WO2021032024A1 - 一种参考信号的指示方法及装置 - Google Patents

一种参考信号的指示方法及装置 Download PDF

Info

Publication number
WO2021032024A1
WO2021032024A1 PCT/CN2020/109369 CN2020109369W WO2021032024A1 WO 2021032024 A1 WO2021032024 A1 WO 2021032024A1 CN 2020109369 W CN2020109369 W CN 2020109369W WO 2021032024 A1 WO2021032024 A1 WO 2021032024A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
codeword
reference signals
time
frequency resource
Prior art date
Application number
PCT/CN2020/109369
Other languages
English (en)
French (fr)
Inventor
柴晓萌
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20853933.8A priority Critical patent/EP4013177A4/en
Publication of WO2021032024A1 publication Critical patent/WO2021032024A1/zh
Priority to US17/672,135 priority patent/US20220173859A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for indicating a reference signal.
  • the path loss in high-frequency communication is very serious, so beamforming technology is usually used to concentrate the signal in one direction for transmission to compensate for the severe path loss. Because the beam is directional, the two parties in communication need to know which direction the beam can be aimed at each other to obtain better beam performance.
  • the terminal will perform initial beam selection during the random access process and notify the network device of the selected beam.
  • the network device sends data to the terminal on the beam selected by the terminal, and can obtain a better beam gain.
  • a network device sends a synchronization signal block (SS/PBCH block, SSB) in a beam scanning manner, and can send one SSB for each beam.
  • SS/PBCH block synchronization signal block
  • the terminal detects multiple SSBs, selects any SSB whose reference signal received power (RSRP) is greater than or equal to a threshold, and informs the network device of the selected SSB during the random access process. In this way, the network device can learn the beam corresponding to the SSB selected by the terminal.
  • RSRP reference signal received power
  • the network device will send a broadcast message to the terminal in advance, and the terminal will determine the association relationship between the SSB and the physical random access channel (PRACH) time-frequency resource and the random access preamble according to the broadcast message.
  • the terminal sends the preamble associated with the SSB on any PRACH time-frequency resource associated with the SSB whose RSRP is greater than or equal to the threshold.
  • the network device determines the SSB selected by the terminal according to the detected preamble sequence and the PRACH time-frequency resource where the preamble sequence is located.
  • data may be carried in the random access process. How to improve the beam gain of data transmission in the random access process is a problem that needs to be solved.
  • the embodiments of the present application provide a method and device for indicating a reference signal, so as to improve the beam gain of data transmission in a random access process.
  • a reference signal indication method is provided.
  • the execution subject of the method may be a terminal device.
  • the method specifically includes: receiving multiple reference signals; At least one codeword is sent on the resource, and at least one codeword can be one codeword or multiple codewords.
  • the at least one codeword includes a first codeword, and the first codeword has a corresponding relationship with a first reference signal that needs to be reported among the N reference signals, and the N reference signals are subgroups of the multiple reference signals. set.
  • the meaning of the subset includes: N reference signals may be less than the number of the multiple reference signals, or the number of N reference signals may be equal to the number of the multiple reference signals.
  • N is a positive integer.
  • the first codeword indicates that the reference signal needs to be reported, and when the network device receives the first codeword, it can determine the reference signal selected by the terminal according to the first codeword, and perform data transmission based on the beam corresponding to the reference signal, thereby Improve the beam direction gain.
  • the codeword may be a preamble.
  • the reference signal to be reported may be the reference signal with the largest received power.
  • the first time-frequency resource has a corresponding relationship with a second reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the threshold can be pre-defined as required or can also be configured by the network device.
  • the second reference signal may be any reference signal whose received power is greater than or equal to the threshold.
  • the first reference signal may be the same as the second reference signal, for example, the first reference signal is the reference signal that needs to be reported.
  • the first codeword corresponding to the first reference signal is determined according to the correspondence between the N reference signals and the M codewords; wherein, the M codewords are In the subset of codewords associated with the first time-frequency resource, M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the first reference signal can be indicated by the first codeword.
  • the first time-frequency resource corresponding to the second reference signal is determined according to the correspondence between N1 reference signals and P time-frequency resources, where both N1 and P are positive integers,
  • the N1 reference signals include the multiple reference signals.
  • the first time-frequency resource is one time-frequency resource among the P time-frequency resources.
  • the N1 reference signals are reference signals of beams actually sent by the cell, or the multiple reference signals.
  • the N reference signals are all candidate reference signals of the cell; or the N reference signals are the reference signals actually sent by the cell; or the N reference signals are all the candidate reference signals of the cell Or the N reference signals are a subset of the reference signals actually sent by the cell.
  • the at least one codeword further includes a second codeword; sending the at least one codeword on the first time-frequency resource includes: sending the first codeword and the second codeword on the first time-frequency resource State the second code word.
  • the second codeword can have a conventional codeword function, and the first codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • the first codeword and the second codeword belong to different codeword sets. That is, the first codeword belongs to codeword set a, and the second codeword belongs to codeword set b. Both codeword set a and codeword set b are associated with the first time-frequency resource.
  • M ⁇ N the N reference signals belong to multiple reference signal groups, each reference signal belongs to only one reference signal group, and the first codeword corresponds to the location where the first reference signal is located.
  • M ⁇ N M codewords are not enough to correspond to N reference signals one to one. Therefore, N reference signals can be grouped, and M codewords can indicate all N reference signals through grouping.
  • M ⁇ N one codeword corresponds to a reference signal whose angle between multiple beam directions is less than a threshold.
  • the method further includes: sending a third codeword on a second time-frequency resource associated with the first time-frequency resource; wherein, the third codeword and the reference signal group The first reference signal in has a corresponding relationship.
  • the third codeword can be used to indicate the reference signal in the reference signal group, so that the first codeword and the third codeword can be combined and correspond to the N reference signals one-to-one. It can indicate the selected reference signal more accurately.
  • the network equipment can also more accurately determine the reference signal selected by the terminal, and obtain more accurate and larger beam direction gain.
  • the reference signal set indicated in this way can be multiple reference signals received by the terminal from the network device, multiple reference signals actually sent by the network device, or a subset of the reference signals actually sent by the network device, or It is the reference signal of all the candidates of the cell, or a subset of the reference signal of all the candidates of the cell. Since the combined indication method can indicate more reference signals, this method can help indicate all candidate reference signals of the cell.
  • a method for indicating reference signals is provided.
  • the execution subject of the method may be a terminal device.
  • the method specifically includes: receiving multiple reference signals; sending a first codeword on a first time-frequency resource, and The second codeword is sent on the second time-frequency resource associated with the first time-frequency resource; wherein, the second codeword has a corresponding relationship with the second reference signal that needs to be reported among the N reference signals, and the N reference signals Is a subset of the multiple reference signals, and N is a positive integer.
  • the meaning of the subset includes: N reference signals may be less than the number of the multiple reference signals, or the number of N reference signals may be equal to the number of the multiple reference signals. N is a positive integer.
  • the network device when the second codeword indicates the reference signal to be reported, when the network device receives the second codeword, it can determine the reference signal selected by the terminal according to the second codeword, and perform data transmission based on the beam corresponding to the reference signal. Thereby improving the beam direction gain.
  • the first time-frequency resource is a random access time-frequency resource
  • the first codeword may be a preamble.
  • the second time-frequency resource associated with the first time-frequency resource may be a random access time-frequency resource or a PUSCH time-frequency resource.
  • the second reference signal may be the reference signal with the largest received power among the N reference signals.
  • the first time-frequency resource has a corresponding relationship with a first reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the threshold can be pre-defined as required or can also be configured by the network device.
  • the second reference signal may be any reference signal whose received power is greater than or equal to the threshold.
  • the first reference signal is the same as the second reference signal.
  • the first reference signal is the reference signal that needs to be reported.
  • the first time-frequency resource and the second time-frequency resource may be continuous or discontinuous in the time domain; the first time-frequency resource and the second time-frequency resource are in the time domain Time division multiplexing can be the same or different in the frequency domain.
  • the first codeword is a first preamble
  • the second codeword is a second preamble
  • the first codeword is a preamble
  • the second codeword is a demodulation reference signal DMRS.
  • the first codeword can have a conventional codeword function
  • the second codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • the first time-frequency resource and the second time-frequency resource are both physical random access channel PRACH resources.
  • the first time-frequency resource is a PRACH resource
  • the second time-frequency resource is a physical uplink shared channel PUSCH resource.
  • the PRACH resource and the PUSCH resource in the msgA resource are both physical random access channel PRACH resources.
  • the second codeword is a DMRS
  • the DMRS has a corresponding relationship with the second reference signal includes: the sequence of the DMRS has a corresponding relationship with the second reference signal, or The port of the DMRS has a corresponding relationship with the second reference signal, or both the sequence of the DMRS and the port of the DMRS have a corresponding relationship with the second reference signal.
  • the selected reference signal can be indicated by the sequence and/or port of the DMRS.
  • the second codeword corresponding to the second reference signal is determined according to the correspondence between N reference signals and M codewords; wherein, the M codewords are related to the A subset of codewords associated with the second time-frequency resource, where M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the second reference signal can be indicated by the second codeword.
  • N1, P, and M1 are all positive integers.
  • the time-frequency resource for transmitting the codeword can be determined according to any reference signal greater than or equal to the threshold.
  • the N reference signals are reference signals of all candidate beams in the cell; or the N reference signals are reference signals of beams actually sent by the cell; or the N reference signals are all the candidate beams of the cell A subset of the reference signals of the beam; or the N reference signals are a subset of the reference signals of the beams actually sent by the cell.
  • M ⁇ N the N reference signals belong to multiple reference signal groups, each reference signal belongs to only one reference signal group, and the second codeword corresponds to the location where the second reference signal is located.
  • M ⁇ N M codewords are not enough to correspond to N reference signals one to one. Therefore, N reference signals can be grouped, and M codewords can indicate all N reference signals through grouping.
  • M ⁇ N one codeword corresponds to a reference signal whose angle between multiple beam directions is less than a threshold.
  • a method for indicating a reference signal may be a network device.
  • the method includes: sending a plurality of reference signals to a terminal; and receiving a first signal sent by the terminal on a first time-frequency resource. Codeword; sending data to the terminal on the beam corresponding to the first reference signal corresponding to the first codeword.
  • the meaning of the subset includes: N reference signals may be less than the number of the multiple reference signals, or the number of N reference signals may be equal to the number of the multiple reference signals.
  • the first codeword has a corresponding relationship with a first reference signal among the N reference signals
  • the N reference signals are a subset of the multiple reference signals
  • N is a positive integer
  • the first reference signal is a reference signal with the largest terminal received power among the N reference signals.
  • the first time-frequency resource has a corresponding relationship with a second reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the threshold can be specified in advance as needed.
  • the second reference signal may be any reference signal whose received power is greater than or equal to the threshold.
  • the method further includes: determining the first reference signal corresponding to the first codeword according to the correspondence between the N reference signals and the M codewords; wherein, the M codewords are a subset of codewords associated with the first time-frequency resource, and M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the first reference signal can be indicated by the first codeword.
  • the method further includes: the N reference signals are all candidate reference signals of the cell; or the N reference signals are reference signals actually sent by the cell; or the N reference signals are A subset of all candidate reference signals of the cell; or the N reference signals are a subset of the reference signals actually sent by the cell.
  • a second codeword sent by the terminal is received on a first time-frequency resource, where the second codeword and the first codeword belong to different codeword sets.
  • the second codeword can have a conventional codeword function, and the first codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • a third codeword is received on a second time-frequency resource; the first time-frequency resource associated with the second time-frequency resource is determined.
  • the method further includes: determining a first reference signal group corresponding to the first codeword; according to the reference signal in the first reference signal group and the code in the first codeword group The correspondence between words, determining the first reference signal corresponding to the first reference signal group and the third code word; or:
  • the reference signal set indicated in this way can be multiple reference signals received by the terminal from the network device, multiple reference signals actually sent by the network device, or a subset of the reference signals actually sent by the network device, or It is the reference signal of all the candidates of the cell, or a subset of the reference signal of all the candidates of the cell. Since the combined indication method can indicate more reference signals, this method can help indicate all candidate reference signals of the cell.
  • a device in a fourth aspect, may be a terminal device, or a device in a terminal device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. The processing module is used to call the communication module to perform receiving and/or sending functions.
  • the processing module is used to call the communication module to perform receiving and/or sending functions.
  • the communication module is used for receiving multiple reference signals; and used for sending at least one codeword on the first time-frequency resource.
  • the at least one codeword may be one codeword or multiple codewords.
  • the at least one codeword includes a first codeword, and the first codeword has a corresponding relationship with a first reference signal that needs to be reported among the N reference signals, and the N reference signals are subgroups of the multiple reference signals. set.
  • the first reference signal is the reference signal with the largest received power among the N reference signals.
  • the first time-frequency resource has a corresponding relationship with a second reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the first reference signal is the same as the second reference signal.
  • the processing module is configured to determine the first codeword corresponding to the first reference signal according to the correspondence between the N reference signals and M codewords; wherein, The M codewords are a subset of codewords associated with the first time-frequency resource, and M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the first reference signal can be indicated by the first codeword.
  • the processing module is configured to determine the first time-frequency resource corresponding to the second reference signal according to the correspondence between N1 reference signals and P time-frequency resources, where: Both N1 and P are positive integers, and the N1 reference signals include the multiple reference signals.
  • the time-frequency resource for transmitting the codeword can be determined according to any reference signal greater than or equal to the threshold.
  • the threshold can be pre-defined as required or can also be configured by the network device.
  • the processing module is configured to determine the first time-frequency resource corresponding to the second reference signal according to the correspondence between N1 reference signals and P time-frequency resources, where: Both N1 and P are positive integers, and the N1 reference signals include the multiple reference signals.
  • the time-frequency resource for transmitting the codeword can be determined according to any reference signal greater than or equal to the threshold.
  • the N1 reference signals are reference signals of beams actually sent by the cell, or the multiple reference signals.
  • the at least one codeword further includes a second codeword; the communication module is specifically configured to: send the first codeword and the second codeword in a first time-frequency resource.
  • the second codeword can have a conventional codeword function, and the first codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • the first codeword and the second codeword belong to different codeword sets. That is, the first codeword belongs to codeword set a, and the second codeword belongs to codeword set b. Both codeword set a and codeword set b are associated with the first time-frequency resource.
  • M ⁇ N the N reference signals belong to multiple reference signal groups, each reference signal belongs to only one reference signal group, and the first codeword corresponds to the location where the first reference signal is located.
  • M ⁇ N M codewords are not enough to correspond to N reference signals one to one. Therefore, N reference signals can be grouped, and M codewords can indicate all N reference signals through grouping.
  • M ⁇ N one codeword corresponds to a reference signal whose angle between multiple beam directions is less than a threshold.
  • the communication module is further configured to: send a third codeword on a second time-frequency resource associated with the first time-frequency resource; wherein, the third codeword and the reference The first reference signal in the signal group has a corresponding relationship.
  • the third codeword can be used to indicate the reference signal in the reference signal group, so that the first codeword and the third codeword can be combined and correspond to the N reference signals one-to-one. It can indicate the selected reference signal more accurately.
  • the network equipment can also more accurately determine the reference signal selected by the terminal, and obtain more accurate and larger beam direction gain.
  • the processing module is further configured to: according to the correspondence between the reference signal in the reference signal group and the codewords in a codeword group, determine that the codeword group and the first The third codeword corresponding to the reference signal. In this way, when one of the codeword resources is insufficient, the other codeword resource can be used to jointly indicate more reference signals.
  • the reference signal set indicated in this way can be multiple reference signals received by the terminal from the network device, multiple reference signals actually sent by the network device, or a subset of the reference signals actually sent by the network device, or It is the reference signal of all the candidates of the cell, or a subset of the reference signal of all the candidates of the cell. Since the combined indication method can indicate more reference signals, this method can help indicate all candidate reference signals of the cell.
  • a device in a fifth aspect, may be a terminal device, or a device located in a terminal device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with the terminal device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the second aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. The processing module is used to call the communication module to perform receiving and/or sending functions.
  • the processing module is used to call the communication module to perform receiving and/or sending functions.
  • the communication module is configured to receive multiple reference signals; and is configured to send a first codeword on a first time-frequency resource, and send a second codeword on a second time-frequency resource associated with the first time-frequency resource ;
  • the second codeword has a corresponding relationship with the second reference signal that needs to be reported among the N reference signals
  • the N reference signals are a subset of the multiple reference signals, and N is a positive integer.
  • the meaning of the subset includes: N reference signals may be less than the number of the multiple reference signals, or the number of N reference signals may be equal to the number of the multiple reference signals.
  • N is a positive integer.
  • the network device when the second codeword indicates the reference signal to be reported, when the network device receives the second codeword, it can determine the reference signal selected by the terminal according to the second codeword, and perform data transmission based on the beam corresponding to the reference signal. Thereby improving the beam direction gain.
  • the first time-frequency resource is a random access time-frequency resource
  • the first codeword may be a preamble.
  • the second time-frequency resource associated with the first time-frequency resource may be a random access time-frequency resource or a PUSCH time-frequency resource.
  • the reference signal to be reported may be the reference signal with the largest received power.
  • the first time-frequency resource has a corresponding relationship with a first reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the threshold can be specified in advance as needed.
  • the second reference signal may be any reference signal whose received power is greater than or equal to the threshold.
  • the first reference signal may be the same as the second reference signal, for example, the first reference signal is the reference signal that needs to be reported.
  • the first time-frequency resource and the second time-frequency resource may be continuous or discontinuous in the time domain; the first time-frequency resource and the second time-frequency resource are time-division multiplexed
  • the frequency domain can be continuous or discontinuous.
  • the first codeword is a first preamble
  • the second codeword is a second preamble
  • the first codeword is a preamble
  • the second codeword is a demodulation reference signal DMRS.
  • the first codeword can have a conventional codeword function
  • the second codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • the first time-frequency resource and the second time-frequency resource are both physical random access channel PRACH resources.
  • the first time-frequency resource is a PRACH resource
  • the second time-frequency resource is a physical uplink shared channel PUSCH resource.
  • the PRACH resource and the PUSCH resource in the msgA resource are both physical random access channel PRACH resources.
  • the second codeword is a DMRS
  • the DMRS has a corresponding relationship with the second reference signal includes: the sequence of the DMRS has a corresponding relationship with the second reference signal, or The port of the DMRS has a corresponding relationship with the second reference signal, or both the sequence of the DMRS and the port of the DMRS have a corresponding relationship with the second reference signal.
  • the selected reference signal can be indicated by the sequence and port of the DMRS.
  • the processing module is configured to determine the second codeword corresponding to the second reference signal according to the correspondence between N reference signals and M codewords; wherein, the M Codewords are a subset of codewords associated with the second time-frequency resource, and M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the second reference signal can be indicated by the second codeword.
  • the processing module is configured to determine the first time-frequency corresponding to the first reference signal according to the correspondence between N1 reference signals, P time-frequency resources, and M1 codewords
  • the resource and the first codeword corresponding to the first reference signal, N1, P, and M1 are all positive integers.
  • the time-frequency resource for transmitting the codeword can be determined according to any reference signal greater than or equal to the threshold.
  • the N reference signals are reference signals of all candidate beams in the cell; or the N reference signals are reference signals of beams actually sent by the cell; or the N reference signals are all the candidate beams of the cell A subset of the reference signals of the beam; or the N reference signals are a subset of the reference signals of the beams actually sent by the cell.
  • M ⁇ N the second codeword corresponds to the reference signal group where the second reference signal is located.
  • M ⁇ N M codewords are not enough to correspond to N reference signals one to one. Therefore, N reference signals can be grouped, and M codewords can indicate all N reference signals through grouping.
  • M ⁇ N one codeword corresponds to a reference signal whose angle between multiple beam directions is less than a threshold.
  • a device in a sixth aspect, may be a network device, or a device located in the network device (for example, a chip, or a chip system, or a circuit), or a device that can be matched with the network device.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the third aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module. The processing module is used to call the communication module to perform receiving and/or sending functions.
  • the processing module is used to call the communication module to perform receiving and/or sending functions.
  • the communication module is configured to send multiple reference signals to a terminal; and is configured to receive a first codeword from the terminal on a first time-frequency resource; wherein the first codeword and the N reference signals require The reported first reference signal has a corresponding relationship, the N reference signals are a subset of the multiple reference signals, and N is a positive integer, and data is sent to the terminal on a beam corresponding to the first reference signal.
  • the meaning of the subset includes: N reference signals may be less than the number of the multiple reference signals, or the number of N reference signals may be equal to the number of the multiple reference signals. In this way, when the network device receives the first codeword, it can determine the reference signal selected by the terminal according to the first codeword, and perform data transmission based on the beam corresponding to the reference signal, thereby improving the beam direction gain.
  • the reference signal to be reported may be the reference signal with the largest received power.
  • the first time-frequency resource has a corresponding relationship with a second reference signal whose received power is greater than or equal to a threshold among the multiple reference signals.
  • the threshold can be specified in advance as needed.
  • the second reference signal may be any reference signal whose received power is greater than or equal to the threshold.
  • the processing module is configured to: determine the first reference signal corresponding to the first codeword according to the correspondence between the N reference signals and the M codewords; wherein, The M codewords are a subset of codewords associated with the first time-frequency resource, and M is a positive integer.
  • the N reference signals can be implicitly indicated by the M codewords, for example, the first reference signal can be indicated by the first codeword.
  • the N reference signals are all candidate reference signals of the cell; or the N reference signals are the reference signals actually sent by the cell; or the N reference signals are all the candidate reference signals of the cell Or the N reference signals are a subset of the reference signals actually sent by the cell.
  • the communication module is further configured to receive a second codeword from the terminal on a first time-frequency resource, where the second codeword and the first codeword belong to different codeword sets .
  • the second codeword can have a conventional codeword function
  • the first codeword can be used to implicitly indicate the selected reference signal.
  • the first codeword may be expanded according to the number of reference signals that need to establish a corresponding relationship. The number of codewords. Therefore, this method can help to indicate all candidate reference signals of the cell. And this way does not affect the conventional functions of existing codewords.
  • a third codeword is received on a second time-frequency resource; the first time-frequency resource associated with the second time-frequency resource is determined.
  • the processing module is further configured to: determine a first reference signal group corresponding to the first codeword; according to the reference signal in the first reference signal group and the first codeword group To determine the first reference signal corresponding to the first reference signal group and the third codeword; or to determine the second reference signal group corresponding to the third codeword Determining the first reference corresponding to the first codeword in the second reference signal group according to the correspondence between the reference signals in the second reference signal group and the codewords in the second codeword group signal. In this way, when one of the codeword resources is insufficient, the other codeword resource can be used to jointly indicate more reference signals.
  • the reference signal set indicated in this way can be multiple reference signals received by the terminal from the network device, multiple reference signals actually sent by the network device, or a subset of the reference signals actually sent by the network device, or It is the reference signal of all the candidates of the cell, or a subset of the reference signal of all the candidates of the cell. Since the combined indication method can indicate more reference signals, this method can help indicate all candidate reference signals of the cell.
  • an embodiment of the present application provides an apparatus, the apparatus includes a communication interface and a processor, and the communication interface is used for communication between the apparatus and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and other devices may be network devices.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the first aspect or the second aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, the method described in the first aspect or the second aspect can be implemented.
  • an embodiment of the present application provides a device, the device includes a communication interface and a processor, and the communication interface is used for communication between the device and other devices, for example, data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and other devices may be terminal devices.
  • the processor is used to call a set of programs, instructions or data to execute the method described in the third aspect.
  • the device may also include a memory for storing programs, instructions or data called by the processor. The memory is coupled with the processor, and when the processor executes the instructions or data stored in the memory, the method described in the third aspect can be implemented.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores computer-readable instructions.
  • the computer-readable instructions run on a computer, the computer can execute The method described in one aspect or any possible design of the first aspect.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute as described in the second aspect or any of the possible designs in the second aspect. The method described.
  • the embodiments of the present application also provide a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute any possible design in the third aspect or the third aspect The method described.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the above-mentioned first aspect or any one of the possible designs in the first aspect method.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, configured to implement the above-mentioned second aspect or any one of the possible designs of the second aspect. method.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • an embodiment of the present application provides a chip system, which includes a processor and may also include a memory, which is used to implement the aforementioned third aspect or any one of the possible designs of the third aspect. method.
  • the chip system can be composed of chips, or can include chips and other discrete devices.
  • an embodiment of the present application provides a system including the terminal device described in the fourth aspect or the fifth aspect and the network device described in the sixth aspect.
  • Figure 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2 is a schematic flowchart of a method for indicating a reference signal in an embodiment of this application
  • Figure 3 is a schematic diagram of indicating the required time delay of a reference signal in the prior art
  • FIG. 4 is a schematic diagram of an indication example 1 of a reference signal in an embodiment of this application.
  • FIG. 5 is a schematic diagram of an indication example 2 of a reference signal in an embodiment of this application.
  • FIG. 6 is a schematic diagram of an indication example three of a reference signal in an embodiment of this application.
  • FIG. 7 is a schematic diagram of an indication example 4 of a reference signal in an embodiment of this application.
  • FIG. 8 is a schematic diagram of an indication example 5 of a reference signal in an embodiment of this application.
  • FIG. 9 is a schematic diagram of an indication example 6 of a reference signal in an embodiment of this application.
  • FIG. 10 is a schematic diagram of an indication example 7 of a reference signal in an embodiment of this application.
  • FIG. 11 is a schematic diagram of an indication example eight of a reference signal in an embodiment of this application.
  • FIG. 12 is a schematic diagram of a device structure in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another device in an embodiment of the application.
  • the embodiments of the present application provide a method and device for indicating a reference signal, which are used to indicate a reference signal that needs to be reported to the network side to obtain a high beam gain.
  • the method and the device are based on the same technical idea. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, and both A and B exist at the same time. There are three cases of B.
  • the reference signal indication method provided in the embodiments of the present application may be applied to a fifth generation (5G) communication system, such as a 5G new radio (NR), or applied to various future communication systems.
  • 5G fifth generation
  • NR 5G new radio
  • it can be applied to the communication scenario of MTC, can also be applied to the communication scenario of NB-IoT, and can also be applied to the transmission scenario of any small data packet.
  • FIG. 1 shows the architecture of a possible communication system to which the method for indicating reference signals provided by an embodiment of the present application is applicable.
  • the communication system 100 may include a network device 110 and a terminal device 101 to a terminal device 106. It should be understood that the communication system 100 may include more or fewer network devices or terminal devices.
  • the network device or terminal device can be hardware, software that is functionally divided, or a combination of the two.
  • the terminal device 104 to the terminal device 106 may also form a communication system.
  • the terminal device 105 may send downlink data to the terminal device 104 or the terminal device 106.
  • the network device and the terminal device can communicate with other devices or network elements.
  • the network device 110 may send downlink data to the terminal device 101 to the terminal device 106, and may also receive uplink data sent by the terminal device 101 to the terminal device 106.
  • the terminal device 101 to the terminal device 106 may also send uplink data to the network device 110, and may also receive downlink data sent by the network device 110.
  • the network device 110 is a node in a radio access network (radio access network, RAN), which may also be referred to as a base station or a RAN node (or device).
  • radio access network radio access network
  • RAN radio access network
  • some examples of access network equipment 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (eNB), and radio network controller (radio network controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB) , Baseband unit (BBU), or wireless fidelity (Wifi) access point (AP), or network equipment in a 5G communication system, or network equipment in a possible future communication system .
  • RNC radio network controller
  • Node B Node B, NB
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BBU Baseband unit
  • AP wireless fidelity
  • the terminal equipment 101 to the terminal equipment 106 which can also be called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., are a way of providing voice or data to users Connected devices can also be IoT devices.
  • the terminal device 101 to the terminal device 106 include handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device 101 to the terminal device 106 may be: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile Internet devices (MID), wearable devices (such as smart watches, smart bracelets, Pedometer, etc.), vehicle-mounted equipment (for example, cars, bicycles, electric vehicles, airplanes, ships, trains, high-speed rail, etc.), virtual reality (VR) equipment, augmented reality (AR) equipment, industrial control Wireless terminals in (industrial control), smart home equipment (for example, refrigerators, TVs, air conditioners, electric meters, etc.), smart robots, workshop equipment, wireless terminals in self-driving (self-driving), and remote medical surgery (remote medical surgery)
  • This application uses a terminal to describe.
  • the terminal notifies the network device of the reference signal selected by the terminal by sending the codeword on the time-frequency resource, and the selected reference signal may also be referred to as the reference signal that needs to be reported.
  • Reference signal refers to a signal sent by a network device for discovery and measurement by other devices, or a signal sent by a network device for terminal access.
  • the reference signal may be an SSB or a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the embodiment of the present application takes the reference signal as the SSB as an example for description.
  • the network device can send SSB on each transmission beam, or in other words, the network device can use each transmission beam to send SSB separately, and the terminal measures the SSB sent by the network device, and judges the beam direction gain in each direction according to the received power of the SSB size. For example, a threshold can be set. For the beam corresponding to the SSB whose received power is greater than or equal to the threshold, it can be considered that a better beam gain is obtained. Taking the reference signal to be reported as the SSB with the largest received power as an example, the method provided in this embodiment of the present application aims to select the beam corresponding to the SSB with the best received power and notify the network device.
  • the method can also be extended to select the beam corresponding to the SSB with the next best received power and notify the network device, or notify the network device of the beam corresponding to any one of the first x SSBs sorted according to the received power from large to small.
  • the value of x is any integer greater than or equal to 1, and can be set as required.
  • the general beam and the reference signal have a one-to-one correspondence, so the terminal and network equipment will reflect the selection of the beam according to the reference signal.
  • the received power of the reference signal is a parameter that reflects the strength of the reference signal, and this application can be applied to other parameters that can reflect the strength of the reference signal.
  • the received power may be RSRP, for example.
  • the terminal selects the initial beam during the random access process, that is, it can report the selected reference signal to the network device during the random access process, and the network device upwards according to the beam corresponding to the reference signal selected by the terminal.
  • the terminal sends data.
  • the network device sends data to the terminal according to the beam corresponding to the reference signal selected by the terminal. This is reflected in the assumption that the reference signal antenna port used by the network device to send data to the terminal has the same quasi-co-location ( quasi co-location) nature.
  • the random access process can be implemented in different ways.
  • the random access process may include a 4-step random access process.
  • the terminal sends a random access preamble to the network device, the network device returns a random access response to the terminal, and the terminal sends a message 3( Msg3), message 3 is a physical uplink shared channel (PUSCH).
  • the random access process may also include a 2-step random access process.
  • the terminal sends a message A (msgA) to the network device, and the network device sends a message B to the terminal.
  • the message A consists of two parts, such as Message A is composed of a preamble sent by a physical random access channel (PRACH) and a message sent by a PUSCH channel, and the terminal can carry uplink data in message A.
