴联动平台、裁切刀头和喷墨头,所述打印平台上用于放置纸张,所述三轴联动平台设置成先驱动所述裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝,再驱动所述喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
  2. 根据权利要求1所述的纸基3D打印装置,其特征在于,还包括壳体,所述打印平台、所述三轴联动平台、所述裁切刀头和所述喷墨头均位于所述壳体的内部,其中,所述三轴联动平台安装在所述壳体的底板上。
  3. 根据权利要求2所述的纸基3D打印装置,其特征在于,还包括墨盒,所述墨盒通过送墨管与所述喷墨头连接。
  4. 根据权利要求3所述的纸基3D打印装置,其特征在于,所述墨盒中的油墨为UV油墨;所述壳体的相对的两个侧壁分别设置有UV灯组。
  5. 根据权利要求4所述的纸基3D打印装置,其特征在于,还包括拖链,所述拖链的材质为避光材质,所述送墨管位于所述拖链的内部。
  6. 根据权利要求2所述的纸基3D打印装置,其特征在于,还包括废墨盒和清洗管,所述废墨盒设置有进口和出口,所述清洗管的一端与所述废墨盒的进口连通,所述清洗管的另一端用于与所述喷墨头连通;所述废墨盒的出口用于与废液容器连接。
  7. 根据权利要求1至6中任一项所述的纸基3D打印装置,其特征在于,所述三轴联动平台包括X轴驱动装置、Y轴驱动装置和Z轴驱动装置,所述打印平台安装在所述Z轴驱动装置上,所述Z轴驱动装置用于驱动所述打印平台上升或下降;所述裁切刀头和所述喷墨头均安装在所述X轴驱动装置上,所述X轴驱动装置用于驱动所述裁切刀头和所述喷墨头沿X轴方向往复运动,所述X轴驱动装置与所述Y轴驱动装置连接,所述Y轴驱动装置安装在所述打印平台的上方,所述Y轴驱动装置用于驱动所述裁切刀头和所述喷墨头沿Y轴方向往复运动。
  8. 根据权利要求1至6中任一项所述的纸基3D打印装置,其特征在于,所述裁切刀头包括安装座和刀片,所述刀片与所述安装座的下端连接, 所述刀片呈三角形。
  9. 根据权利要求1至6中任一项所述的纸基3D打印装置,其特征在于,还包括走胶机构,所述走胶机构与所述三轴联动平台连接。
  10. 根据权利要求9所述的纸基3D打印装置,其特征在于,所述走胶机构包括驱动机构、胶料仓、涂胶盘和输胶管,所述驱动机构和所述胶料仓均安装在所述三轴联动平台上,所述驱动机构与所述涂胶盘传动连接,以驱动所述涂胶盘绕其自身的轴线转动,所述涂胶盘的周向表面间隔设置有多个凹槽;所述输胶管的一端用于与胶料存放容器连通,所述输胶管的另一端与所述胶料仓的进口连通;所述胶料仓的出口位于所述涂胶盘的上方,以使从所述胶料仓的出口流出的胶能够进入所述凹槽中;所述三轴联动平台能够带动所述涂胶盘在纸面上滚动。
  11. 一种纸基3D打印方法,其特征在于,所述方法包括以下步骤:
    裁切步骤:裁切刀头沿预设模型的轮廓对相应的纸张进行裁切,以形成裁切缝;
    着色步骤:喷墨头沿所述预设模型的轮廓向所述裁切缝处喷墨着色。
  12. 根据权利要求11所述的纸基3D打印方法,其特征在于,所述方法还包括:在所述裁切步骤之前,根据待打印纸基3D模型制作模型图,并对所述模型图进行分层处理,以获取所述待打印纸基3D模型所需纸张总数以及每张纸上所对应的预设模型的轮廓。
  13. 根据权利要求11所述的纸基3D打印方法,其特征在于,所述方法还包括:在所述着色步骤之后,剥离废纸边,获得纸基3D模型。
PCT/CN2020/109467 2019-08-16 2020-08-17 纸基3d打印装置及打印方法 WO2021032043A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/294,395 US20220009160A1 (en) 2019-08-16 2020-08-17 Paper-based 3d printing device and printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910762494.X 2019-08-16
CN201910762494.XA CN110435140A (zh) 2019-08-16 2019-08-16 纸基3d打印装置及打印方法

Publications (1)

Publication Number Publication Date
WO2021032043A1 true WO2021032043A1 (zh) 2021-02-25

Family

ID=68436220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109467 WO2021032043A1 (zh) 2019-08-16 2020-08-17 纸基3d打印装置及打印方法

Country Status (3)

