WO2020015499A1 - 一种定位参考信号传输方法及装置 - Google Patents

一种定位参考信号传输方法及装置 Download PDF

Info

Publication number
WO2020015499A1
WO2020015499A1 PCT/CN2019/092395 CN2019092395W WO2020015499A1 WO 2020015499 A1 WO2020015499 A1 WO 2020015499A1 CN 2019092395 W CN2019092395 W CN 2019092395W WO 2020015499 A1 WO2020015499 A1 WO 2020015499A1
Authority
WO
WIPO (PCT)
Prior art keywords
prs
mute
resource
base station
muted
Prior art date
Application number
PCT/CN2019/092395
Other languages
English (en)
French (fr)
Inventor
达人
郑方政
李辉
高雪媛
任斌
高秋彬
缪德山
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217004524A priority Critical patent/KR20210025120A/ko
Priority to US17/261,846 priority patent/US11777676B2/en
Priority to EP19837838.2A priority patent/EP3826212B1/en
Publication of WO2020015499A1 publication Critical patent/WO2020015499A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a positioning reference signal transmission method and device.
  • Observed time difference is a method introduced by 3GPP to use the measured downlink reference signal time difference for positioning.
  • a terminal user equipment, UE, also called user equipment
  • RSTD reference signal time difference measurement
  • the network positioning server determines the location of the terminal according to the RSTD and uses a multi-point positioning algorithm or other algorithms.
  • the terminal can use any downlink reference signal to obtain the RSTD used to support OTDOA.
  • 3GPP defines positioning reference signals (PRS) to support OTDOA, to help the terminal detect downlink reference signals from a sufficient number of neighbor cells.
  • PRS positioning reference signals
  • the embodiments of the present application provide a positioning reference signal transmission method and device.
  • a positioning reference signal transmission method includes: a base station determining a time-frequency resource for transmitting a PRS according to configuration information of the PRS, and mapping a PRS sequence to the time-frequency resource for transmitting the PRS. Send the mapped PRS on the time-frequency resource used to send the PRS.
  • the configuration information of the PRS includes PRS frequency domain resource information
  • the PRS frequency domain resource information includes PRSRE (PRS resource unit) frequency shift information
  • the PRSRE frequency shift information and PRS OFDM calculated from a PRS timing Symbolic order values are related.
  • the PRS and RE frequency shift information is a value of the PRS and RE frequency shift
  • the value of the PRS and RE frequency shift is obtained according to the following formula:
  • ⁇ shift is the PRS RE frequency shift
  • l ′ is the sequence value of the PRS OFDM symbols calculated from the PRS timing.
  • c PRS is the PRS RE density configuration parameter
  • mod represents the modulo operation.
  • the PRSRE frequency shift information includes a sequence value of PRSOFDM symbols calculated from a PRS occasion, and the method further includes:
  • ⁇ shift is the PRS RE frequency shift
  • l ′ is the sequence value of the PRS OFDM symbols calculated from the PRS timing.
  • c PRS is the PRS RE density configuration parameter
  • mod represents the modulo operation.
  • the base station maps a PRS sequence to a frequency domain resource used to send the PRS according to the following formula:
  • Is the value of resource unit (k, l) p, ⁇ , (k, l) p, ⁇ represents the resource unit that configures frequency domain index k and time domain index l of antenna port p and subcarrier interval ⁇ ;
  • ⁇ PRS is the PRS transmission Power scaling factor Is a PRS sequence with an OFDM symbol index of 1 in timeslots n s and f ;
  • ⁇ shift is the PRS RE frequency shift
  • the base station before the base station sends the mapped PRS on the time-frequency resource for sending the PRS, the base station further includes: the base station according to the PRS mute configuration information and the time-frequency resource for sending the PRS.
  • the base station to send the mapped PRS on the time-frequency resource used to send the PRS includes: the base station The mapped PRS is transmitted on a PRS block determined not to be muted.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block in the candidate mute PRS unit.
  • PRSs in one PRS block are transmitted using the same beam.
  • the PRS mute configuration information includes: PRS mute configuration information, which is used to indicate a mute PRS set and a candidate mute PRS set, where all PRS blocks corresponding to the mute PRS set Mute; for each candidate mute PRS unit indicated by the unit mute configuration information at PRS, configure the corresponding PRS block mute configuration information to indicate whether the PRS block in the unit is muted at the corresponding candidate mute PRS.
  • the PRS RE frequency shift information included in the PRS configuration information is related to the PRS OFDM symbol order value calculated from the PRS timing, so that the time and frequency of the PRS determined according to the PRS configuration information
  • PRS symbols can be distributed as evenly as possible among all subcarriers in the PRS frequency band, which can overcome the large autocorrelation side peak problem caused by traditional PRS mapping rules.
  • a positioning reference signal transmission method includes: the base station determines that the time-frequency resource for transmitting PRS is muted and / or according to the PRS mute configuration information and the time-frequency resource for transmitting PRS A non-muted PRS block, and a mapped PRS is transmitted on the PRS block determined to be not muted.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block in the candidate mute PRS unit.
  • PRSs in one PRS block are transmitted using the same beam.
  • the PRS mute configuration information includes: PRS mute configuration information, which is used to indicate a mute PRS set and a candidate mute PRS set, where all PRS blocks corresponding to the mute PRS set Mute; for each candidate mute PRS unit indicated by the unit mute configuration information at PRS, configure the corresponding PRS block mute configuration information to indicate whether the PRS block in the unit is muted at the corresponding candidate mute PRS.
  • the base station determines the PRS blocks that are muted and / or not muted in the time-frequency resources used to send the PRS according to the PRS muting configuration information and the time-frequency resources used to send the PRS, and usually The PRS in a PRS block uses the same beam transmission, so it can support the mute mode when transmitting PRS in multiple beams.
  • a base station includes: a determining module for determining a time-frequency resource for sending PRS according to configuration information of a positioning reference signal PRS; and a mapping module for mapping the PRS sequence to The time-frequency resource for sending PRS; a sending module, configured to send, by the base station, a mapped PRS on the time-frequency resource for sending PRS.
  • the PRS configuration information includes PRS frequency domain resource information
  • the PRS frequency domain resource information includes PRS resource unit RE frequency shift information, the PRS RE frequency shift information and the PRS OFDM symbol sequence value calculated from the PRS timing Related.
  • the PRS and RE frequency shift information is a value of the PRS and RE frequency shift
  • the value of the PRS and RE frequency shift is obtained according to the following formula:
  • ⁇ shift is the PRS RE frequency shift
  • l ′ is the sequence value of the PRS OFDM symbols calculated from the PRS timing.
  • c PRS is the PRS RE density configuration parameter
  • mod represents the modulo operation.
  • the PRS and RE frequency shift information includes a sequence value of PRS and OFDM symbols calculated from a PRS timing; and the determining module is specifically configured to use the PRS timing calculation based on the following formula
  • the sequence value of the PRS OFDM symbols determines the PRS RE frequency shift:
  • ⁇ shift is the PRS RE frequency shift
  • l ′ is the sequence value of the PRS OFDM symbols calculated from the PRS timing.
  • c PRS is the PRS RE density configuration parameter
  • mod represents the modulo operation.
  • the method further includes a muting decision module, configured to send the mapped PRS on the time-frequency resource for sending the PRS, according to the PRS muting configuration information and the time-frequency resource for sending the PRS.
  • a muting decision module configured to send the mapped PRS on the time-frequency resource for sending the PRS, according to the PRS muting configuration information and the time-frequency resource for sending the PRS.
  • the PRS muting configuration information is used to indicate a muted PRS unit and a candidate muted PRS unit
  • the Candidate mute PRS is the mute PRS block in the crew.
  • the sending module is specifically configured to send the mapped PRS on the PRS block determined to be not muted.
  • PRSs in one PRS block are transmitted using the same beam.
  • a base station including: a muting decision module, configured to determine that the time-frequency resource used for sending PRS is muted and / or not used according to the PRS muting configuration information and the time-frequency resource used for sending PRS.
  • a muted PRS block ; a sending module for sending a mapped PRS on the PRS block determined to be not muted.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block in the candidate mute PRS unit.
  • PRSs in one PRS block are transmitted using the same beam.
  • the PRS mute configuration information includes: PRS mute configuration information, which is used to indicate a mute PRS set and a candidate mute PRS set, where all PRS blocks corresponding to the mute PRS set Mute; for each candidate mute PRS unit indicated by the unit mute configuration information at PRS, configure the corresponding PRS block mute configuration information to indicate whether the PRS block in the unit is muted at the corresponding candidate mute PRS.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is used to receive or send information under the control of the processor; and the processor is used to read the The program in the memory executes the method according to any one of the first aspects.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is configured to receive or send information under the control of the processor; and the processor is configured to read the The program in the memory executes the method according to any one of the second aspects.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing first aspects.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing second aspects.
  • 1a and 1b are schematic diagrams of PRS resource mapping in an existing LTE system, respectively;
  • 3 is a schematic diagram of PRS resource mapping in an existing NR system
  • FIG. 4 is a schematic diagram of a communication system architecture applicable to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a PRS transmission process according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of PRS resource mapping in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of PRS autocorrelation in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of PRS resources, PRS resource sets, and OTDOA positioning timing in the embodiment of the present application.
  • FIG. 9 is a schematic diagram of a PRS mute configuration according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a PRS transmission process according to another embodiment of the present application.
  • FIG. 11A is a schematic diagram of configuring PRS mute in a cell in units of a PRS unit in an embodiment of the present application.
  • FIG. 11B is a schematic diagram of configuring PRS mute of a cell with a PRS timing as a minimum unit according to an embodiment of the present application.
  • FIG. 11C is a schematic diagram of configuring PRS mute of a cell with a PRS resource set as a minimum unit according to an embodiment of the present application.
  • FIG. 11D is a schematic diagram of configuring PRS mute of a cell with a PRS resource as a minimum unit according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a base station according to another embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to another embodiment of the present application.
  • PRS subframe The subframe used to send PRS in the radio frame, that is, the PRS is sent in this subframe;
  • PRS time slot a time slot for sending PRS in a PRS subframe, that is, sending PRS in this time slot;
  • PRS RB a resource block (resource block, RB) for sending PRS, that is, sending PRS in the RB;
  • PRS RE a resource element (resource) (RE) for sending PRS, that is, sending PRS in the RE;
  • PRS timing It can be understood as a time window for sending PRS within this time window, or turning off PRS within this time window.
  • c PRS indicates the PRS RB density configuration parameter, which indicates the number of PRS REs on a PRS symbol in a PRS RB;
  • ⁇ f PRS indicates the subcarrier interval of PRS
  • the reference point A of the parameter k is the subcarrier 0 in the common resource block 0 in the common resource block grid defined by 3GPP Ts 38.211;
  • l indicates the index of the orthogonal frequency division multiplexing symbol in the time slot
  • indicates the subcarrier interval configuration; optionally, ⁇ ⁇ 0,1,2,3,4 ⁇ ;
  • This parameter indicates the starting point of the PRS bandwidth when the subcarrier interval is configured ⁇ . This parameter is configurable.
  • This parameter is configurable.
  • p indicates the antenna port number of the PRS.
  • the PRS of each cell is transmitted in a configured transmission mode.
  • the transmission mode is defined by the transmission time period, transmission duration, and transmission offset.
  • the PRS is transmitted on the PRS RE in the PRS orthogonal frequency division multiplexing (OFDM) symbol in the defined PRS subframe.
  • OFDM orthogonal frequency division multiplexing
  • a PRS mapping rule provided in the prior art can be based on the following formula to a PRS sequence corresponding to the OFDM symbol index l in a subframe n s , f Mapping to PRS RE:
  • the data mapped to this RE can be expressed as This parameter is configurable for the PRS transmission power scaling factor.
  • n ′ is:
  • the reference point A of the parameter k may be subcarrier 0 in the common resource block 0 in the common resource block grid defined for the LTE system communication protocol Ts 38.211.
  • ⁇ shift is the PRS RE frequency shift.
  • l is the index of the OFDM symbol in the time slot occupied by the PRS.
  • the operator "mod" in the formula represents a modulo operation.
  • two or more common subcarriers in all PRS and RBs are not mapped to the PRS sequence.
  • FIG. 1a when the number of LTE physical broadcast channel (PBCH) antenna ports is 1 or 2, no PRS is transmitted on the third subcarrier and the ninth subcarrier.
  • Figure 1b when the number of LTE PBCH antenna ports is 3 or 4, the 3rd, 6th, 9th, and 12th subcarriers do not send PRS. Among them, the RE marked “R6” in FIG. 1a and FIG. 1b sends a PRS.
  • PBCH physical broadcast channel
  • the existing New Air Interface ((New Radio, NR) PRS mapping rules may also have the problem of uneven PRS symbol distribution of each subcarrier.
  • the PRS symbol distribution in all PRS and RBs is the same.
  • Each square represents a RE
  • the horizontal direction represents the time domain
  • the numbers labeled in the horizontal direction represent the index value of the OFDM symbol
  • the vertical direction represents the frequency domain
  • the numbers labeled in the vertical direction are used to identify the subcarrier.
  • PRS timing There are 2 PRS RBs, and PRS symbols are only mapped to valid downlink OFDM symbols, that is, the first 3 downlink OFDM symbols and the last reserved for the physical downlink control channel (PDCCH) are skipped.
  • PDCCH physical downlink control channel
  • the PRS symbols on some subcarriers may be more than the PRS symbols on other subcarriers. (For example, subcarrier 1).
  • the embodiment of the present application proposes a PRS mapping rule, which can make the PRS evenly distributed on all subcarriers as much as possible, thereby reducing the peak of the autocorrelation side.
  • a configuration method of the PRS is provided, which may specifically include the following aspects:
  • 5G-NR is in the frequency range of 450MHz-6000MHz, that is, the frequency range FR1 (Frequency and Range1), supports the downlink subcarrier interval ⁇ 15, 30, 60 ⁇ kHz; in the frequency range of 24250MHz-52600MHz, that is, the frequency range FR2 (Frequency and Range) 2) Support the sub-channel interval of the downlink channel to be ⁇ 60, 120, 240 ⁇ kHz, where the sub-carrier interval of 240 kHz is only used for sending Synchronization Signal (SS) / PBCH blocks. Therefore, the embodiment of the present application proposes to use the subcarrier interval of the PRS as a configurable parameter.
  • the base station may send the configuration information of the subcarrier interval of the PRS, so that the terminal obtains the subcarrier interval of the PRS.
  • the configurable PRS subcarrier interval in the frequency range of 450 MHz to 6000 MHz, that is, the frequency range FR1 (Frequency Range 1), includes ⁇ 15, 30, 60 ⁇ kHz, that is, if the frequency range FR1 is
  • the PRS subcarrier interval configuration information sent by the base station to the terminal is one of the subcarrier interval ⁇ 15, 30, 60 ⁇ kHz; in the frequency range 24250MHz-52600MHz, which is the frequency range FR2 (Frequency Range 2), the configurable PRS The subcarrier interval is ⁇ 60, 120, 240 ⁇ kHz, that is, if within the frequency range FR1, the configuration information of the PRS subcarrier interval sent by the base station to the terminal is one of the subcarrier interval ⁇ 60, 120, 240 ⁇ kHz.
  • the subcarrier interval of the PRS as a configurable parameter can make the network configure the subcarrier interval of the PRS to be the same as or different from the subcarrier interval of other signals used for data communication according to needs.
  • the complexity of system implementation can be reduced, such as facilitating the arrangement of time and frequency resources.
  • the subcarrier interval of the PRS is configured to be different from the subcarrier interval of other signals used for data communication, which can facilitate optimization of time and frequency resource utilization and the like.
  • the PRS transmission bandwidth In order to maximize the positioning performance, when configuring the PRS transmission bandwidth, consider how to use all resource blocks (RBs) in the carrier bandwidth to transmit the PRS.
  • RBs resource blocks
  • the carrier bandwidth supported by LTE is ⁇ 1.5,3,5,10,15,20 ⁇ MHz
  • the maximum PRB number corresponding to each carrier bandwidth is ⁇ 6,15,25,50,75,100 ⁇ RB. Therefore, the PRS transmission bandwidth supported by the PRS in the LTE system is ⁇ 6,15,25,50,75,100 ⁇ RB.