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the terminal and the network device complete the random access process through two-step message sending and receiving.
  • the uplink data can be carried in message 3 or msgA, so that the terminal can complete the uplink data transmission without entering the connected state in the idle state.
  • the terminal may send a preamble to the network device on the PRACH resource, and the selected reference signal may be indicated by the preamble, or the selected reference signal may be indicated by the DMRS on the PUSCH resource.
  • the preamble and DMRS can be collectively referred to as codewords.
  • the terminal indicates the selected reference signal to the network device through the transmitted codeword.
  • the network device may also determine the code word selected by the terminal according to the detected code word.
  • the time-frequency resource occupied by msgA can be described as two parts, where the resource occupied by the preamble is the PRACH time-frequency resource (or PRACH resource), and the resource occupied by the PUSCH is PUSCH.
  • Frequency resources or PUSCH resources.
  • DMRS is transmitted on designated symbols in PUSCH resources.
  • PRACH resources can be represented by PRACH transmission opportunity (RACH occasion, RO).
  • An RO represents a block of time-frequency resources used to transmit a preamble, and includes one or more subcarriers in the frequency domain.
  • the time domain includes one or more time domain symbols.
  • PUSCH resources can be represented by PUSCH transmission opportunity (PUSCH occasion, PO).
  • a PO represents a block of time-frequency resources used to transmit PUSCH. It includes one or more subcarriers in the frequency domain, and one or more times in the time domain. Domain symbol.
  • the network device sends multiple reference signals to the terminal, and the terminal receives multiple reference signals from the network device.
  • the multiple reference signals may correspond to multiple beams.
  • the number of reference signals sent by the network device may be more than the number of reference signals received by the terminal.
  • the terminal sends at least one codeword on at least one time-frequency resource, and the network device receives the at least one codeword on at least one time-frequency resource.
  • At least one time-frequency resource is one time-frequency resource
  • at least one codeword is one codeword.
  • the terminal sends a codeword on a time-frequency resource.
  • the terminal implicitly indicates the reference signal to be reported to the network device through a code word sent.
  • the network device determines the reference signal reported by the terminal according to the received codeword.
  • the reference signal that needs to be reported may be a reference signal that meets a preset condition among the received reference signals.
  • the preset condition may be, for example, the received power is the largest, and accordingly, the reference signal that needs to be reported is the reference signal with the largest received power.
  • the preset conditions can be predefined or configured by the network device.
  • At least one time-frequency resource is one time-frequency resource
  • at least one codeword is multiple codewords.
  • the terminal sends multiple codewords, for example, two codewords, on one time-frequency resource.
  • the terminal uses one of the two codewords to implicitly indicate the reference signal that needs to be reported.
  • the reference signal that needs to be reported is the reference signal with the highest received power.
  • the network device determines the reference selected by the terminal according to the received codeword. signal.
  • At least one time-frequency resource is multiple time-frequency resources, for example, two time-frequency resources
  • at least one codeword is multiple codewords, such as two codewords
  • the terminal transmits on multiple time-frequency resources Multiple code words.
  • the terminal sends one codeword on one time-frequency resource and another codeword on another time-frequency resource.
  • the terminal implicitly indicates the reference signal that needs to be reported through a codeword sent on a time-frequency resource.
  • the reference signal that needs to be reported is the reference signal with the highest received power.
  • the network device determines the reference signal selected by the terminal according to the received codeword. Reference signal.
  • the reference signal that the terminal needs to report is the reference signal with the highest received power among the received reference signals as an example.
  • the terminal will send which codewords on which time-frequency resources to indicate the reference signal, and it needs to determine what needs to be sent according to the agreed relationship between the reference signal and the time-frequency resource, and/or the agreed relationship between the reference signal and the codeword.
  • Codeword The aforementioned at least one time-frequency resource includes a time-frequency resource A, which is a time-frequency resource corresponding to any reference signal with a received power greater than or equal to a threshold, or when there is no reference signal with a received power greater than or equal to the threshold At time, the time-frequency resource A is a time-frequency resource corresponding to any reference signal.
  • the reference signal indicated on the time-frequency resource A can obtain a lower time delay.
  • the above at least one codeword includes a codeword B.
  • the codeword B is a codeword corresponding to the reference signal that needs to be reported.
  • the time-frequency resource for transmitting the codeword B can be either the time-frequency resource A or the time-frequency resource A.
  • the associated time-frequency resource A1. Determining the time-frequency resource A can help to ensure that the reference signal has a lower delay, and sending the codeword B can help to indicate the reference signal that needs to be reported, for example, the reference signal that needs to be reported is the reference signal with the highest received power . In this way, by sending at least one codeword on the aforementioned at least one time-frequency resource, the reference signal to be reported can be indicated on the basis of obtaining a lower delay.
  • the network device determines the reference signal selected by the terminal according to the received code word B, and the network device sends data to the terminal on the transmission beam corresponding to the reference signal selected by the terminal. For example, the network device sends msg2 and msg4 to the terminal on the reference signal selected by the terminal, or sends msgB in the 2-step random access process. This can help to obtain better beam gain for data transmission during the random access process. If the transmit beam and receive beam of the network device are consistent, the network device can also determine the receive beam according to the transmit beam corresponding to the reference signal selected by the terminal, and receive msg1 and msg3 in the receive beam, or receive a 2-step random access process MsgA in. In this way, a better beam gain can be obtained for the data carried in msg3 or msgA during the random access process.
  • the terminal determines the at least one time-frequency resource and determines the at least one codeword according to the corresponding relationship.
  • Correspondence can be stipulated by agreement, can also be configured to terminal by network equipment.
  • the correspondence is not limited to the correspondence between time-frequency resources and codewords, but may also be other types of correspondence in the present application.
  • the corresponding relationship is configured by the network device to the terminal device, in one embodiment, it may refer to a parameter configured by the network device to determine the corresponding relationship.
  • the terminal determines the specific corresponding relationship according to the parameter, or determines the specific corresponding relationship according to the parameter combined with the preset corresponding rule (or mapping rule, association rule).
  • the network device can also determine the specific correspondence in the same way according to the parameters configured to the terminal.
  • the corresponding relationship may also be called an association relationship or a mapping relationship. The following uses the corresponding relationship as an example to describe the solution.
  • the corresponding relationship in the embodiments of the present application may have various forms. Either form can achieve the purpose of notifying the network device of the selected reference signal to be reported on the time-frequency resource with low delay.
  • the first type of correspondence may include two levels of correspondence.
  • the first-level correspondence describes the correspondence between the reference signal, the time-frequency resource and the codeword.
  • the first layer correspondence describes the correspondence between the SSB and the PRACH time-frequency resource and the preamble.
  • One SSB may correspond to one or more PRACH time-frequency resources, and the SSB may be associated with part or all of the preambles on the corresponding PRACH time-frequency resources.
  • the first type of correspondence also includes a second level of correspondence.
  • the second level of correspondence describes the correspondence between the reference signal and the codeword.
  • the first-level correspondence describes the correspondence between the SSB and the PRACH time-frequency resource and the preamble.
  • the codeword in the second-level correspondence may be a preamble.
  • the preamble set that establishes the correspondence with the reference signal is: part or all of the codewords in the codeword set associated with the time-frequency resource.
  • the first SSB is associated with the first PRACH time-frequency resource, and is associated with a part of the preamble on the first PRACH time-frequency resource, then in the second layer correspondence, the first RRACH The part of the preamble on the time-frequency resource establishes a corresponding relationship with the reference signal.
  • the preamble can be used to indicate the reference signal selected by the terminal.
  • the terminal can select the resource location for sending the preamble through the first-layer correspondence when indicating the reference signal, and determine the preamble for indicating the selected reference signal through the second-layer correspondence. For example, select any reference signal with received power greater than or equal to the threshold, or when there is no reference signal with received power greater than or equal to the threshold, select any reference signal, and determine the time-frequency resource corresponding to the reference signal according to the first layer correspondence , Marked as the first time-frequency resource. The reference signal with the largest received power is selected, and the preamble corresponding to the reference signal with the largest received power is determined according to the second layer correspondence. The terminal sends the preamble determined according to the second layer correspondence on the first time-frequency resource.
  • the second correspondence is similar to the first correspondence, and includes two levels of correspondence.
  • the first-level correspondence is the same as the first-level correspondence in the first correspondence.
  • the second level of correspondence describes the correspondence between the reference signal and the codeword.
  • the codeword in the second-level correspondence may be another codeword besides the preamble, such as DMRS.
  • the correspondence between the reference signal and the DMRS may be the correspondence between the reference signal and the DMRS sequence and/or the DMRS port.
  • the description of the correspondence between the reference signal and the DMRS may be applicable to the full text.
  • DMRS can indicate the reference signal selected by the terminal.
  • the terminal can select the resource location for sending the preamble through the first-layer correspondence, for example, select any reference signal with a received power greater than or equal to the threshold, or when there is no reference signal with a received power greater than or equal to the threshold When, select any reference signal and mark it as reference signal 1.
  • the time-frequency resource corresponding to the reference signal 1 is determined according to the first-layer correspondence, and it is recorded as the first time-frequency resource.
  • the terminal determines the preamble corresponding to the reference signal according to the first layer correspondence. Then the terminal can send the preamble selected according to the first layer mapping relationship on the first time-frequency resource. In this case, the preamble sent on the first time-frequency resource can be used as the preamble for the regular function of random access.
  • the terminal also sends the DMRS determined according to the second layer correspondence on the second time-frequency resource associated with the first time-frequency resource. For example, the terminal selects the reference signal with the largest received power, which is marked as reference signal 2.
  • the terminal determines the DMRS corresponding to the reference signal 2 according to the second layer correspondence.
  • the scenario in which the first time-frequency resource is associated with the second time-frequency resource can be explained as follows.
  • the msgA sent by the terminal to the network device includes the preamble and DMRS, and the resources for sending the msgA include PRACH resources and PUSCH resources.
  • the PRACH resource is the first time-frequency resource
  • the PUSCH resource is the second time-frequency resource.
  • the preamble is sent on the first time-frequency resource
  • the DMRS is sent on the second time-frequency resource.
  • the third type of correspondence can include two levels of correspondence.
  • the first-level correspondence is the same as the first-level correspondence in the first correspondence.
  • the second level of correspondence describes the correspondence between the reference signal and the codeword.
  • the codeword in the second-level correspondence may be a preamble.
  • the codeword in the first-level correspondence is a codeword associated with the first time-frequency resource.
  • the codeword in the second-level correspondence is the codeword associated with the second time-frequency resource.
  • the second time-frequency resource is associated with the first time-frequency resource.
  • the first time-frequency resource and the second time-frequency resource are the same type of resource, and the terminal repeatedly transmits the same type of codeword on the two time-frequency resources.
  • the first time-frequency resource and the second time-frequency resource are both PRACH resources, and the number of preambles sent by the terminal in a msg1 or msgA message is twice the conventional number during random access.
  • the number of frequency resources is also twice the conventional number.
  • one MSg1 transmission occupies one RO, and a preamble is sent on the RO.
  • one msg1 or msgA transmission occupies two ROs, and one preamble is sent on each RO.
  • One RO is the first time-frequency resource
  • the other RO is the second time-frequency resource.
  • the terminal can select the resource location for sending the preamble through the first-layer correspondence, for example, select any reference signal with a received power greater than or equal to the threshold, or when there is no reference signal with a received power greater than or equal to the threshold When, select any reference signal and mark it as reference signal 1.
  • the time-frequency resource corresponding to the reference signal 1 is determined according to the first-layer correspondence, and it is recorded as the first time-frequency resource.
  • the preamble as a regular function of random access is sent on the first time-frequency resource.
  • the terminal selects the reference signal with the largest received power, which is marked as reference signal 2.
  • the terminal determines the preamble corresponding to the reference signal 2 according to the second layer correspondence.
  • the terminal sends the preamble used to indicate the reference signal 2 on the second time-frequency resource associated with the first time-frequency resource.
  • the fourth type of correspondence may include two levels of correspondence.
  • the first-level correspondence is the same as the first-level correspondence in the first correspondence.
  • the second level of correspondence describes the correspondence between the reference signal and the codeword.
  • the codeword in the second-level correspondence may be a preamble.
  • the difference from the first correspondence is that the codewords in the second-layer correspondence and the codewords in the first-layer correspondence belong to different codeword sets.
  • the codewords in the first-level correspondence belong to the first codeword set, and the codewords in the second-level correspondence belong to the second codeword set. Select any reference signal with received power greater than or equal to the threshold, or when there is no reference signal with received power greater than or equal to the threshold, select any reference signal and record it as reference signal 1.
  • the time-frequency resource corresponding to the reference signal 1 is selected and recorded as the first time-frequency resource.
  • the codeword corresponding to the reference signal 1 is the codeword in the first codeword set. Select the reference signal with the largest received power and mark it as reference signal 2.
  • the codeword corresponding to the reference signal 2 is selected from the second codeword set. The codeword corresponding to reference signal 1 and the codeword corresponding to reference signal 2 are sent on the first time-frequency resource.
  • the codeword corresponding to reference signal 2 implicitly indicates that the reference signal selected by the terminal is reference signal 2.
  • the network device receives two codewords on the first time-frequency resource, and determines the reference signal 2 corresponding to the codeword according to the second-layer correspondence relationship, thereby determining the reference signal selected by the terminal.
  • the first codeword set is the first preamble set on one or more PRACH resources corresponding to the SSB.
  • the codewords in the second layer correspondence belong to the second codeword set
  • the second codeword set is the second preamble set on one or more PRACH resources corresponding to the SSB.
  • the second preamble set can be regarded as expanding the preamble capacity of the one or more PRACH resources on the basis of the first preamble set.
  • the one or more preambles can be added by adding a cyclic shift (cyclic shift) or a root sequence (root sequence).
  • the codeword in the second layer correspondence can be a preamble or a DMRS.
  • the codeword in the second-level correspondence is a preamble, it can be a preamble with regular functions during random access, or a new preamble extended on the basis of the original preamble set, or it can be Preambles transmitted on other PRACH resources (that is, the aforementioned second time-frequency resources).
  • the codeword in the second-level correspondence may also have the function of a conventional codeword.
  • the preamble in the second layer correspondence may also have the function of a conventional random access preamble
  • the DMRS in the second layer correspondence may also have the function of a conventional DMRS.
  • the above four corresponding relationships can also be used in combination. It can be any two or more of the four corresponding relationships used in combination. For example, if the number of codewords in the second-level correspondence in one correspondence is less than the number of reference signals, the codewords in the second-level correspondence in another correspondence can be combined to jointly indicate the reference signal (or Reference signal collection). There may be multiple ways to jointly indicate the reference signal. For example, one of the codewords in the second-layer correspondence is used to indicate a part of the reference signal set, and the codeword in the other second-layer correspondence is used to indicate another part of the reference signal set.
  • the reference signals are grouped, where a codeword in the second layer correspondence is used to indicate the group number of the reference signal, and the codeword in the other second layer correspondence is used to indicate the reference signal in a group.
  • the terminal can send the codeword in the second-layer correspondence in the first correspondence and the codeword in the second-layer correspondence in the second correspondence to jointly indicate the reference signal.
  • joint indication it is possible to jointly indicate more reference signals through another codeword resource when one of the codeword resources is insufficient.
  • the reference signal set indicated by the joint can be multiple reference signals received by the terminal from the network device, multiple reference signals actually sent by the network device, or a subset of the reference signals actually sent by the network device, or it can be a cell All candidate reference signals, or a subset of all candidate reference signals of the cell. Since the combined indication method can indicate more reference signals, this method can help indicate all candidate reference signals of the cell.
  • the second layer of correspondence in the first type of correspondence describes the correspondence between the reference signal and the preamble
  • the second layer of correspondence in the second type of correspondence describes the correspondence between the reference signal and the DMRS.
  • the scenario in which the two correspondences are combined means that the preamble in the first correspondence indicates a part of the reference signal set, for example, the preamble can correspond to this part of the reference signal one-to-one; in the second correspondence, the DMRS indicates Another part of the reference signal set, for example, the DMRS, may correspond to the other part of the reference signal one-to-one.
  • the scenario in which the two correspondences are combined refers to that the preamble in the first correspondence indicates the group number in the reference signal set, for example, the preamble corresponds to the group number one by one;
  • the DMRS indicates the reference signals in a group.
  • the DMRS can correspond to the reference signals in the group one to one.
  • the terminal can jointly and implicitly indicate the selected reference signal by sending the preamble and DMRS.
  • the terminal sends one codeword on one time-frequency resource, which can be described as the terminal sending the first codeword on the first time-frequency resource.
  • the terminal or network device may determine the first time-frequency resource and the first codeword according to the foregoing first correspondence relationship.
  • the first codeword has a corresponding relationship with the first reference signal with the largest received power among the N reference signals
  • the first time-frequency resource has a corresponding relationship with the second reference signal with the received power greater than or equal to the threshold among the N1 reference signals.
  • the second reference signal may be any one of the N1 reference signals.
  • the N reference signals are all candidate reference signals of the cell, or reference signals actually sent by the cell, or a subset of all candidate reference signals of the cell, or a subset of reference signals actually sent by the cell.
  • the N1 reference signals may be reference signals actually sent by the cell or multiple reference signals received by the terminal.
  • the terminal receives multiple reference signals, and the terminal may determine a second reference signal with a received power greater than or equal to a threshold value, or any second reference signal, and determine according to the received power of the multiple reference signals received The first reference signal with the largest received power.
  • the first reference signal may be the same as the second reference signal.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal according to the first-layer correspondence in the first correspondence, and determines the first time-frequency resource corresponding to the first reference signal according to the second-layer correspondence in the first correspondence The first code word.
  • the first-level correspondence of the first type of correspondence is used to describe the correspondence between N1 reference signals and P time-frequency resources, and the correspondence between each reference signal in the N1 reference signals and one or more codewords.
  • the first time-frequency resource corresponding to the second reference signal can be determined.
  • the second reference signal may be associated with multiple time-frequency resources, and the first time-frequency resource is the second time-frequency resource.
  • the codeword on the first time-frequency resource that has a correspondence relationship with the second reference signal can be determined, where the codeword on the first time-frequency resource that has a correspondence relationship with the second reference signal is the first time-frequency resource.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal according to the correspondence between the N1 reference signals and the P time-frequency resources.
  • the second-level correspondence of the first type of correspondence is used to describe the correspondence between N reference signals and M codewords.
  • M can be greater than N, then multiple codewords can correspond to one reference signal, or N codewords of M codewords correspond to N reference signals one-to-one, or there are multiple codewords corresponding to one reference signal. There is a case where one codeword corresponds to one reference signal.
  • M can also be equal to N, and one codeword corresponds to one reference signal.
  • M may also be less than N, and one codeword corresponds to multiple reference signals, or, among the M codewords, part of the codewords corresponds to multiple reference signals for each codeword, and the remaining codewords are one codeword corresponding to one reference signal.
  • the M codewords are a subset of the codewords associated with the first time-frequency resource, and the M codewords may also be codewords corresponding to the second reference signal on the first time-frequency resource in the first-layer correspondence. That is, the M codewords can be described as codewords associated with the first time-frequency resource and the second reference signal according to the first-layer correspondence.
  • the terminal determines the first codeword corresponding to the first reference signal according to the correspondence between the N reference signals and the M codewords.
  • the terminal sends the first codeword on the first time-frequency resource.
  • the network device detects the first codeword on the first time-frequency resource, and determines the first reference signal corresponding to the first codeword according to the second-layer correspondence in the first correspondence, so as to determine the network device and the terminal The best transmission beam for device communication.
  • the terminal sends multiple codewords on one time-frequency resource, for example, two codewords. It can be described as the terminal sending the first codeword and the second codeword on the first time-frequency resource.
  • the terminal or the network device may determine the first time-frequency resource, the first codeword, and the second codeword according to the foregoing fourth correspondence relationship.
  • the first codeword has a corresponding relationship with the first reference signal with the largest received power among the N reference signals
  • the first time-frequency resource has a corresponding relationship with the second reference signal with the received power greater than or equal to the threshold among the received multiple reference signals.
  • the second reference signal when the received power of the multiple received reference signals is less than or equal to the threshold, the second reference signal may be any one of the multiple received reference signals.
  • the N reference signals are all candidate reference signals of the cell, or reference signals actually sent by the cell, or a subset of all candidate reference signals of the cell, or a subset of reference signals actually sent by the cell.
  • the N1 reference signals may be reference signals actually sent by the cell or multiple reference signals received by the terminal.
  • the terminal receives multiple reference signals, and the terminal may determine a second reference signal with a received power greater than or equal to a threshold value, or any second reference signal, and determine according to the received power of the multiple reference signals received
  • the first reference signal with the largest received power may be the same as the second reference signal.
  • the terminal determines the first time-frequency resource and the second codeword corresponding to the second reference signal according to the first-layer correspondence in the fourth correspondence, and determines the first time-frequency resource and the second codeword corresponding to the second-layer correspondence in the fourth correspondence.
  • a first codeword corresponding to a reference signal may be the same as the second reference signal.
  • the first layer of the fourth type of correspondence is used to describe the correspondence between N1 reference signals and P time-frequency resources, and the correspondence between each reference signal in the N1 reference signals and one or more codewords.
  • the second reference signal corresponds to the first time-frequency resource.
  • the second reference signal may be associated with multiple time-frequency resources, and the first time-frequency resource is associated with the second reference signal One of the multiple time-frequency resources of.
  • the second-level correspondence of the first type of correspondence is used to describe the correspondence between N reference signals and M codewords.
  • the M codewords are a subset of the codewords associated with the first time-frequency resource.
  • M can be greater than N, and one codeword corresponds to multiple reference signals.
  • M can also be equal to N, and one codeword corresponds to one reference signal.
  • M can also be less than N, and multiple codewords correspond to one reference signal.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal according to the correspondence between the N1 reference signals and the P time-frequency resources, and the terminal determines the second codeword corresponding to the second reference signal according to the first layer mapping relationship.
  • the terminal determines the first codeword corresponding to the first reference signal according to the correspondence between the N reference signals and the M codewords.
  • the first codeword and the second codeword both belong to codewords associated with the first time-frequency resource
  • the second codeword belongs to the first codeword set
  • the first codeword belongs to the second codeword set.
  • the first codeword set and the second codeword set are subsets in which two intersections of the codewords associated with the first time-frequency resource are empty.
  • the terminal sends the first codeword and the second codeword on the first time-frequency resource.
  • the network device detects the first codeword and the second codeword on the first time-frequency resource, and determines the first reference signal corresponding to the first codeword according to the second-layer correspondence in the fourth correspondence, thereby determining the terminal.
  • the selected optimal reference signal is the first reference signal.
  • the terminal sends multiple codewords on multiple time-frequency resources. For example, the terminal sends the second codeword on the first time-frequency resource, and sends the first codeword on the second time-frequency resource associated with the first time-frequency resource.
  • the first codeword may be a different type of codeword from the second codeword.
  • the first codeword is a preamble and the second codeword is a DMRS.
  • the second time-frequency resource is a PRACH resource
  • the first time-frequency resource is a PRACH resource.
  • the frequency resources are PUSCH resources.
  • the terminal or the network device may determine the first time-frequency resource, the second time-frequency resource, the first codeword, and the second codeword according to the foregoing second correspondence relationship.
  • the first time-frequency resource has a corresponding relationship with the second reference signal whose received power is greater than or equal to the threshold among the multiple received reference signals.
  • the first The second reference signal may be any one of the multiple received reference signals, and the first codeword has a corresponding relationship with the first reference signal with the largest received power among the N reference signals.
  • the N reference signals are a subset of the received multiple reference signals.
  • the N reference signals are all candidate reference signals of the cell, or reference signals actually sent by the cell, or a subset of all candidate reference signals of the cell, or a subset of reference signals actually sent by the cell.
  • the N1 reference signals may be reference signals actually sent by the cell or multiple reference signals received by the terminal.
  • the terminal receives multiple reference signals, and the terminal may determine a second reference signal with a received power greater than or equal to a threshold value, or any second reference signal, and determine according to the received power of the multiple reference signals received
  • the first reference signal with the largest received power may be the same as the second reference signal.
  • the terminal determines the first time-frequency resource and the second codeword corresponding to the second reference signal according to the first-layer correspondence in the second correspondence, and determines the first time-frequency resource and the second codeword corresponding to the second reference signal according to the second-layer correspondence in the second correspondence.
  • a first codeword corresponding to a reference signal A first codeword corresponding to a reference signal.
  • the first-level correspondence of the second type of correspondence is used to describe the correspondence between N1 reference signals and P time-frequency resources, and the correspondence between each reference signal in the N1 reference signals and one or more codewords.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal and the second codeword corresponding to the second reference signal according to the first-layer correspondence in the second correspondence.
  • the second-level correspondence of the second type of correspondence is used to describe the correspondence between N reference signals and M codewords.
  • the M codewords are a subset of the codewords associated with the second time-frequency resource.
  • M can be greater than N, then multiple codewords correspond to one reference signal, or N codewords of M codewords correspond to N reference signals one-to-one, or there are multiple codewords corresponding to one reference signal.
  • One codeword corresponds to one reference signal.
  • M can also be equal to N, and one codeword corresponds to one reference signal.
  • M may also be less than N, and one codeword corresponds to multiple reference signals, or, among the M codewords, part of the codewords corresponds to multiple reference signals for each codeword, and the remaining codewords are one codeword corresponding to one reference signal.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal according to the correspondence between the N1 reference signals and the P time-frequency resources, and the terminal determines the first time-frequency resource corresponding to the second reference signal according to the first-layer mapping relationship in the second correspondence The corresponding second code word.
  • the terminal determines the first codeword corresponding to the first reference signal according to the correspondence between the N reference signals and the M codewords.
  • the terminal sends the second codeword on the first time-frequency resource, and sends the first codeword on the second time-frequency resource.
  • the network device detects the first codeword on the second time-frequency resource, and determines the first reference signal corresponding to the first codeword according to the second-layer correspondence in the second correspondence, so as to determine the optimal terminal selected
  • the reference signal is the first reference signal.
  • the first codeword may also be the same type of codeword as the second codeword.
  • the first codeword is a preamble
  • the second codeword is also a preamble.
  • the first time-frequency resource and the second time-frequency resource are both PRACH resources.
  • the second time-frequency resource associated with the first time-frequency resource may be a random access time-frequency resource.
  • the terminal repeatedly transmits the preamble on the first time-frequency resource and the second time-frequency resource.
  • the network device will configure or predefine the association relationship between the first time-frequency resource and the second time-frequency resource in advance (for example, the two belong to the same group).
  • the first time-frequency resource and the second time-frequency resource can be time-division multiplexed, so the first time-frequency resource and the second time-frequency resource may be continuous or discontinuous in the time domain; or, the first time-frequency resource and the second time-frequency resource Time-frequency resources are frequency division multiplexed, so the first time-frequency resource and the second time-frequency resource may be continuous or discontinuous in the frequency domain.
  • the first codeword is the first preamble
  • the second codeword is the second preamble.
  • the terminal or the network device may determine the first time-frequency resource, the second time-frequency resource, the first preamble, and the second preamble according to the foregoing third correspondence relationship.
  • the first time-frequency resource has a corresponding relationship with the second reference signal whose received power is greater than or equal to the threshold among the N reference signals.
  • the second reference signal It may be any one of the N1 reference signals, and the first codeword has a corresponding relationship with the first reference signal with the largest received power among the N reference signals.
  • the N reference signals are all candidate reference signals of the cell, or reference signals actually sent by the cell, or a subset of all candidate reference signals of the cell, or a subset of reference signals actually sent by the cell.
  • the N1 reference signals may be reference signals actually sent by the cell or multiple reference signals received by the terminal.
  • the terminal receives multiple reference signals, and the terminal may determine a second reference signal with a received power greater than or equal to a threshold value, or any second reference signal, and determine according to the received power of the multiple reference signals received The first reference signal with the largest received power.
  • the first reference signal may be the same as the second reference signal.
  • the terminal determines the first time-frequency resource and the second codeword corresponding to the second reference signal according to the first-layer correspondence in the third correspondence. And according to the network device configuration or predefined association relationship between the first time-frequency resource and the second time-frequency resource, the second time-frequency resource associated with the first time-frequency resource is determined.
  • the first codeword corresponding to the first reference signal is determined according to the second-layer correspondence in the third correspondence.
  • the first-layer correspondence of the third correspondence is used to describe the correspondence between N1 reference signals and P time-frequency resources, and the correspondence between each reference signal in the N1 reference signals and one or more codewords.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal and the second codeword corresponding to the second reference signal according to the first-layer correspondence in the third correspondence.
  • the second-level correspondence of the third correspondence is used to describe the correspondence between N reference signals and M codewords.
  • the M codewords are a subset of the codewords associated with the second time-frequency resource.
  • M can be greater than N, then multiple codewords correspond to one reference signal, or N codewords of M codewords correspond to N reference signals one-to-one, or there are multiple codewords corresponding to one reference signal.
  • One codeword corresponds to one reference signal.
  • M can also be equal to N, and one codeword corresponds to one reference signal.
  • the terminal determines the first time-frequency resource corresponding to the second reference signal according to the correspondence between the N1 reference signals and the P time-frequency resources, and the terminal determines the first time-frequency resource corresponding to the second reference signal according to the first-layer mapping relationship in the second correspondence The corresponding second code word.
  • the terminal determines the first codeword corresponding to the first reference signal according to the correspondence between the N reference signals and the M codewords.
  • the terminal sends the second codeword on the first time-frequency resource, and sends the first codeword on the second time-frequency resource associated with the first time-frequency resource.
  • the network device detects the first codeword on the second time-frequency resource, and determines the first reference signal corresponding to the first codeword according to the second-layer correspondence in the third correspondence, so as to determine the optimal one selected by the terminal
  • the reference signal is the first reference signal.
  • the N reference signals in the second layer correspondence mentioned in the foregoing various situations are a reference signal set, and the N reference signals may be predefined or configured by a network device.
  • the network device configures N reference signals with representative directions.
  • multiple beams may be close or adjacent in direction, and one of the similar or adjacent multiple beams can be selected as a representative direction.
  • the network device may compose N reference signals from reference signals corresponding to beams in representative directions.
  • the network device may group all candidate SSBs in the cell into multiple SSB groups, and the N reference signals are one SSB group among the multiple SSB groups.
  • the terminal determines the association relationship between the SSB and the PRACH time-frequency resource and the random access preamble according to the configuration information of the network device.
  • the terminal measures the RSRP of multiple SSBs, selects any SSB whose RSRP is greater than the preset threshold, or selects any SSB when there is no SSB whose RSRP is greater than the preset threshold, and sends the SSB on the PRACH time-frequency resource associated with the SSB One of the associated multiple preambles.
  • any selected SSB greater than or equal to the threshold may be an SSB with a relatively earlier transmission timing obtained according to the first-layer correspondence.
  • the network device determines the SSB selected by the terminal according to the detected preamble sequence and the PRACH time-frequency resource where the preamble sequence is located.
  • the network device sends the downlink Msg2 and Msg4 on the beam corresponding to the SSB selected by the terminal. It can be seen that the terminal only completes the rough selection of the reference signal during the random access process, and performs a finer selection of the reference signal according to other parameters after entering the connected state. In this way, for the data transmission completed in the random access process, it cannot be guaranteed that the data transmission can obtain a relatively good beam direction gain.
  • the method provided in the embodiment of the present application can complete the selection and reporting of the reference signal to be reported during the random access process.