Country Link
US (1) US20220009160A1 (zh)
CN (1) CN110435140A (zh)
WO (1) WO2021032043A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110435140A (zh) * 2019-08-16 2019-11-12 华南理工大学 纸基3d打印装置及打印方法
CN110789123B (zh) * 2019-12-10 2024-03-01 岭南师范学院 一种基于纸基微流控的3d打印喷头及3d打印装置
US11969943B1 (en) * 2023-01-05 2024-04-30 Nanjing University Of Aeronautics And Astronautics Hot bed deformation tolerance structure for large-sized continuous fiber high-temperature 3D printer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000177017A (ja) * 1998-12-17 2000-06-27 Minolta Co Ltd 3次元造形物の製造方法
CN101618604A (zh) * 2008-06-30 2010-01-06 精工爱普生株式会社 立体造形方法及立体造形装置以及片材的加工方法及片材加工装置
CN104908320A (zh) * 2015-05-14 2015-09-16 江苏敦超电子科技有限公司 Uv光固化3d打印机及叠成精度保证方法
CN107553687A (zh) * 2017-09-11 2018-01-09 李尚明 3d房屋打印机
CN107848221A (zh) * 2015-06-16 2018-03-27 Mcor科技有限公司 桌面三维打印设备
CN108621417A (zh) * 2018-04-13 2018-10-09 东莞市榴花艺术有限公司 一种结合uv油墨的3d彩色打印方法
CN110116565A (zh) * 2019-05-30 2019-08-13 华南理工大学 一种纸基全彩3d打印颜色再现的优化方法
CN110435140A (zh) * 2019-08-16 2019-11-12 华南理工大学 纸基3d打印装置及打印方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4432432B2 (ja) * 2003-09-30 2010-03-17 ブラザー工業株式会社 インクジェット記録装置及びその制御方法
US8282866B2 (en) * 2008-06-30 2012-10-09 Seiko Epson Corporation Method and device for forming three-dimensional model, sheet material processing method, and sheet material processing device
US9132638B2 (en) * 2008-11-28 2015-09-15 Roland Dg Corporation Inkjet printer
WO2016168822A1 (en) * 2015-04-17 2016-10-20 Cornell University 3d printing of rolled materials
DE102016102217A1 (de) * 2016-02-09 2017-08-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kartusche für eine Druckeinrichtung, Druckeinrichtung sowie Verfahren zum Einbringen einer Perforation oder von Schnitten und Verwendung einer Kartusche
CN107031051B (zh) * 2017-05-31 2018-11-27 淮阴工学院 3d打印产品的uv固化装置
CN108189389A (zh) * 2017-12-30 2018-06-22 北京工业大学 一种多层彩色立体打印的方法
CN109334011B (zh) * 2018-11-02 2020-05-05 珠海赛纳打印科技股份有限公司 彩色3d打印方法、打印装置及终端设备
CN109648848B (zh) * 2018-12-29 2020-07-10 北京科技大学 基于光敏粘结的无冗余层叠增材制造工艺及制造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000177017A (ja) * 1998-12-17 2000-06-27 Minolta Co Ltd 3次元造形物の製造方法
CN101618604A (zh) * 2008-06-30 2010-01-06 精工爱普生株式会社 立体造形方法及立体造形装置以及片材的加工方法及片材加工装置
CN104908320A (zh) * 2015-05-14 2015-09-16 江苏敦超电子科技有限公司 Uv光固化3d打印机及叠成精度保证方法
CN107848221A (zh) * 2015-06-16 2018-03-27 Mcor科技有限公司 桌面三维打印设备
CN107553687A (zh) * 2017-09-11 2018-01-09 李尚明 3d房屋打印机
CN108621417A (zh) * 2018-04-13 2018-10-09 东莞市榴花艺术有限公司 一种结合uv油墨的3d彩色打印方法
CN110116565A (zh) * 2019-05-30 2019-08-13 华南理工大学 一种纸基全彩3d打印颜色再现的优化方法
CN110435140A (zh) * 2019-08-16 2019-11-12 华南理工大学 纸基3d打印装置及打印方法

Also Published As

Publication number Publication date
US20220009160A1 (en) 2022-01-13
CN110435140A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
WO2021032043A1 (zh) 纸基3d打印装置及打印方法
CN105365221A (zh) 高速往复式彩色3d打印机
CN201824631U (zh) 一种丝网印刷机的连续供墨装置
CN104307686B (zh) 转印滚轮、封装胶膜涂布系统、及封装胶膜的方法
CN1654228A (zh) 以喷砂方式在陶瓷板上制作造形图案的方法
CN105383058B (zh) 高速循环式彩色3d打印机
CN107848221A (zh) 桌面三维打印设备
CN110077102A (zh) 冷烫印刷设备和冷烫印刷方法
CN213861260U (zh) 一种多功位线路板印刷装置
CN112644177A (zh) 沿周向打印的打印设备
CN1369377A (zh) 图像转印方法和该方法使用的被转印体及色带
CN108859427A (zh) 一种塑料薄膜数码印刷机
CN113815298B (zh) 一种丝网印刷所需的网版
CN108215161B (zh) 快速成形全彩3d打印机装置及其打印方法
CN210362499U (zh) 纸基3d打印装置
CN110252568B (zh) 一种转印膜胶黏层涂布装置
CN215141090U (zh) 一种作训服数码迷彩喷涂装置
JP2020189444A (ja) 印刷装置
CN113524876B (zh) 一种制作丝网印刷所需网版的方法
CN105584217A (zh) 陶瓷内生纹饰3d打印机
CN104309268A (zh) 一种在亚克力板上印制图案的方法
CN205291594U (zh) 超速彩色3d打印机的循环系统
CN107310144A (zh) 全彩3d打印机
CN210787937U (zh) 一种方头螺栓的防模糊涂覆装置
CN114226093A (zh) 一种树脂工艺品加工用喷绘烘干装置及其加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854685

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 06/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20854685

Country of ref document: EP

Kind code of ref document: A1