  • the carrier bandwidth supported by the NR system is no longer limited to ⁇ 1.5,3,5,10,15,20 ⁇ MHz, and the carrier bandwidth is ⁇ 1.5,3,5,10,15,20 ⁇ MHz, which corresponds to the maximum PRB
  • the number is no longer ⁇ 6,15,25,50,75,100 ⁇ RBs and is related to the corresponding subcarrier interval. Therefore, the configuration of the PRS transmission bandwidth can be different from the configuration of the LTE PRS transmission bandwidth.
  • a configuration method of the PRS transmission bandwidth can be as shown in the following table. 1 and Table 2. Among them, Table 1 is used to configure the PRS transmission bandwidth at FR1, and Table 2 is used to configure the PRS transmission bandwidth at FR2.
  • Table 1 PRS transmission bandwidth configuration for frequency range FR1
  • Table 2 PRS transmission bandwidth configuration for frequency range FR2
  • the base station may send the configuration information of the PRS transmission bandwidth to the terminal.
  • the PRS transmission bandwidth is related to the PRS subcarrier interval. Based on the current frequency range and the current subcarrier interval of the PRS in the frequency range, the base station can obtain a set of transmissions corresponding to the current PRS subcarrier interval through Table 1 or Table 2. Bandwidth parameter, and select one of them to obtain the transmission bandwidth configuration information of the PRS and send it to the terminal.
  • the configuration of the duration, period, and time offset of NR DL PRS at least covers the LTE PRS.
  • the duration, period, and time offset of the PRS can be automatically adjusted by using the time slot unit, that is, it can be adjusted by the time slot unit.
  • the offset is ⁇ 0, ..., P-1 ⁇ time slots.
  • NR OTDOA positioning timing transmission period and configuration offset may refer generally to the PRS transmission period and time offset configuration.
  • the base station may send the configuration information of the PRS transmission bandwidth to the terminal.
  • the configuration information For specific content of the configuration information, refer to the foregoing description.
  • FIG. 4 it is a schematic diagram of a possible communication scenario provided by an embodiment of the present application.
  • the terminal 110 accesses a wireless network through a radio access network (RAN) node 120 to obtain services of an external network (such as the Internet) through the wireless network, or communicate with other terminals through the wireless network.
  • RAN radio access network
  • the terminal is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., and is a device that provides voice and / or data connectivity to users , For example, handheld devices with wireless connectivity, vehicle-mounted devices, etc.
  • some examples of terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • RAN is the part of the network that connects the terminal to the wireless network.
  • a RAN node (or device) is a node (or device) in a radio access network, and may also be called a base station.
  • some examples of RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • the above communication architecture may be an access network architecture in a 5G system or an evolved system thereof.
  • the network architecture described in the embodiments of the present application is to more clearly illustrate the technical solutions in the embodiments of the present application, and does not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the evolution of the network architecture, The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the base station may map the PRS sequence to the time-frequency resource used to send the PRS, and send the mapped PRS on the time-frequency resource used to send the PRS; the terminal may receive the base station transmission on the time-frequency resource used to send the PRS. Based on the measured PRSs from the serving cell and neighboring cells, and can report the RSTD to the network positioning server, so that the network positioning server can use the multipoint positioning algorithm or other algorithms to determine the terminal ’s position.
  • FIG. 5 is a schematic diagram of a PRS transmission process according to an embodiment of the present application. As shown in the figure, the process may include:
  • the base station determines time-frequency resources for sending the PRS according to the configuration information of the PRS.
  • the configuration information of the PRS may include PRS frequency domain resource information, and further may include PRS RE density configuration parameters, PRS time domain resource information, and other information.
  • the PRS frequency domain resource information is used to indicate the frequency domain resources of the PRS.
  • the PRS frequency domain resource information can be used to configure PRSs of different bandwidths at corresponding frequency positions.
  • the PRS RE density configuration parameter is used to indicate the number of REs in the PRS RB used to send the PRS.
  • the PRS time domain resource information is used to indicate the PRS time domain resources, and specifically may include time slot configuration information in the PRS subframe (used to indicate the time slot for sending PRS in the PRS subframe), and symbol configuration information in the PRS time slot ( It is used to indicate information such as the symbol used to send the PRS in the PRS slot), the transmission period of the PRS subframe, and the time offset.
  • the PRS frequency domain resource information may include PRS and RE frequency shift information. Further, the PRS frequency domain resource information may further include a starting point of a downlink resource grid, a PRS bandwidth starting point, a PRS bandwidth, and a PRS transmission. Power scaling factor and other parameters.
  • the PRS and RE frequency shift can be obtained through the PRS and RE frequency shift information, and the position of the RE sending the PRS in the PRS and RB can be determined through the PRS and RE offset.
  • PRS and RE frequency shifts can be used to reduce overlap and interference between PRSs in neighboring cells.
  • the PRS RE frequency shift is related to the PRS OFDM symbol sequence value calculated from the PRS occasion.
  • the sequence value of the PRS OFDM symbols may be a sequence number of the PRS OFDM symbols. All PRS OFDM symbols (that is, OFDM symbols used to send PRS) in the PRS timing may be consecutively numbered in chronological order, and the number is the PRS timing.
  • the PRS RE frequency shift may depend on the sequence number 1 ′ of the PRS OFDM symbol calculated from the PRS occasion, and the PRS sequence identifier And the PRS RE density configuration parameter c PRS .
  • the PRS occasion includes N PRS (N PRS ⁇ 1) consecutive PRS subframes.
  • N PRS N PRS ⁇ 1
  • the PRS transmission period and the PRS subframe offset of the PRS timing may be configured. That is, the PRS timing can be defined by parameters such as the PRS transmission period and the PRS subframe offset in the PRS configuration information.
  • the PRSRE frequency shift information is specifically the value of the PRSRE frequency shift, and the base station can directly obtain the PRSRE frequency shift value according to the PRSRE frequency shift information.
  • the PRS RE frequency shift information may also include multiple parameters for determining the PRS RE frequency shift, and the base station may determine the PRS RE frequency shift according to the parameters included in the PRS RE frequency shift information.
  • the PRS RE frequency shift information may include a PRS OFDM symbol sequence value l ′ and a PRS sequence identifier calculated from the PRS timing.
  • the PRS RE density configuration parameter c PRS may be included in the PRS RE frequency shift information.
  • the expression of the PRS RE frequency shift may be:
  • ⁇ shift is the PRS RE frequency shift
  • l ′ is the sequence value of the PRS OFDM symbols calculated from the PRS timing.
  • c PRS is the PRS RE density configuration parameter
  • mod represents the modulo operation.
  • the base station maps the PRS sequence to a time-frequency resource for sending the PRS.
  • the base station may map a PRS sequence to a frequency domain resource for sending the PRS according to the following formula:
  • Is the value of resource unit (k, l) p, ⁇ , (k, l) p, ⁇ represents the resource unit that configures frequency domain index k and time domain index l of antenna port p and subcarrier interval ⁇ ;
  • ⁇ PRS is the PRS transmission Power scaling factor Is a PRS sequence with an OFDM symbol index of 1 in time slots n s, f .
  • n ′ is:
  • ⁇ shift is the PRS RE frequency shift, and ⁇ shift can be calculated by the above formula (5).
  • S503 The base station sends the mapped PRS on the time-frequency resource used to send the PRS.
  • the configuration information of the PRS may further include time domain configuration information, where the time domain configuration information is used to indicate a starting position of the PRS in a time slot, and the PRS occupies N number of the time slots in a time slot. Consecutive symbols, where N is one of 1, 2, 3, 4, 6, and 12.
  • each subframe has fixed orthogonal frequency division multiplexing (OFDM) symbols used to send a physical downlink control channel (PDCCH) and a common reference signal (Cell-specific Signal (CRS)). Due to this limitation, the OFDM symbols for DL PRS used for transmission in each LTE PRS subframe are limited to eight.
  • the NR system does not send a CRS, and does not send a PDCCH with a fixed OFDM symbol. Therefore, the OFDM symbols of the DL PRS used for transmission in each PRS slot will not be limited to eight.
  • an NR DL PRS resource may include one or more consecutive OFDM symbols in a time slot; in the frequency domain, an NR DL PRS resource may include multiple consecutive RBs.
  • the base station sends DL PRS signals in a certain beam direction through one or more NR and DL PRS resources.
  • N ⁇ 1,2,3,4,6,12 ⁇ consecutive PRS OFDM symbols can be configured in one slot, and N consecutive PRS OFDM
  • the initial positioning of the symbols relative to the beginning of the time slot is also configurable, so that N consecutive PRS symbols can be flexibly allocated within the time slot.
  • N the number of PRS OFDM symbols configured
  • the PRS RE frequency shift information included in the PRS configuration information is related to the PRS OFDM symbol sequence value calculated from the PRS timing
  • the PRS time-frequency resources determined according to the PRS configuration information are The PRS symbols can be distributed as evenly as possible in all subcarriers of the PRS frequency band, which can overcome the large autocorrelation side peak problem caused by the traditional PRS mapping rules.
  • FIG. 6 exemplarily illustrates a schematic diagram of PRS resource mapping, where each square represents an RE, the horizontal direction is the time domain, and the vertical direction is the frequency domain.
  • the number l in the horizontal direction marked above the figure represents the index value of the OFDM symbol
  • the number l ′ in the horizontal direction marked below the figure represents the sequence value of the PRS OFDM symbol (or PRS OFDM) calculated from the PRS timing. Symbol number).
  • the figure only shows the PRS symbol distribution in 2 RBs. It can be seen from FIG.
  • FIG. 7 exemplarily illustrates a schematic diagram of autocorrelation of a resource mapped PRS. Comparing FIG. 7 with FIG. 2, it can be seen that the PRS resource mapping method proposed in the embodiment of the present application can solve the problem that the PRS resource mapping method in the prior art causes a large peak of the PRS autocorrelation side.
  • PRS signals from multiple cells may collide in time and frequency, resulting in inter-cell PRS-related collision interference.
  • a strong PRS from a short-range cell will mask a weak PRS from a long-range cell, making it difficult for the terminal to detect the PRS of the long-range cell, and this in turn results in a loss of audibility. This problem is in dense cities or poor network deployment China is particularly serious.
  • an embodiment of the present application further provides a PRS mute method to increase the detectability of the PRS in the long-distance cell.
  • This method can be applied to 5G NR systems, and PRS mute can be achieved for scenarios where PRS is transmitted in multiple beams.
  • a PRS resource set (also referred to as a resource block) is defined in the embodiments of the present application.
  • One PRS resource set can be configured with one or more PRS resources to support multi-beam sending PRS in different deployment scenarios.
  • Each beam direction may correspond to one or more PRS resources.
  • the number of PRS resources in one PRS resource set may be configured to be the same as or greater than the number of SS / PBCH blocks in the SS / PBCH block set.
  • the configuration can indicate the correspondence between the beam (such as direction and width) of the PRS resource and the quasi co-location (QCL) of the SS / PBCH beam (such as direction and width). In this way, the terminal can help detect PRS quickly and reduce the power consumption of the terminal through the detected SS / PBCH.
  • QCL quasi co-location
  • the maximum number of CSI-RS resources supported by the NR system is 192, and each CSI-RS resource can correspond to one beam direction, the maximum number of PRS resources that can be configured in a PRS resource set can also be 192. In this way, it is beneficial to realize PRS and CSI-RS resource sharing.
  • a set of continuously transmitted PRS resource sets can be configured as one NR OTDOA positioning timing, as shown in FIG. 8.
  • the terminal may not be able to obtain a reliable positioning measurement value by detecting a PRS transmitted in a certain PRS resource (a certain beam direction) at one time.
  • the advantage of configuring a group of continuously transmitted PRS resource sets as one NR and OTDOA positioning timing is to provide the terminal with the opportunity to detect the PRS sent by a certain PRS resource (a certain beam direction) multiple times in one beam direction. Enables the terminal to obtain more reliable positioning measurements without waiting for the next PRS transmission cycle. It also helps to save terminal power consumption and reduce time delay in OTDOA.
  • the duration of the NR OTDOA positioning timing or the number of PRS resource sets that are continuously and repeatedly transmitted must be configured within a certain time range.
  • the duration of the NR OTDOA positioning timing is set to 5 hours.
  • the number of PRS resource sets that are continuously and repeatedly transmitted within a slot is configured within five ranges.
  • a PRS timing unit includes one or more PRS timings.
  • a PRS timing includes one or more PRS blocks (or PRS resource sets).
  • a PRS block (or PRS resource set) includes one or more PRS resources.
  • PRS resources in one PRS block can be transmitted using the same beam.
  • a PRS block (or PRS resource set) may be composed of one or more consecutive PRS OFDM signals, and may also be composed of one or more consecutive PRS time slots.
  • a PRS occasion is a set of PRS blocks (or PRS resource sets), which contains one or more PRS blocks (or PRS resource sets).
  • the PRS timing can be seen as a set of PRS blocks (or PRS resource sets) required to implement a beam scan.
  • the number of PRS blocks (or PRS resource sets) included in a PRS occasion can be configured. For example, the number of PRS blocks (or PRS resource sets) included in one PRS occasion may be the same as or different from the number of SS / PBCH blocks in one SS / PBSCH block set.
  • the PRS mute configuration information may be set on the base station.
  • the PRS mute configuration information may be a component of the PRS configuration information, or may be independent of the PRS configuration information, which is not limited in the embodiment of the present application.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block (PRS resource set) in the candidate mute PRS unit.
  • the base station may determine on which PRS REs PRS is sent, and on which PRS REs PRS mute is performed (that is, PRS is not sent) according to the PRS time unit to which the PRS to be sent belongs and the PRS mute configuration information.
  • the PRS mute configuration information may include unit mute configuration information during PRS and PRS block (or PRS resource set) mute configuration information.
  • the PRS unit mute configuration information is used to indicate the mute PRS unit and the candidate mute PRS unit. Among them, all PRS blocks (PRS resource sets) corresponding to the unit when the PRS is muted need to be mute.
  • the candidate mute PRS block that is, the PRS block (PRS resource set) corresponding to the crew when the candidate mute PRS is selected, may send PRS or may be mute.
  • the corresponding PRS block (or PRS resource set) mute configuration information can be configured to indicate the corresponding candidate PRS block (or PRS) Resource set) Whether to mute.
  • Block or PRS resource set).
  • the base station may not send on the indicated PRS block (or PRS resource set) configured to be mute according to the PRS mute configuration information. PRS.
  • the process may include:
  • the base station determines a PRS block (or PRS resource set) that is muted and / or not muted among the time-frequency resources for sending PRS according to the PRS muting configuration information and the time-frequency resources for sending PRS.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block (or PRS resource set) in the candidate mute PRS unit.
  • this step may be performed after the base station maps the PRS sequence to the time-frequency resource used to send the PRS according to the PRS configuration information.
  • the base station maps the PRS sequence to the time-frequency resource used to send the PRS according to the configuration information of the PRS.
  • the PRS configuration information the PRSRE frequency shift information and the slave The PRS OFDM symbol order value calculation at the beginning of the PRS timing is correlated.
  • the base station maps the PRS sequence to the time-frequency resource used to send the PRS according to the configuration information of the PRS.
  • the specific implementation manner may also be other manners, for example, a manner defined by a current related communication standard.
  • the base station sends the mapped PRS on the PRS block (or PRS resource set) determined not to be muted, and performs PRS mute (that is, does not send PRS) on the PRS block (or PRS resource set) determined to be muted.
  • the crew mute configuration information in the PRS may be in the form of a bitmap, which is called the crew muting bitmap in the PRS.
  • Each bit in the PRS unit muting bitmap corresponds to a PRS unit. If a bit value is 1, it means that the corresponding PRS unit is muted, that is, the PRS unit is a silent PRS unit. If one bit The value of the bit is 0, which means that the corresponding PRS unit is the candidate mute PRS unit, and vice versa.