  • the reference signal to be reported is the reference signal with the largest received power (or called the optimal reference signal).
  • the terminal can complete the selection and report of the reference signal with the largest received power during the random access process. Compared with the fine selection of the reference signal after entering the connected state, the terminal can complete the selection and report faster.
  • 64 beams correspond to 64 SSBs
  • one PRACH time-frequency resource is represented by RO
  • one SSB is associated with one RO
  • 64 SSBs are associated with 64 ROs.
  • the mapping period is 160ms.
  • the terminal initiates random access at RO#1, and the SSB with the largest measured RSRP is SSB#64. If the terminal chooses to report SSB#64, it needs to experience a delay of the entire association period of 160ms before it can be associated with SSB#64.
  • the preamble associated with SSB#64 is sent on RO#64.
  • any RO associated with the SSB whose received power is greater than or equal to the threshold can be selected, for example, RO#1, and the preamble indicating SSB#64 is reported on RO#1 without the need Wait until the sending time of RO#64, so that a lower delay can be obtained.
  • the codeword indicating SSB#64 can also be reported on the RO or PO associated with RO#1, which can also obtain a lower delay.
  • the following takes the indication of the reference signal in the 2-step random access process as an example, the codeword is the premble and/or DMRS as an example, and the reference signal is the SSB as an example, based on
  • the reference signal indication method provided in the embodiment of the present application will be further described in detail in combination with several examples.
  • the method in the following example can be applied to other scenarios provided by the embodiments of the present application, for example, when the reference signal is other reference signal, the codeword is other codeword, four-step random access or inactive data transmission Scene.
  • Other reference signals are, for example, CSI-RS.
  • the time-frequency resource is the PRACH time-frequency resource
  • the codeword is the preamble.
  • the first layer correspondence is the correspondence between SSB and PRACH time-frequency resources and preambles
  • the second layer correspondence is the correspondence between the SSB set and the preamble set
  • the preamble set in the second layer correspondence can be the first The set of preambles associated with one SSB in the layer correspondence.
  • the terminal determines an SSB1 whose RSRP is greater than the preset threshold, or, when there is no SSB whose RSRP is greater than the preset threshold, SSB1 can be any SSB.
  • the terminal selects one or more PRACH time-frequency resources associated with the SSB1 and the preamble set on the one or more PRACH time-frequency resources according to the first layer correspondence.
  • the preamble set that establishes a correspondence with the SSB set in the second layer correspondence can be the preamble set on the one or more PRACH time-frequency resources, or a subset of the preamble set on the one or more PRACH time-frequency resources .
  • the terminal determines the SSB2 with the largest RSRP, and selects the preamble1 associated with the SSB2 in the preamble set according to the second layer correspondence.
  • the terminal sends the preamble1 to the network device in msgA, implicitly indicating that the SSB with the largest RSRP in the SSB set is SSB2. After detecting the preamble1, the network device determines the SSB2 associated with the preamble1 according to the second layer correspondence.
  • the network device may also determine the beam to receive msgA PUSCH according to the determined transmit beam.
  • msgA PUSCH includes uplink data carried by the PUSCH in msgA.
  • the SSB set in the above-mentioned second layer correspondence can be all candidate SSBs in the current cell, or all SSBs actually transmitted in the current cell, or a subset of all candidate SSBs in the current cell, or the actual SSB of the current cell. A subset of all SSBs transmitted.
  • the SSB set can be predefined or configured by network equipment.
  • the SSB set may be a representative SSB set of beam directions configured by a network device, or one SSB group among multiple SSB groups.
  • preamble and SSB can have a one-to-one correspondence, either one preamble corresponds to one SSB, or one-to-many correspondence, one preamble corresponds to multiple SSBs, or many-to-one correspondence. Multiple preambles correspond to one SSB.
  • the correspondence between the preamble and the SSB is configured by the network device to the terminal through signaling. If it is not configured, it can be assumed that the preamble and the SSB can have a one-to-one correspondence. The corresponding relationship can also be determined according to the number of preambles in the preamble set associated with each SSB and the number of SSBs in the SSB set.
  • the network device cannot uniquely determine the SSB with the largest RSRP in the SSB set based on the detected preamble, and can only determine that the SSB with the largest RSRP is associated with the detected preamble. Multiple SSBs.
  • the network device may group the SSBs in the SSB set in advance, divide the SSBs with close beam directions into one group, and notify the terminal of the SSB grouping information. Then the second layer correspondence can be described as a preamble corresponding to a group of SSB.
  • the terminal can map a preamble to a group of SSBs according to the second layer correspondence.
  • the terminal determines the preamble corresponding to the group of the SSB with the largest RSRP, and sends the preamble corresponding to the group of the SSB with the largest RSRP to the network device, and the network device can pass the detection
  • the arrived preamble determines a group of SSBs with similar beam directions, and uses any beam in the group of beams to send msgB.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first level of correspondence is that one SSB is associated with two ROs, and the preamble associated with each RO is 64, that is, one SSB is associated with 128 preambles.
  • the SSB set in the second layer of correspondence is all the candidate SSBs of the cell, that is, 64 SSBs.
  • the second layer of correspondence is that the 64 preambles on each RO correspond to the 64 candidate SSBs one-to-one, and they can correspond one-to-one in order.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#1.
  • SSB#1 associates two ROs, RO#2 and RO#3, and associates 128 preambles on RO#2 and RO#3.
  • the terminal selects one RO, such as RO#2, from RO#2 and RO#3 associated with SSB#1 according to the first-level correspondence.
  • the 64 preambles associated with RO#2 correspond to the 64 candidate SSBs one-to-one.
  • the terminal selects the preamble corresponding to the SSB with the largest RSRP on the RO#2. For example, the SSB with the largest RSRP is SSB#59.
  • the terminal selects RO #2 ⁇ preamble#59.
  • the terminal sends preamble#59 on RO#2.
  • the network device determines the SSB#59 corresponding to preamble#59 according to the second layer correspondence, and determines that the optimal reference signal selected by the terminal is SSB#59.
  • the network device uses the beam corresponding to SSB#59 to send msgB.
  • the network device can also use the receive beam corresponding to SSB#59 to receive msgA PUSCH.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first level of correspondence is that one SSB is associated with two ROs, and the preamble associated with each RO is 64, that is, one SSB is associated with 128 preambles.
  • the SSB set in the second layer of correspondence is the SSB actually sent by the cell, that is, 60 SSBs.
  • the second layer of correspondence is that the designated 60 preambles on each RO correspond to the 60 actually sent SSBs one-to-one. For example, it can be a pair of the first 60 preambles on each RO and the 60 actually sent SSBs in sequence.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#1.
  • SSB#1 associates two ROs, RO#2 and RO#3, and associates 128 preambles on RO#2 and RO#3.
  • the terminal selects one RO, such as RO#2, from RO#2 and RO#3 associated with SSB#1 according to the first-level correspondence.
  • the first 60 preambles associated on RO#2 correspond to the 60 SSBs one-to-one.
  • the terminal selects the preamble corresponding to the SSB with the largest RSRP on the RO#2. For example, the SSB with the largest RSRP is SSB#59.
  • the terminal selects RO #2 ⁇ preamble#59.
  • the terminal sends preamble#59 on RO#2.
  • the network device determines the SSB#59 corresponding to the preamble#59 according to the second layer correspondence, and determines that the optimal reference signal selected by the terminal is SSB#59.
  • the network device uses the beam corresponding to SSB#59 to send msgB.
  • the network device can also use the receive beam corresponding to SSB#59 to receive the PUSCH in msgA.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first layer of mapping is that one SSB is associated with two ROs, and the preamble associated with each SSB on the RO is 40, that is, one SSB is associated with two ROs, a total of 80 preambles.
  • the SSB set in the second layer of correspondence is the SSB actually sent by the cell, that is, 60 SSBs.
  • the second layer correspondence relationship is that the first 60 preambles of the 80 preambles associated with each SSB correspond to the 60 SSBs in the SSB set in a one-to-one correspondence, for example, the correspondence may be one-to-one in order.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#1.
  • SSB#1 associates two ROs, RO#2 and RO#3, and associates 80 preambles on RO#2 and RO#3.
  • the first 60 preambles and 60 SSBs of the 80 preambles on RO#2 and RO#3 correspond one-to-one.
  • the terminal determines the SSB with the largest RSRP, for example, SSB#59.
  • preamble#59 corresponding to SSB#59 is selected from the 80 preambles on terminal RO#2 and RO#3, and there are 40 preambles on RO#2 in total, and preamble#59 corresponds to preamble#19 on RO#3.
  • the terminal sends preamble#19 on RO#3.
  • the network device detects the preamble#19 on RO#3, determines that preamble#19 on RO#3 is RO#2 and preamble#59 on RO#3, and determines the SSB corresponding to preamble#59 according to the second layer correspondence. #59, it is determined that the optimal reference signal selected by the terminal is SSB#59.
  • the network device uses the beam corresponding to SSB#59 to send msgB. In addition, if the network device has transmit/receive beam consistency, the network device can also use the receive beam corresponding to SSB#59 to receive msgA PUSCH.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent is 60.
  • the first level of correspondence is that two SSBs are associated with one RO, and the preamble associated with each SSB is 30.
  • the SSB set in the second layer correspondence is a subset of the SSB actually sent by the cell.
  • the subset is an even-numbered SSB among the 60 actually transmitted SSBs.
  • the subset may also be an odd-numbered SSB among the 60 actually sent SSBs, or any 30 SSBs.
  • the second level of correspondence is that the 30 preambles associated with each SSB correspond to the 30 SSBs in the SSB set in a one-to-one correspondence, for example, the correspondence may be one-to-one in a serial number sequence.
  • the SSB set is an even-numbered SSB among the 60 actually transmitted SSBs.
  • preamble#0 corresponds to SSB#0
  • preamble#1 corresponds to SSB#2
  • preamble#2 corresponds to SSB#4
  • preamble#3 corresponds to SSB#6
  • preamble#4 corresponds to SSB#8...
  • Preamble#28 corresponds to SSB#56
  • preamble#29 corresponds to SSB#58.
  • the SSB received by the terminal may be the 60 SSBs actually sent by the cell, or part of the 60 SSBs actually sent by the cell.
  • the terminal selects any SSB whose RSRP is greater than or equal to the threshold in the received SSB, such as SSB#1.
  • the RO#0 corresponding to SSB#1 is determined, and the 30 preambles associated with SSB#1 on the RO#0 are determined.
  • the terminal selects the SSB with the largest RSRP among the received SSBs, such as SSB#58.
  • the terminal selects the preamble#29 corresponding to SSB#58 according to the second layer correspondence.
  • the terminal sends preamble#29 on RO#0.
  • the network device detects the preamble#29 on RO#0, determines the SSB#58 corresponding to preamble#29 according to the second-layer correspondence, and determines that the optimal reference signal selected by the terminal is SSB#58.
  • the network device uses the beam corresponding to SSB#58 to send msgB.
  • the network device can also use the receive beam corresponding to SSB#58 to receive msgA PUSCH.
  • the terminal is based on the SSB whose RSRP is greater than or equal to the threshold and the largest RSRP in the SSB set.
  • SSB selects RO and preamble, and implicitly reports the SSB with the largest RSRP in the SSB set to the network device.
  • the time-frequency resource is the PRACH time-frequency resource
  • the codeword is the preamble.
  • the terminal sends two preambles on one RO.
  • the number of preambles associated with each RO is increased by adding a cyclic shift (cyclic shift) or a root sequence (root sequence).
  • cyclic shift cyclic shift
  • root sequence root sequence
  • the terminal will send two preambles on the same RO during a PRACH transmission.
  • One of the preambles is one of the original 64 preambles and has the function of a regular preamble; the other preamble is one of the newly added preambles and is used to indicate the SSB selected by the terminal.
  • each RO and the original 64 preambles and SSBs on each RO is the same as the prior art, and can be considered as the first layer correspondence.
  • the second layer correspondence can be understood as the correspondence between the newly added preamble and the SSB.
  • the number of newly added preambles can be equal to the number of SSBs actually sent by the cell, or can be equal to the number of all candidate SSBs in the cell.
  • the terminal determines any SSB with an RSRP greater than or equal to the threshold and an SSB with the largest RSRP among the received SSBs, where any SSB with an RSRP greater than or equal to the threshold may also be the SSB with the largest RSRP.
  • the terminal determines the RO associated with the SSB whose RSRP is greater than or equal to the threshold according to the first-layer correspondence, and determines one of the first 64 preambles on the RO. According to the second layer correspondence, the terminal determines the preamble associated with the SSB with the largest RSRP in the SSB set among the newly added preambles on the RO except the first 64.
  • the terminal sends the msgA to the network device, which contains two preambles, one of which implicitly indicates the SSB with the largest RSRP in the SSB set.
  • the network device determines the SSB with the largest RSRP selected by the terminal corresponding to the preamble according to the second layer correspondence, and uses the transmission beam of the SSB associated with the preamble to send the msgB. If the network device has transmit/receive beam consistency, the network device may also determine the beam to receive msgA PUSCH according to the determined transmit beam.
  • the SSB set in the second layer correspondence can be all candidate SSBs in the current cell, or all SSBs actually transmitted in the current cell, or a subset of all candidate SSBs in the current cell, or the actual A subset of all SSBs transmitted.
  • the number of newly added preambles can be determined according to the number of SSBs actually sent by the cell or the number of all candidate SSBs in the cell.
  • the number of newly added preambles can be equal to the number of SSBs actually sent by the cell. It can be equal to the number of all candidate SSBs in the cell. Therefore, preferably, the set of SSBs in the second layer correspondence is all SSBs actually transmitted by the cell, or all candidate SSBs in the current cell.
  • the corresponding manner of the SSB set and the preamble set in the second layer correspondence can refer to the manner of the example in the first case.
  • SSB and preamble can have a one-to-one correspondence, either one preamble corresponds to one SSB, or one-to-many correspondence, and one preamble corresponds to multiple SSBs, or many-to-one correspondence. Multiple preambles correspond to one SSB.
  • the correspondence between the preamble and the SSB is configured by the network device to the terminal through signaling. If it is not configured, it can be assumed that the preamble and the SSB can have a one-to-one correspondence.
  • the corresponding relationship can also be determined according to the number of preambles in the preamble set associated with each SSB and the number of SSBs in the SSB set. Since the number of newly added preambles can be equal to the number of SSBs actually sent by the cell, or equal to the number of all candidate SSBs in the cell, it is preferable that a one-to-one correspondence is adopted between the SSB and the preamble in the second layer of correspondence. .
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first layer of correspondence is that two SSBs are associated with one RO, and there are 64 preambles on one RO initially, and the preamble associated with each SSB is 30.
  • 60 preambles are added on the basis of the initial 64 preambles, that is, there are 124 preambles on each RO.
  • the SSB set in the second layer of correspondence is the 60 SSBs actually sent by the cell.
  • the second-layer correspondence can be described as a one-to-one correspondence between the last 60 preambles on each RO (that is, the 60 preambles newly added by extension) and the 60 SSBs actually sent by the cell, for example, the correspondence may be one-to-one in the order of numbering.
  • the SSB received by the terminal may be the 60 SSBs actually sent by the cell, or part of the 60 SSBs actually sent by the cell.
  • the terminal selects any SSB whose RSRP is greater than or equal to the threshold in the received SSB, such as SSB#1.
  • SSB#1 the threshold in the received SSB
  • determine the RO#0 corresponding to SSB#1 and select one preamble from the 30 preambles associated with the SSB#1 on the RO#0, for example, the RO#0 is associated with SSB#1 Preamble#20 in the 30 preambles.
  • the terminal selects the SSB with the largest RSRP among the received SSBs, such as SSB#58.
  • the terminal selects preamble#58 corresponding to SSB#58 among the last 60 preambles on the RO#0.
  • the terminal sends msgA to the network device, and msgA includes preamble#20 in the 30 preambles associated with SSB#1 on RO#0, and preamble#58 in the last 60 preambles on RO#0 that is associated with SSB#58.
  • the network device After detecting preamble#58 in the last 60 preambles on RO#0, the network device determines the SSB#58 corresponding to preamble#58 according to the second layer correspondence, and determines that the optimal SSB selected by the terminal is SSB#58.
  • the network device uses the beam corresponding to SSB#58 to send msgB. If the network device has transmit/receive beam consistency, the network device can also use the receive beam corresponding to SSB#58 to receive msgA PUSCH.
  • each time the terminal sends msgA it will send 2 preambles on one RO.
  • One of the preambles is selected by the terminal based on the SSB with the largest RSRP in the SSB set, so that it can implicitly report to the network device The SSB with the largest RSRP in the SSB set.
  • the third case includes sending two codewords on two time-frequency resources.
  • the two time-frequency resources may be two PRACH time-frequency resources, or the two time-frequency resources include one PRACH time-frequency resource and one PUSCH resource.
  • the two time-frequency resources can be two PRACH time-frequency resources
  • the two codewords are two preambles.
  • Two PRACH time-frequency resources are associated.
  • the embodiment of the present application may change the number of repetitions of PRACH to 2k times, where k is the number of repetitions of the original PRACH.
  • k is the number of repetitions of the original PRACH.
  • Each PRACH transmission of the terminal occupies two ROs. It can be regarded as one RO group for every two ROs.
  • the first layer correspondence is the correspondence between the SSB and one of the ROs and the preamble on the RO.
  • the second layer correspondence is the correspondence between the preamble and the SSB on another RO.
  • the two ROs in each RO group can be time-division multiplexed or frequency-division multiplexed, and can be continuous in time domain or frequency domain, or discontinuous.
  • the RO of the first-level correspondence can be the previous RO or the latter RO.
  • the terminal determines an SSB1 with an RSRP greater than a preset threshold, or determines any SSB1 when there is no SSB with an RSRP greater than a preset threshold, and determines the SSB2 with the largest RSRP.
  • the terminal selects the RO1 associated with the SSB1 and a preamble1 on the RO according to the first layer correspondence. Determine RO2 in the same group as RO1, and select preamble2 associated with SSB2 in the SSB set from the preamble on RO2 according to the second-layer correspondence.
  • SSB1 and SSB2 may also be the same.
  • the terminal sends msgA to the network device.
  • the msgA contains two preambles, and the two preambles are respectively on two ROs of an RO group.
  • the preamble on one RO implicitly indicates the SSB with the largest RSRP in the SSB set.
  • the network device uses the beam that sends the SSB2 associated with the preamble2 to send msgB. If the network device has transmit/receive beam consistency, the network device may also determine the beam for receiving msgA PUSCH according to the determined transmit beam.
  • the SSB set in the above-mentioned second layer correspondence can be all candidate SSBs in the current cell, or all SSBs actually transmitted in the current cell, or a subset of all candidate SSBs in the current cell, or the actual SSB of the current cell. A subset of all SSBs transmitted.
  • the SSB set can be predefined or configured by network equipment.
  • the SSB set may be a representative SSB set of beam directions configured by a network device, or one SSB group among multiple SSB groups.
  • the number of preambles on the RO can be defined according to the number of SSB sets in the second-layer correspondence.
  • all the preambles in the RO of the second layer correspondence may correspond to the SSB set, which is all the SSBs actually transmitted, or all the candidate SSBs in the current cell.
  • preamble and SSB can have a one-to-one correspondence, either one preamble corresponds to one SSB, or one-to-many correspondence, one preamble corresponds to multiple SSBs, or many-to-one correspondence. Multiple preambles correspond to one SSB.
  • the correspondence between the preamble and the SSB is configured by the network device to the terminal through signaling. If it is not configured, it can be assumed that the preamble and the SSB can have a one-to-one correspondence. The corresponding relationship can also be determined according to the number of preambles in the preamble set associated with each SSB and the number of SSBs in the SSB set.
  • the number of preambles on the RO can be defined according to the number of SSB sets in the second-level correspondence, it is optional, it is easier to realize that the SSB and the preamble can be sequentially one-to-one correspondence in the second-level correspondence .
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first level of correspondence is that one SSB is associated with two ROs, and the preamble associated with each RO is 64, that is, one SSB is associated with two ROs, a total of 128 preambles.
  • the two ROs in each RO group are frequency division multiplexed, and the RO used for the second layer correspondence is the previous RO.
  • the SSB set in the second layer of correspondence is the 60 SSBs actually sent by the cell.
  • the second-layer correspondence can be described as a one-to-one correspondence between the first 60 preambles of the 64 preambles on the RO and the SSB actually sent by the 60 cells.
  • the SSB received by the terminal may be the 60 SSB actually sent by the cell, or part of the 60 SSB actually sent by the cell.
  • the terminal selects any SSB whose RSRP is greater than or equal to the threshold in the received SSB, such as SSB#1.
  • SSB#1 associates RO#5 and RO#7 on the first level of correspondence. Choose one of the two ROs to send a preamble, for example, select RO#5.
  • the RO associated with RO#5 for the second-level correspondence is RO#4.
  • the terminal selects the SSB with the largest RSRP among the received SSBs, for example, the SSB with the largest RSRP is SSB#59.
  • the terminal selects preamble#59 corresponding to SSB#59 on RO#4.
  • the terminal sends msgA to the network device.
  • msgA contains preamble#59 on RO#4 and preamble#10 on RO#5.
  • the preamble#10 on RO#5 is used for regular random access preamble function, and the preamble#59 on RO#4 is used to indicate the SSB with the largest RSRP.
  • the network device detects preamble#59 on RO#4, determines SSB#59 corresponding to preamble#59 according to the second-layer correspondence, and determines that the optimal SSB selected by the terminal is SSB#59. Then the network device uses the beam corresponding to SSB#59 to send msgB. If the network device has transmit/receive beam consistency, the network device can also use the receive beam corresponding to SSB#59 to receive msgA PUSCH.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • the first level of correspondence is that two SSBs are associated with one RO, and the preamble associated with each SSB is 30.
  • the two ROs in each RO group are frequency division multiplexed, and the RO used for the second layer correspondence is the previous RO.
  • the SSB set in the second layer of correspondence is the 60 SSBs actually sent by the cell.
  • the second level of correspondence is that the first 60 preambles of the 64 preambles on the RO correspond to the 60 SSBs actually sent by the cell one-to-one, and they can correspond one-to-one in the order of numbering.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#1.
  • SSB#1 corresponds to RO#1, and RO#1 and RO#0 are in the same RO group.
  • the terminal selects the SSB with the largest RSRP, for example, the SSB with the largest RSRP is SSB#58.
  • the terminal sends msgA to the network device.
  • the msgA contains preamble#58 on RO#0 and preamble#29 in 30 preambles associated with SSB#1 on RO#1.
  • the network device uses the beam corresponding to SSB#58 to send the msgB. If the network device has transmit/receive beam consistency, the network device can also use the receive beam corresponding to SSB#58 to receive msgA PUSCH.
  • each time the terminal sends msgA it contains 1 preamble sent on two ROs.
  • the terminal selects the preamble according to the SSB with the largest RSRP in the SSB set. Report the SSB with the largest RSRP in the SSB set.
  • Two time-frequency resources include one PRACH time-frequency resource and one PUSCH resource, and two codewords include preamble and DMRS.
  • the first layer correspondence is the correspondence between SSB and PRACH time-frequency resources and preamble.
  • the second level of correspondence is the correspondence between SSB and DMRS.
  • the correspondence between SSB and DMRS includes: the correspondence between SSB and DMRS port and/or DMRS sequence.
  • the terminal determines the DMRS corresponding to the SSB with the largest RSRP among the multiple SSBs according to the second layer correspondence, and can implicitly report the SSB with the largest RSRP among the multiple SSBs by sending the DMRS to the network device.
  • the “implicit” reporting reference signal described can also be understood as display reporting, and the code word indicating the reference signal is used as a kind of displayed indication information.
  • the second-level correspondence describes the correspondence between multiple DMRS ports and/or DMRS sequences and multiple SSBs in the SSB set.
  • the multiple DMRS ports and/or DMRS sequences can be all available DMRS ports and/or DMRS sequences configured by the network device, or a subset of all available DMRS ports and/or DMRS sequences configured by the network device, for example, terminals
  • the SSB set can be all candidate SSBs in the current cell, or all SSBs actually transmitted by the current cell, or a subset of all candidate SSBs in the current cell, or a subset of all SSBs actually transmitted by the current cell .
  • the SSB set can be predefined or configured by network equipment.
  • the SSB set may be a representative SSB set of beam directions configured by a network device, or one SSB group among multiple SSB groups.
  • the DMRS port and/or DMRS sequence may be referred to as DMRS for short below.
  • DMRS and SSB can have a one-to-one correspondence, that is, one DMRS corresponds to one SSB; it can also be one-to-many, that is, one DMRS corresponds to multiple SSBs; it can also be many-to-one correspondence, that is, multiple DMRSs correspond to one SSB.
  • the correspondence between DMRS and SSB is configured by the network equipment to the terminal through signaling. If it is not configured, it can be a one-to-one correspondence by default. It can also be based on the number of DMRS in the DMRS set associated with each SSB and the number of SSBs in the SSB set. Determine the correspondence.
  • the network device cannot uniquely determine the SSB with the largest RSRP in the SSB set based on the detected DMRS, and can only determine that the SSB with the largest RSRP is among the multiple SSBs associated with the detected DMRS. Based on this, the network device can group the SSBs in the SSB set, divide the SSBs with close beam directions into one group, and notify the terminal of the SSB grouping information.
  • the terminal can correspond 1 DMRS to a group of SSBs, and the network equipment can determine a group of SSBs with similar beam directions through the detected DMRS, and use any beam in the group of beams to send msgB.
  • the total number of candidate SSBs in the cell is 64, and the number of SSBs actually sent by the cell is 60.
  • one SSB is associated with one RO, and each SSB is associated with 12 preambles on the RO.
  • One RO is associated with one PO.
  • One preamble on one RO is associated with 4 PUSCH resource units (PUSCH resource units, PRU) on one PO.
  • the SSB set in the second layer correspondence is 60 SSBs actually sent by the cell.
  • one PRU corresponds to multiple SSBs, or one PRU corresponds to a group of SSBs.
  • the PRU is a PO and a DMRS port and/or DMRS sequence on the PO.
  • Every 4 PRUs associated with a preamble on a PO correspond to 4 SSB groups one to one.
  • Each SSB group contains 15 actually sent SSBs.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#1.
  • the terminal selects PO#1 PRU#3 of the 4 PRUs associated with preamble#2 above.
  • the terminal sends preamble#2 on RO#1, and PRU#3 on PO#1.
  • the network device receives PRU#3 at PO#1, and determines that the optimal SSB selected by the terminal is SSB group #3 according to PRU#3. Send msgB on the corresponding beam of any SSB in SSB group #3.
  • the terminal selects the DMRS port and/or DMRS sequence according to the SSB with the largest RSRP in the SSB set, and implicitly reports the SSB with the largest RSRP in the SSB set or the SSB group where the SSB with the largest RSRP is located.
  • the terminal can either select a beam whose RSRP meets the requirements and complete the msgA transmission as soon as possible, or it can report to the SSB corresponding to the best beam in the network device SSB set, or the SSB group where the SSB corresponding to the best beam is located.
  • the terminal sends the first codeword on the first time-frequency resource, the first codeword indicates the reference signal with the largest received power; or the terminal sends the first codeword on the first time-frequency resource A codeword and a second codeword, where the first codeword indicates the first reference signal with the largest received power.
  • the terminal may also send the third codeword on the second time-frequency resource associated with the first time-frequency resource.
  • the third codeword corresponds to the first reference signal in a reference signal group. Specifically, the third codeword corresponding to the first reference signal in the codeword group is determined according to the correspondence between the reference signal in the reference signal group and the codeword in a codeword group.
  • the terminal sends the first codeword on the first time-frequency resource, and sends the second codeword on the second time-frequency resource associated with the first time-frequency resource.
  • the second layer correspondence can be described as N reference signals and M
  • the corresponding relationship between the two codewords, the second codeword has a corresponding relationship with the second reference signal with the largest received power among the N reference signals.
  • the second codeword corresponds to the reference signal group where the second reference signal is located.
  • the following takes the method of indicating the reference signal in the manner of code word combination on the basis of the third case as an example, and describes in combination with specific application scenarios.
  • the terminal selects the preamble and the DMRS port and/or the DMRS sequence according to the SSB with the largest RSRP among the multiple SSBs, that is, implicitly reports the SSB with the largest RSRP among the multiple SSBs through the preamble and the DMRS port and/or the DMRS sequence.
  • the SSB sets are grouped, the SSB groups correspond to the preambles in the preamble set on a one-to-one basis, and the SSBs in each SSB group correspond to DMRS ports and/or DMRS sequence sets on a one-to-one basis.
  • the terminal selects the preamble in the corresponding preamble set according to the SSB group where the SSB with the largest RSRP in the SSB set is located.
  • the terminal selects the DMRS in the DMRS set according to the SSB with the largest RSRP in the SSB set.
  • the terminal implicitly reports the SSB group of the SSB with the largest RSRP in the SSB set through the selected preamble, and implicitly reports which SSB with the largest RSRP in the SSB set is through the selected DMRS port and/or DMRS sequence.
  • the SSB sets are grouped, the SSB groups correspond to the DMRSs in the DMRS set one-to-one, and the SSBs in each SSB group correspond to the preambles in the preamble set one-to-one.
  • the terminal selects the DMRS in the DMRS set according to the SSB group where the SSB with the largest RSRP in the SSB set is located, and selects the preamble in the preamble set according to the SSB with the largest RSRP in the SSB set.
  • the terminal implicitly reports the SSB group of the SSB with the largest RSRP in the SSB set through the selected DMRS, and implicitly reports the SSB with the largest RSRP in the SSB set through the selected preamble.
  • the SSB set can be predefined or configured by network equipment.
  • the SSB set may be all the candidate SSBs of the current cell, or the SSB actually sent by the cell.
  • the preamble set can be predefined or configured by network equipment.
  • the preamble set may be all preambles associated with each SSB in the first layer correspondence in the first case described above.
  • the preamble set may also be all preambles on the ROs used for the second layer correspondence in each RO group in one of the above-mentioned second cases.
  • the preamble set may also be a newly added preamble on each RO except the first 64 preambles in the second case described above.
  • the DMRS set is the DMRS port and/or DMRS sequence determined by the terminal for the preamble association in the first layer correspondence.
  • the total number of candidate SSBs in the cell is 64
  • the actual number of SSBs sent by the cell is 64.
  • two SSBs are associated with one RO, and each SSB has 8 preambles associated with one RO.
  • the 64 actually sent SSBs are divided into 8 groups, and the 8 preambles associated with each SSB correspond to the 8 SSB groups one to one.
  • Each preamble is associated with 8 PRUs, and the 8 PRUs associated with each preamble have a one-to-one correspondence with the 8 SSBs in the SSB group associated with the preamble.
  • the terminal can arbitrarily select an SSB whose RSRP is greater than or equal to the threshold, such as SSB#8.
  • SSB#8 is associated with RO#4, and 8 preambles are associated with RO#4.
  • the terminal determines the SSB group where the SSB with the largest RSRP among the 64 SSBs actually sent by the selected cell belongs, and the terminal selects the preamble corresponding to the SSB group among the 8 preambles associated with SSB#8.
  • the SSB with the largest RSRP is SSB#56.
  • the terminal selects preamble#7 among the eight preambles associated with SSB#8 on RO#4.
  • the terminal selects the PRU associated with the SSB with the largest RSRP among the 8 PRUs associated with the preamble#7, that is, PRU#0 among the 8 PRUs associated with the preamble#7.
  • the terminal sends preamble#7 on RO#4, and PRU#0 on PO#4 associated with RO#4.
  • the network device detects the preamble and PRU corresponding to the DMRS port and/or DMRS sequence, and uses the beam corresponding to SSB#56 to send msgB. If the network device has the same transmit/receive beam, the network device can also use SSB#56 to receive The beam receives msgA PUSCH.
  • the terminal selects RO, preamble, and DMRS according to the SSB whose RSRP is greater than or equal to the threshold and the SSB with the largest RSRP in the SSB set, and implicitly reports the SSB with the largest RSRP in the SSB set.
  • a beam that meets the RSRP requirements can be selected to complete the msgA transmission as soon as possible, or it can be reported to the SSB corresponding to the optimal beam in the network device SSB set.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of network equipment, terminal equipment, and interaction between the network equipment and the terminal equipment.
  • the network device and the terminal device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module . Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • an embodiment of the present application further provides an apparatus 1200.
  • the apparatus 1200 may be a terminal device or a network device, or a device in a terminal device or a network device, or may be compatible with Terminal equipment or network equipment matching device.
  • the apparatus 1200 may include modules that perform one-to-one correspondence of the methods/operations/steps/actions performed by the terminal equipment or network equipment in the foregoing method embodiments.
  • the modules may be hardware circuits, software, or It is realized by hardware circuit combined with software.
  • the device may include a processing module 1201 and a communication module 1202. The processing module 1201 is used to call the communication module 1202 to perform receiving and/or sending functions.
  • the communication module 1202 is used for receiving multiple reference signals; and used for sending at least one codeword on the first time-frequency resource.
  • the at least one codeword may be one codeword or multiple codewords.
  • the at least one codeword includes a first codeword, the first codeword has a corresponding relationship with a first reference signal to be reported among the N reference signals, and the N reference signals are a subset of the multiple reference signals.
  • the communication module 1202 is configured to receive multiple reference signals; and configured to send a first codeword on a first time-frequency resource, and send a second codeword on a second time-frequency resource associated with the first time-frequency resource ;
  • the second codeword has a corresponding relationship with the second reference signal that needs to be reported among the N reference signals
  • the N reference signals are a subset of the multiple reference signals
  • N is a positive integer.
  • the processing module 1201 and the communication module 1202 may also be used to perform other corresponding steps or operations performed by the terminal device in the foregoing method embodiment, which will not be repeated here.
  • the processing module 1201 is configured to send multiple reference signals to a terminal; and to receive a first codeword from the terminal on a first time-frequency resource; wherein, the first codeword and the N reference signals that need to be reported
  • the first reference signal has a corresponding relationship, the N reference signals are a subset of the multiple reference signals, and N is a positive integer, and data is sent to the terminal on a beam corresponding to the first reference signal.
  • the processing module 1201 and the communication module 1202 may also be used to execute other corresponding steps or operations performed by the network device in the foregoing method embodiment, which will not be repeated here.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an apparatus 1300 provided by an embodiment of this application is used to implement the functions of the terminal device or the network device in the foregoing method.
  • the device can be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the device may be a terminal device, a device in a terminal device, or a device that can be used in matching with the terminal device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 1300 includes at least one processor 1320, configured to implement the functions of the terminal device or the network device in the method provided in the embodiment of the present application.
  • the apparatus 1300 may further include a communication interface 1310.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface, which is used to communicate with other devices through a transmission medium.
  • the communication interface 1310 is used for the device in the device 1300 to communicate with other devices.
  • the apparatus 1300 is a network device
  • the other device may be a terminal device.
  • the device 1300 is a terminal device
  • the other device may be a network device.
  • the processor 1320 uses the communication interface 1310 to send and receive data, and is used to implement the method described in the foregoing method embodiment.
  • the processor 1320 is configured to use the communication interface to send multiple reference signals to the terminal; and to receive the first codeword from the terminal on the first time-frequency resource;
  • the first codeword has a corresponding relationship with the first reference signal that needs to be reported among the N reference signals
  • the N reference signals are a subset of the multiple reference signals
  • N is a positive integer. Sending data to the terminal on the beam corresponding to the first reference signal.
  • the processor 1320 is configured to receive multiple reference signals using the communication interface, and to transmit at least one codeword on the first time-frequency resource, where the at least one codeword includes the first codeword, and the The first codeword has a corresponding relationship with the first reference signal that needs to be reported among the N reference signals, and the N reference signals are a subset of the multiple reference signals.
  • the processor 1320 is configured to receive multiple reference signals using a communication interface, and to send the first codeword on the first time-frequency resource, and to send the The second codeword is sent on the second time-frequency resource; wherein, the second codeword has a corresponding relationship with the second reference signal that needs to be reported among the N reference signals, and the N reference signals are the multiple reference signals A subset of, N is a positive integer.
  • the processor 1320 and the communication interface 1310 may also be used to perform other corresponding steps or operations performed by the terminal device or the network device in the foregoing method embodiment, which will not be repeated here.
  • the device 1300 may further include at least one memory 1330 for storing program instructions and/or data.
  • the memory 1330 and the processor 1320 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units, or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1320 may cooperate with the memory 1330.
  • the processor 1320 may execute program instructions stored in the memory 1330. At least one of the at least one memory may be included in the processor.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1310, the processor 1320, and the memory 1330.
  • the memory 1330, the communication interface 1320, and the transceiver 1310 are connected by a bus 1340.
  • the bus is represented by a thick line in FIG. 13, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种参考信号的指示方法及装置,在随机接入过程中指示需要上报的参考信号。以需要上报的参考信号为接收功率最大的参考信号,本申请公开的方案可以上报接收功率最大的参考信号,网络设备可以籍此确定最佳的发送波束,甚至还能进一步确定最佳的接收波束,从而可以使用最佳的发送波束和/或最佳的接收波束与终端通信,提高随机接入过程中数据传输的波束增益。该方法为:接收多个参考信号,在第一时频资源上发送码字,发送码字的数量可以是至少一个,该至少一个码字中包括第一码字,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。

