WO2021031449A1 - 吸油烟机 - Google Patents

吸油烟机 Download PDF

Info

Publication number
WO2021031449A1
WO2021031449A1 PCT/CN2019/122738 CN2019122738W WO2021031449A1 WO 2021031449 A1 WO2021031449 A1 WO 2021031449A1 CN 2019122738 W CN2019122738 W CN 2019122738W WO 2021031449 A1 WO2021031449 A1 WO 2021031449A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
air outlet
range hood
tube
upper side
Prior art date
Application number
PCT/CN2019/122738
Other languages
English (en)
French (fr)
Inventor
谢川川
蓝渊
张辉
邓雁青
马世涛
汪耀东
Original Assignee
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美的集团股份有限公司 filed Critical 美的集团股份有限公司
Priority to JP2021569953A priority Critical patent/JP7383054B2/ja
Priority to KR1020217043333A priority patent/KR102576015B1/ko
Publication of WO2021031449A1 publication Critical patent/WO2021031449A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/26Arrangements for air-circulation by means of induction, e.g. by fluid coupling or thermal effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/28Details or features not otherwise provided for using the Coanda effect

Definitions

  • This application relates to the technical field of kitchen appliances, in particular to a range hood.
  • the range hood has become one of the essential household appliances in the home kitchen. Range hoods are mainly used to discharge harmful gases such as oil fume during cooking, and to maintain human health and indoor air quality.
  • the main method is to improve the design of the impeller, and increase the air volume or wind pressure redundancy of the main fan as the main means to ensure that the fan can have sufficient capacity even if its performance declines.
  • This method can effectively improve the effect of cooking fume, it also brings certain drawbacks, such as a significant increase in power consumption caused by an increase in fan power, and an increase in noise that affects user experience. Therefore, the current range hood still has more room for improvement.
  • This application aims to solve at least one of the technical problems existing in the prior art. For this reason, this application proposes a range hood, which can improve the effect of the range hood.
  • the range hood includes: a main housing with an air inlet and an air outlet; an air outlet device, the air outlet device including an air outlet source, an air outlet duct, and an ejection tube,
  • the ejection tube is located below the main casing and is spaced apart from the bottom wall of the main casing, the ejection tube is provided with an ejection port to form a jet flow field, and the outlet air source passes through the outlet
  • the air duct guides the airflow to the ejection pipe; wherein the ejection pipe has an upstream end and a downstream end in the flow direction of the flue gas, the ejection pipe includes an upper side wall and a lower side wall, the upper side wall Connected with the lower side wall at the upstream end, the upper side wall and the lower side wall form the injection port between the downstream end, and the upper side wall and the lower side wall are formed as arc-shaped walls, At least part of the outer surface of the arc-shaped wall is a Coanda surface.
  • the air outlet device includes an ejector tube, the ejector tube has an injection port for jetting airflow, and the upper and lower side walls of the ejector tube are formed as arcs At least part of the outer surface of the arc-shaped wall is the Coanda surface, which forms the cooperation of the ejection effect and the Coanda effect, so that the smoke upstream of the ejection tube can be strongly attracted to the air inlet, so that the outside of the main casing
  • the flow of smoke that is about to escape flows toward the air inlet, which makes up for the defect that the existing smoke machine has insufficient suction power for the escape smoke outside the main casing.
  • the phenomenon that the range hood is prone to smoke leakage is reduced, thereby improving the range hood's effect of absorbing smoke and protecting the health of the human body.
  • the setting of the air outlet device can reduce smoke leakage even when the air volume of the main fan is insufficient. Therefore, while ensuring the effect of the range hood, the air volume requirements of the main fan are greatly reduced, and the range hood can be adjusted appropriately under reasonable settings.
  • the rotation speed of the main fan can greatly reduce the power consumption of the hood, which is conducive to energy saving and environmental protection.
  • the range hood can appropriately reduce the speed of the main fan, the overall noise of the hood can be significantly reduced. Compared with the traditional hood, the noise is significantly reduced while ensuring the same range of hood.