  • the PRS block mute configuration information may be in the form of a bitmap, which is called a PRS block muting bitmap.
  • Each bit in the PRS block muting bitmap corresponds to a PRS block (or PRS resource set). If a bit value is 0, it means that the corresponding PRS block is muted, that is, the PRS block is a muted PRS block (or PRS Resource set), if a bit value is 1, it means that the corresponding PRS block (or PRS resource set) is not muted, that is, PRS needs to be sent, and vice versa.
  • muting configuration information of the PRS group and the mute configuration information of the PRS block (or PRS resource set) Take the mute configuration information of the PRS group and the mute configuration information of the PRS block (or PRS resource set) as the PRS group muting bitmap and the PRS block (or PRS resource set) muting bitmap respectively as an example.
  • a PRS time unit contains one or more PRS opportunities
  • a PRS time unit contains one or more PRS blocks (or PRS resource sets)
  • each bit in the bitmap corresponds to a PRS time unit and PRS block muting.
  • Each bit in the bitmap corresponds to a PRS block (or PRS resource set).
  • the value of bit 0 in the unit mutation bitmap in PRS is "1", which indicates that the corresponding unit # 0 in PRS is the unit in silent PRS; the value of bit 1 in the unit mutation bitmap in PRS is "0" indicates that the corresponding PRS crew # 1 is a candidate silent PRS crew.
  • the PRS block muting bitmap corresponding to the PRS occasion # 1 included in the unit # 1 the values of bit 0 and bit 2 are "0", indicating that the corresponding PRS block # 0 and PRS block # 2 are muted.
  • the value of bit 1 is "1", which indicates that the corresponding PRS block # 1 is not muted.
  • the base station can mute all PRS blocks (or PRS resource sets) included in unit # 0 at the time of PRS (that is, no PRS is transmitted). Mute on PRS block # 0 and PRS block # 2.
  • the PRS unit muting bitmap determines which PRS units are muted.
  • the PRS block (or PRS resource set) muting bitmap determines which PRS blocks (or PRS resource sets) are muted.
  • the unit muting bitmap and PRS block (or PRS resource set) muting bitmap during PRS can be appropriately set.
  • the base station since the base station determines the PRS that is muted and / or not muted among the time-frequency resources used to send the PRS, according to the PRS muting configuration information and the time-frequency resources used to send the PRS.
  • Block (or PRS resource set), and the PRSs in one PRS block (or PRS resource set) use the same beam transmission, so it can support the mute mode when transmitting PRS in multiple beams.
  • T g When the PRS is silent, the unit cycle is T g , that is, the unit includes T g PRS units per cycle.
  • Each PRS timing unit includes T o PRS timings.
  • Each PRS occasion includes T s PRS resource sets.
  • the base station Before the base station sends the PRS on the time-frequency resources used to send the PRS, it can determine the PRS resources that need to be muted by performing the mute configuration method one.
  • the base station determines the PRS time unit that is muted and / or not muted among the time-frequency resources used to send the PRS according to the PRS muting configuration information and the time-frequency resources used to send the PRS.
  • the PRS mute configuration information includes unit mute configuration information during PRS, and is used to indicate one or more PRS mute groups configured to be mute and / or not mute.
  • the base station may send the mapped PRS within the unit when it is determined that the PRS is not muted.
  • the PRS mute of a cell can be configured in units of a PRS unit.
  • T g is the number of the silent period when the unit configuration of the PRS. If a bit in the mute bit sequence S g is set to “0”, the PRS in the crew is muted when the corresponding PRS, that is, no PRS is transmitted. If the bits in the mute bit sequence S g are set to "1", the PRS in the unit is not muted at the corresponding PRS.
  • the PRS resource that needs to be muted may be determined by performing the muting configuration method two.
  • the base station determines a PRS block or a PRS resource set that is muted and / or not muted in the time-frequency resources used to send the PRS according to the PRS muting configuration information and the time-frequency resources used to send the PRS.
  • the PRS mute configuration information includes a PRS timing mute sequence corresponding to the candidate mute PRS timing unit, and is used to indicate a PRS timing of the mute and / or non-muted group in the corresponding candidate mute PRS timing.
  • the base station may send the mapped PRS at a PRS timing determined to be not muted.
  • the PRS mute configuration information further includes a PRS mute sequence, which is used to indicate a mute PRS mute and a candidate mute PRS mute.
  • This method can be used to configure the PRS mute of a cell with the PRS timing as a minimum unit.
  • the mute configuration of the PRS timing can be realized by two mute sequences (bit sequences) together.
  • the length g of PRS muting unit is defined as the T g of the candidate bit sequence PRS muting S, wherein when the number of the mute unit configured PRS cycle length T g. If the bits in the mute bit sequence S g are set to “0”, the corresponding PRS-time unit is a candidate PRS-time unit. When the candidate PRS is muted, some PRS timings will be muted, and some PRS timings will not be muted.
  • T o is the number of PRS timings in the crew at one PRS.
  • Unit respective PRS timing is muted if a bit muted PRS timing of the bit sequence S o is set to "0", then the candidate PRS muted. If a mute bit PRS timing of the bit sequence S o is set to "1", the corresponding PRS timing is not muted.
  • the PRS mute bit sequence S g of the unit may not be configured when the candidate PRS mute is not configured. At this time, all PRS-time crews are candidate PRS-mute crews.
  • the base station Before the base station sends the PRS on the time-frequency resource used to send the PRS, the base station may determine the PRS resource that needs to be muted by performing the muting configuration method 3.
  • the base station determines a PRS block or a PRS resource set that is muted and / or not muted in the time-frequency resources used to send the PRS according to the PRS muting configuration information and the time-frequency resources used to send the PRS.
  • the PRS mute configuration information includes a PRS block or a PRS resource set mute sequence corresponding to a candidate mute PRS occasion, and is used to indicate a PRS block or a PRS resource set that is muted and / or not muted in the corresponding candidate mute PRS occasion. . Accordingly, when the base station sends the mapped PRS on the time-frequency resource used to send the PRS, the base station may send the mapped PRS on the PRS block or the PRS resource set determined not to be muted.
  • the PRS mute configuration information further includes a PRS block set or a PRS timing mute sequence corresponding to the unit when the candidate mute PRS is used to indicate the mute PRS timing and the candidate mute PRS opportunity in the corresponding candidate mute unit.
  • the PRS mute configuration information further includes a PRS mute sequence, which is used to indicate a mute PRS mute and a candidate mute PRS mute.
  • This method can be used to configure the PRS mute of a cell with the PRS resource set as the minimum unit.
  • the mute configuration of the PRS timing can be realized by three mute sequences (bit sequences) together.
  • T g is the number of the silent period when the unit configuration of the PRS. If the bits in the mute bit sequence S g are set to “0”, the corresponding PRS-time unit is a candidate PRS-time unit. When the candidate PRS is muted, some PRS timings will be muted and some PRS timings will not be muted.
  • T o when PRS PRS in the number of silent type timing. S o If a bit is set in the corresponding unit when the PRS timing is "0", then the candidate for the PRS PRS mute the mute timing candidate. If a bit in the S o is set to "1", the corresponding PRS timing is not muted.
  • T s is the number of PRS resource sets in a PRS occasion. If a certain bit in S s is set to "0", the corresponding PRS resource set in the candidate PRS muting occasion is muted. If a certain bit in S s is set to "1", the corresponding PRS resource set in the candidate PRS muting occasion is not muted.
  • the bit sequence S g of the crew when the candidate PRS is muted may not be configured. At this time, all the crews in the PRS are considered as the candidate PRS muted.
  • the bit sequence S o defining the candidate PRS mute timing may not be configured. At this time, the PRS timing in the crew of all candidate timings is considered as the candidate PRS mute timing.
  • the base station Before the base station sends the PRS on the time-frequency resource used to send the PRS, the base station may determine the PRS resource that needs to be muted by performing the mute configuration method 4.
  • the base station determines a PRS block or a PRS resource set that is muted and / or not muted in the time-frequency resources used to send the PRS according to the PRS muting configuration information and the time-frequency resources used to send the PRS.
  • the PRS mute configuration information includes a PRS resource mute sequence corresponding to a candidate mute PRS block or a PRS resource set, and is used to indicate a PRS resource in a corresponding candidate mute PRS block or PRS resource that is muted and / or not muted. Accordingly, when the base station sends the mapped PRS on the time-frequency resource used to send the PRS, the base station may send the mapped PRS on the PRS resource determined to be not muted.
  • the PRS mute configuration information further includes a PRS block or a PRS resource set mute sequence corresponding to the candidate mute PRS timing, and is used to indicate a mute PRS block or PRS resource set and a candidate mute PRS block or PRS resource set.
  • the PRS mute configuration information further includes a PRS timing mute sequence corresponding to the unit when the candidate mute PRS is used, and is used to indicate the mute PRS timing and the candidate mute PRS opportunity in the corresponding candidate mute unit.
  • the PRS mute configuration information further includes a PRS mute sequence, which is used to indicate a mute PRS mute and a candidate mute PRS mute.
  • This method can be used to configure the PRS mute of a cell with the PRS resource as the minimum unit.
  • the mute configuration of the PRS timing can be realized by four mute sequences (bit sequences) together.
  • T g is the number of cycles during silent configuration PRS unit. If the bits in the mute bit sequence S g are set to “0”, the corresponding PRS-time unit is a candidate PRS-time unit. When the candidate PRS is muted, some PRS timings will be muted, and some PRS timings will not be muted.
  • T o when PRS PRS in the number of silent type timing. If a bit in the S o is set to "0", then the candidate PRS PRS muting unit corresponding to the timing of the mute timing candidate PRS. If a bit in the S o is set to "1", the corresponding PRS timing is not muted.
  • a candidate PRS mute resource set is defined using a bit sequence S s of length T s , where T s is the number of PRS resource sets in the PRS mute timing. If a certain bit in S s is set to “0”, the corresponding PRS resource set in the candidate PRS mute timing is the candidate PRS mute resource set. If a certain bit in S s is set to "1", the corresponding PRS resource set is not muted.
  • T r is the number of PRS resources in a PRS resource set. If a certain bit in S r is set to “0”, the corresponding PRS resource in the candidate PRS mute resource set is muted. If a certain bit in S r is set to “1”, the corresponding PRS resource in the candidate PRS muting resource set is not muted.
  • the bit sequence S g that defines the crew when the candidate PRS is muted may not be configured. At this time, all PRS time crews are considered to be candidate PRS mute crews. The bit sequence S o defining the candidate PRS mute timing may not be configured. At this time, all candidate timing PRS timings in the crew are considered candidate PRS muting timings. The bit sequence S o defining the candidate PRS mute resource set may not be configured. At this time, all PRS resource sets in the candidate timings are considered as candidate PRS mute resource sets.
  • the embodiment of the present application further provides a base station, which can implement the functions on the base station side in FIG. 5.
  • the base station may include: a determining module 1001, a mapping module 1002, and a sending module 1003.
  • a silence determination module 1004 may be further included.
  • the determining module 1001 is configured to determine time-frequency resources for sending PRS according to the configuration information of the PRS; the mapping module 1002 is used for the base station to map the PRS sequence to the time-frequency resources for sending PRS; the sending module 1003 is configured to The base station sends a mapped PRS on the time-frequency resource used to send the PRS.
  • the configuration information of the PRS includes PRS frequency domain resource information, the PRS frequency domain resource information includes PRSRE frequency shift information, and the PRSRE frequency shift information is related to a PRS OFDM symbol sequence value calculated from a PRS occasion.
  • the PRS RE frequency shift information is a value of the PRS RE frequency shift, and the value of the PRS RE frequency shift is obtained according to the foregoing formula (5).
  • the PRS RE frequency shift information includes an order value of the PRS OFDM symbols calculated from a PRS occasion.
  • the determining module 1001 is specifically configured to determine a PRSRE frequency shift by using the sequence value of the PRS OFDM symbols calculated from the PRS timing according to formula (5).
  • the mute decision module 1004 is configured to determine, before sending the mapped PRS on the time-frequency resource used to send the PRS, the PRS mute configuration information and the time-frequency resource used to send the PRS to determine the PRS blocks that are muted and / or not muted in the time-frequency resources of the PRS.
  • the sending module 1003 is specifically configured to send the mapped PRS on the PRS block determined to be not muted.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block in the candidate mute PRS unit.
  • PRSs in one PRS block are transmitted using the same beam.
  • the embodiment of the present application further provides a base station, which can implement the functions on the base station side in FIG. 13.
  • the base station may include a mute decision module 1101 and a sending module 1102.
  • the muting decision module 1101 is configured to determine a PRS block that is muted and / or not muted in the time-frequency resource for sending PRS according to the PRS muting configuration information and the time-frequency resource for sending PRS; the sending module 1102 is used for The mapped PRS is transmitted on a PRS block determined not to be muted.
  • the PRS mute configuration information is used to indicate a mute PRS unit and a candidate mute PRS unit, and a mute PRS block in the candidate mute PRS unit.
  • PRSs in one PRS block are transmitted using the same beam.
  • the PRS mute configuration information includes: PRS mute configuration information, which is used to indicate a mute PRS set and a candidate mute PRS set, where all PRS blocks corresponding to the mute PRS set Mute; for each candidate mute PRS unit indicated by the unit mute configuration information at PRS, configure the corresponding PRS block mute configuration information to indicate whether the PRS block in the unit is muted at the corresponding candidate mute PRS.
  • the embodiment of the present application further provides a communication device, which can implement the functions of the base station side in the process shown in FIG. 5 in the foregoing embodiment.
  • the communication device may include a processor 1201, a memory 1202, a transceiver 1203, and a bus interface 1204.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 may store data used by the processor 1201 when performing operations.
  • the transceiver 1203 is configured to receive and send data under the control of the processor 1201.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1201 and various circuits of the memory represented by the memory 1202 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1201 is responsible for managing the bus architecture and general processing, and the memory 1202 may store data used by the processor 1201 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 1201 or implemented by the processor 1201.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1201 or an instruction in the form of software.
  • the processor 1201 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1202, and the processor 1201 reads the information in the memory 1202 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1201 is configured to read a program in the memory 1202 and execute a PRS transmission process implemented on the base station side in the process shown in FIG. 5.
  • the embodiment of the present application further provides a communication device, which can implement the functions of the base station side in the process shown in FIG. 9 in the foregoing embodiment.
  • the communication device may include a processor 1301, a memory 1302, a transceiver 1303, and a bus interface 1304.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1302 may store data used by the processor 1301 when performing operations.
  • the transceiver 1303 is configured to receive and send data under the control of the processor 1301.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1301 and various circuits of the memory represented by the memory 1302 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1301 is responsible for managing the bus architecture and general processing, and the memory 1302 may store data used by the processor 1301 when performing operations.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1301 or an instruction in the form of software.
  • the processor 1301 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1302, and the processor 1301 reads the information in the memory 1302 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1301 is configured to read a program in the memory 1302 and execute a PRS transmission process implemented on the base station side in the process shown in FIG. 9.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute a process performed by the base station in FIG. 5.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute a process performed by the base station in FIG. 9.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Abstract