Description

一种参考信号的指示方法及装置
相关申请的交叉引用
本申请要求在2019年08月16日提交中国专利局、申请号为201910760402.4、申请名称为“一种参考信号的指示方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种参考信号的指示方法及装置。
背景技术
高频通信中路径损耗非常严重,因此通常会使用波束赋形(beamforming)技术将信号集中在一个方向进行传输,从而补偿严重路径损耗。由于波束具有方向性,通信双方需要知道哪个方向的波束能够对准对方,以获得较好的波束性能。在现有第五代(5th generation,5G)新无线(new radio,NR)通信系统中,终端会在随机接入过程中进行初始的波束选择,并通知网络设备选择的波束。网络设备在终端选择的波束上向终端发送数据,能够获得较好的波束增益。现有技术中,网络设备通过波束扫描方式发送同步信号块(SS/PBCH block,SSB),可以针对每个波束发送一个SSB。终端对多个SSB进行检测,选择任意一个参考信号接收功率(reference signal received power,RSRP)大于或等于阈值的SSB,并在随机接入过程中向网络设备通知选择的SSB。这样网络设备能够获知终端选择的SSB对应的波束。
网络设备会提前向终端发送广播消息,终端会根据广播消息确定SSB与物理随机接入信道(physical random access channel,PRACH)时频资源和随机接入前导码(preamble)的关联关系。终端在任意一个RSRP大于或等于阈值的SSB所关联的PRACH时频资源上发送该SSB关联的preamble。网络设备根据检测到的preamble序列以及该preamble序列所在的PRACH时频资源,确定终端选择的SSB。
目前,为了降低数据传输时延,在随机接入过程中可能携带数据。如何提高随机接入过程的数据传输的波束增益,是需要解决的问题。
发明内容
本申请实施例提供一种参考信号的指示方法及装置,以期提高随机接入过程中数据传输的波束增益。
本申请实施例提供的具体技术方案如下:第一方面,提供一种参考信号的指示方法,该方法的执行主体可以是终端设备,该方法具体包括:接收多个参考信号;在第一时频资源上发送至少一个码字,至少一个码字可以是一个码字也可以是多个码字。所述至少一个码字包括第一码字,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集。子集的意义包括:N个参考信号可能比该多个参考信号的数量少,也可能N个参考信号的数量与所述多个参考信号的数量相等。 N为正整数。这样,通过第一码字指示需要上报参考信号,网络设备在接收到第一码字时,能够根据第一码字确定终端选择的参考信号,并基于该参考信号对应的波束进行数据传输,从而提高波束方向增益。例如,第一时频资源为随机接入时频资源的场景下,码字可以是前导码,通过在随机接入过程中指示接收功率较大的参考信号,能够获得高波束增益;并且不需要在进入连接态后再完成参考信号的精细选择,能够更快的完成选择和上报。在一个可能的设计中,需要上报的参考信号可以是接收功率最大的参考信号。
在一个可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系。阈值可以根据需要预先规定或者也可以是网络设备配置的。第二参考信号可以是接收功率大于或等于阈值的任意一个参考信号。通过在第二参考信号对应的第一时频资源上发送码字,能够获得较低的时延。实际应用中,可能出现没有接收功率大于或等于阈值的参考信号的情况,在这种情况下,可以随意选择一个参考信号,第一时频资源与随意选择的参考信号具有对应关系。
可选的,所述第一参考信号可以与所述第二参考信号相同,例如,第一参考信号就是需要被上报的参考信号。
在一个可能的设计中,根据所述N个参考信号与M个码字的对应关系,确定与所述第一参考信号对应的所述第一码字;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第一码字来指示第一参考信号。
在一个可能的设计中,根据N1个参考信号与P个时频资源的对应关系,确定与所述第二参考信号对应的所述第一时频资源,其中,N1和P均为正整数,所述N1个参考信号包括所述多个参考信号。所述第一时频资源为所述P个时频资源中的一个时频资源。通过N1个参考信号与P个时频资源的对应关系,能够根据任意一个大于或等于阈值的参考信号确定发送码字的时频资源。
可选的,N1个参考信号为小区实际发送的波束的参考信号,或者为所述多个参考信号。
在一个可能的设计中,所述N个参考信号为小区全部候选的参考信号;或所述N个参考信号为小区实际发送的参考信号;或所述N个参考信号为小区全部候选的参考信号的子集;或所述N个参考信号为小区实际发送的参考信号的子集。
在一个可能的设计中,所述至少一个码字还包括第二码字;在第一时频资源上发送至少一个码字,包括:在第一时频资源发送所述第一码字和所述第二码字。这样,第二码字可以具有常规的码字功能,第一码字可以用于隐式指示所选择的参考信号,这种情况下,可能根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一个可能的设计中,所述第一码字和所述第二码字属于不同的码字集合。即,第一码字属于码字集合a,第二码字属于码字集合b。码字集合a和码字集合b均与第一时频资源关联。
在一个可能的设计中,M<N,所述N个参考信号属于多个参考信号组,每个参考信号仅属于一个参考信号组,所述第一码字对应所述第一参考信号所在的参考信号组。M<N,M个码字不足以与N个参考信号一一对应。所以可以将N个参考信号分组,通过分组来使得M个码字指示全部N个参考信号。可选的,M<N,一个码字对应多个波束方向之间角度小于阈值的参考信号。
在一个可能的设计中,所述方法还包括:在与所述第一时频资源关联的第二时频资源上发送第三码字;其中,所述第三码字与所述参考信号组中的所述第一参考信号具有对应关系。这样,能够使得第三码字来指示参考信号组中的参考信号,从而第一码字和第三码字能够联合,与N个参考信号一一对应。能够更精确的指示所选择的参考信号。网络设备也能够更精确的确定终端选择的参考信号,获得更精确更大的波束方向增益。
在一个可能的设计中,根据所述第一参考信号所在的所述参考信号组中的参考信号和一个码字组中的码字的对应关系,确定所述码字组中与所述第一参考信号对应的所述第三码字。通过这种方式,能够在其中一种码字资源不足的情况下通过另一种码字资源来联合指示更多的参考信号。通过这种方式指示的参考信号集合可以是终端从网络设备接收的多个参考信号,也可以是网络设备实际发送的多个参考信号,或是网络设备实际发送的参考信号的子集,也可以是小区全部候选的参考信号,或者是小区全部候选的参考信号的子集。由于结合指示的方式能够指示更多的参考信号,所以这种方式能够有助于指示小区全部候选的参考信号。
第二方面,提供一种参考信号的指示方法,该方法的执行主体可以是终端设备,该方法具体包括:接收多个参考信号;在第一时频资源上发送第一码字,并在与第一时频资源关联的第二时频资源上发送第二码字;其中,所述第二码字与N个参考信号中需要上报的第二参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。子集的意义包括:N个参考信号可能比该多个参考信号的数量少,也可能N个参考信号的数量与所述多个参考信号的数量相等。N为正整数。这样,通过第二码字指示需要上报的参考信号,网络设备在接收到第二码字时,能够根据第二码字确定终端选择的参考信号,并基于该参考信号对应的波束进行数据传输,从而提高波束方向增益。例如,第一时频资源为随机接入时频资源的场景下,第一码字可以是前导码。与第一时频资源关联第二时频资源可以是随机接入时频资源,或者PUSCH时频资源。这样,通过在随机接入过程中指示接收功率较大的参考信号,能够获得高波束增益;并且不需要在进入连接态后再完成参考信号的精细选择,能够更快的完成选择和上报。
在一个可能的设计中,第二参考信号可以是N个参考信号中接收功率最大的参考信号。
在一个可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第一参考信号具有对应关系。阈值可以根据需要预先规定或者也可以是网络设备配置的。第二参考信号可以是接收功率大于或等于阈值的任意一个参考信号。通过在第二参考信号对应的第一时频资源上发送码字,能够获得较低的时延。实际应用中,可能接收到的参考信号的接收功率均小于或等于阈值,在这种情况下,可以随意选择一个参考信号,第一时频资源与随意选择的参考信号具有对应关系。
可选的,所述第一参考信号与所述第二参考信号相同。例如,第一参考信号就是需要被上报的参考信号。
可选的,所述第一时频资源和所述第二时频资源在时域上可以连续,也可以不连续;所述第一时频资源和所述第二时频资源在时域上时分复用,在频域上可以相同,也可以不同。
在一个可能的设计中,所述第一码字为第一前导码,所述第二码字为第二前导码。或者,所述第一码字为前导码,所述第二码字为解调参考信号DMRS。这样,第一码字可以具有常规的码字功能,第二码字可以用于隐式指示所选择的参考信号,这种情况下,可能 根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一个可能的设计中,所述第一时频资源和所述第二时频资源均为物理随机接入信道PRACH资源。或者,所述第一时频资源为PRACH资源,所述第二时频资源为物理上行共享信道PUSCH资源。例如,在两步随机接入过程中,msgA资源中的PRACH资源和PUSCH资源。
在一个可能的设计中,所述第二码字为DMRS,所述DMRS与所述第二参考信号具有对应关系包括:所述DMRS的序列与所述第二参考信号具有对应关系,或者,所述DMRS的端口与所述第二参考信号具有对应关系,或者,所述DMRS的序列和所述DMRS的端口均与所述第二参考信号具有对应关系。这样可以通过DMRS的序列和/或端口来指示所选择的参考信号。
在一个可能的设计中,根据N个参考信号与M个码字的对应关系,确定与所述第二参考信号对应的所述第二码字;其中,所述M个码字为与所述第二时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第二码字来指示第二参考信号。
在一个可能的设计中,根据N1个参考信号与P个时频资源和M1个码字的对应关系,确定与所述第一参考信号对应的所述第一时频资源和与所述第一参考信号对应的所述第一码字,N1、P和M1均为正整数。通过N1个参考信号与P个时频资源的对应关系,能够根据任意一个大于或等于阈值的参考信号确定发送码字的时频资源。
在一个可能的设计中,所述N个参考信号为小区全部候选波束的参考信号;或所述N个参考信号为小区实际发送的波束的参考信号;或所述N个参考信号为小区全部候选波束的参考信号的子集;或所述N个参考信号为小区实际发送的波束的参考信号的子集。
在一个可能的设计中,M<N,所述N个参考信号属于多个参考信号组,每个参考信号仅属于一个参考信号组,所述第二码字对应所述第二参考信号所在的参考信号组。M<N,M个码字不足以与N个参考信号一一对应。所以可以将N个参考信号分组,通过分组来使得M个码字指示全部N个参考信号。可选的,M<N,一个码字对应多个波束方向之间角度小于阈值的参考信号。
第三方面,提供一种参考信号的指示方法,该方法的执行主体可以是网络设备,该方法包括:向终端发送多个参考信号;在第一时频资源上接收所述终端发送的第一码字;在所述第一码字所对应的第一参考信号对应的波束上向所述终端发送数据。子集的意义包括:N个参考信号可能比该多个参考信号的数量少,也可能N个参考信号的数量与所述多个参考信号的数量相等。这样,网络设备在接收到第一码字时,能够根据第一码字确定终端选择参考信号,并基于该参考信号对应的波束进行数据传输,从而提高波束方向增益。
在一个可能的设计中,所述第一码字与N个参考信号中第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。可选的,第一参考信号为N个参考信号中终端接收功率最大的参考信号。
在一个可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系。阈值可以根据需要预先规定。第二参考信号可以是接收功率大于或等于阈值的任意一个参考信号。通过在第二参考信号对应的第一时频资源上接收码字,能够获得较低的时延。实际应用中,可能出现没有接收功率大于或等于阈值的 参考信号的情况,在这种情况下,可以随意选择一个参考信号,第一时频资源与随意选择的参考信号具有对应关系。
在一个可能的设计中,所述方法还包括:根据所述N个参考信号与M个码字的对应关系,确定与所述第一码字对应的所述第一参考信号;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第一码字来指示第一参考信号。
在一个可能的设计中,所述方法还包括:所述N个参考信号为小区全部候选的参考信号;或所述N个参考信号为小区实际发送的参考信号;或所述N个参考信号为小区全部候选的参考信号的子集;或所述N个参考信号为小区实际发送的参考信号的子集。
在一个可能的设计中,在第一时频资源上接收所述终端发送的第二码字,所述第二码字与所述第一码字属于不同的码字集合。这样,第二码字可以具有常规的码字功能,第一码字可以用于隐式指示所选择的参考信号,这种情况下,可能根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一个可能的设计中,在第二时频资源上接收第三码字;确定与所述第二时频资源关联的所述第一时频资源。
在一个可能的设计中,所述方法还包括:确定与所述第一码字对应的第一参考信号组;据所述第一参考信号组中的参考信号与第一码字组中的码字的对应关系,确定所述第一参考信号组与所述第三码字对应的所述第一参考信号;或者:
确定与所述第三码字对应的第二参考信号组;根据所述第二参考信号组中的参考信号与第二码字组中的码字的对应关系,确定所述第二参考信号组中与所述第一码字对应的所述第一参考信号。通过这种方式,能够在其中一种码字资源不足的情况下通过另一种码字资源来联合指示更多的参考信号。通过这种方式指示的参考信号集合可以是终端从网络设备接收的多个参考信号,也可以是网络设备实际发送的多个参考信号,或是网络设备实际发送的参考信号的子集,也可以是小区全部候选的参考信号,或者是小区全部候选的参考信号的子集。由于结合指示的方式能够指示更多的参考信号,所以这种方式能够有助于指示小区全部候选的参考信号。
第四方面,提供一种装置,该装置可以是终端设备,也可以是终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
通信模块,用于接收多个参考信号;以及用于在第一时频资源上发送至少一个码字,至少一个码字可以是一个码字也可以是多个码字。所述至少一个码字包括第一码字,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集。
在一种可能的设计中,第一参考信号为N个参考信号中接收功率最大的参考信号。
在一种可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于 阈值的第二参考信号具有对应关系。可选的,所述第一参考信号与所述第二参考信号相同。
在一种可能的设计中,所述处理模块用于,根据所述N个参考信号与M个码字的对应关系,确定与所述第一参考信号对应的所述第一码字;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第一码字来指示第一参考信号。
在一种可能的设计中,所述处理模块用于,根据N1个参考信号与P个时频资源的对应关系,确定与所述第二参考信号对应的所述第一时频资源,其中,N1和P均为正整数,所述N1个参考信号包括所述多个参考信号。通过N1个参考信号与P个时频资源的对应关系,能够根据任意一个大于或等于阈值的参考信号确定发送码字的时频资源。阈值可以根据需要预先规定或者也可以是网络设备配置的。
在一种可能的设计中,所述处理模块用于,根据N1个参考信号与P个时频资源的对应关系,确定与所述第二参考信号对应的所述第一时频资源,其中,N1和P均为正整数,所述N1个参考信号包括所述多个参考信号。通过N1个参考信号与P个时频资源的对应关系,能够根据任意一个大于或等于阈值的参考信号确定发送码字的时频资源。
可选的,N1个参考信号为小区实际发送的波束的参考信号,或者为所述多个参考信号。
在一种可能的设计中,所述至少一个码字还包括第二码字;所述通信模块具体用于:在第一时频资源发送所述第一码字和所述第二码字。这样,第二码字可以具有常规的码字功能,第一码字可以用于隐式指示所选择的参考信号,这种情况下,可能根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一种可能的设计中,所述第一码字和所述第二码字属于不同的码字集合。即,第一码字属于码字集合a,第二码字属于码字集合b。码字集合a和码字集合b均与第一时频资源关联。
在一个可能的设计中,M<N,所述N个参考信号属于多个参考信号组,每个参考信号仅属于一个参考信号组,所述第一码字对应所述第一参考信号所在的参考信号组。M<N,M个码字不足以与N个参考信号一一对应。所以可以将N个参考信号分组,通过分组来使得M个码字指示全部N个参考信号。可选的,M<N,一个码字对应多个波束方向之间角度小于阈值的参考信号。
在一个可能的设计中,所述通信模块还用于:在与所述第一时频资源关联的第二时频资源上发送第三码字;其中,所述第三码字与所述参考信号组中的所述第一参考信号具有对应关系。这样,能够使得第三码字来指示参考信号组中的参考信号,从而第一码字和第三码字能够联合,与N个参考信号一一对应。能够更精确的指示所选择的参考信号。网络设备也能够更精确的确定终端选择的参考信号,获得更精确更大的波束方向增益。
在一个可能的设计中,所述处理模块还用于:根据所述参考信号组中的参考信号和一个码字组中的码字的对应关系,确定所述码字组中与所述第一参考信号对应的所述第三码字。通过这种方式,能够在其中一种码字资源不足的情况下通过另一种码字资源来联合指示更多的参考信号。通过这种方式指示的参考信号集合可以是终端从网络设备接收的多个参考信号,也可以是网络设备实际发送的多个参考信号,或是网络设备实际发送的参考信号的子集,也可以是小区全部候选的参考信号,或者是小区全部候选的参考信号的子集。 由于结合指示的方式能够指示更多的参考信号,所以这种方式能够有助于指示小区全部候选的参考信号。
第五方面,提供一种装置,该装置可以是终端设备,也可以是位于终端设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和终端设备匹配使用的装置。一种设计中,该装置可以包括执行第二方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
所述通信模块,用于接收多个参考信号;以及用于在第一时频资源上发送第一码字,并在与第一时频资源关联的第二时频资源上发送第二码字;其中,所述第二码字与N个参考信号中需要上报的第二参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。子集的意义包括:N个参考信号可能比该多个参考信号的数量少,也可能N个参考信号的数量与所述多个参考信号的数量相等。N为正整数。这样,通过第二码字指示需要上报的参考信号,网络设备在接收到第二码字时,能够根据第二码字确定终端选择的参考信号,并基于该参考信号对应的波束进行数据传输,从而提高波束方向增益。例如,第一时频资源为随机接入时频资源的场景下,第一码字可以是前导码。与第一时频资源关联第二时频资源可以是随机接入时频资源,或者PUSCH时频资源。这样,通过在随机接入过程中指示参考信号,能够获得高波束增益;并且不需要在进入连接态后再完成参考信号的精细选择,能够更快的完成选择和上报。
在一个可能的设计中,需要上报的参考信号可以是接收功率最大的参考信号。
在一个可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第一参考信号具有对应关系。阈值可以根据需要预先规定。第二参考信号可以是接收功率大于或等于阈值的任意一个参考信号。通过在第二参考信号对应的第一时频资源上发送码字,能够获得较低的时延。实际应用中,可能存在没有接收功率大于或等于阈值参考信号的情况,在这种情况下,可以随意选择一个参考信号,第一时频资源与随意选择的参考信号具有对应关系。
可选的,所述第一参考信号可以与所述第二参考信号相同,例如,第一参考信号就是需要被上报的参考信号。
可选的,所述第一时频资源和所述第二时频资源在时域上可以连续,也可以不连续;所述第一时频资源和所述第二时频资源时分复用在频域上可以连续,也可以不连续。
在一个可能的设计中,所述第一码字为第一前导码,所述第二码字为第二前导码。或者,所述第一码字为前导码,所述第二码字为解调参考信号DMRS。这样,第一码字可以具有常规的码字功能,第二码字可以用于隐式指示所选择的参考信号,这种情况下,可能根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一个可能的设计中,所述第一时频资源和所述第二时频资源均为物理随机接入信道PRACH资源。或者,所述第一时频资源为PRACH资源,所述第二时频资源为物理上行共享信道PUSCH资源。例如,在两步随机接入过程中,msgA资源中的PRACH资源和PUSCH资源。
在一个可能的设计中,所述第二码字为DMRS,所述DMRS与所述第二参考信号具有 对应关系包括:所述DMRS的序列与所述第二参考信号具有对应关系,或者,所述DMRS的端口与所述第二参考信号具有对应关系,或者,所述DMRS的序列和所述DMRS的端口均与所述第二参考信号具有对应关系。这样可以通过DMRS的序列和端口来指示所选择的参考信号。
在一个可能的设计中,所述处理模块用于,根据N个参考信号与M个码字的对应关系,确定与所述第二参考信号对应的所述第二码字;其中,所述M个码字为与所述第二时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第二码字来指示第二参考信号。
在一个可能的设计中,所述处理模块用于,根据N1个参考信号与P个时频资源和M1个码字的对应关系,确定与所述第一参考信号对应的所述第一时频资源和与所述第一参考信号对应的所述第一码字,N1、P和M1均为正整数。通过N1个参考信号与P个时频资源的对应关系,能够根据任意一个大于或等于阈值的参考信号确定发送码字的时频资源。
在一个可能的设计中,所述N个参考信号为小区全部候选波束的参考信号;或所述N个参考信号为小区实际发送的波束的参考信号;或所述N个参考信号为小区全部候选波束的参考信号的子集;或所述N个参考信号为小区实际发送的波束的参考信号的子集。
在一个可能的设计中,M<N,所述第二码字对应所述第二参考信号所在的参考信号组。M<N,M个码字不足以与N个参考信号一一对应。所以可以将N个参考信号分组,通过分组来使得M个码字指示全部N个参考信号。可选的,M<N,一个码字对应多个波束方向之间角度小于阈值的参考信号。
第六方面,提供一种装置,该装置可以是网络设备,也可以是位于网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该装置可以包括执行第三方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。示例性地:
所述通信模块,用于向终端发送多个参考信号;以及用于在第一时频资源上从所述终端接收第一码字;其中,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数,在所述第一参考信号对应的波束上向所述终端发送数据。子集的意义包括:N个参考信号可能比该多个参考信号的数量少,也可能N个参考信号的数量与所述多个参考信号的数量相等。这样,网络设备在接收到第一码字时,能够根据第一码字确定终端选择的参考信号,并基于该参考信号对应的波束进行数据传输,从而提高波束方向增益。
在一个可能的设计中,需要上报的参考信号可以是接收功率最大的参考信号。
在一个可能的设计中,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系。阈值可以根据需要预先规定。第二参考信号可以是接收功率大于或等于阈值的任意一个参考信号。通过在第二参考信号对应的第一时频资源上接收码字,能够获得较低的时延。实际应用中,可能存在没有大于或等于阈值的参考信号的情况,在这种情况下,可以随意选择一个参考信号,第一时频资源与随意选择的参考信号具有对应关系。
在一个可能的设计中,所述处理模块用于:根据所述N个参考信号与M个码字的对 应关系,确定与所述第一码字对应的所述第一参考信号;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。通过建立N个参考信号与M个码字的对应关系,能够通过M个码字来隐式指示N个参考信号,例如通过第一码字来指示第一参考信号。
在一个可能的设计中,所述N个参考信号为小区全部候选的参考信号;或所述N个参考信号为小区实际发送的参考信号;或所述N个参考信号为小区全部候选的参考信号的子集;或所述N个参考信号为小区实际发送的参考信号的子集。
在一个可能的设计中,所述通信模块还用于在第一时频资源上从所述终端接收第二码字,所述第二码字与所述第一码字属于不同的码字集合。这样,第二码字可以具有常规的码字功能,第一码字可以用于隐式指示所选择的参考信号,这种情况下,可能根据需要建立对应关系的参考信号的数量来扩展第一码字的数量。所以这种方式能够有助于指示小区全部候选的参考信号。并且这种方式不影响现有码字的常规功能。
在一个可能的设计中,在第二时频资源上接收第三码字;确定与所述第二时频资源关联的所述第一时频资源。
在一个可能的设计中,所述处理模块还用于:确定与所述第一码字对应的第一参考信号组;据所述第一参考信号组中的参考信号与第一码字组中的码字的对应关系,确定所述第一参考信号组与所述第三码字对应的所述第一参考信号;或者用于,确定与所述第三码字对应的第二参考信号组;根据所述第二参考信号组中的参考信号与第二码字组中的码字的对应关系,确定所述第二参考信号组中与所述第一码字对应的所述第一参考信号。通过这种方式,能够在其中一种码字资源不足的情况下通过另一种码字资源来联合指示更多的参考信号。通过这种方式指示的参考信号集合可以是终端从网络设备接收的多个参考信号,也可以是网络设备实际发送的多个参考信号,或是网络设备实际发送的参考信号的子集,也可以是小区全部候选的参考信号,或者是小区全部候选的参考信号的子集。由于结合指示的方式能够指示更多的参考信号,所以这种方式能够有助于指示小区全部候选的参考信号。
第七方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面或第二方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第一方面或第二方面描述的方法。
第八方面,本申请实施例提供一种装置,所述装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第三方面描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第三方面描述的方法。
第九方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得计算机执行如第 一方面或第一方面中任一种可能的设计中所述的方法。
第十方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第二方面或第二方面中任一种可能的设计中所述的方法。
第十一方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如第三方面或第三方面中任一种可能的设计中所述的方法。
第十二方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面或第一方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第二方面或第二方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十四方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第三方面或第三方面中任一种可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十五方面,本申请实施例提供了一种系统,所述系统包括第四方面或者第五方面所述的终端设备、和第六方面所述的网络设备。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中参考信号的指示方法的流程示意图;
图3为现有技术中指示参考信号所需时延的示意图;
图4为本申请实施例中参考信号的指示示例一的示意图;
图5为本申请实施例中参考信号的指示示例二的示意图;
图6为本申请实施例中参考信号的指示示例三的示意图;
图7为本申请实施例中参考信号的指示示例四的示意图;
图8为本申请实施例中参考信号的指示示例五的示意图;
图9为本申请实施例中参考信号的指示示例六的示意图;
图10为本申请实施例中参考信号的指示示例七的示意图;
图11为本申请实施例中参考信号的指示示例八的示意图;
图12为本申请实施例中一种装置结构示意图;
图13为本申请实施例中另一种装置结构示意图。
具体实施方式
本申请实施例提供一种参考信号的指示方法及装置,用于向网络侧指示需要上报的参考信号,获得高波束增益。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个; 多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的参考信号的指示方法可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR),或应用于未来的各种通信系统。具体的,例如可以应用于MTC的通信场景,也可以应用于NB-IoT的通信场景,也可以应用于任意小数据包的传输场景。
下面将结合附图,对本申请实施例进行详细描述。
图1示出了本申请实施例提供的参考信号的指示方法适用的一种可能的通信系统的架构,该通信系统100可以包括网络设备110和终端设备101~终端设备106。应理解,该通信系统100中可以包括更多或更少的网络设备或终端设备。网络设备或终端设备可以是硬件,也可以是从功能上划分的软件或者以上二者的结合。此外,终端设备104~终端设备106也可以组成一个通信系统,例如终端设备105可以发送下行数据给终端设备104或终端设备106。网络设备与终端设备之间可以通过其他设备或网元通信。网络设备110可以向终端设备101~终端设备106发送下行数据,也可以接收终端设备101~终端设备106发送的上行数据。当然,终端设备101~终端设备106也可以向网络设备110发送上行数据,也可以接收网络设备110发送的下行数据。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。
终端设备101~终端设备106,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备101~终端设备106包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备101~终端设备106可以是:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端,或智慧家庭(smart home)中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。本申请用终端来描述。
本申请实施例中,终端通过在时频资源上发送码字,向网络设备通知终端选择的参考信号,该选择的参考信号也可以被称之为需要上报的参考信号。参考信号是指网络设备发 送的用于其他设备发现与测量的信号,或者网络设备发送的用于终端接入的信号。参考信号可以是SSB,也可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),本申请实施例以参考信号为SSB为例进行描述。网络设备可以在每一个发送波束上发送SSB,或者说,网络设备可以使用每一个发送波束分别发送SSB,终端对网络设备发送的SSB进行测量,根据SSB的接收功率来判断各个方向的波束方向增益大小。例如,可以设定一个阈值,对于接收功率大于或等于阈值的SSB对应的波束,可以认为得到比较好的波束增益。以需要上报的参考信号为接收功率最大的SSB为例,本申请实施例提供的方法目的在于选择接收功率最好的SSB对应的波束并通知给网络设备。当然该方法还可以扩展为选择接收功率次好的SSB对应的波束并通知给网络设备,或者按照接收功率从大到小排序的前x个SSB中的任意一个对应的波束通知给网络设备。x值为任意大于或等于1的整数,可以按照需求设定。实际应用中,一般波束与参考信号是一一对应的关系,因此终端和网络设备会根据参考信号来体现波束的选择。参考信号的接收功率是体现参考信号强弱的一种参数,本申请中可以应用于其他能够体现参考信号强弱的参数。接收功率例如可以是RSRP。
一般来说,终端在随机接入过程中进行初始波束的选择,也就是说可以在随机接入过程中向网络设备上报所选择的参考信号,网络设备根据终端选择的参考信号对应的波束上向终端发送数据。网络设备根据终端选择的参考信号对应的波束上向终端发送数据,体现在,终端假设网络设备向终端发送数据所使用的参考信号天线端口与终端设备所选择的参考信号具有相同的准共址(quasi co-location)性质。随机接入过程可以有不同的实现方法。例如,随机接入过程可以包括4步随机接入过程,具体地,终端向网络设备发送随机接入前导码(preamble),网络设备向终端返回随机接入响应,终端向网络设备发送消息3(Msg3),消息3为物理上行共享信道(physical uplink shared channel,PUSCH)。又例如,随机接入过程还可以包括2步随机接入过程,具体为,终端向网络设备发送消息A(msgA),网络设备向终端发送消息B,其中,消息A由两个部分组成,如消息A由物理随机接入信道(physical random access channel,PRACH)发送的前导码和PUSCH信道发送的消息组成,则终端可以在消息A中携带上行数据。终端和网络设备通过两步消息的收发完成随机接入过程。为了降低数据传输时延,可以在消息3或msgA中携带上行数据,这样终端在空闲态不需要进入连接态就可以完成上行数据的传输。