本申请公开了一种定位参考信号传输方法及装置。该方法包括:基站根据PRS的配置信息,确定用于发送PRS的时频资源,将PRS序列映射到所述用于发送PRS的时频资源,在所述用于发送PRS的时频资源上发送映射的PRS。其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS资源单元RE频移信息,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。

Description

一种定位参考信号传输方法及装置
相关申请的交叉引用
本申请要求在2018年07月20日提交中国专利局、申请号为201810804215.7、申请名称为“一种定位参考信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中;本申请要求在2019年02月15日提交中国专利局、申请号为201910117859.3、申请名称为“一种定位参考信号传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种定位参考信号传输方法及装置。
背景技术
观测到达时间差(observed time difference of arrival,OTDOA)是3GPP引入的一种利用测量的下行链路参考信号时间差来进行定位的方法。该方法中,终端(user equipment,UE,也称用户设备)测量来自服务小区和邻近小区的参考信号以获得参考信号时间差测量(reference signal time difference measurement,RSTD),并将RSTD上报给网络定位服务器,网络定位服务器根据该RSTD并用多点定位算法或其他算法来确定该终端的位置。
原则上,终端可以利用任何下行链路参考信号来获得用于支持OTDOA的RSTD。为了提供良好的OTDOA定位性能,3GPP定义了用于支持OTDOA的定位参考信号(positioning reference signals,PRS),以帮助终端检测到来自足够数量邻居小区的下行链路参考信号。
如何传输PRS是目前需要解决的问题。
发明内容
本申请实施例提供一种定位参考信号传输方法及装置。
第一方面,提供一种定位参考信号传输方法,该方法包括:基站根据PRS的配置信息,确定用于发送PRS的时频资源,将PRS序列映射到所述用于发送PRS的时频资源,在所述用于发送PRS的时频资源上发送映射的PRS。其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS RE(PRS资源单元)频移信息,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。
在一种可能的实现方式中,所述PRS RE频移信息为PRS RE频移的取值,所述PRS RE频移的取值是根据以下公式得到的:
Figure PCTCN2019092395-appb-000001
其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
Figure PCTCN2019092395-appb-000002
为PRS序列标识,
Figure PCTCN2019092395-appb-000003
为每个PRS资源块RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
在一种可能的实现方式中,所述PRS RE频移信息包括从PRS时机开始计算的PRS OFDM符号的顺序值,所述方法还包括:
所述基站根据以下公式,利用所述从PRS时机开始计算的PRS OFDM符号的顺序值,确定PRS RE频移:
Figure PCTCN2019092395-appb-000004
其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
Figure PCTCN2019092395-appb-000005
为PRS序列标识,
Figure PCTCN2019092395-appb-000006
为每个PRS RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
在一种可能的实现方式中,所述基站根据以下公式,将PRS序列映射到用于发送PRS的频域资源:
Figure PCTCN2019092395-appb-000007
其中,
Figure PCTCN2019092395-appb-000008
为资源单元(k,l)p,μ的值,(k,l)p,μ表示天线端口p和子载波间隔配置μ的频域索引k和时域索引l的资源单元;β PRS为PRS发送功率缩放因子;
Figure PCTCN2019092395-appb-000009
为时隙n s,f中OFDM符号索引为l的PRS序列;
其中,
Figure PCTCN2019092395-appb-000010
Figure PCTCN2019092395-appb-000011
其中,k的参考点是公共资源块网格中的公共资源块0中的子载波0,
Figure PCTCN2019092395-appb-000012
为PRS带宽起始点,
Figure PCTCN2019092395-appb-000013
为下行链路资源网格的起始点,
Figure PCTCN2019092395-appb-000014
为每个PRS RB中的子载波数量,υ shift为PRS RE频移,c PRS为PRS RE密度配置参数,
Figure PCTCN2019092395-appb-000015
k′=0,1,...,c PRS-1,
Figure PCTCN2019092395-appb-000016
为PRS带宽。
在一种可能的实现方式中,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块;所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:所述基站在确定为不被静音的PRS块上发送映射的PRS。其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
在一种可能的实现方式中,所述PRS静音配置信息,包括:PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块被静音;针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块静音配置信息,用于指示相应候选静音PRS时机组中的PRS块是否被静音。
通过上述第一方面可以看出,由于PRS的配置信息中包含的PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关,使得根据该PRS的配置信息所确定的PRS的时频资源中,PRS符号可以在PRS频带的所 有子载波里尽可能均匀分布,从而可以克服传统PRS映射规则所导致的较大的自相关侧峰值问题。
第二方面,提供一种定位参考信号传输方法,该方法包括:基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块,并在确定为不被静音的PRS块上发送映射的PRS。其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
在一种可能的实现方式中,所述PRS静音配置信息,包括:PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块被静音;针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块静音配置信息,用于指示相应候选静音PRS时机组中的PRS块是否被静音。
通过上述第二方面可以看出,由于基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定用于发送PRS的时频资源中被静音和/或不被静音的PRS块,并且通常一个PRS块中的PRS使用相同的波束传输,因此可以支持多波束传输PRS时的静音模式。
第三方面,提供一种基站,该基站包括:确定模块,用于根据定位参考信号PRS的配置信息,确定用于发送PRS的时频资源;映射模块,用于所述基站将PRS序列映射到所述用于发送PRS的时频资源;发送模块,用于所述基站在所述用于发送PRS的时频资源上发送映射的PRS。其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS资源单元RE频移信息,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。
在一种可能的实现方式中,所述PRS RE频移信息为PRS RE频移的取值,所述PRS RE频移的取值是根据以下公式得到的:
Figure PCTCN2019092395-appb-000017
其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
Figure PCTCN2019092395-appb-000018
为PRS序列标识,
Figure PCTCN2019092395-appb-000019
为每个PRS资源块RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
在一种可能的实现方式中,所述PRS RE频移信息包括从PRS时机开始计算的PRS OFDM符号的顺序值;所述确定模块,具体用于根据以下公式,利用所述从PRS时机开始计算的PRS OFDM符号的顺序值,确定PRS RE频移:
Figure PCTCN2019092395-appb-000020
其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
Figure PCTCN2019092395-appb-000021
为PRS序列标识,
Figure PCTCN2019092395-appb-000022
为每个PRS RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
在一种可能的实现方式中,还包括:静音判决模块,用于在所述用于发送PRS的时频资源上发送映射的PRS之前,根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块;其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。所述发送模块,具体用于在确定为不被静音的PRS块上发送映射的PRS。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
第四方面,提供一种基站,包括:静音判决模块,用于根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块;发送模块,用于在确定为不被静音的PRS块上发送映射的PRS。其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
在一种可能的实现方式中,所述PRS静音配置信息,包括:PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块被静音;针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块静音配置信息,用于指示相应候选静音PRS时机组中的PRS块是否被静音。
第五方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的程序,执行上述第一方面中任一项所述的方法。
第六方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的程序,执行上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第二方面中任一项所述的方法。
附图说明
图1a和图1b分别为现有LTE系统中的PRS资源映射示意图;
图2为现有技术中PRS自相关示意图;
图3为现有NR系统中的PRS资源映射示意图;
图4为本申请实施例适用的通信系统架构示意图;
图5为本申请实施例提供的PRS传输流程示意图;
图6为本申请实施例中的PRS资源映射示意图;
图7为本申请实施例中的PRS自相关示意图;
图8为本申请实施例中PRS资源,PRS资源集和OTDOA定位时机示意图;
图9为本申请实施例提供的PRS静音配置示意图;
图10为本申请另外的实施例提供的PRS传输流程示意图;
图11A为本申请实施例中以PRS时机组为单位配置小区的PRS静音的示意图;
图11B为本申请实施例中以PRS时机为最小单位配置小区的PRS静音的示意图;
图11C为本申请实施例中以PRS资源集为最小单位配置小区的PRS静音的示意图;
图11D为本申请实施例中以PRS资源为最小单位配置小区的PRS静音的示意图;
图12为本申请实施例提供的基站的结构示意图;
图13为本申请另外的实施例提供的基站的结构示意图;
图14为本申请实施例提供的通信装置的结构示意图;
图15为本申请另外的实施例提供的通信装置的结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
(4)本申请实施例中,为了描述方便,定义了如下术语:
PRS子帧:无线电帧内用于发送PRS的子帧,即在该子帧中发送PRS;
PRS时隙:PRS子帧内用于发送PRS的时隙,即在该时隙中发送PRS;
PRS RB:用于发送PRS的资源块(resource block,RB),即在该RB中发送PRS;
PRS RE:用于发送PRS的资源单元(resource elment,RE),即在该RE中发送PRS;
PRS时机:可以理解为一个时间窗,用于在该时间窗内发送PRS,或在该时间窗内将PRS关闭。
(5)本申请实施例中,为了描述方便,定义了如下参数:
(k,l)p,μ:表示天线端口p和子载波间隔配置μ的频域索引k和时域索引l的资源单元(RE);
Figure PCTCN2019092395-appb-000023
表示资源单元(k,l)p,μ的值,即映射到资源单元(k,l)p,μ后的数据;
β PRS:表示PRS发送功率缩放因子,该参数可配置;
c PRS:表示PRS RB密度配置参数,该参数表示一个PRS RB中的一个PRS符号上的PRS RE的数量;
Δf PRS:表示PRS的子载波间隔;
k:表示相对于参考点的子载波索引;可选地,参数k的参考点A是为3GPP Ts 38.211所定义的公共资源块网格中的公共资源块0中的子载波0;
l:表示时隙内的正交频分复用符号索引;
μ:表示子载波间隔配置;可选地,μ∈{0,1,2,3,4};
Figure PCTCN2019092395-appb-000024
表示子载波间隔配置μ时的PRS带宽起始点,该参数可配置;
Figure PCTCN2019092395-appb-000025
表示PRS带宽,该参数可配置;
Figure PCTCN2019092395-appb-000026
表示每个资源块的子载波数量;
Figure PCTCN2019092395-appb-000027
表示子载波间隔配置μ时,下行链路资源网格的大小;
Figure PCTCN2019092395-appb-000028
表示子载波间隔配置μ时,下行链路资源网格的起始点;
Figure PCTCN2019092395-appb-000029
表示PRS序列标识;
Figure PCTCN2019092395-appb-000030
表示子载波间隔配置μ时,帧内的时隙编号;
p:表示PRS的天线端口号。
现有技术中,各小区的PRS以配置的传输模式进行传输。传输模式由传输时间周期、传输持续时间和传输偏移量定义。在PRS传输持续时间内,PRS在所定义的PRS子帧中的PRS正交频分复用(orthogonal frequency division multiplexing,OFDM)符号中的PRS RE上来传送。
现有技术提供的一种PRS映射规则,可以基于以下公式将对应于子帧n s, f中的OFDM符号索引l的PRS序列
Figure PCTCN2019092395-appb-000031
映射到PRS RE上:
Figure PCTCN2019092395-appb-000032
其中,
Figure PCTCN2019092395-appb-000033
表示天线端口p和子载波间隔配置为μ时的PRS RE(k,l)的值,即PRS序列
Figure PCTCN2019092395-appb-000034
映射到该RE后的数据可表示为
Figure PCTCN2019092395-appb-000035
为PRS发送功率缩放因子,该参数可配置。
公式(1)中,n′的表达式为:
Figure PCTCN2019092395-appb-000036
公式(1)中,k的表达式为:
Figure PCTCN2019092395-appb-000037
公式(2)和公式(3)中,参数k的参考点A可以是为LTE系统通信协议Ts 38.211所定义的公共资源块网格中的公共资源块0中的子载波0。υ shift为PRS RE频移。n和k’为整数,
Figure PCTCN2019092395-appb-000038
即n等于
Figure PCTCN2019092395-appb-000039
中的一个,k′∈{0,1,...,c PRS-1},即k′等于(0,1,...,c PRS-1)中的一个。
公式(3)中,PRS RE频移υ shift表达式为:
Figure PCTCN2019092395-appb-000040
其中,l为PRS占用的时隙内的OFDM符号的索引。公式中的运算符“mod”表示取模运算。
基于上述PRS映射规则,在LTE系统中,所有PRS RB中会有两个或更多共同的子载波没有被映射到PRS序列。如图1a所示,当LTE物理广播信道(physical broadcast channel,PBCH)天线端口数目为1或2时,第3子载波和第9子载波上没有发送PRS。如图1b所示,当LTE PBCH天线端口数目为3或4时,第3,6,9,12子载波没有发送PRS。其中,图1a和图1b中标示有“R6”的RE发送PRS。
由于上述现有技术提供的PRS映射规则使所有PRS RB中有两个或更多共同的子载波没有发送PRS,这将造成较大的PRS自相关侧峰值,如图2所示。这些较大的自相关侧峰值对检测PRS的自相关主峰值会带来不利的影响,比如误将侧峰检测为主峰。
现有新空口((New Radio,NR)PRS映射规则也有可能出现各子载波的PRS符号分布不均匀的问题。在NR系统中,所有PRS RB中PRS符号分布是相同的。如图3所示,每个方格表示一个RE,水平方向表示时域,水平方向上标注的数字表示OFDM符号的索引值,垂直方向表示频域,垂直方向上标注的数字用于标识子载波。假设一个PRS时机中有2个PRS RB,PRS符号只被映射到有效的下行链路OFDM符号中,即跳过为物理下行控制信道(Physical Downlink Control Channel,PDCCH)保留的前3个下行链路OFDM符号和最后2个为上行链路保留的2个OFDM符号。从图3中可以看出,每个PRS RB中,有些子载波上的PRS符号(例如子载波4)可能比另一些子载波上的PRS符号(例如子载波1)多一倍。
本申请实施例提出一种PRS映射规则,可以使PRS在所有的子载波上尽可能地均匀分布,从而可以减小自相关侧峰值。
本申请实施例中,针对可应用于5G-NR的PRS,提供了该PRS的配置方 法,具体可以包括以下几个方面:
(一)PRS的子载波间隔。