基于此,本申请实施例中终端可以在PRACH资源上向网络设备发送前导码,通过前导码来指示所选择的参考信号,也可以在PUSCH资源上通过DMRS来指示所选择的参考信号。前导码和DMRS可以统称为码字。终端通过发送的码字向网络设备指示所选择的参考信号。网络设备也可以根据检测到的码字来确定终端所选择的码字。对于2步随机接入过程来说,为方便描述,msgA占用的时频资源可以描述为两部分,其中前导码占用的资源为PRACH时频资源(或PRACH资源),PUSCH占用的资源为PUSCH时频资源(或PUSCH资源)。一般来说在PUSCH资源中的指定符号上发送DMRS。
在本申请的举例描述中,PRACH资源可以用PRACH传输时机(RACH occasion,RO)来表示,一个RO代表一块用于传输前导码的时频资源,在频域上包括一个或者多个子载波,在时域上包括一个或多个时域符号。PUSCH资源可以用PUSCH传输时机(PUSCH occasion,PO)来表示,一个PO代表一块用于传输PUSCH的时频资源,在频域上包括一个或多个子载波,在时域上包括一个或多个时域符号。
参考图2所示,本申请实施例提供的参考信号的指示方法的流程如下所述。
S201、网络设备向终端发送多个参考信号,终端从网络设备接收多个参考信号。
该多个参考信号可以对应多个波束。实际应用中,网络设备发送的参考信号数目可能多于终端接收到的参考信号数目。
S202、终端在至少一个时频资源上发送至少一个码字,网络设备在至少一个时频资源上接收该至少一个码字。
其中,在至少一个时频资源上发送至少一个码字包括几种情况。
第一种情况,至少一个时频资源为一个时频资源,至少一个码字为一个码字。终端在一个时频资源上发送一个码字。终端通过发送的一个码字向网络设备隐式指示需要上报的参考信号。网络设备根据接收到码字确定终端所上报的参考信号。在一实施例中,需要上报的参考信号可以是接收的参考信号中满足预设条件的参考信号。预设条件可以为,例如,接收功率最大,相应地,需要上报的参考信号为接收功率最大的参考信号。预设条件可以预定义的,也可以是网络设备所配置的。
第二种情况,至少一个时频资源为一个时频资源,至少一个码字为多个码字。终端在一个时频资源上发送多个码字,例如两个码字。终端通过两个码字中的一个码字来隐式指示需要上报的参考信号,例如需要上报的参考信号为接收功率最大的参考信号,网络设备根据接收到这个码字来确定终端所选择的参考信号。
第三种情况,至少一个时频资源为多个时频资源,例如可以为两个时频资源,至少一个码字为多个码字例如两个码字,终端在多个时频资源上发送多个码字。例如,终端在一个时频资源上发送一个码字,在另一个时频资源上发送另一个码字。终端通过一个时频资源上发送的一个码字来隐式指示需要上报的参考信号,例如需要上报的参考信号为接收功率最大的参考信号,网络设备根据接收到这个码字来确定终端所选择的参考信号。
本申请实施例中,为方便对方法的理解,在涉及上报参考信号的有些相关描述中,以终端需要上报的参考信号为接收到的参考信号中接收功率最大的参考信号为例。
那么终端会在哪些时频资源上发送哪些码字来指示参考信号,需要根据约定的参考信号与时频资源的对应关系,和/或约定的参考信号与码字的对应关系来确定需要发送的码字。上述至少一个时频资源中包括一个时频资源A,时频资源A为与任意一个接收功率大于或等于阈值的参考信号对应的时频资源,或者,当没有接收功率大于或等于阈值的参考信号时,时频资源A为与任意一个参考信号对应的时频资源。可选的,该时频资源A上指示参考信号能够获得较低的时延。上述至少一个码字中包括一个码字B,码字B为与需要上报的参考信号对应的码字,发送码字B的时频资源可以是时频资源A,也可以是与时频资源A关联的时频资源A1。通过确定时频资源A能够有助于保证指示参考信号获得较低的时延,通过发送码字B能够有助于指示需要上报的参考信号,例如需要上报的参考信号为接收功率最大的参考信号。这样,通过在上述至少一个时频资源上发送至少一个码字,能够在获得较低时延的基础上指示需要上报的参考信号。网络设备根据接收到的码字B确定终端选择的参考信号,网络设备会在终端选择的参考信号对应的发送波束上向终端发送数据。例如,网络设备在终端选择的参考信号上向终端发送msg2、msg4,或者发送2步随机接入过程中的msgB。这样对于在随机接入过程中进行的数据传输能够有助于获得更好的波束增益。如果网络设备的发送波束和接收波束具有一致性,则网络设备还可以根据终端所选择的参考信号对应的发送波束确定接收波束,并在接收波束接收msg1和msg3,或者接 收2步随机接入过程中的msgA。这样,对于在随机接入过程中msg3或msgA中携带的数据能够获得更好的波束增益。
本申请中,终端根据对应关系来确定上述至少一个时频资源以及确定上述至少一个码字。对应关系可以通过协议规定,也可以由网络设备配置给终端。此处的对应关系不仅限于时频资源与码字的对应关系,还可以是本申请中其它种类的对应关系。对应关系由网络设备配置给终端设备时,在一实施例中可以是指网络设备配置用于确定对应关系的参数。终端根据该参数或确定出具体的对应关系,或者根据参数再结合预设的对应规则(或者映射规则,关联规则)确定出具体的对应关系。网络设备也可以根据其配置给终端的参数,采用相同的方式确定具体的对应关系。对应关系也可以称为关联关系或映射关系等。以下以对应关系为例来描述方案。
本申请实施例中对应关系可以有多种形式。任意一种形式都能够达到在低时延的时频资源上向网络设备通知所选择的需要上报的参考信号的目的。下面对本申请实施例提供的几种可选的对应关系进行说明。
1)第一种对应关系
第一种对应关系可以包括两层对应关系。其中,第一层对应关系描述了参考信号与时频资源和码字之间的对应关系。以参考信号为SSB、时频资源为PRACH时频资源以及码字为前导码(premble)为例,第一层对应关系描述了SSB与PRACH时频资源和前导码之间的对应关系。一个SSB可以对应一个或多个PRACH时频资源,该SSB可以与对应的PRACH时频资源上的部分或全部前导码关联。
该第一种对应关系中还包括第二层对应关系。第二层对应关系描述了参考信号与码字之间的对应关系。参考第一层对应关系中的举例,例如,第一层对应关系描述了SSB与PRACH时频资源和前导码之间的对应关系。第二层对应关系中的码字可以是前导码。
在第二层对应关系中,与参考信号建立对应关系的前导码集合为:与时频资源关联的码字集合中的部分或全部码字。举个例子,第一层对应关系中第一SSB与第一PRACH时频资源关联,且与第一PRACH时频资源上的部分前导码关联,则第二层对应关系中,可以将第一RRACH时频资源上的该部分前导码与参考信号建立对应关系。根据第二层对应关系,可以通过前导码来指示终端选择的参考信号。
基于第一种对应关系,终端可以在指示参考信号时,通过第一层对应关系选择发送前导码的资源位置,通过第二层对应关系确定用于指示所选择的参考信号的前导码。例如选择任意一个接收功率大于或等于阈值的参考信号,或者,当没有接收功率大于或等于阈值的参考信号时,选择任意一个参考信号,根据第一层对应关系确定该参考信号对应的时频资源,记为第一时频资源。选择接收功率最大的参考信号,根据第二层对应关系确定与该接收功率最大的参考信号对应的前导码。终端在第一时频资源上发送根据第二层对应关系确定的前导码。
2)第二种对应关系
第二种对应关系与第一种对应关系类似,包括两层对应关系。其中第一层对应关系与第一种对应关系中的第一层对应关系相同。第二层对应关系描述了参考信号与码字之间的对应关系。其中,第二层对应关系中的码字可以是前导码之外的其它码字,比如DMRS。参考信号与DMRS的对应关系可以是参考信号与DMRS序列和/或DMRS端口之间的对应关系,这句关于参考信号与DMRS的对应关系的描述可以适用于全文。根据第二层对应关 系,DMRS可以指示终端选择的参考信号。
基于第二种对应关系,终端可以通过第一层对应关系选择发送前导码的资源位置,例如选择任意一个接收功率大于或等于阈值的参考信号,或者,当没有接收功率大于或等于阈值的参考信号时,选择任意一个参考信号,记为参考信号1。根据第一层对应关系确定该参考信号1对应的时频资源,记为第一时频资源。终端根据第一层对应关系确定该参考信号对应的前导码。那么终端可以在第一时频资源上发送根据第一层映射关系选择的前导码。这种情况下,在第一时频资源上发送的前导码可以作为随机接入的常规功能的前导码。终端还会在第一时频资源关联的第二时频资源上发送根据第二层对应关系确定的DMRS。例如,终端选择接收功率最大的参考信号,记为参考信号2。终端根据第二层对应关系确定该参考信号2对应的DMRS。在这种情况下,第一时频资源与第二时频资源关联的场景可以如下这样解释。在2步随机接入过程中,终端向网络设备发送的msgA中包括前导码和DMRS,发送msgA的资源包括PRACH资源和PUSCH资源。PRACH资源为第一时频资源,PUSCH资源为第二时频资源。在第一时频资源上发送前导码,在第二时频资源上发送DMRS。
3)第三种对应关系
第三种对应关系可以包括两层对应关系。其中第一层对应关系与第一种对应关系中第一层对应关系相同。第二层对应关系描述了参考信号与码字之间的对应关系。其中,第二层对应关系中的码字可以是前导码。例如,第一层对应关系中的码字是与第一时频资源所关联的码字。第二层对应关系中的码字是与第二时频资源所关联的码字。在这种情况下,第二时频资源与第一时频资源关联。其中,第一时频资源与第二时频资源关联的场景可以如下这样解释。第一时频资源和第二时频资源为同一类资源,终端在两个时频资源上对于同一类码字重复传输。例如,第一时频资源和第二时频资源均为PRACH资源,终端在随机接入过程中,在一个msg1或者msgA消息中发送的前导码的数量为常规数量的两倍,占用的PRACH时频资源数量也为常规数量的两倍。现有NR系统中,一次msg1传输占用一个RO,在该RO上发送一个前导码。本申请中,一次msg1或者msgA传输占用两个RO,在每个RO上各发送一个前导码。其中一个RO为第一时频资源,另一个RO为第二时频资源。
基于第三种对应关系,终端可以通过第一层对应关系选择发送前导码的资源位置,例如选择任意一个接收功率大于或等于阈值的参考信号,或者,当没有接收功率大于或等于阈值的参考信号时,选择任意一个参考信号,记为参考信号1。根据第一层对应关系确定该参考信号1对应的时频资源,记为第一时频资源。在第一时频资源上发送作为随机接入的常规功能的前导码。终端选择接收功率最大的参考信号,记为参考信号2。终端根据第二层对应关系确定与参考信号2对应的前导码。终端在与第一时频资源关联的第二时频资源上发送用于指示参考信号2的前导码。
4)第四种对应关系
第四种对应关系可以包括两层对应关系。其中第一层对应关系与第一种对应关系中第一层对应关系相同。第二层对应关系描述了参考信号与码字之间的对应关系。其中,第二层对应关系中的码字可以是前导码。与第一种对应关系不同的是,第二层对应关系中的码字与第一层对应关系中的码字属于不同的码字集合。第一层对应关系中的码字属于第一码字集合,第二层对应关系中的码字属于第二码字集合。选择任意一个接收功率大于或等于 阈值的参考信号,或者,当没有接收功率大于或等于阈值的参考信号时,选择任意一个参考信号,记为参考信号1。基于第四种对应关系中的第一层对应关系,选择与参考信号1对应的时频资源,记为第一时频资源。根据第一层对应关系,与参考信号1对应的码字为第一码字集合中的码字。选择接收功率最大的参考信号,记为参考信号2。根据第二层对应关系,在第二码字集合中选择与参考信号2对应的码字。在第一时频资源上发送与参考信号1对应的码字和与参考信号2对应的码字。通过参考信号2对应的码字隐式指示终端所选择的参考信号为参考信号2。网络设备在第一时频资源上接收两个码字,根据第二层对应关系确定与码字对应的参考信号2,从而确定终端选择的参考信号。
例如,第一码字集合为与SSB对应的一个或多个PRACH资源上的第一前导码集合。第二层对应关系中的码字属于第二码字集合,第二码字集合为与SSB对应的一个或多个PRACH资源上的第二前导码集合。其中,第二前导码集合可以看作在第一前导码集合的基础上,扩展该一个或多个PRACH资源的前导码容量。例如,可以在第一前导码集合的基础上,通过增加循环位移(cyclic shift)或者根序列(root sequence)的方式来增加该一个或多个前导码。
以上四种对应关系可以独立使用,通过第二层对应关系中的码字来隐式指示终端选择的参考信号。其中,第二层对应关系中的码字可以为前导码或DMRS。当第二层对应关系中的码字为前导码时,可以是随机接入过程中常规功能的前导码,也可以是在原来前导码集合的基础上扩展的新的前导码,也可以是在其他PRACH资源(即上述第二时频资源)上传输的前导码。第二层对应关系中的码字在隐式指示终端选择的参考信号的功能之外,也可以具备常规码字的功能。例如第二层对应关系中的前导码也可以具有常规功能的随机接入前导码的功能,第二层对应关系中的DMRS也可以具有常规的DMRS的功能。
另外,以上四种对应关系也可以相互结合使用。可以是四种对应关系中的任意两种或以上结合使用。比如说,一种对应关系中的第二层对应关系中的码字数目小于参考信号数目,可以结合另一种对应关系中的第二层对应关系中的码字来联合指示参考信号(或者说参考信号集合)。联合指示参考信号的方式可以有多种。例如,其中一个第二层对应关系中的码字用于指示参考信号集合的一部分,另一个第二层对应关系中的码字用于指示参考信号集合的另一部分。又例如,将参考信号进行分组,其中一个第二层对应关系中的码字用于指示参考信号的组号,另一个第二层对应关系中的码字用于指示一个组中的参考信号。这样,终端可以发送第一种对应关系中的第二层对应关系中的码字和第二种对应关系中的第二层对应关系中的码字,来联合指示参考信号。通过联合指示的方式,能够在其中一种码字资源不足的情况下通过另一种码字资源来联合指示更多的参考信号。
通过联合指示的参考信号集合可以是终端从网络设备接收的多个参考信号,也可以是网络设备实际发送的多个参考信号,或是网络设备实际发送的参考信号的子集,也可以是小区全部候选的参考信号,或者是小区全部候选的参考信号的子集。由于结合指示的方式能够指示更多的参考信号,所以这种方式能够有助于指示小区全部候选的参考信号。
以第一种对应关系和第二种对应关系结合的场景为例,第一种对应关系中的第二层对应关系描述了参考信号与前导码之前的对应关系,第二种对应关系中的第二层对应关系描述了参考信号与DMRS之间的对应关系。可选的,两种对应关系结合的场景是指,第一种对应关系中前导码指示参考信号集合中一部分,例如前导码可以和这一部分参考信号一一对应;第二种对应关系中DMRS指示参考信号集合中的另一部分,例如DMRS可以和该 另一部分参考信号一一对应。另一种可选的方式中,两种对应关系结合的场景是指,第一种对应关系中前导码指示参考信号集合中的分组组号,例如,前导码与分组组号一一对应;第二种对应关系中DMRS指示一组中的参考信号,例如,DMRS可以和一组中的参考信号一一对应。这样,通过两种对应关系结合,终端可以通过发送前导码和DMRS来联合隐式指示所选择的参考信号。
上述几种对应关系采用第一层对应关系和第二层对应关系的描述方式,是为了描述方便或更容易理解,实际上对应关系也可以不用分两层对应关系,可以理解为一个整体意义上的对应关系。
基于上述几种对应关系的描述,下面对S202中如何确定至少一个时频资源以及至少一个码字进行详细描述。
(1)在上述第一种情况下,终端在一个时频资源上发送一个码字,可以描述为终端在第一时频资源上发送第一码字。在第一种情况下,终端或网络设备可以根据上述第一种对应关系确定第一时频资源以及第一码字。其中,第一码字与N个参考信号中接收功率最大的第一参考信号具有对应关系,第一时频资源与N1个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系,当N1个参考信号中没有接收功率大于或等于阈值的参考信号时,第二参考信号可以是N1个参考信号中的任意一个参考信号。N个参考信号为小区全部候选的参考信号,或者为小区实际发送的参考信号,或者为小区全部候选的参考信号的子集,或者为小区实际发送的参考信号的子集。N1个参考信号可以为小区实际发送的参考信号,或者为终端接收到的多个参考信号。
具体地,在S201中终端接收多个参考信号,终端可以根据接收到的多个参考信号的接收功率大小,确定接收功率大于或等于阈值的第二参考信号,或者任意第二参考信号,以及确定接收功率最大的第一参考信号。当然第一参考信号可能与第二参考信号相同。终端根据第一种对应关系中的第一层对应关系确定与第二参考信号对应的第一时频资源,并根据第一种对应关系中的第二层对应关系确定与第一参考信号对应的第一码字。第一种对应关系的第一层对应关系用于描述N1个参考信号与P个时频资源的对应关系,以及N1个参考信号中每个参考信号与一个或多个码字的对应关系。根据第一层对应关系,可以确定第二参考信号所对应的第一时频资源,在一个可能的实现方式中,第二参考信号可能关联多个时频资源,第一时频资源是第二参考信号关联的多个时频资源中的其中一个时频资源。根据第一层对应关系,可以确定第一时频资源上与第二参考信号具有对应关系的码字,其中,第一时频资源上与第二参考信号具有对应关系的码字为第一时频资源关联的全部码字的子集。终端根据N1个参考信号与P个时频资源的对应关系,确定与第二参考信号对应的第一时频资源。
第一种对应关系的第二层对应关系用于描述N个参考信号与M个码字之间的对应关系。M可以大于N,则可以多个码字对应一个参考信号,或者M个码字中的N个码字与N个参考信号一一对应,或者既有多个码字对应一个参考信号的情况又有一个码字对应一个参考信号的情况。M也可以等于N,则一个码字对应一个参考信号。M也可以小于N,则一个码字对应多个参考信号,或者,M个码字中部分码字是每个码字对应多个参考信号,剩余的码字是一个码字对应一个参考信号。M个码字为与第一时频资源关联的码字的子集,M个码字还可以是根据第一层对应关系中第一时频资源上与第二参考信号对应的码字。也就是说,M个码字可以描述为根据第一层对应关系与第一时频资源和第二参考信号关联的 码字。终端根据N个参考信号与M个码字的对应关系,确定与第一参考信号对应的第一码字。
终端在第一时频资源上发送第一码字。网络设备在第一时频资源上检测到第一码字,根据第一种对应关系中的第二层对应关系确定与第一码字所对应的第一参考信号,从而确定网络设备与该终端设备通信时的最佳发送波束。
(2)在上述第二种情况下,终端在一个时频资源上发送多个码字,例如发送两个码字。可以描述为终端在第一时频资源上发送第一码字和第二码字。在第二种情况下,终端或网络设备可以根据上述第四种对应关系确定第一时频资源、第一码字和第二码字。其中,第一码字与N个参考信号中接收功率最大的第一参考信号具有对应关系,第一时频资源与接收到的多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系,当接收到的多个参考信号的接收功率均小于或等于阈值时,第二参考信号可以是接收到的多个参考信号中的任意一个参考信号。N个参考信号为小区全部候选的参考信号,或者为小区实际发送的参考信号,或者为小区全部候选的参考信号的子集,或者为小区实际发送的参考信号的子集。N1个参考信号可以为小区实际发送的参考信号,或者为终端接收到的多个参考信号。
具体地,在S201中终端接收多个参考信号,终端可以根据接收到的多个参考信号的接收功率大小,确定接收功率大于或等于阈值的第二参考信号,或者任意第二参考信号,以及确定接收功率最大的第一参考信号。当然第一参考信号可能与第二参考信号相同。终端根据第四种对应关系中的第一层对应关系确定与第二参考信号对应的第一时频资源和第二码字,并根据第四种对应关系中的第二层对应关系确定与第一参考信号对应的第一码字。第四种对应关系的第一层对应关系用于描述N1个参考信号与P个时频资源的对应关系,以及N1个参考信号中每个参考信号与一个或多个码字的对应关系。根据第一层对应关系,第二参考信号与第一时频资源对应,在一个可能的实现方式中,第二参考信号可能关联多个时频资源,第一时频资源是第二参考信号关联的多个时频资源中的其中一个时频资源。
第一种对应关系的第二层对应关系用于描述N个参考信号与M个码字之间的对应关系。M个码字是与第一时频资源关联的码字的子集。M可以大于N,则一个码字对应多个参考信号。M也可以等于N,则一个码字对应一个参考信号。M也可以小于N,则多个码字对应一个参考信号。
终端根据N1个参考信号与P个时频资源的对应关系,确定与第二参考信号对应的第一时频资源,终端根据第一层映射关系确定与第二参考信号对应的第二码字。终端根据N个参考信号与M个码字之间的对应关系,确定与第一参考信号对应的第一码字。其中,第一码字和第二码字均属于第一时频资源关联的码字,第二码字属于第一码字集合,第一码字属于第二码字集合。第一码字集合和第二码字集合是第一时频资源关联的码字中的两个交集为空的子集。第二码字集合可以看作是第一码字集合的基础上通过扩展得到的,例如通过增加循环位移或者根序列扩展得到的。由于在第二码字集合是在第一码字集合的基础上扩展的,因此可以按照参考信号的数目来扩展第二码字集合。例如,参考信号数目为N个,则可以在第一时频资源上扩展第二码字集合,例如扩展第二码字集合中可以包括N个码字(即M=N),使得N个码字与N个参考信号一一对应。
终端在第一时频资源上发送第一码字和第二码字。网络设备在第一时频资源上检测到 第一码字和第二码字,根据第四种对应关系中的第二层对应关系确定与第一码字对应的第一参考信号,从而确定终端选择的最优的参考信号为第一参考信号。
(3)在上述第三种情况下,终端在多个时频资源上发送多个码字。例如,终端在第一时频资源上发送第二码字,在与第一时频资源关联的第二时频资源上发送第一码字。
第一码字可以为与第二码字不同种类的码字,例如,第一码字为前导码,第二码字为DMRS,这种情况下第二时频资源为PRACH资源,第一时频资源为PUSCH资源。终端或网络设备可以根据上述第二种对应关系中确定第一时频资源、第二时频资源、第一码字和第二码字。其中,第一时频资源与接收到的多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系,当接收到的多个参考信号的接收功率均小于或等于阈值时,第二参考信号可以是接收到的多个参考信号中的任意一个参考信号,第一码字与N个参考信号中接收功率最大的第一参考信号具有对应关系。N个参考信号为接收到的多个参考信号的子集。N个参考信号为小区全部候选的参考信号,或者为小区实际发送的参考信号,或者为小区全部候选的参考信号的子集,或者为小区实际发送的参考信号的子集。N1个参考信号可以为小区实际发送的参考信号,或者为终端接收到的多个参考信号。
具体地,在S201中终端接收多个参考信号,终端可以根据接收到的多个参考信号的接收功率大小,确定接收功率大于或等于阈值的第二参考信号,或者任意第二参考信号,以及确定接收功率最大的第一参考信号。当然第一参考信号可能与第二参考信号相同。终端根据第二种对应关系中的第一层对应关系确定与第二参考信号对应的第一时频资源和第二码字,并根据第二种对应关系中的第二层对应关系确定与第一参考信号对应的第一码字。第二种对应关系的第一层对应关系用于描述N1个参考信号与P个时频资源的对应关系,以及N1个参考信号中每个参考信号与一个或多个码字的对应关系。终端根据第二种对应关系中的第一层对应关系,确定与第二参考信号对应的第一时频资源以及与第二参考信号对应的第二码字。
第二种对应关系的第二层对应关系用于描述N个参考信号与M个码字之间的对应关系。M个码字是与第二时频资源关联的码字的子集。M可以大于N,则多个码字对应一个参考信号,或者M个码字中的N个码字与N个参考信号一一对应,或者既有多个码字对应一个参考信号的情况又有一个码字对应一个参考信号的情况。M也可以等于N,则一个码字对应一个参考信号。M也可以小于N,则一个码字对应多个参考信号,或者,M个码字中部分码字是每个码字对应多个参考信号,剩余的码字是一个码字对应一个参考信号。
终端根据N1个参考信号与P个时频资源的对应关系,确定与第二参考信号对应的第一时频资源,终端根据第二种对应关系中的第一层映射关系确定与第二参考信号对应的第二码字。终端根据N个参考信号与M个码字之间的对应关系,确定与第一参考信号对应的第一码字。终端在第一时频资源上发送第二码字,在第二时频资源上发送第一码字。网络设备在第二时频资源上检测到第一码字,根据第二种对应关系中的第二层对应关系确定与第一码字对应的第一参考信号,从而确定终端选择的最优的参考信号为第一参考信号。
第一码字也可以为与第二码字相同种类的码字,例如,第一码字为前导码,第二码字为也为前导码。这种情况下,第一时频资源和第二时频资源均为PRACH资源。与第一时频资源关联第二时频资源可以是随机接入时频资源。终端在第一时频资源和第二时频资源上对于前导码重复传输。网络设备会提前配置或预定义第一时频资源和第二时频资源的关联关系(例如,二者属于同一个组)。第一时频资源和第二时频资源可时分复用,那么第 一时频资源和第二时频资源在时域上可以连续,也可以不连续;或者,第一时频资源和第二时频资源频分复用,那么第一时频资源和第二时频资源在频域上可以连续,也可以不连续。为区分说明,第一码字为第一前导码,第二码字为第二前导码。终端或网络设备可以根据上述第三种对应关系中确定第一时频资源、第二时频资源、第一前导码和第二前导码。其中,第一时频资源与N个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系,当N1个参考信号中没有接收功率大于或等于阈值的参考信号时,第二参考信号可以是N1个参考信号中的任意一个参考信号,第一码字与N个参考信号中接收功率最大的第一参考信号具有对应关系。N个参考信号为小区全部候选的参考信号,或者为小区实际发送的参考信号,或者为小区全部候选的参考信号的子集,或者为小区实际发送的参考信号的子集。N1个参考信号可以为小区实际发送的参考信号,或者为终端接收到的多个参考信号。
具体地,在S201中终端接收多个参考信号,终端可以根据接收到的多个参考信号的接收功率大小,确定接收功率大于或等于阈值的第二参考信号,或者任意第二参考信号,以及确定接收功率最大的第一参考信号。当然第一参考信号可能与第二参考信号相同。终端根据第三种对应关系中的第一层对应关系确定与第二参考信号对应的第一时频资源和第二码字。并根据网络设备配置或预定义第一时频资源和第二时频资源的关联关系,确定与第一时频资源关联的第二时频资源。根据第三种对应关系中的第二层对应关系确定与第一参考信号对应的第一码字。第三种对应关系的第一层对应关系用于描述N1个参考信号与P个时频资源的对应关系,以及N1个参考信号中每个参考信号与一个或多个码字的对应关系。终端根据第三种对应关系中的第一层对应关系,确定与第二参考信号对应的第一时频资源以及与第二参考信号对应的第二码字。
第三种对应关系的第二层对应关系用于描述N个参考信号与M个码字之间的对应关系。M个码字是与第二时频资源关联的码字的子集。M可以大于N,则多个码字对应一个参考信号,或者M个码字中的N个码字与N个参考信号一一对应,或者既有多个码字对应一个参考信号的情况又有一个码字对应一个参考信号的情况。M也可以等于N,则一个码字对应一个参考信号。M也可以小于N,则一个码字对应多个参考信号,或者,M个码字中部分码字是每个码字对应多个参考信号,剩余的码字是一个码字对应一个参考信号。由于在第二时频资源上关联的码字中确定与N个参考信号对应的码字,因此可以按照参考信号的数目来定义第二时频资源上关联的码字数量。例如,参考信号数目为N个,则可以在第二时频资源上定义N个码字(即M=N),使得N个码字与N个参考信号一一对应。
终端根据N1个参考信号与P个时频资源的对应关系,确定与第二参考信号对应的第一时频资源,终端根据第二种对应关系中的第一层映射关系确定与第二参考信号对应的第二码字。终端根据N个参考信号与M个码字之间的对应关系,确定与第一参考信号对应的第一码字。终端在第一时频资源上发送第二码字,在与第一时频资源关联的第二时频资源上发送第一码字。网络设备在第二时频资源上检测到第一码字,根据第三种对应关系中的第二层对应关系确定与第一码字对应的第一参考信号,从而确定终端选择的最优的参考信号为第一参考信号。
上述各种情况下提及的第二层对应关系中的N个参考信号为一个参考信号集合,该N个参考信号可以是预定义的,或者是网络设备配置的。例如,网络设备配置N个具有方向代表性的参考信号。实际应用中,多个波束可能在方向上是相近的或相邻的,相近或相邻 的多个波束中可以选择其中一个为代表性的方向。网络设备可以将具有代表性的方向的波束对应的参考信号组成N个参考信号。或者,网络设备可以将小区内的所有候选SSB分组,分成多个SSB组,N个参考信号为多个SSB组中的一个SSB组。
为了更好的理解本申请实施例带来的有益效果,下面结合现有技术的实现方式与本申请实施例的方法进行对比,来说明本申请实施例的有益效果。现有技术中终端会根据网络设备的配置信息确定SSB与PRACH时频资源和随机接入前导码的关联关系。终端测量多个SSB的RSRP,选择任意一个RSRP大于预设阈值的SSB,或者,在没有RSRP大于预设阈值的SSB时选择任意一个SSB,并在该SSB关联的PRACH时频资源上发送该SSB关联的多个preamble中的一个preamble。可选的,选择的任意一个大于或等于阈值的SSB,可以是根据第一层对应关系得到的传输时机比较靠前的SSB。网络设备根据检测到的preamble序列以及该preamble序列所在的PRACH时频资源,确定终端选择的SSB。网络设备在终端所选择的SSB对应的波束上发送下行的Msg2和Msg4。可见终端在随机接入过程中只是完成参考信号的粗选,在进入连接态后根据其他参数进行参考信号的更精细的选择。这样对于在随机接入过程中完成的数据传输,无法保证该数据传输能够获取比较好的波束方向增益。而本申请实施例提供的方法能够在随机接入过程中完成需要上报的参考信号的选择和上报,例如,需要上报的参考信号为接收功率最大的参考信号(或者称为最优参考信号)。对于在随机接入过程中就完成的数据传输(例如在消息3或消息B上传输的数据)就可以获得更好的波束方向增益。并且终端在随机接入过程中就可以完成接收功率最大的参考信号的选择和上报,相比在进入连接态后再完成参考信号的精细选择,能够更快的完成选择和上报。采用现有技术的方法,例如如图3所示,64个波束对应64个SSB,一块PRACH时频资源用RO表示,一个SSB关联一个RO,则64个SSB关联64个RO,SSB与RO的映射周期为160ms。假设终端在RO#1发起随机接入,测量的RSRP最大的SSB为SSB#64,若终端选择上报SSB#64,则需要经历160ms的整个关联周期的时延,才能在与SSB#64关联的RO#64上发送与SSB#64关联前导码。而采用本申请实施例提供的方法,可选择任意一个接收功率大于或等于阈值的SSB关联的RO,例如可以为RO#1,在RO#1上上报指示SSB#64的前导码,而不需要等到RO#64的发送时机,这样能够获得较低的时延。当然本申请实施例还可以在RO#1关联的RO或PO上上报指示SSB#64的码字,同样能够获得较低的时延。
基于上述描述的参考信号的指示方法,以下以在2步随机接入过程中指示参考信号为例、以码字为前导码(premble)和/或DMRS为例,参考信号为SSB为例,基于这种应用场景,结合几个举例对本申请实施例提供的参考信号的指示方法作进一步详细说明。以下举例中的方法可以应用到本申请实施例提供的其它场景中,例如,应用到参考信号为其它参考信号、码字为其它码字、四步随机接入或非激活态(inactive)数据传输的场景中。其它参考信号例如为CSI-RS。
首先对上述第一种情况进行说明。时频资源为PRACH时频资源,码字为前导码。
第一层对应关系为SSB与PRACH时频资源以及preamble之间的对应关系,第二层对应关系为SSB集合与preamble集合之间的对应关系,第二层对应关系中的preamble集合可以是第一层对应关系中与一个SSB关联的preamble集合。终端确定出一个RSRP大于预设阈值的SSB1,或者,当没有RSRP大于预设阈值的SSB时,SSB1可以是任意SSB。终端根据第一层对应关系,选择与该SSB1所关联的一个或多个PRACH时频资源以及这一 个或多个PRACH时频资源上的preamble集合。第二层对应关系中与SSB集合建立对应关系的preamble集合可以是这一个或多个PRACH时频资源上的preamble集合,也可以是这一个或多个PRACH时频资源上的preamble集合的子集。终端确定出RSRP最大的SSB2,根据第二层对应关系在preamble集合中选择出SSB2关联的preamble1。终端在msgA中向网络设备发送该preamble1,隐式指示SSB集合中RSRP最大的SSB为SSB2。网络设备检测到该preamble1后,根据第二层对应关系确定与该preamble1所关联SSB2。并在SSB2的波束发送msgB。若网络设备具有发送/接收波束一致性,网络设备也可以根据所确定的发送波束确定接收msgA PUSCH的波束。msgA PUSCH包括msgA中的PUSCH携带的上行数据。
上述第二层对应关系中SSB集合可以是当前小区内的所有候选SSB,也可以是当前小区实际传输的所有SSB,也可以是当前小区内的所有候选SSB的子集,也可以是当前小区实际传输的所有SSB的子集。SSB集合可以是预定义的,或者是网络设备配置的。例如,SSB集合可以是网络设备配置的具有波束方向代表性的SSB集合,或者是多个SSB组中的一个SSB组。
第二层对应关系中preamble与SSB可以是一一对应,既1个preamble对应1个SSB,也可以是一对多对应,既1个preamble对应多个SSB,也可以是多对1对应,既多个preamble对应1个SSB。第二层对应关系中preamble与SSB的对应关系由网络设备通过信令配置给终端,如果没有配置,则可以默认为preamble与SSB可以是一一对应。还可以根据每个SSB关联的preamble集合中preamble的数量以及SSB集合中SSB的数量确定对应关系。
当第二层对应关系中preamble与SSB是1对多对应时,网络设备无法根据检测到的preamble唯一确定SSB集合中RSRP最大的SSB,只能确定RSRP最大的SSB在所检测到的preamble关联的多个SSB中。针对这种情况,网络设备可以预先将SSB集合中的SSB进行分组,将波束方向接近的SSB分为1组,并将SSB分组信息通知给终端。那么第二层对应关系可以描述为一个preamble对应一组SSB。终端可以根据第二层对应关系将1个preamble对应到一组SSB,终端确定RSRP最大的SSB所在组对应的preamble,向网络设备发送RSRP最大的SSB所在组对应的preamble,网络设备即可通过检测到的preamble确定出一组波束方向相近的SSB,并使用该组波束中的任意波束发送msgB。
以下通过几个具体的举例对上述第一种情况进行更进一步的说明。