考虑到5G-NR在频率范围450MHz–6000MHz,即频率范围FR1(Frequency Range 1),支持下行子载波间隔{15,30,60}kHz;在频率范围24250MHz–52600MHz,即频率范围FR2(Frequency Range 2),支持下行信道子载波间隔为{60,120,240}kHz,其中子载波间隔240kHz仅用于同步信号(Synchronization Signal,SS)/PBCH块的发送。因此,本申请实施例提出将PRS的子载波间隔作为可配置的参数。基站可发送PRS的子载波间隔的配置信息,使得终端获得PRS的子载波间隔。
本申请实施例中,在频率范围450MHz–6000MHz,即频率范围FR1(Frequency Range 1)内,可配置的PRS子载波间隔包括{15,30,60}kHz,即,若在频率范围FR1内,基站向终端发送的PRS子载波间隔的配置信息为子载波间隔{15,30,60}kHz中的一个;在频率范围24250MHz–52600MHz,即频率范围FR2(Frequency Range 2)内,可配置的PRS子载波间隔为{60,120,240}kHz,即,若在频率范围FR1内,基站向终端发送的PRS子载波间隔的配置信息为子载波间隔{60,120,240}kHz中的一个。
将PRS的子载波间隔作为可配置的参数,可以使得网络根据需要,将PRS的子载波间隔配置为与用于数据通信其它信号的子载波间隔相同或不同。将PRS的子载波间隔配置为与用于数据通信其它信号的子载波间隔相同时,可以减少在系统实现的复杂性,例如便于时间和频率资源安排等。将PRS的子载波间隔配置为与用于数据通信其它信号的子载波间隔不相同,可以便于优化时间和频率资源利用等。
(二)PRS的传输带宽
为了最大化定位性能,配置PRS传输带宽时可考虑如何利用载波带宽中的所有资源块(resource block,RB)来传输PRS。例如,LTE所支持的载波带宽为{1.5,3,5,10,15,20}MHz,对应于各载波带宽的最大PRB数为{6,15,25,50,75,100}RB。因而LTE系统中的PRS所支持的PRS传输带宽为 {6,15,25,50,75,100}RB。
NR系统所支持的载波带宽已不再限于{1.5,3,5,10,15,20}MHz,且载波带宽{1.5,3,5,10,15,20}MHz,所对应于的最大PRB数也不再是{6,15,25,50,75,100}个RB,并且与相应子载波间隔相关。因此,PRS传输带宽的配置可以与LTE PRS传输带宽的配置不同。根据3 GPP TS38.104有关NR系统所支持的载波带宽,以及载波带宽在相应子载波间隔下所对应的最大RB个数,本申请实施例中,PRS传输带宽的一种配置方式可如下面表1和表2所示。其中,表1用于在FR1时PRS传输带宽的配置,表2用于在FR2时PRS传输带宽的配置。
表1:频率范围FR1的PRS传输带宽配置
Figure PCTCN2019092395-appb-000041
表2:频率范围FR2的PRS传输带宽配置
Figure PCTCN2019092395-appb-000042
具体实施时,基站可将PRS的传输带宽的配置信息发送给终端。PRS的传输带宽与PRS的子载波间隔相关,基站根据当前的频率范围以及该频率范围内PRS当前的子载波间隔,通过表1或表2,可获得PRS当前的子载波间隔对应的一组传输带宽参数,并从中选取一个,从而获得PRS的传输带宽配置信息并发送给终端。
(三)PRS的持续时间、周期和时间偏移量的配置。
在LTE系统中,每个OTDOA定位时机包括N PRS={1,2,4,6}个连续的PRS 子帧。OTDOA定位时机发送周期可配置为P={5,10,20,40,80,160,320,640,1280}个子帧,其时间偏移量可配置为{0,1,…,P-1}。
为了确保NR OTDOA与LTE OTDOA类似或更优的定位性能,本申请实施例中,在PRS子载波间隔为15kHz时,NR DL PRS的持续时间、周期和时间偏移量的配置至少覆盖LTE PRS的持续时间、周期和时间偏移量的配置。对于其它PRS子载波间隔,PRS的持续时间、周期和时间偏移量即可通过利用时隙为单位自动调整,即可以以时隙为单位进行调整。
具体地,本申请实施例中,每个NR OTDOA定位时机(也称PRS时机)包括可配置N PRS={1,2,4,6}个时隙。NR OTDOA定位时机发送周期至少可配置为P={5,10,20,40,80,160,320,640,1280}个时隙。另外,考虑到NR支持信道状态信息参考信号(Channel State Information Reference Signals,CSI-RS)的周期为P={4,5,8,10,16,20,32,40,64,80,160,320,640}时隙,以及CSI-RS和PRS的资源共享可能性的考虑,PRS的发送周期应可配置为P={4,8,16,32,64}个时隙。基于以上考虑,本申请实施例中,NR OTDOA定位时机发送周期为P={4,5,8,10,16,20,32,40,64,80,160,320,640,1280}个时隙,相应的可配置偏移量为{0,...,P-1}个时隙。
需要说明的是,上述NR OTDOA定位时机发送周期和配置偏移量,可泛指PRS的发送周期和时间偏移量配置。
具体实施时,基站可向终端发送PRS的传输带宽的配置信息,配置信息的具体内容可参见上述描述。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
参见图4,为本申请实施例提供的一种可能的通信场景的示意图。如图4所示,终端110通过无线接入网(radio access network,RAN)节点120接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。
其中,终端又称之为用户设备(user equipment,UE)、移动台(mobile station, MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
RAN是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。
上述通信架构,可以是5G系统或其演进系统中的接入网络架构。
本申请实施例描述的网络架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例以基站和终端为例进行描述。
基于上述通信系统架构可实现OTDOA终端定位。具体地,基站可以将PRS序列映射到用于发送PRS的时频资源,在该用于发送PRS的时频资源上 发送映射的PRS;终端可以在用于发送PRS的时频资源上接收基站发送的PRS,根据测量到的来自服务小区和邻近小区的PRS获得RSTD,并可将RSTD上报给网络定位服务器,以使网络定位服务器可根据该RSTD并用多点定位算法或其他算法来确定该终端的位置。
参见图5,为本申请实施例提供的PRS传输流程示意图,如图所示,该流程可以包括:
S501:基站根据PRS的配置信息,确定用于发送PRS的时频资源。
其中,所述PRS的配置信息可包括PRS频域资源信息,进一步地,还可以包括PRS RE密度配置参数、PRS时域资源信息等信息。其中,PRS频域资源信息用来指示PRS的频域资源,通过PRS频域资源信息可以将不同带宽的PRS配置在相应的频率位置。PRS RE密度配置参数用于指示PRS RB中用于发送PRS的RE的数量。PRS时域资源信息用来指示PRS的时域资源,具体可以包括PRS子帧内时隙配置信息(用于指示PRS子帧内用于发送PRS的时隙)、PRS时隙内符号配置信息(用于指示PRS时隙内用于发送PRS的符号)、PRS子帧的发送周期和时间偏移量等信息。
其中,所述PRS频域资源信息可以包括PRS RE频移信息,进一步地,所述PRS频域资源信息还可以包括下行链路资源网格的起始点、PRS带宽起始点、PRS带宽、PRS发送功率缩放因子等参数。通过PRS RE频移信息可以获得PRS RE频移,通过PRS RE偏移可以确定发送PRS的RE在PRS RB中的位置。进行PRS频域资源映射时,可以通过PRS RE频移来减少相邻小区PRS之间的重叠和干扰。
本申请实施例中,PRS RE频移与从PRS时机开始计算的PRS OFDM符号顺序值相关。其中,所述PRS OFDM符号顺序值可以是PRS OFDM符号的序号,可以将PRS时机内所有PRS OFDM符号(即用于发送PRS的OFDM符号)按时间顺序进行连续编号,该编号即为该PRS时机内的PRS OFDM符号的序号。比如,可将一个PRS时机内的PRS OFDM符号从0开始连续编号。可选地,PRS RE频移可取决于从PRS时机开始计算的PRS OFDM符号的序 号l′、PRS序列标识
Figure PCTCN2019092395-appb-000043
以及PRS RE密度配置参数c PRS
其中,PRS时机(PRS occasion)包括N PRS(N PRS≥1)个连续的PRS子帧。本申请实施例中,可以对PRS时机的PRS发送周期和PRS子帧的偏移量进行配置。即,通过PRS的配置信息中的PRS发送周期和PRS子帧的偏移量等参数,可以定义PRS时机。
在一种可能的实现方式中,PRS RE频移信息具体为PRS RE频移的取值,基站可根据PRS RE频移信息直接获得PRS RE频移的取值。
在另一种可能的实现方式中,PRS RE频移信息也可以包含多个用于确定PRS RE频移的参数,基站可以根据PRS RE频移信息所包含的参数确定PRS RE频移。比如,PRS RE频移信息可以包括从PRS时机开始计算的PRS OFDM符号顺序值l′、PRS序列标识
Figure PCTCN2019092395-appb-000044
以及PRS RE密度配置参数c PRS
具体地,PRS RE频移的表达式可以是:
Figure PCTCN2019092395-appb-000045
其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
Figure PCTCN2019092395-appb-000046
为PRS序列标识,
Figure PCTCN2019092395-appb-000047
为每个PRS资源块RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
S502:基站将PRS序列映射到用于发送PRS的时频资源。
在一种可能的实现方式中,基站可以根据以下公式,将PRS序列映射到用于发送PRS的频域资源:
Figure PCTCN2019092395-appb-000048
其中,
Figure PCTCN2019092395-appb-000049
为资源单元(k,l)p,μ的值,(k,l)p,μ表示天线端口p和子载波间隔配置μ的频域索引k和时域索引l的资源单元;β PRS为PRS发送功率缩放因子;
Figure PCTCN2019092395-appb-000050
为时隙n s,f中、OFDM符号索引为l的PRS序列。
公式(6)中,n′的表达式为:
Figure PCTCN2019092395-appb-000051
公式(6)中,k的表达式为:
Figure PCTCN2019092395-appb-000052
其中,k的参考点是公共资源块网格中的公共资源块0中的子载波0,
Figure PCTCN2019092395-appb-000053
为PRS带宽起始点,
Figure PCTCN2019092395-appb-000054
为下行链路资源网格的起始点,
Figure PCTCN2019092395-appb-000055
为每个PRS RB中的子载波数量,c PRS为PRS RE密度配置参数,
Figure PCTCN2019092395-appb-000056
k′=0,1,...,c PRS-1,
Figure PCTCN2019092395-appb-000057
为PRS带宽。
公式(6)中,υ shift为PRS RE频移,υ shift可通过上述公式(5)计算得到。
S503:基站在用于发送PRS的时频资源上发送映射的PRS。
可选地,上述PRS的配置信息还可包括时域配置信息,所述时域配置信息用于指示所述PRS在一个时隙内的起始位置,所述PRS在一个时隙内占用N个连续符号,所述N为1、2、3、4、6、12中的一个。
在LTE系统中,每个子帧中有固定的、用于发送物理下行控制信道(PDCCH)和公共参考信号(Cell-specific Signal,CRS)的正交频分复用(OFDM)符号。受此限制,每个LTE PRS子帧中用于发送的DL PRS的OFDM符号被限于8个。NR系统没有发送CRS,且不采用固定的OFDM符号发送PDCCH。于是,每个PRS时隙中用于发送的DL PRS的OFDM符号将不被限于8个。
NR DL PRS需要考虑支持多波束DL PRS发送模式。为此,3GPP已决定引入NR DL PRS资源。在时域上,一个NR DL PRS资源可以包括一个时隙内的一个或多个连续的OFDM符号;在频域上,一个NR DL PRS资源可以包括多个连续的RB。基站通过一个或多个NR DL PRS资源发送某个波束方向上的DL PRS信号。
考虑到基站在PRS资源配置时,应尽量使得PRS RE在配置的PRS OFDM符号里的子载波中的均匀分布,以避免因各子载波PRS符号分布不均匀,所可能产生的较大自相关侧峰值而造成错误检测问题。本申请实施例中,为支 持在多波束发送DL PRS,在一个时隙内可配置N={1,2,3,4,6,12}个连续的PRS OFDM符号,且N个连续PRS OFDM符号相对于时隙开始的起始定位也是可配置的,以使得N个连续PRS符号可以灵活地分配在时隙内。例如,若某个NR DL PRS时隙中,所配置的PRS OFDM符号的数量为N=4。通过配置PRS RE的密度为每个PRB有3个PRS RE,这样在每个PRB内各子载波均匀分布一个PRS RE。
通过以上描述可以看出,由于PRS的配置信息中包含的PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关,使得根据该PRS的配置信息所确定的PRS的时频资源中,PRS符号可以在PRS频带的所有子载波里尽可能均匀分布,从而可以克服传统PRS映射规则所导致的较大的自相关侧峰值问题。
基于本申请上述实施例提供的方法,图6示例性地示出了一种PRS资源映射示意图,其中,每个方格表示一个RE,水平方向为时域,垂直方向表示频域。其中,图上方所标注的水平方向上的数字l表示OFDM符号的索引值,图下方所标注的水平方向上的数字l′表示从PRS时机开始计算的PRS OFDM符号的顺序值(或称PRS OFDM符号的序号)。图中仅示出了2个RB中PRS符号分布。从图6中可以看出,在一个PRS RB或PRS时隙中,PRS符号已尽可能地均匀分布所有子载波上(所有子载波上的PRS符号数量之差异不会超过一个PRS符号)。这就克服了现有技术中因所有子载波上的PRS符号分布不合理所造成的较大的自相关侧峰值的问题。
图7示例性地示出了一种资源映射的PRS的自相关示意图。将图7与图2相比较可以看出,本申请实施例提出的PRS资源映射方法可以解决现有技术中的PRS资源映射方法导致较大PRS自相关侧峰值的问题。
当多个相邻小区同时发送PRS时,来自多个小区的PRS信号可能在时间和频率上发生冲突,产生小区间PRS相关冲突干扰。来自近距离小区的强PRS会遮蔽来自远距离小区的弱PRS,使终端将难以检测远距离小区的PRS,并且这反过来导致可听性的损失,该问题在密集的城市或不良的网络部署中尤 为严重。
为了克服这个问题,本申请实施例还提供了PRS静音方法以增加远距离小区PRS的可检测性。该方法可应用于5G NR系统,并且可以针对多波束传输PRS的场景实现PRS静音。
为了支持多波束发送NR DL PRS,本申请实施例中定义了PRS资源集(也可称为资源块)。一个PRS资源集可配置一个或多个PRS资源,以支持不同部署场景中的多波束发送PRS。每个波束方向可对应一个或多个PRS资源。一个PRS资源集中的PRS资源的数量可以配置为与SS/PBCH块集合中的SS/PBCH块的数量相同或比SS/PBCH块集合中的SS/PBCH块的数量更多。在配置上可标明PRS资源的波束(如方向、宽度等)与SS/PBCH波束(如方向、宽度等)的准共址(quasi co-location,QCL)对应关系。这样,终端可以通过已检测到的SS/PBCH来帮助快速检测PRS、减少终端的功耗。
另外,考虑到NR系统所支持的CSI-RS资源的最大个数为192,且每个CSI-RS资源的可对应一个波束方向,一个PRS资源集可配置的PRS资源的最大个数也可为192。这样,有利于实现PRS与CSI-RS资源共享。
对于NR OTDOA,本申请实施例中,可将一组连续发送的PRS资源集配置成一个NR OTDOA定位时机,如图8所示。在许多的情况下,终端可能无法通过一次检测在某个PRS资源(某个波束方向)发送的PRS就获得可靠的定位测量值。将一组连续发送的PRS资源集配置成一个NR DL OTDOA定位时机的好处是为终端提供了在一个波束方向上,多次检测某个PRS资源(某个波束方向)发送的PRS的机会,以使终端能获得更可靠的定位测量值,而无需等待下一个PRS传输周期。也有助于节省终端功耗并减少OTDOA中的时间延迟。为了避免浪费时频资源,NR OTDOA定位时机的持续时间,或者是连续重复发送的PRS资源集的个数需配置在一定的时间范围内,例如将NR OTDOA定位时机的持续时间配置在5个时隙内或将连续重复发送的PRS资源集的个数配置在5个范围内。
本申请实施例中还定义了PRS时机组。一个PRS时机组包括一个或多个 PRS时机,一个PRS时机包括一个或多个PRS块(或PRS资源集),一个PRS块(或PRS资源集)包括一个或多个PRS资源。PRS时机组的数量可以是T RES=2 i(i=1,2,…,10)个。
其中,一个PRS块(或PRS资源集)中的PRS资源可以使用相同的波束传输。一个PRS块(或PRS资源集)可由一个或多个连续的PRS OFDM信号组成,也可由一个或多个连续的PRS时隙组成。一个PRS时机也即一个PRS块(或PRS资源集)的集合,其中包含一个或多个PRS块(或PRS资源集)。PRS时机可以看成是实现一次波束扫描所需的PRS块(或PRS资源集)的集合。一个PRS时机包含的PRS块(或PRS资源集)数量可以配置。例如,一个PRS时机包含的PRS块(或PRS资源集)数量可与一个SS/PBSCH块集合中的SS/PBCH块数量相同或不同。
本申请实施例中,可以在基站上设置PRS静音配置信息。PRS静音配置信息可以作为PRS的配置信息的组成部分,也可以是独立于PRS的配置信息,本申请实施例对此不作限制。
在一种可能的实现方式中,PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块(PRS资源集)。基站可以根据其所要发送的PRS所归属的PRS时机组,以及所述PRS静音配置信息,确定在哪些PRS RE上发送PRS,在哪些PRS RE上进行PRS静音(即不发送PRS)。
可选地,PRS静音配置信息可包括PRS时机组静音配置信息和PRS块(或PRS资源集)静音配置信息。PRS时机组静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块(PRS资源集)都需要静音,候选静音PRS时机组对应的PRS块为候选静音PRS块,即,候选静音PRS时机组对应的PRS块(PRS资源集)有可能发送PRS也有可能静音。针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,可配置对应的PRS块(或PRS资源集)静音配置信息,用于指示相应候选静音PRS时机组中的PRS块(或PRS资源集)是否静音。
可选地,每个候选静音时机组有2 i(i=1,2,…,7)个候选静音PRS时机,每个候选静音PRS时机包含{1,2,…,64}个候选静音PRS块(或PRS资源集)。
参见图9,为本申请另外的实施例提供的PRS传输流程示意图,根据该流程,基站可根据PRS静音配置信息,在所指示的被配置为静音的PRS块(或PRS资源集)上不发送PRS。
如图9所示,该流程可包括:
S801:基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块(或PRS资源集)。
其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块(或PRS资源集)。
可选地,该步骤可在基站根据PRS的配置信息将PRS序列映射到用于发送PRS的时频资源之后进行。其中,基站根据PRS的配置信息将PRS序列映射到用于发送PRS的时频资源的具体实现方式,可以参见前述实施例描述的方式,其中,PRS的配置信息中的PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。基站根据PRS的配置信息将PRS序列映射到用于发送PRS的时频资源的具体实现方式,也可以是其他方式,比如采用目前相关通信标准定义的方式。
S802:基站在确定为不被静音的PRS块(或PRS资源集)上发送映射的PRS,在确定为被静音的PRS块(或PRS资源集)上进行PRS静音(即不发送PRS)。
可选地,PRS时机组静音配置信息可采用位图(bitmap)的形式,称为PRS时机组muting bitmap。PRS时机组muting bitmap中的每个比特对应一个PRS时机组,若一个比特位的取值为1,则表示相应的PRS时机组被静音,即该PRS时机组为静音PRS时机组,若一个比特位的取值为0,则表示相应的PRS时机组为候选静音PRS时机组,反之亦然。
可选地,PRS块静音配置信息可采用位图(bitmap)的形式,称为PRS 块muting bitmap。PRS块muting bitmap中的每个比特对应一个PRS块(或PRS资源集),若一个比特位的取值为0,则表示相应的PRS块被静音,即该PRS块为静音PRS块(或PRS资源集),若一个比特位的取值为1,则表示相应的PRS块(或PRS资源集)不被静音,即需要发送PRS,反之亦然。
以PRS时机组静音配置信息和PRS块(或PRS资源集)静音配置信息分别采用PRS时机组muting bitmap和PRS块(或PRS资源集)muting bitmap为例,图9示出了通过PRS时机组muting bitmap和PRS块(或PRS资源集)muting bitmap进行PRS静音指示的示意图。其中,一个PRS时机组包含一个或多个PRS时机,一个PRS时机包含一个或多个PRS块(或PRS资源集),PRS时机组muting bitmap中的每个比特对应一个PRS时机组,PRS块muting bitmap中的每个比特对应一个PRS块(或PRS资源集)。
如图10所示,PRS时机组muting bitmap中的比特0的取值为“1”,表示对应的PRS时机组#0为静音PRS时机组;PRS时机组muting bitmap中的比特1的取值为“0”,表示对应的PRS时机组#1为候选静音PRS时机组。候选静音PRS时机组#1包含的PRS时机#1所对应的PRS块muting bitmap中,比特0和比特2的取值为“0”,表示相应的PRS块#0和PRS块#2被静音,比特1的取值为“1”,表示对应的PRS块#1不被静音。
根据图10所示的PRS静音配置,基站可在PRS时机组#0包含的所有PRS块(或PRS资源集)上静音(即不发送PRS),在PRS时机组#1包含的PRS时机中的PRS块#0和PRS块#2上静音。
从以上PRS静音方法可以看出,当PRS块muting bitmap为全‘0’序列时,PRS时机组muting bitmap决定了哪些PRS时机组被静音。当PRS时机组muting bitmap为全‘0’序列时,PRS块(或PRS资源集)muting bitmap决定了哪些PRS块(或PRS资源集)被静音。
在实际实现中,可以根据各小区PRS的配置信息和PRS的多束波传输方向,适当设置PRS时机组muting bitmap和PRS块(或PRS资源集)muting bitmap。
本申请实施例提供的PRS静音方法中,由于基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块(或PRS资源集),并且一个PRS块(或PRS资源集)中的PRS使用相同的波束传输,因此可以支持多波束传输PRS时的静音模式。
本申请另外的实施例,还提供了以下几种PRS静音配置方法(参见静音配置方法一至方法四)。在下面的静音配置方法中,可以进行以下规定:
PRS静音时机组的周期为T g,即每周期包括T g个PRS时机组。T g可有不同的配置,例如T g={2,4,8,16,32,64,128,256,512,…}。
每个PRS时机组包括T o个PRS时机。T o可有不同的配置,例如T g={1,2,4,8,16,…}。
每个PRS时机包括T s个PRS资源集。T s可有不同的配置,例如T o={1,2,4,8,16,…}。
每个PRS资源集包括T r个PRS资源。T r可有不同的配置,例如T r={1,2,4,8,16,…}。
静音配置方法一:
在基站在用于发送PRS的时频资源上发送PRS之前,可通过执行静音配置方法一确定需要静音的PRS资源。
该方法中,基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定用于发送PRS的时频资源中被静音和/或不被静音的PRS时机组。其中,所述PRS静音配置信息包括PRS时机组静音配置信息,用于指示一个或多个PRS时机组中被配置为静音和/或不被静音的PRS时机组。相应地,基站在用于发送PRS的时频资源上发送映射的PRS时,可在确定为不被静音的PRS时机组内发送映射的PRS。
该方法可以实现以PRS时机组为单位,配置小区的PRS静音。
举例来说,基于上述规定,如图11A所示,PRS时机组静音配置由长度为T g的PRS静音比特序列S g定义,T g为静音配置周期内PRS时机组的个数。 如果静音比特序列S g中的某个比特位被设置为“0”,则相应的PRS时机组中的PRS被静音,即不发送PRS。如果静音比特序列S g中的比特位被设置为“1”,则相应的PRS时机组中的PRS不被静音。
静音配置方法二
在基站在用于发送PRS的时频资源上发送PRS之前,可通过执行静音配置方法二确定需要静音的PRS资源。
该方法中,基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集。其中,所述PRS静音配置信息包括与候选静音PRS时机组对应的PRS时机静音序列,用于指示对应的候选静音PRS时机组中被静音和/或不被静音的PRS时机。相应地,基站在用于发送PRS的时频资源上发送映射的PRS时,可以在确定为不被静音的PRS时机上发送映射的PRS。
可选地,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
该方法可以实现以PRS时机为最小单位,配置小区的PRS静音。PRS时机的静音配置可由2个静音序列(比特序列)共同实现。
举例来说,基于上述规定,如图11B所示,长度为T g的PRS静音比特序列S g定义候选的PRS静音时机组,其中长度T g为静音配置周期里PRS时机组的个数。如果静音比特序列S g中的比特位被设置为“0”,则相应的PRS时机组为候选的PRS静音时机组。候选PRS静音时机组中,有些PRS时机将被静音,而有些PRS时机将不被静音。
候选PRS静音时机组中哪些PRS时机被静音取决于另一个具有长度T o的PRS时机静音比特序列S o。T o为一个PRS时机组中的PRS时机个数。如果PRS时机静音比特序列S o中的某个比特位被设置为“0”,则候选PRS静音时机组中相应的PRS时机被静音。如果PRS时机静音比特序列S o中的某个比特位被设置为“1”,则相应的PRS时机不被静音。
该方法中,也可以不配置候选的PRS静音时机组的PRS静音比特序列S g。这时,所有PRS时机组都为候选PRS静音时机组。
静音配置方法三
基站在用于发送PRS的时频资源上发送PRS之前,可通过执行静音配置方法三确定需要静音的PRS资源。
该方法中,基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集。其中,所述PRS静音配置信息包括与候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音PRS时机中被静音和/或不被静音的PRS块或PRS资源集。相应地,基站在用于发送PRS的时频资源上发送映射的PRS时,可在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
可选地,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS块集合或PRS时机静音序列,用于指示对应的候选静音时机组中的静音PRS时机以及候选静音PRS时机。
可选地,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
该方法可以实现以PRS资源集为最小单位,配置小区的PRS静音。PRS时机的静音配置可由3个静音序列(比特序列)共同实现。
举例来说,基于上述规定,如图11C所示,利用长度为T g的比特序列S g定义候选的PRS静音时机组,T g为静音配置周期内PRS时机组的个数。如果静音比特序列S g中的比特位被设置为“0”,则相应的PRS时机组为候选的PRS静音时机组。候选PRS静音时机组中,有些PRS时机将被静音,而有些PRS时机将不被静音。
利用长度为T o的比特序列S o定义候选的PRS静音时机,T o为PRS静音时机组里PRS时机的个数。如果S o中的某个比特位被设置为“0”,则候选PRS静 音时机组中相应的PRS时机为则候选PRS静音时机。如果S o中的某个比特位被设置为“1”,则相应的PRS时机不被静音。
候选PRS静音时机中哪些PRS资源集被静音取决于另一个具有长度T s的PRS资源集静音比特序列S s。T s为一个PRS时机中的PRS资源集个数。如果S s中的某个比特位被设置为“0”,则候选PRS静音时机中相应的PRS资源集被静音。如果S s中的某个比特位被设置为“1”,则候选PRS静音时机中相应的PRS资源集不被静音。
该方法中,可以不配置候选PRS静音时机组的比特序列S g,这时,所有PRS时机组都认为是候选PRS静音时机组。也可以不配置定义候选PRS静音时机的比特序列S o,这时,所有候选时机组里的PRS时机都认为是候选PRS静音时机。
静音配置方法四
基站在用于发送PRS的时频资源上发送PRS之前,可通过执行静音配置方法四确定需要静音的PRS资源。
该方法中,基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集。其中,所述PRS静音配置信息包括与候选静音PRS块或PRS资源集对应的PRS资源静音序列,用于指示对应的候选静音PRS块或PRS资源中被静音和/或不被静音的PRS资源。相应地,基站在用于发送PRS的时频资源上发送映射的PRS时,可在确定为不被静音的PRS资源上发送映射的PRS。
可选地,所述PRS静音配置信息还包括候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音时机中的静音PRS块或PRS资源集以及候选静音PRS块或PRS资源集。
可选地,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS时机静音序列,用于指示对应的候选静音时机组中的静音PRS时机以及候选静音PRS时机。
可选地,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示 静音PRS时机组以及候选静音PRS时机组。
该方法可以实现以PRS资源为最小单位,配置小区的PRS静音。PRS时机的静音配置可由4个静音序列(比特序列)共同实现。
举例来说,基于上述规定,如图11D所示,利用长度为T g的比特序列S g定义候选的PRS静音时机组,T g为静音配置周期里PRS时机组的个数。如果静音比特序列S g中的比特位被设置为“0”,则相应的PRS时机组为候选的PRS静音时机组。候选PRS静音时机组中,有些PRS时机将被静音,而有些PRS时机将不被静音。
利用长度为T o的比特序列S o定义候选的PRS静音时机,T o为PRS静音时机组里PRS时机的个数。如果S o中的某个比特位被设置为“0”,则候选PRS静音时机组中相应的PRS时机为候选PRS静音时机。如果S o中的某个比特位被设置为“1”,则相应的PRS时机不被静音。
利用长度为T s的比特序列S s定义候选的PRS静音资源集,T s为PRS静音时机里PRS资源集的个数。如果S s中的某个比特位被设置为“0”,则候选PRS静音时机中相应的PRS资源集为候选PRS静音资源集。如果S s中的某个比特位被设置为“1”,则相应的PRS资源集不被静音。
候选PRS静音资源集中哪些PRS资源被静音取决于另一个具有长度T r的PRS资源静音比特序列S r。T r为一个PRS资源集中的PRS资源个数。如果S r中的某个比特位被设置为“0”,则候选PRS静音资源集中相应的PRS资源被静音。如果S r中的某个比特位被设置为“1”,则候选PRS静音资源集中相应的PRS资源不被静音。
在方法四中,可以不配置定义候选PRS静音时机组的比特序列S g。这时,所有PRS时机组都认为是候选PRS静音时机组。也可以不配置定义候选PRS静音时机的比特序列S o。这时,所有候选时机组里的PRS时机都认为是候选PRS静音时机。也可以不配置定义候选PRS静音资源集的比特序列S o。这时,所有候选时机里的PRS资源集都认为是候选PRS静音资源集。
基于相同的技术构思,本申请实施例还提供了一种基站,该基站可以实现图5中的基站侧的功能。
参见图12,为本申请实施例提供的基站的结构示意图,该基站可包括:确定模块1001、映射模块1002和发送模块1003。可选地,还可以包括静音判决模块1004。
确定模块1001用于根据PRS的配置信息,确定用于发送PRS的时频资源;映射模块1002用于所述基站将PRS序列映射到所述用于发送PRS的时频资源;发送模块1003用于所述基站在所述用于发送PRS的时频资源上发送映射的PRS。其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS RE频移信息,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。
可选地,所述PRS RE频移信息为PRS RE频移的取值,所述PRS RE频移的取值是根据上述公式(5)得到的。
可选地,所述PRS RE频移信息包括从PRS时机开始计算的PRS OFDM符号的顺序值。确定模块1001具体用于根据公式(5),利用所述从PRS时机开始计算的PRS OFDM符号的顺序值,确定PRS RE频移。
可选地,静音判决模块1004,用于在所述用于发送PRS的时频资源上发送映射的PRS之前,根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块。发送模块1003具体用于在确定为不被静音的PRS块上发送映射的PRS。其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
基于相同的技术构思,本申请实施例还提供了一种基站,该基站可以实现图13中的基站侧的功能。
参见图13,为本申请实施例提供的基站的结构示意图,该基站可包括:静音判决模块1101、发送模块1102。
静音判决模块1101用于根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块;发送模块1102用于在确定为不被静音的PRS块上发送映射的PRS。其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块。
在一种可能的实现方式中,一个PRS块中的PRS使用相同的波束传输。
在一种可能的实现方式中,所述PRS静音配置信息,包括:PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块被静音;针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块静音配置信息,用于指示相应候选静音PRS时机组中的PRS块是否被静音。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以实现前述实施例中图5所示的流程中基站侧的功能。
参见图14,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1201、存储器1202、收发机1203以及总线接口1204。
处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。收发机1203用于在处理器1201的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1201代表的一个或多个处理器和存储器1202代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1201负责管理总线架构和通常的处理,存储器1202可以存储处理器1201在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1201中,或者由处理器1201实现。在实现过程中,信号处理流程的各步骤可以通过处理器1201中的硬件 的集成逻辑电路或者软件形式的指令完成。处理器1201可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1202,处理器1201读取存储器1202中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1201,用于读取存储器1202中的程序并执行图5所示的流程中基站侧实现的PRS传输流程。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以实现前述实施例中图9所示的流程中基站侧的功能。
参见图15,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1301、存储器1302、收发机1303以及总线接口1304。
处理器1301负责管理总线架构和通常的处理,存储器1302可以存储处理器1301在执行操作时所使用的数据。收发机1303用于在处理器1301的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1301代表的一个或多个处理器和存储器1302代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1301负责管理总线架构和通常的处理,存储器1302可以存储处理器1301在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1301中,或者由处理器1301 实现。在实现过程中,信号处理流程的各步骤可以通过处理器1301中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1301可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1302,处理器1301读取存储器1302中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1301,用于读取存储器1302中的程序并执行图9所示的流程中基站侧实现的PRS传输流程。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行图5中基站所执行的流程。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行图9中基站所执行的流程。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种定位参考信号传输方法,其特征在于,包括:
    基站根据定位参考信号PRS的配置信息,确定用于发送PRS的时频资源;其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS资源单元RE频移信息;
    所述基站将PRS序列映射到所述用于发送PRS的时频资源;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS。
  2. 如权利要求1所述的方法,其特征在于,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。
  3. 如权利要求1所述的方法,其特征在于,所述PRS RE频移信息为PRS RE频移的取值,所述PRS RE频移的取值是根据以下公式得到的:
    Figure PCTCN2019092395-appb-100001
    其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
    Figure PCTCN2019092395-appb-100002
    为PRS序列标识,
    Figure PCTCN2019092395-appb-100003
    为每个PRS资源块RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
  4. 如权利要求1所述的方法,其特征在于,所述PRS RE频移信息包括从PRS时机开始计算的PRS OFDM符号的顺序值,所述方法还包括:
    所述基站根据以下公式,利用所述从PRS时机开始计算的PRS OFDM符号的顺序值,确定PRS RE频移:
    Figure PCTCN2019092395-appb-100004
    其中,υ shift为PRS RE频移,l′为从PRS时机开始计算的PRS OFDM符号的顺序值,
    Figure PCTCN2019092395-appb-100005
    为PRS序列标识,
    Figure PCTCN2019092395-appb-100006
    为每个PRS RB中的子载波数量,c PRS为PRS RE密度配置参数,mod表示取模运算。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述基站根据 以下公式,将PRS序列映射到用于发送PRS的频域资源:
    Figure PCTCN2019092395-appb-100007
    其中,
    Figure PCTCN2019092395-appb-100008
    为资源单元(k,l)p,μ的值,(k,l)p,μ表示天线端口p和子载波间隔配置μ的频域索引k和时域索引l的资源单元;β PRS为PRS发送功率缩放因子;
    Figure PCTCN2019092395-appb-100009
    为时隙n s,f中、OFDM符号索引为l的PRS序列;
    其中,
    Figure PCTCN2019092395-appb-100010
    Figure PCTCN2019092395-appb-100011
    其中,k的参考点是公共资源块网格中的公共资源块0中的子载波0,
    Figure PCTCN2019092395-appb-100012
    为PRS带宽起始点,
    Figure PCTCN2019092395-appb-100013
    为下行链路资源网格的起始点,
    Figure PCTCN2019092395-appb-100014
    为每个PRS RB中的子载波数量,υ shift为PRS RE频移,c PRS为PRS RE密度配置参数,
    Figure PCTCN2019092395-appb-100015
    k′=0,1,,c PRS-1,
    Figure PCTCN2019092395-appb-100016
    为PRS带宽。
  6. 如权利要求1所述的方法,其特征在于,所述PRS的配置信息还包括时域配置信息,所述时域配置信息用于指示所述PRS在一个时隙内的起始位置,所述PRS在一个时隙内占用N个连续符号,所述N为1、2、3、4、6、12中的一个。
  7. 如权利要求1所述的方法,其特征在于,还包括:
    所述基站发送所述PRS的子载波间隔的配置信息,所述PRS的子载波间隔与用于数据通信的其他信号的子载波间隔相同或不同。
  8. 如权利要求7所述的方法,其特征在于,所述PRS的子载波间隔,包括:第一频率范围FR1对应的子载波间隔,或者第二频率范围FR2对应的子载波间隔:
    所述FR1对应的子载波间隔为15kHZ、30kHz、60kHz中的一个,所述FR2对应的子载波间隔为60kHZ、120kHz、240kHz中的一个。
  9. 如权利要求1所述的方法,其特征在于,还包括:
    所述基站发送所述PRS的传输带宽的配置信息。
  10. 如权利要求9所述的方法,其特征在于,所述PRS的传输带宽,包括:第一频率范围FR1内所述PRB的子载波间隔所对应的传输带宽,或者第二频率范围FR2内所述PRB的子载波间隔所对应的传输带宽:
    所述FR1内所述PRB的子载波间隔所对应的传输带宽,是所述FR1内所述PRB的子载波间隔所对应的多个传输带宽中的一个;
    所述FR2内所述PRB的子载波间隔所对应的传输带宽,是所述FR2内所述PRB的子载波间隔所对应的多个传输带宽中的一个。
  11. 如权利要求1所述的方法,其特征在于,还包括:
    所述基站发送所述PRB的持续时间、周期和时间偏移量的配置信息;
    其中,若所述PRS的子载波间隔为15kHz,则PRS的持续时间、周期和时间偏移量的配置至少覆盖长期演进LTE系统中的PRS的持续时间、周期和时间偏移量的配置;否则,所述PRS的持续时间、周期和时间偏移量的配置以时隙为单位进行调整。
  12. 如权利要求11所述的方法,其特征在于,所述PRS的周期为第一时隙数量集合中的一个时隙数量,所述PRS的时间偏移量为第二时隙数量集合中的一个时隙数量;
    所述第一时隙数量集合为:{4,5,8,10,16,20,32,40,64,80,160,320,640,1280};
    所述第二时隙数量集合为:{0,...,P-1},其中P为所述PRS的周期。
  13. 如权利要求1所述的方法,其特征在于,一个或多个PRS资源构成一个PRS资源集;所述资源集中每个PRS资源的波束与SS/PBCH波束之间存在对应关系;所述对应关系包括波束方向、波束宽度中的一种或多种。
  14. 如权利要求1所述的方法,其特征在于,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS时机组;其中,所述PRS静音配置信息包括PRS时机组静音配置信息,用于指示一个或多个PRS时机组中被配置为静音和/或不被静音的PRS时机组;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS时机组内发送映射的PRS。
  15. 如权利要求1所述的方法,其特征在于,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息包括与候选静音PRS时机组对应的PRS块集合或PRS时机静音序列,用于指示对应的候选静音PRS时机组中被静音和/或不被静音的PRS时机;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS时机上发送映射的PRS。
  16. 如权利要求15所述的方法,其特征在于,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  17. 如权利要求1所述的方法,其特征在于,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息包括与候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音PRS时机中被静音和/或不被静音的PRS块或PRS资源集;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
  18. 如权利要求17所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS块集合或PRS时机静音序列,用于指示对应的候选PRS静音时机组中的静音PRS时机以及候选静音PRS时机。
  19. 如权利要求18所述的方法,其特征在于,所述PRS静音配置信息还 包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  20. 如权利要求1所述的方法,其特征在于,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息包括与候选静音PRS块或PRS资源集对应的PRS资源静音序列,用于指示对应的候选静音PRS块或PRS资源中被静音和/或不被静音的PRS资源;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS资源上发送映射的PRS。
  21. 如权利要求20所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音PRS时机中的静音PRS块或PRS资源集以及候选静音PRS块或PRS资源集。
  22. 如权利要求21所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS块集合或PRS时机静音序列,用于指示对应的候选静音时机组中的静音PRS时机以及候选静音PRS时机。
  23. 如权利要求22所述的方法,其特征在于,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  24. 如权利要求1所述的方法,其特征在于,所述基站在所述用于发送PRS的时频资源上发送映射的PRS之前,还包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块或PRS资源集;
    所述基站在所述用于发送PRS的时频资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
  25. 如权利要求24所述的方法,其特征在于,所述PRS静音配置信息,包括:
    PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块或PRS资源集被静音;
    针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块或PRS资源集静音配置信息,用于指示相应候选静音PRS时机组中的PRS块或PRS资源集是否被静音。
  26. 如权利要求15-25中任一项所述的方法,其特征在于,一个PRS块或PRS资源集中的PRS使用相同的波束传输。
  27. 一种定位参考信号传输方法,其特征在于,包括:
    基站根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS。
  28. 如权利要求27所述的方法,其特征在于,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块或PRS资源集;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
  29. 如权利要求28所述的方法,其特征在于,所述PRS静音配置信息,包括:
    PRS时机组静音配置信息,用于指示静音PRS时机组以及候选静音PRS时机组,其中,静音PRS时机组对应的所有PRS块或PRS资源集被静音;
    针对PRS时机组静音配置信息所指示的每个候选静音PRS时机组,配置对应的PRS块或PRS资源集静音配置信息,用于指示相应候选静音PRS时机组中的PRS块或PRS资源集是否被静音。
  30. 如权利要求27所述的方法,其特征在于,所述基站根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源,包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS时机组;其中,所述PRS静音配置信息包括PRS时机组静音配置信息,用于指示一个或多个PRS时机组中被配置为静音和/或不被静音的PRS时机组;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS时机组内发送映射的PRS。
  31. 如权利要求27所述的方法,其特征在于,所述基站根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源,包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息包括与候选静音PRS时机组对应的PRS时机静音序列,用于指示对应的候选静音PRS时机组中被静音和/或不被静音的PRS时机;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS时机上发送映射的PRS。
  32. 如权利要求31所述的方法,其特征在于,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  33. 如权利要求27所述的方法,其特征在于,所述基站根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源,包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集; 其中,所述PRS静音配置信息包括与候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音PRS时机中被静音和/或不被静音的PRS块或PRS资源集;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
  34. 如权利要求33所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS块集合或PRS时机静音序列,用于指示对应的候选静音时机组中的静音PRS时机以及候选静音PRS时机。
  35. 如权利要求34所述的方法,其特征在于,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  36. 如权利要求27所述的方法,其特征在于,所述基站根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源,包括:
    所述基站根据PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS块或PRS资源集;其中,所述PRS静音配置信息包括与候选静音PRS块或PRS资源集对应的PRS资源静音序列,用于指示对应的候选静音PRS块或PRS资源中被静音和/或不被静音的PRS资源;
    所述基站在确定为不被静音的PRS资源上发送映射的PRS,包括:
    所述基站在确定为不被静音的PRS资源上发送映射的PRS。
  37. 如权利要求36所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机对应的PRS块或PRS资源集静音序列,用于指示对应的候选静音时机中的静音PRS块或PRS资源集以及候选静音PRS块或PRS资源集。
  38. 如权利要求37所述的方法,其特征在于,所述PRS静音配置信息还包括候选静音PRS时机组对应的PRS时机静音序列,用于指示对应的候选静 音时机组中的静音PRS时机以及候选静音PRS时机。
  39. 如权利要求38所述的方法,其特征在于,所述PRS静音配置信息还包括PRS时机组静音序列,用于指示静音PRS时机组以及候选静音PRS时机组。
  40. 如权利要求28-39中任一项所述的方法,其特征在于,一个PRS块或PRS资源集中的PRS使用相同的波束传输。
  41. 一种基站,其特征在于,包括:
    确定模块,用于根据定位参考信号PRS的配置信息,确定用于发送PRS的时频资源;其中,所述PRS的配置信息包括PRS频域资源信息,所述PRS频域资源信息包括PRS资源单元RE频移信息;
    映射模块,用于所述基站将PRS序列映射到所述用于发送PRS的时频资源;
    发送模块,用于所述基站在所述用于发送PRS的时频资源上发送映射的PRS。
  42. 如权利要求41所述的基站,其特征在于,所述PRS RE频移信息与从PRS时机开始计算的PRS OFDM符号顺序值相关。
  43. 一种基站,其特征在于,包括:
    静音判决模块,用于根据定位参考信号PRS静音配置信息以及用于发送PRS的时频资源,确定所述用于发送PRS的时频资源中被静音和/或不被静音的PRS资源;
    发送模块,用于在确定为不被静音的PRS资源上发送映射的PRS。
  44. 如权利要求43所述的基站,其特征在于,所述PRS静音配置信息用于指示静音PRS时机组以及候选静音PRS时机组,以及所述候选静音PRS时机组中的静音PRS块或PRS资源集;
    所述发送模块,具体用于:在确定为不被静音的PRS块或PRS资源集上发送映射的PRS。
  45. 一种通信装置,其特征在于,包括:处理器、存储器和收发机;所 述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的程序,执行如权利要求1-26中任一项所述的方法,或执行如权利要求27-40中任一项所述的方法。
  46. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1-26中任一项所述的方法,或所述计算机可执行指令用于使所述计算机执行如权利要求27-40中任一项所述的方法。
PCT/CN2019/092395 2018-07-20 2019-06-21 一种定位参考信号传输方法及装置 WO2020015499A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217004524A KR20210025120A (ko) 2018-07-20 2019-06-21 포지셔닝 참조 신호를 전송하는 방법 및 장치
US17/261,846 US11777676B2 (en) 2018-07-20 2019-06-21 Method and device for transmitting positioning reference signal
EP19837838.2A EP3826212B1 (en) 2018-07-20 2019-06-21 Method and device for transmitting positioning reference signal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810804215 2018-07-20
CN201810804215.7 2018-07-20
CN201910117859.3 2019-02-15
CN201910117859.3A CN110808820B (zh) 2018-07-20 2019-02-15 一种定位参考信号传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020015499A1 true WO2020015499A1 (zh) 2020-01-23