如图4所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系为1个SSB关联2个RO,每个RO关联的preamble为64,即1个SSB关联128个preamble。第二层对应关系中SSB集合为该小区所有候选SSB,即64个SSB。第二层对应关系为每个RO上的64个preamble与64个候选SSB一对一对应,可以按照顺序1对1对应。终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系,SSB#1关联RO#2和RO#3两个RO,并关联RO#2和RO#3上的128个preamble。终端根据第一层对应关系,在SSB#1关联的RO#2和RO#3中任选一个RO,比如RO#2。根据第二层对应关系,RO#2上关联64个preamble与64个候选SSB一对一对应。终端在该RO#2上选择RSRP最大的SSB对应的preamble,比如RSRP最大的SSB是SSB#59,根据第二层对应关系SSB#59与RO#2上的preamble#59对应,则终端选择RO#2上的preamble#59。终端在RO#2上发送preamble#59。网络设备在检测到该preamble#59后,根据第二层对应关系确定preamble#59对应的SSB#59,确定终端选择的最优的参考信 号为SSB#59。网络设备使用SSB#59对应的波束发送msgB。另外,如果网络设备具有发送/接收波束一致性,网络设备也可以用SSB#59对应的接收波束接收msgA PUSCH。
继续参照图4所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系为1个SSB关联2个RO,每个RO关联的preamble为64,即1个SSB关联128个preamble。第二层对应关系中SSB集合为该小区实际发送的SSB,即60个SSB。第二层对应关系为每个RO上的指定60个preamble与60个实际发送的SSB一对一对应,例如可以是每个RO上的前60个preamble与60个实际发送的SSB按顺序一对一对应。终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系,SSB#1关联RO#2和RO#3两个RO,并关联RO#2和RO#3上的128个preamble。终端根据第一层对应关系,在SSB#1关联的RO#2和RO#3中任选一个RO,比如RO#2。根据第二层对应关系,RO#2上关联的前60个preamble与60个SSB一对一对应。终端在该RO#2上选择RSRP最大的SSB对应的preamble,比如RSRP最大的SSB是SSB#59,根据第二层对应关系SSB#59与RO#2上的preamble#59对应,则终端选择RO#2上的preamble#59。终端在RO#2上发送preamble#59。网络设备在检测到该preamble#59后,根据第二层对应关系确定preamble#59对应的SSB#59,确定终端选择的最优的参考信号为SSB#59。网络设备使用SSB#59对应的波束发送msgB。另外,如果网络设备具有发送/接收波束一致性,网络设备也可以用SSB#59对应的接收波束接收msgA中的PUSCH。
如图5所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层映射为1个SSB关联2个RO,每个SSB在RO上关联的preamble为40,即1个SSB关联2个RO共80个preamble。第二层对应关系中SSB集合为该小区实际发送的SSB,即60个SSB。第二层对应关系为每个SSB关联的80个preamble中的前60个preamble、与SSB集合中60个SSB一一对应,例如可以是按照按顺序一一对应。终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系,SSB#1关联RO#2和RO#3两个RO,并关联RO#2和RO#3上的80个preamble。根据第二层对应关系,RO#2和RO#3上的80个preamble中前60个preamble60个SSB一一对应。终端确定RSRP最大的SSB,例如是SSB#59。则终端RO#2和RO#3上的80个preamble中选择SSB#59对应的preamble#59,RO#2上共40个preamble,则preamble#59对应RO#3上的preamble#19。终端在RO#3上发送preamble#19。网络设备在RO#3上检测到该preamble#19,确定RO#3上的preamble#19为RO#2和RO#3上的preamble#59,根据第二层对应关系确定preamble#59对应的SSB#59,确定终端选择的最优的参考信号为SSB#59。网络设备使用SSB#59对应的波束发送msgB。另外,如果网络设备具有发送/接收波束一致性,网络设备也可以用SSB#59对应的接收波束接收msgA PUSCH。
如图6所示,小区总的候选SSB的数量为64,实际发送的SSB的数量为60。第一层对应关系为2个SSB关联1个RO,每个SSB关联的preamble为30。第二层对应关系中SSB集合为该小区实际发送的SSB的子集。例如,该子集为实际发送的60个SSB中偶数编号的SSB。当然,该子集也可以是实际发送的60个SSB中奇数编号的SSB,或者任意30个SSB。第二层对应关系为每个SSB关联的30个preamble与SSB集合中的30个SSB一对一对应,例如可以按照编号顺序一对一对应。例如,SSB集合为实际发送的60个SSB中偶数编号的SSB。每个SSB关联的30个preamble中,preamble#0对应SSB#0;preamble#1对应SSB#2;preamble#2对应SSB#4;preamble#3对应SSB#6;preamble#4对应SSB#8…… preamble#28对应SSB#56;preamble#29对应SSB#58。
终端接收到的SSB可以是小区实际发送的60个SSB,也可以是小区实际发送的60个SSB中的一部分。终端在接收到SSB中选择任意一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系,确定SSB#1对应的RO#0,以及确定在该RO#0上SSB#1关联的30个preamble。终端在接收到的SSB中选择RSRP最大的SSB,比如SSB#58。终端在根据第一层对应关系确定的RO#0上SSB#1关联的30个preamble中,根据第二层对应关系选择与SSB#58对应的preamble#29。终端在RO#0上发送preamble#29。网络设备在RO#0上检测到该preamble#29,根据第二层对应关系确定preamble#29对应的SSB#58,确定终端选择的最优的参考信号为SSB#58。网络设备使用SSB#58对应的波束发送msgB。另外,如果网络设备具有发送/接收波束一致性,网络设备也可以用SSB#58对应的接收波束接收msgA PUSCH。
上述第一种情况的举例中,在不改变现有的PRACH时频资源以及每个PRACH时频资源上preamble集合的配置基础上,终端根据RSRP大于或等于阈值的SSB以及SSB集合中RSRP最大的SSB选择RO和preamble,隐式向网络设备上报SSB集合中RSRP最大的SSB。
下面对上述第二种情况进行说明。时频资源为PRACH时频资源,码字为前导码。终端在一个RO上发送两个前导码。
在第二种情况下,在现有的每个RO上关联64个preamble的基础上,通过增加循环位移(cyclic shift)或者根序列(root sequence)来增加每个RO关联preamble的个数。利用增加的preamble来对应SSB集合,隐式指示SSB。终端在一次PRACH传输过程中会在同一个RO上发送两个preamble。其中一个preamble是原有的64个preamble中的一个,具有常规preamble的功能;另一个preamble是新增的preamble中的一个,用于指示终端选择的SSB。每个RO及每个RO上原有的64个preamble与SSB之间的对应关系与现有技术相同,可以认为是第一层对应关系。第二层对应关系可以理解为新增的preamble与SSB之间的对应关系。新增加的preamble的数量可以等于该小区实际发送的SSB的数量,也可以等于该小区所有候选SSB的数量。
终端在接收到的SSB中确定任意一个RSRP大于或等于阈值的SSB,以及RSRP最大的SSB,其中,任意一个RSRP大于或等于阈值的SSB也可能正好是RSRP最大的SSB。终端根据第一层对应关系,确定RSRP大于或等于阈值的SSB所关联的RO,以及确定在该RO上的前64个preamble中的一个preamble。终端根据第二层对应关系,在该RO上除前64个外的新增加的preamble中,确定与SSB集合中RSRP最大的SSB关联的preamble。终端向网络设备发送msgA,其中包含两个preamble,其中1个preamble隐式指示SSB集合中RSRP最大的SSB。网络设备检测到该preamble后,根据第二层对应关系确定与该preamble对应的终端选择的RSRP最大的SSB,并使用该preamble所关联SSB的发送波束发送msgB。若网络设备具有发送/接收波束一致性,网络设备也可以根据所确定的发送波束确定接收msgA PUSCH的波束。
第二层对应关系中的SSB集合可以是当前小区内的所有候选SSB,也可以是当前小区实际传输的所有SSB,也可以是当前小区内的所有候选SSB的子集,也可以是当前小区实际传输的所有SSB的子集。实际应用中,可以配合该小区实际发送的SSB的数量或该小区所有候选SSB的数量来确定新增加的preamble的数量,例如新增加的preamble的数量 可以等于该小区实际发送的SSB的数量,也可以等于该小区所有候选SSB的数量,因此,优选的,第二层对应关系中的SSB集合为小区实际传输的所有SSB,或者当前小区所有候选SSB。
第二层对应关系中SSB集合与preamble集合的对应方式可以参照上述第一种情况的举例的方式。第二层对应关系中SSB与preamble可以是一一对应,既1个preamble对应1个SSB,也可以是一对多对应,既1个preamble对应多个SSB,也可以是多对1对应,既多个preamble对应1个SSB。第二层对应关系中preamble与SSB的对应关系由网络设备通过信令配置给终端,如果没有配置,则可以默认为preamble与SSB可以是一一对应。还可以根据每个SSB关联的preamble集合中preamble的数量以及SSB集合中SSB的数量确定对应关系。由于新增加的preamble的数量可以等于该小区实际发送的SSB的数量,也可以等于该小区所有候选SSB的数量,因此,优选的,第二层对应关系中SSB与preamble之间采用一对一对应。
下通过几个具体的举例对上述第二种情况进行更进一步的说明。
如图7所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系为2个SSB关联1个RO,1个RO上初始有64个preamble,每个SSB关联的preamble为30。通过增加循环位移和/或根序列在初始的64个preamble基础上增加60个preamble,即每个RO上共有124个preamble。第二层对应关系中SSB集合为小区实际发送的60个SSB。第二层对应关系可以描述为每个RO上的后60个preamble(即通过扩展新增加的60个preamble)与小区实际发送的60个SSB一一对应,例如可以按编号顺序一一对应。
终端接收到的SSB可以是小区实际发送的60个SSB,也可以是小区实际发送的60个SSB中的一部分。终端在接收到SSB中选择任意一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系,确定SSB#1对应的RO#0,在该RO#0上与该SSB#1关联的30个preamble中任意选则一个preamble,比如RO#0上与SSB#1关联的30个preamble中的preamble#20。终端在接收到的SSB中选择RSRP最大的SSB,比如SSB#58。终端在该RO#0上的后60个preamble中选择SSB#58对应的preamble#58。终端向网络设备发送msgA,msgA包含RO#0上与SSB#1关联的30个preamble中的preamble#20、以及RO#0上后60个preamble中与SSB#58关联的preamble#58。网络设备在检测到RO#0上后60个preamble中的preamble#58后,根据第二层对应关系确定preamble#58对应的SSB#58,确定终端选择的最优SSB为SSB#58。则网络设备使用SSB#58对应的波束发送msgB。如果网络设备具有发送/接收波束一致性,网络设备也可以用SSB#58对应的接收波束接收msgA PUSCH。
上述第二种情况的举例中,终端每次发送msgA时,会在一个RO上发送2个preamble,其中一个preamble是终端根据SSB集合中RSRP最大的SSB选择的,从而可以隐式向网络设备上报SSB集合中RSRP最大的SSB。
以下对上述第三种情况进行举例说明。第三种情况包括在两个时频资源上发送两个码字。两个时频资源可以为两个PRACH时频资源,或者两个时频资源包括一个PRACH时频资源和一个PUSCH资源。
其一:当两个时频资源可以为两个PRACH时频资源,两个码字为两个前导码。
两个PRACH时频资源相关联。具体地,本申请实施例可以将PRACH的重复次数更 改为2k次,其中k为原始PRACH重复次数。以NR系统为例,在现有NR系统中,k=1,即终端每次PRACH传输占用1个RO,将NR系统中的PRACH重复次数改为2次,也就是说终端每次PRACH传输占用两个RO。终端利用两个的RO中的一个RO上的preamble指示多个SSB中RSRP最大的SSB。
终端每次PRACH传输占用两个RO。可以看做每两个RO为一个RO组。第一层对应关系为SSB与其中一个RO以及该RO上preamble之间的对应关系。第二层对应关系为另一个RO上的preamble与SSB之间的对应关系。每个RO组中的两个RO可以时分复用,也可以频分复用,可以在时域或频域连续,也可以不连续。第一层对应关系的RO可以是前一个RO,也可以是后一个RO。
终端确定出一个RSRP大于预设阈值的SSB1,或者在没有RSRP大于预设阈值的SSB时确定任意一个SSB1,并确定出RSRP最大的SSB2。终端根据第一层对应关系,选择与该SSB1所关联的RO1以及该RO上的一个preamble1。确定与RO1在同一个组的RO2,根据第二层对应关系在RO2上的preamble中选择出SSB集合中SSB2关联的preamble2。SSB1和SSB2也有可能相同。终端向网络设备发送msgA,msgA中包含两个preamble,这两个preamble分别在一个RO组的两个RO上。其中1个RO上的preamble隐式指示SSB集合中RSRP最大的SSB。网络设备检测到该preamble2后,使用发送该preamble2所关联SSB2的波束发送msgB。如果网络设备具有发送/接收波束一致性,网络设备也可以根据所确定的发送波束确定接收msgA PUSCH的波束。
上述第二层对应关系中SSB集合可以是当前小区内的所有候选SSB,也可以是当前小区实际传输的所有SSB,也可以是当前小区内的所有候选SSB的子集,也可以是当前小区实际传输的所有SSB的子集。SSB集合可以是预定义的,或者是网络设备配置的。例如,SSB集合可以是网络设备配置的具有波束方向代表性的SSB集合,或者是多个SSB组中的一个SSB组。考虑到用于第二层对应关系的RO中所有的preamble都可用于隐式指示SSB的功能,因此可以按照第二层对应关系中的SSB集合数目来定义该RO上的preamble数量。可选的,第二层对应关系的RO中所有的preamble可以对应的SSB集合,为实际传输的所有SSB,或者为当前小区所有候选SSB。
第二层对应关系中preamble与SSB可以是一一对应,既1个preamble对应1个SSB,也可以是一对多对应,既1个preamble对应多个SSB,也可以是多对1对应,既多个preamble对应1个SSB。第二层对应关系中preamble与SSB的对应关系由网络设备通过信令配置给终端,如果没有配置,则可以默认为preamble与SSB可以是一一对应。还可以根据每个SSB关联的preamble集合中preamble的数量以及SSB集合中SSB的数量确定对应关系。考虑到可以按照第二层对应关系中的SSB集合数目来定义该RO上的preamble数量,因此可选的,第二层对应关系中更容易实现SSB与preamble之间是可以按顺序一对一对应。
如图8所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系为1个SSB关联2个RO,每个RO关联的preamble为64,即1个SSB关联2个RO共128个preamble。每个RO组中的两个RO频分复用,且用于第二层对应关系的RO是前一个RO。第二层对应关系中SSB集合为小区实际发送的60个SSB。针对每个用于第二层对应关系的RO,第二层对应关系可以描述为RO上的64个preamble中的前60个preamble与60个小区实际发送的SSB一一对应。
终端接收到的SSB可以是小区实际发送的60个SSB,也可以是小区实际发送的60个 SSB中的一部分。终端在接收到SSB中选择任意一个RSRP大于或等于阈值的SSB,比如SSB#1。SSB#1在第一层对应关系上关联RO#5和RO#7。在这两个RO中任选一个RO发送一个preamble,比如选择RO#5。在RO#5上的64个preamble中任意选一个preamble,比如preamble#10。与RO#5关联的用于第二层对应关系的RO为RO#4。终端在接收到SSB中选择RSRP最大的SSB,例如RSRP最大的SSB是SSB#59。终端在RO#4上选择SSB#59对应的preamble#59。
终端向网络设备发送msgA。msgA包含RO#4上的preamble#59和RO#5上的preamble#10。RO#5上的preamble#10用于常规随机接入前导码的功能,RO#4上的preamble#59用于指示RSRP最大的SSB。网络设备在检测到RO#4上的preamble#59,根据第二层对应关系确定preamble#59对应的SSB#59,确定终端选择的最优SSB为SSB#59。则网络设备使用SSB#59对应的波束发送msgB。若网络设备具有发送/接收波束一致性,网络设备也可以用SSB#59对应的接收波束接收msgA PUSCH。
如图9所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系为2个SSB关联1个RO,每个SSB关联的preamble为30。每个RO组中的两个RO频分复用,且用于第二层对应关系的RO是前一个RO。第二层对应关系中SSB集合为小区实际发送的60个SSB。第二层对应关系为RO上的64个preamble中的前60个preamble与小区实际发送的60个SSB一一对应,可以按照编号顺序一一对应。终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#1。根据第一层对应关系SSB#1对应RO#1,RO#1与RO#0位于同一个RO组中。根据第一层对应关系在SSB#1对应的RO#1上,与该SSB#1关联的30个preamble中任意选择一个preamble,比如RO#1上与SSB#1关联的30个preamble中的preamble#29。终端选择RSRP最大的SSB,例如RSRP最大的SSB是SSB#58。根据第二层对应关系在RO#0上选择SSB#58对应的preamble#58。终端向网络设备发送msgA,msgA中包含RO#0上的preamble#58和RO#1上的与SSB#1关联的30个preamble中的preamble#29。网络设备检测到该RO#0上的preamble#58后,使用SSB#58对应的波束发送msgB。若网络设备具有发送/接收波束一致性,网络设备也可以用SSB#58对应的接收波束接收msgA PUSCH。
通过上述第三种情况其一的举例,终端每次发送msgA中包含在两个RO上分别发送的1个preamble,在其中一个RO中,终端根据SSB集合中RSRP最大的SSB选择preamble,隐式向上报SSB集合中RSRP最大的SSB。
其二:两个时频资源包括一个PRACH时频资源和一个PUSCH资源,两个码字包括前导码和DMRS。
第一层对应关系为SSB与PRACH时频资源以及preamble之间的对应关系。第二层对应关系为SSB与DMRS之间的对应关系。其中,SSB与DMRS之间的对应关系包括:SSB与DMRS端口和/或DMRS序列之间的对应关系。
终端根据第二层对应关系,确定多个SSB中RSRP最大的SSB对应的DMRS,通过向网络设备发送DMRS可以隐式上报多个SSB中RSRP最大的SSB。本申请中,所描述的“隐式”上报参考信号也可以理解为显示上报,将指示参考信号的码字作为一种显示的指示信息。
第二层对应关系描述了多个DMRS端口和/或DMRS序列与SSB集合中的多个SSB之间的对应关系。多个DMRS端口和/或DMRS序列可以是网络设备配置的所有可用的 DMRS端口和/或DMRS序列,也可以是网络设备配置的所有可用的DMRS端口和/或DMRS序列的子集,例如是终端确定的preamble关联的DMRS端口和/或DMRS序列。SSB集合可以是当前小区内的所有候选SSB,也可以是当前小区实际传输的所有SSB,也可以是当前小区内的所有候选SSB的子集,也可以是当前小区实际传输的所有SSB的子集。SSB集合可以是预定义的,或者是网络设备配置的。例如,SSB集合可以是网络设备配置的具有波束方向代表性的SSB集合,或者是多个SSB组中的一个SSB组。
DMRS端口和/或DMRS序列以下可以简称为DMRS。
DMRS与SSB可以是一一对应,即1个DMRS对应1个SSB;也可以是1对多对应,既1个DMRS对应多个SSB;也可以是多对1对应,即多个DMRS对应1个SSB。DMRS与SSB的对应关系由网络设备通过信令配置给终端,如果没有配置,则可以默认为1对1对应,还可以根据每个SSB关联的DMRS集合中DMRS的数量以及SSB集合中SSB的数量确定对应关系。
DMRS与SSB是1对多对应时,网络设备无法根据检测到的DMRS唯一确定SSB集合中RSRP最大的SSB,只能确定RSRP最大的SSB在所检测到的DMRS关联的多个SSB中。基于此,网络设备可以将SSB集合中的SSB进行分组,将波束方向接近的SSB分为1组,并将SSB分组信息通知给终端。终端可以将1个DMRS对应到一组SSB,网络设备可通过检测到的DMRS确定出一组波束方向相近的SSB,并使用该组波束中的任意波束发送msgB。
如图10所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为60。第一层对应关系中,1个SSB关联1个RO,每个SSB在RO上关联的preamble为12个。一个RO关联一个PO。一个RO上的一个preamble与一个PO上的4个PUSCH资源单元(PUSCH resource unit,PRU)关联。第二层对应关系中的SSB集合为小区实际发送的60个SSB。在第二层对应关系中,一个PRU对应多个SSB,或者说一个PRU对应一组SSB。其中PRU为一个PO及该PO上的一个DMRS端口和/或DMRS序列。一个PO上与一个preamble关联的每4个PRU与4个SSB组一一对应。每个SSB组包含15个实际发送的SSB。终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#1。在该SSB#1关联的RO#1中任选一个preamble,比如preamble#2。并在该preamble#2关联的4个PRU上选择RSRP最大的SSB所在SSB组对应的PRU,比如RSRP最大的SSB是SSB#59,所在的SSB组为SSB组#3,则终端选择PO#1上的与preamble#2关联的4个PRU中的PRU#3。终端在RO#1上发送preamble#2,在PO#1发送PRU#3。网络设备在PO#1接收到PRU#3,根据PRU#3确定终端选择的最优的SSB为SSB组#3。在SSB组#3中的任意一个SSB对应波束上发送msgB。
通过上述第三种情况其一的举例,终端根据SSB集合中RSRP最大的SSB选择DMRS端口和/或DMRS序列,隐式向上报SSB集合中RSRP最大的SSB或者RSRP最大的SSB所在的SSB组。这样,终端既可以选择一个RSRP满足要求的波束尽快完成msgA发送,也可以上报给网络设备SSB集合中的最佳波束对应的SSB,或者最佳波束对应的SSB所在的SSB组。
当上文中描述的第一种对应关系~第四种对应关系中的任意多种结合使用时,参考信号的指示方法还有另一种情况。在第一种情况和第二情况的基础上:终端在第一时频资源上发送第一码字,第一码字指示接收功率最大的参考信号;或者终端在第一时频资源上发 送第一码字和第二码字,第一码字指示接收功率最大的第一参考信号。在此基础上,终端还可以在与第一时频资源关联的第二时频资源上发送第三码字。第三码字对应一个参考信号组中的第一参考信号。具体地,根据参考信号组中的参考信号和一个码字组中的码字的对应关系,确定该码字组中与第一参考信号对应的第三码字。
在第三种情况的基础上,描述一种码字结合的方式指示参考信号的方法。终端在第一时频资源上发送第一码字,并在与第一时频资源关联的第二时频资源上发送第二码字,第二层对应关系可以描述为N个参考信号与M个码字的对应关系,第二码字与N个参考信号中接收功率最大的第二参考信号具有对应关系。在此基础上,第二码字对应所述第二参考信号所在的参考信号组。
以下以在第三种情况的基础上码字结合的方式指示参考信号的方法为例,结合具体的应用场景进行描述。
终端根据多个SSB中RSRP最大的SSB,来选择preamble以及DMRS端口和/或DMRS序列,即通过preamble以及DMRS端口和/或DMRS序列联合隐式上报多个SSB中RSRP最大的SSB。
在一个实现方式中,将SSB集合进行分组,SSB组与preamble集合中的preamble一一对应,每个SSB组中的SSB与DMRS端口和/或DMRS序列集合一一对应。终端根据SSB集合中RSRP最大的SSB所在的SSB组,选择对应的preamble集合中的preamble。终端根据SSB集合中RSRP最大的SSB选择DMRS集合中的DMRS。即终端通过所选择的preamble隐式上报SSB集合中RSRP最大的SSB所在的SSB组,通过所选择的DMRS端口和/或DMRS序列隐式上报SSB集合中RSRP最大的SSB具体为哪个SSB。
在另一个实现方式中,将SSB集合进行分组,SSB组与DMRS集合中的DMRS一一对应,每个SSB组中的SSB与preamble集合中的preamble一一对应。终端根据SSB集合中RSRP最大的SSB所在的SSB组选择DMRS集合中的DMRS,根据SSB集合中RSRP最大的SSB选择preamble集合中的preamble。即终端通过所选择的DMRS隐式上报SSB集合中RSRP最大的SSB所在的SSB组,通过所选择的preamble隐式上报SSB集合中RSRP最大的SSB具体为哪个SSB。
SSB集合可以是预定义的,或者是网络设备配置的。SSB集合可以是当前小区所有候选的SSB,或者小区实际发送的SSB。
preamble集合可以是预定义的,或者是网络设备配置的。preamble集合可以上述第一种情况下第一层对应关系中每个SSB关联的所有preamble。preamble集合还可以是上述第二种情况下其一的举例中每个RO组中,用于第二层对应关系的RO上的所有preamble。preamble集合还可以是上述第二种情况下每个RO上除前64个preamble外的新增的preamble。
DMRS集合是终端确定的用于第一层对应关系中preamble关联的DMRS端口和/或DMRS序列。
如图11所示,小区总的候选SSB的数量为64,小区实际发送的SSB的数量为64。第一层对应关系中,2个SSB关联1个RO,每个SSB在一个RO上关联的preamble为8个。将64个实际发送的SSB分为8组,每个SSB关联的8个preamble与8个SSB组一一对应。每个preamble关联8个PRU,每个preamble关联的8个PRU与该preamble关联的SSB组中的8个SSB一一对应。
终端可以任意选择一个RSRP大于或等于阈值的SSB,比如SSB#8。根据第一层对应关系,SSB#8关联RO#4,以及在RO#4上关联的8个preamble。终端确定选择小区实际发送的64个SSB中RSRP最大的SSB所在SSB组,终端在SSB#8关联的8个preamble中选择SSB组对应的preamble。比如RSRP最大的SSB是SSB#56,在SSB组#7中,则终端选择RO#4上与SSB#8关联的8个preamble中的preamble#7。终端在该preamble#7关联的8个PRU中选择与RSRP最大的SSB关联的PRU,即preamble#7关联的8个PRU中的PRU#0。
终端在RO#4上发送preamble#7,在RO#4关联的PO#4上发送PRU#0。网络设备检测到该preamble以及PRU对应DMRS端口和/或DMRS序列,使用SSB#56对应的波束发送msgB,若网络设备具有发送/接收波束一致性,则网络设备也可以用SSB#56对应的接收波束接收msgA PUSCH。
在该应用场景中,终端根据RSRP大于或等于阈值的SSB以及SSB集合中RSRP最大的SSB,选择RO、preamble和DMRS,隐式向上报SSB集合中RSRP最大的SSB。可以选择一个RSRP满足要求的波束尽快完成msgA发送,也可以上报给网络设备SSB集合中的最优波束对应的SSB。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的参考信号的指示方法,得到一些演变形式的举例。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图12所示,基于同一技术构思,本申请实施例还提供了一种装置1200,该装置1200可以是终端设备或网络设备,也可以是终端设备或网络设备中的装置,或者是能够和终端设备或网络设备匹配使用的装置。一种设计中,该装置1200可以包括执行上述方法实施例中终端设备或网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块1201和通信模块1202。处理模块1201用于调用通信模块1202执行接收和/或发送的功能。
当用于执行终端设备执行的方法时:
通信模块1202用于接收多个参考信号;以及用于在第一时频资源上发送至少一个码字,至少一个码字可以是一个码字也可以是多个码字。该至少一个码字包括第一码字,该第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,该N个参考信号为该多个参考信号的子集。
或者,通信模块1202用于接收多个参考信号;以及用于在第一时频资源上发送第一码字,并在与第一时频资源关联的第二时频资源上发送第二码字;其中,所述第二码字与N个参考信号中需要上报的第二参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。
处理模块1201和通信模块1202还可以用于执行上述方法实施例终端设备执行的其它对应的步骤或操作,在此不再一一赘述。
当用于执行网络设备执行的方法时:
处理模块1201用于向终端发送多个参考信号;以及用于在第一时频资源上从所述终端接收第一码字;其中,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数,在所述第一参考信号对应的波束上向所述终端发送数据。
处理模块1201和通信模块1202还可以用于执行上述方法实施例网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图13所示为本申请实施例提供的装置1300,用于实现上述方法中终端设备或网络设备的功能。当实现网络设备的功能时,该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。当实现终端设备的功能时,该装置可以是终端设备,也可以是终端设备中的装置,或者是能够和终端设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。装置1300包括至少一个处理器1320,用于实现本申请实施例提供的方法中终端设备或网络设备的功能。装置1300还可以包括通信接口1310。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1310用于装置1300中的装置可以和其它设备进行通信。示例性地,装置1300是网络设备时,该其它设备可以是终端设备。装置1300是终端设备时,该其它装置可以是网络设备。处理器1320利用通信接口1310收发数据,并用于实现上述方法实施例所述的方法。示例性地,当实现网络设备的功能时,处理器1320用于利用通信接口用于向终端发送多个参考信号;以及用于在第一时频资源上从所述终端接收第一码字;其中,所述第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数,在所述第一参考信号对应的波束上向所述终端发送数据。当实现终端设备的功能时,处理器1320用于利用通信接口接收多个参考信号,以及用于在第一时频资源上发送至少一个码字,该至少一个码字包括第一码字,该第一码字与N个参考信号中需要上报的第一参考信号具有对应关系,该N个参考信号为该多个参考信号的子集。或者,当实现终端设备的功能时,处理器1320用于利用通信接口接收多个参考信号,以及用于在第一时频资源上发送第一码字,并在与第一时频资源关联的第二时频资源上发送第二码字;其中,所述第二码字与N个参考信号中需要上报的第二参考信号具有对应关系,所述N个参考信号为所述多个参考信号的子集,N为正整数。处理器1320和通信接口1310还可以用于执行上述方法实施例终端设备或网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
装置1300还可以包括至少一个存储器1330,用于存储程序指令和/或数据。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器 1320可能和存储器1330协同操作。处理器1320可能执行存储器1330中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述通信接口1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、通信接口1320以及收发器1310之间通过总线1340连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
装置1200和装置1300具体是芯片或者芯片系统时,通信模块1202和通信接口1310所输出或接收的可以是基带信号。装置1200和装置1300具体是设备时,通信模块1202和通信接口1310所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (25)

  1. 一种参考信号的指示方法,其特征在于,包括:
    接收多个参考信号;
    在第一时频资源上发送至少一个码字;其中,所述至少一个码字包括第一码字,所述第一码字与N个参考信号中第一参考信号具有对应关系,所述第一参考信号为需要上报的参考信号,所述N个参考信号为所述多个参考信号的子集,N为正整数。
  2. 如权利要求1所述的方法,其特征在于,所述第一参考信号为所述N个参考信号中接收功率最大的参考信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    根据所述N个参考信号与M个码字的对应关系,确定与所述第一参考信号对应的所述第一码字;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述方法还包括:
    根据N1个参考信号与P个时频资源的对应关系,确定与所述第二参考信号对应的所述第一时频资源,其中,N1和P均为正整数,所述N1个参考信号包括所述多个参考信号,所述第一时频资源为所述P个时频资源中的一个时频资源。
  6. 如权利要求4所述的方法,其特征在于,所述N个参考信号为小区全部候选的参考信号;或所述N个参考信号为小区实际发送的参考信号;或所述N个参考信号为小区全部候选的参考信号的子集;或所述N个参考信号为小区实际发送的参考信号的子集。
  7. 如权利要求1~6任一项所述的方法,其特征在于,所述至少一个码字还包括第二码字;
    在第一时频资源上发送至少一个码字,包括:
    在第一时频资源发送所述第一码字和所述第二码字。
  8. 如权利要求7所述的方法,其特征在于,所述第一码字和所述第二码字属于不同的码字集合。
  9. 如权利要求3~8任一项所述的方法,其特征在于,M<N,所述N个参考信号属于多个参考信号组,每个参考信号仅属于一个参考信号组,所述第一码字对应所述第一参考信号所在的参考信号组。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    在与所述第一时频资源关联的第二时频资源上发送第三码字;
    其中,所述第三码字与所述参考信号组中的所述第一参考信号具有对应关系。
  11. 如权利要求10所述的方法,其特征在于,所述方法还包括:
    根据所述第一参考信号所在的参考信号组中的参考信号和一个码字组中的码字的对应关系,确定所述码字组中与所述第一参考信号对应的所述第三码字。
  12. 一种通信装置,其特征在于,包括处理器和通信接口,所述通信接口用于与其它通信装置进行通信;所述处理器用于运行一组程序,以使得所述通信装置以实现权利要求1~11任一项所述的方法。
  13. 一种通信装置,其特征在于,包括:
    接收模块,用于接收多个参考信号;
    发送模块,用于在第一时频资源上发送至少一个码字;其中,所述至少一个码字包括第一码字,所述第一码字与N个参考信号中第一参考信号具有对应关系,所述第一参考信号为需要上报的参考信号,所述N个参考信号为所述多个参考信号的子集,N为正整数。
  14. 如权利要求13所述的装置,其特征在于,所述第一参考信号为所述N个参考信号中接收功率最大的参考信号。
  15. 如权利要求13或14所述的装置,其特征在于,所述第一时频资源与所述多个参考信号中接收功率大于或等于阈值的第二参考信号具有对应关系。
  16. 如权利要求13~15任一项所述的装置,其特征在于,所述装置还包括:
    处理模块,用于根据所述N个参考信号与M个码字的对应关系,确定与所述第一参考信号对应的所述第一码字;其中,所述M个码字为与所述第一时频资源关联的码字的子集,M为正整数。
  17. 如权利要求13~16任一项所述的装置,其特征在于,所述装置还包括:处理模块,用于根据N1个参考信号与P个时频资源的对应关系,确定与所述第二参考信号对应的所述第一时频资源,其中,N1和P均为正整数,所述N1个参考信号包括所述多个参考信号,所述第一时频资源为所述P个时频资源中的一个时频资源。
  18. 如权利要求16所述的装置,其特征在于,所述N个参考信号为小区全部候选的参考信号;或所述N个参考信号为小区实际发送的参考信号;或所述N个参考信号为小区全部候选的参考信号的子集;或所述N个参考信号为小区实际发送的参考信号的子集。
  19. 如权利要求13~18任一项所述的装置,其特征在于,所述至少一个码字还包括第二码字;
    在第一时频资源上发送至少一个码字,所述发送模块具体用于:
    在第一时频资源发送所述第一码字和所述第二码字。
  20. 如权利要求19所述的装置,其特征在于,所述第一码字和所述第二码字属于不同的码字集合。
  21. 如权利要求15~20任一项所述的装置,其特征在于,M<N,所述N个参考信号属于多个参考信号组,每个参考信号仅属于一个参考信号组,所述第一码字对应所述第一参考信号所在的参考信号组。
  22. 如权利要求21所述的装置,其特征在于,所述发送模块还用于:
    在与所述第一时频资源关联的第二时频资源上发送第三码字;
    其中,所述第三码字与所述参考信号组中的所述第一参考信号具有对应关系。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一参考信号所在的参考信号组中的参考信号和一个码字组中的码字的对应关系,确定所述码字组中与所述第一参考信号对应的所述第三码字。
  24. 一种计算机可读存储介质,其特征在于,所述计算机存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,以使如权利要求1~11任一项所述的方法被执行。
  25. 一种计算机程序产品,其特征在于,所述计算机程序产品中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,以使如权利要求1~11任一项所述的方 法被执行。
PCT/CN2020/109369 2019-08-16 2020-08-14 一种参考信号的指示方法及装置 WO2021032024A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20853933.8A EP4013177A4 (en) 2019-08-16 2020-08-14 METHOD AND DEVICE FOR DISPLAYING A REFERENCE SIGNAL
US17/672,135 US20220173859A1 (en) 2019-08-16 2022-02-15 Reference signal indication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910760402.4A CN112398620B (zh) 2019-08-16 2019-08-16 一种参考信号的指示方法及装置
CN201910760402.4 2019-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,135 Continuation US20220173859A1 (en) 2019-08-16 2022-02-15 Reference signal indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2021032024A1 true WO2021032024A1 (zh) 2021-02-25