Family

ID=69487235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092395 WO2020015499A1 (zh) 2018-07-20 2019-06-21 一种定位参考信号传输方法及装置

Country Status (5)

Country Link
US (1) US11777676B2 (zh)
EP (1) EP3826212B1 (zh)
KR (1) KR20210025120A (zh)
CN (1) CN110808820B (zh)
WO (1) WO2020015499A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586307A (en) * 2019-05-02 2021-02-17 Samsung Electronics Co Ltd Improvements in and relating to positioning reference in a telecommunication system
GB2591960A (en) * 2018-08-03 2021-08-11 Samsung Electronics Co Ltd Improvements in and relating to positioning reference signal configuration in a telecommunication system
EP4114074A4 (en) * 2020-02-26 2023-07-26 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING INFORMATION
US11882501B2 (en) 2019-05-02 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for measuring a position in a wireless communication network
US11902206B2 (en) 2018-07-27 2024-02-13 Samsung Electronics Co., Ltd. Positioning reference signal configuration in a telecommunication system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535578B (zh) * 2018-05-25 2021-08-03 大唐移动通信设备有限公司 信号传输方法及装置
CN110856096B (zh) * 2018-07-30 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、相关装置、通信系统及存储介质
CN110831175B (zh) * 2018-08-09 2020-12-04 北京紫光展锐通信技术有限公司 下行定位参考信号时频图样确定方法及装置、存储介质、基站
CN112673652A (zh) * 2018-09-20 2021-04-16 Oppo广东移动通信有限公司 一种信号传输方法及装置、终端
CN110557235B (zh) * 2019-03-27 2023-04-07 中兴通讯股份有限公司 定位参考信号的发送、接收方法、装置、收发节点
GB2583454B (en) * 2019-04-02 2021-10-13 Samsung Electronics Co Ltd Improvements in and relating to positioning in a telecommunication network
US20210076359A1 (en) * 2019-05-02 2021-03-11 Apple Inc. Method and system for dl prs transmission for accurate rat-dependent nr positioning
US11375340B2 (en) * 2019-08-09 2022-06-28 Kt Corporation Apparatus and method for performing positioning
US11395301B2 (en) * 2019-08-12 2022-07-19 Qualcomm Incorporated Muting pattern configuration options for downlink positioning reference signals (PRS)
CN112399567A (zh) * 2019-08-14 2021-02-23 华为技术有限公司 传输信号的方法和装置
US11800405B2 (en) * 2019-11-06 2023-10-24 Apple Inc. Systems and methods for cooperative communication using interfering signals
CN113556668B (zh) * 2020-04-16 2022-09-30 北京紫光展锐通信技术有限公司 一种定位参考信号接收方法及用户设备
WO2021219099A1 (en) * 2020-04-29 2021-11-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Apparatus and method of wireless communication
JP7430281B2 (ja) * 2020-06-02 2024-02-09 北京小米移動軟件有限公司 ダウンリンク位置決め基準信号伝送方法、装置及び記憶媒体
CN113839758B (zh) * 2020-06-24 2022-11-04 大唐移动通信设备有限公司 一种载波相位定位参考信号的传输方法及装置
US20220039050A1 (en) * 2020-07-28 2022-02-03 Qualcomm Incorporated User equipment power consumption modeling
CN115152252A (zh) * 2021-01-15 2022-10-04 中兴通讯股份有限公司 使用多个频率层进行定位
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
WO2013173406A1 (en) * 2012-05-15 2013-11-21 Qualcomm Incorporated Methods and apparatus for positioning reference signals in a new carrier type
CN107079419A (zh) * 2014-09-02 2017-08-18 高通股份有限公司 Lte中针对eotdoa的prs频率偏移和静音模式的随机化
CN107750437A (zh) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 用于定位的定位参考信号样式

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8730925B2 (en) 2009-04-09 2014-05-20 Motorola Mobility Llc Method and apparatus for generating reference signals for accurate time-difference of arrival estimation
US8780688B2 (en) * 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
CN101662443B (zh) * 2009-09-18 2014-10-22 中兴通讯股份有限公司 一种参考信号的序列产生和映射方法及发送装置
CN110061824B (zh) * 2013-02-06 2021-11-19 Lg 电子株式会社 收发信号的方法和用于其的装置
US9774429B2 (en) * 2014-03-12 2017-09-26 Qualcomm Incorporated Techniques for transmitting positioning reference signals in an unlicensed radio frequency spectrum band
US9462448B2 (en) * 2014-04-14 2016-10-04 Qualcomm Incorporated Adaptive positioning reference signal (PRS) for indoor location
US10310051B2 (en) * 2014-07-04 2019-06-04 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and apparatus therefor
US10231207B2 (en) * 2014-08-27 2019-03-12 Lg Electronics Inc. Method for receiving reference signal in wireless communication system and apparatus therefor
CN106031073B (zh) * 2015-01-30 2020-05-15 深圳市奥闻科技有限公司 一种数据传输的方法、用户设备、传输设备及系统
US20180054286A1 (en) * 2015-04-08 2018-02-22 Intel IP Corporation Positioning reference system (prs) design enhancement
EP3086524A1 (en) * 2015-04-24 2016-10-26 Sequans Communications S.A. Otdoa in lte networks
CN108024364B (zh) * 2016-11-04 2023-09-05 华为技术有限公司 一种上行测量参考信号传输方法、装置和系统
CN108282322A (zh) * 2017-01-06 2018-07-13 华为技术有限公司 一种配置参考信号的方法和装置
WO2018137223A1 (zh) * 2017-01-25 2018-08-02 华为技术有限公司 发送参考信号的方法和装置及接收参考信号的方法和装置
US10649064B2 (en) * 2017-02-02 2020-05-12 Qualcomm Incorporated Method and/or system for acquisition of a positioning signal
US11240776B2 (en) * 2017-02-03 2022-02-01 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device and methods performed therein for managing positioning of the wireless device
CN108632008B (zh) * 2017-03-24 2023-06-02 华为技术有限公司 一种参考信号发送方法及装置
US9955295B1 (en) * 2017-04-19 2018-04-24 Sprint Spectrum L.P. Use of positioning reference signal configuration as indication of operational state of a cell
US10736074B2 (en) * 2017-07-31 2020-08-04 Qualcomm Incorporated Systems and methods to facilitate location determination by beamforming of a positioning reference signal
US11178551B2 (en) * 2017-08-31 2021-11-16 Lg Electronics Inc. Method and device for transmitting positioning reference signal
CN110365455B (zh) * 2018-04-09 2021-07-30 大唐移动通信设备有限公司 一种定位参考信号传输方法及装置
US10645647B2 (en) * 2018-04-23 2020-05-05 Qualcomm Incorporated Exploiting DRX/CDRX parameters to conserve power during an observed time difference of arrival (OTDOA) session

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102647790A (zh) * 2011-02-18 2012-08-22 华为技术有限公司 参考信号的发送、接收方法及装置
WO2013173406A1 (en) * 2012-05-15 2013-11-21 Qualcomm Incorporated Methods and apparatus for positioning reference signals in a new carrier type
CN107079419A (zh) * 2014-09-02 2017-08-18 高通股份有限公司 Lte中针对eotdoa的prs频率偏移和静音模式的随机化
CN107750437A (zh) * 2015-04-10 2018-03-02 瑞典爱立信有限公司 用于定位的定位参考信号样式

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11902206B2 (en) 2018-07-27 2024-02-13 Samsung Electronics Co., Ltd. Positioning reference signal configuration in a telecommunication system
GB2591960A (en) * 2018-08-03 2021-08-11 Samsung Electronics Co Ltd Improvements in and relating to positioning reference signal configuration in a telecommunication system
GB2586307A (en) * 2019-05-02 2021-02-17 Samsung Electronics Co Ltd Improvements in and relating to positioning reference in a telecommunication system
GB2586307B (en) * 2019-05-02 2021-12-29 Samsung Electronics Co Ltd Improvements in and relating to positioning reference in a telecommunication system
US11882501B2 (en) 2019-05-02 2024-01-23 Samsung Electronics Co., Ltd. Method and apparatus for measuring a position in a wireless communication network
EP4114074A4 (en) * 2020-02-26 2023-07-26 Datang Mobile Communications Equipment Co., Ltd. METHOD AND DEVICE FOR TRANSMITTING INFORMATION

Also Published As

Publication number Publication date
CN110808820A (zh) 2020-02-18
US11777676B2 (en) 2023-10-03
KR20210025120A (ko) 2021-03-08
CN110808820B (zh) 2021-09-17
EP3826212B1 (en) 2023-11-22
EP3826212A4 (en) 2021-09-08
EP3826212A1 (en) 2021-05-26
US20210297215A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
WO2020015499A1 (zh) 一种定位参考信号传输方法及装置
KR102576391B1 (ko) 포지셔닝 참조 신호를 전송하는 방법 및 장치
EP3817479B1 (en) Communication method and communication apparatus
TWI717613B (zh) 一種公共下行控制通道的傳輸方法和相關設備
WO2019100722A1 (zh) 一种参考信号的配置方法和装置
EP3614737A1 (en) Measurement method, measurement configuration method, and related device
JP7160501B2 (ja) 測位基準信号設定方法、受信方法及び機器
US11917621B2 (en) Method, device, and apparatus for transporting common control information
EP3592053A1 (en) Method for transmitting common signal and apparatus thereof
WO2019223659A1 (zh) 一种信号传输方法及装置
CN111726877B (zh) 数据传输方法、终端和基站
WO2020259341A1 (zh) 资源确定方法及装置
WO2017166255A1 (zh) 发送物理随机接入信道prach的方法、设备及系统
WO2015176517A1 (zh) 设备到设备的资源配置方法、网络设备及用户设备
WO2019063007A1 (zh) 随机接入方法及装置
WO2021160031A1 (zh) 信令接收、发送方法及设备
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
JP7009369B2 (ja) 基地局及び信号送信方法
WO2020063831A1 (zh) 通信方法及装置
EP4195735A1 (en) Method for monitoring control channels and determining transmission configuration indication, and terminal
TWI756259B (zh) 通訊方法、終端裝置和網路裝置
US11108522B2 (en) Distinguishing reference signals in a beam-based communication system
WO2018218539A1 (zh) 一种调度系统信息块的方法及装置
WO2024032232A1 (zh) 通信方法及装置
US20240080151A1 (en) Method for determining synchronization signal block parameter and related apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217004524

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019837838

Country of ref document: EP

Effective date: 20210222