Family

ID=74602879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109369 WO2021032024A1 (zh) 2019-08-16 2020-08-14 一种参考信号的指示方法及装置

Country Status (4)

Country Link
US (1) US20220173859A1 (zh)
EP (1) EP4013177A4 (zh)
CN (1) CN112398620B (zh)
WO (1) WO2021032024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943816B2 (en) * 2020-10-14 2024-03-26 Qualcomm Incorporated Random access preamble spatial overloading

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116866979A (zh) * 2021-03-31 2023-10-10 北京小米移动软件有限公司 波束恢复方法、装置、用户设备、网络侧设备及存储介质
WO2024065196A1 (zh) * 2022-09-27 2024-04-04 华为技术有限公司 数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
CN109565888A (zh) * 2017-03-07 2019-04-02 Lg 电子株式会社 用于发送随机接入前导的方法和用户设备
WO2019082152A1 (en) * 2017-10-27 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB
CN109863813A (zh) * 2019-01-10 2019-06-07 北京小米移动软件有限公司 随机接入方法及装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103703812B (zh) * 2011-08-05 2017-07-28 太阳专利信托公司 发送装置、前导码发送装置以及发送方法
WO2018027982A1 (zh) * 2016-08-12 2018-02-15 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
CN107888249A (zh) * 2016-09-30 2018-04-06 北京信威通信技术股份有限公司 一种波束域参考信号发送的方法及装置
CN110089044B (zh) * 2016-11-02 2024-02-23 交互数字专利控股公司 基于群组的波束管理
CN108134624B (zh) * 2016-12-01 2020-06-30 维沃移动通信有限公司 一种参考信号发送、接收方法、发送端及接收端
CN108282310B (zh) * 2017-01-06 2020-12-01 华为技术有限公司 一种数据传输方法、网络侧设备及终端设备
JP6712286B2 (ja) * 2017-01-25 2020-06-17 華碩電腦股▲ふん▼有限公司 無線通信システムにおいてビーム状態情報報告をトリガする方法及び装置
CN111567094B (zh) * 2017-10-06 2022-11-15 鸿颖创新有限公司 多波束环境中的随机存取信道资源选择的方法及装置
US10567145B2 (en) * 2018-01-05 2020-02-18 Ofinno, Llc Beam reports with multiple cells
CN109076556B (zh) * 2018-07-25 2019-11-15 北京小米移动软件有限公司 随机接入方法、装置、电子设备和计算机可读存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565888A (zh) * 2017-03-07 2019-04-02 Lg 电子株式会社 用于发送随机接入前导的方法和用户设备
WO2019082152A1 (en) * 2017-10-27 2019-05-02 Telefonaktiebolaget Lm Ericsson (Publ) RANDOM ACCESS WITHOUT CONFLICT WITH MULTIPLE SSB
CN109511156A (zh) * 2018-11-29 2019-03-22 华为技术有限公司 一种选择prach资源的方法及装置
CN109863813A (zh) * 2019-01-10 2019-06-07 北京小米移动软件有限公司 随机接入方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Remaining details on NR-RACH configurations and formats", 3GPP DRAFT; R1-1716154_REMAINING DETAILS ON NR-RACH CONFIGURATIONS AND FORMATS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 12 September 2017 (2017-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051329777 *
See also references of EP4013177A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943816B2 (en) * 2020-10-14 2024-03-26 Qualcomm Incorporated Random access preamble spatial overloading

Also Published As

Publication number Publication date
CN112398620B (zh) 2022-04-12
EP4013177A4 (en) 2022-10-12
CN112398620A (zh) 2021-02-23
US20220173859A1 (en) 2022-06-02
EP4013177A1 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
CN111586846B (zh) 传输配置编号状态指示的方法和通信装置
WO2021032024A1 (zh) 一种参考信号的指示方法及装置
WO2020015499A1 (zh) 一种定位参考信号传输方法及装置
US10819390B2 (en) DMRS transmission method and communications device
US11881917B2 (en) Communications method and apparatus
WO2021063176A1 (zh) 一种波束的指示方法及装置
US11496256B2 (en) Communication method and apparatus
CN113595696B (zh) 通信方法、装置及系统
CN106793097B (zh) 用户设备、网络侧设备及用户设备的控制方法
WO2021218960A1 (zh) 一种多播通信方法、装置和系统
EP4195735A1 (en) Method for monitoring control channels and determining transmission configuration indication, and terminal
US20220052789A1 (en) Communication method and apparatus
WO2021030991A1 (zh) 一种上行传输资源的确定方法及装置
KR20220137063A (ko) 참조 신호 자원 구성 방법 및 장치
WO2021254482A1 (zh) 一种覆盖增强等级的确定方法及装置
US20230371040A1 (en) Information determination method and apparatus, device, and storage medium
WO2021204107A1 (zh) 一种通信方法及装置
US20200374878A1 (en) Communication method and wireless apparatus
CN106686730B (zh) Pucch资源配置、指示方法、pucch反馈信息、基站及终端
US11917525B2 (en) Wireless communication method, apparatus, and computer-readable storage medium
CN110086511A (zh) 一种波束赋形的方法及装置
WO2021103006A1 (zh) 一种跟踪参考信号的接收方法、发送方法及通信装置
WO2022151267A1 (zh) 一种监听方法及设备
TWI817787B (zh) 一種隨機接取的方法、衛星基地台、地面終端及存儲介質
WO2023241171A9 (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020853933

Country of ref document: EP

Effective date: 20220309