  • the upper side wall and the lower side wall first move away from each other and then approach each other, and the outer surfaces of the upper side wall and the lower side wall are both Coanda surfaces .
  • the spray direction of the spray port is in a range from a horizontal plane to an angle of 20 degrees upward relative to the horizontal plane.
  • the tube section of the ejector tube is an airfoil shape
  • the upstream end of the ejector tube is located at the leading edge of the airfoil shape
  • the downstream end of the ejector tube is located at the trailing edge of the airfoil shape.
  • the line connecting the upstream end and the downstream end of the ejector tube is taken as the first line, so that the upper line is perpendicular to the first line.
  • the line connecting the farthest point between the side wall and the lower side wall is used as the second line, the distance between the upstream end of the ejector tube and the second line is L1, and the downstream end of the ejector tube
  • the distance from the second line is L2
  • the farthest distance between the upper side wall and the first line is H1
  • the farthest distance between the lower side wall and the first line is H2
  • H1 is equal to H2
  • the ratio of L1 to H1 is between 0.8 and 1.5
  • the ratio of L2 to H1 is between 2 and 4.
  • the injection port is a plurality of injection holes or slits. .
  • the height dimension of the nozzle hole or the slit is between 1 mm and 5 mm.
  • the spray port includes a plurality of spray holes, and the pitch between adjacent spray holes is 2.5 to 4 times the height of the spray holes.
  • the injection port is the slit
  • the diversion spacer ribs are arranged in the slit, and the spacing of the diversion spacer ribs is 3-10 times the height of the slit.
  • the injection port includes a plurality of the injection holes, the injection holes are elliptical, the ratio between the major axis and the minor axis of the ellipse is 2-4, and the adjacent ellipse The distance between the centers of the shapes is 3 to 5 times the long axis.
  • the bottom of the main housing is formed as a smoke collecting hood, and the ejection pipe is arranged at the bottom of the smoke collecting hood and adjacent to the outer edge of the smoke collecting hood.
  • the horizontal projection of the ejector tube is located within the horizontal projection of the smoke collecting hood, and the distance between the upper side wall of the ejecting tube and the bottom wall of the smoke collecting hood is 30 -50mm, the distance between the upstream end of the ejection tube and the outer edge of the smoke collecting hood is 0 to 100mm.
  • the air outlet source is located above the exhaust fan in the main housing.
  • the air outlet duct includes: a downwardly extending section, the downwardly extending section is arranged vertically in the main housing; a branch section, the branch section is arranged at the bottom of the main housing, the The bottom of the downward extension section is connected to a plurality of the branch sections; the elbow is located below the main housing, and the upper end of the elbow extends into the main housing and is connected to the branch section. The ends are connected, and the lower end of the elbow is connected with the end of the ejection tube.
  • the air outlet duct further includes: an upper guide section, the upper guide section is located above the exhaust fan and is connected to the outlet air source, and the upper guide section is arranged horizontally with two ends respectively Connect one of the downward extending sections.
  • the air outlet duct is provided with a diversion structure, the diversion structure is provided at the junction of the downward extension section and the branch section, and the diversion structure is provided between the branch section and the branch section.
  • the diversion structure is provided at the junction of the elbow.
  • Figure 1 is a front view of the range hood in an embodiment of the application
  • Figure 2 is a perspective view of the air outlet device in an embodiment of the application
  • Figure 3 is a partial enlarged view of the air outlet device and the smoke collecting hood shown in Figure 2;
  • FIG. 4 is a schematic diagram of the ejector tube and part of the elbow tube in an embodiment of the application;
  • Figure 5 is a schematic diagram of the flow direction of the flue gas under the fume collecting hood when the hood is in use in an embodiment
  • Fig. 6 is a schematic diagram of the flow direction of flue gas of the structure shown in Fig. 4 when the hood is used;
  • Figure 7 is a partial schematic diagram of the ejector tube in an embodiment of the application (wherein the nozzle hole is circular);
  • Fig. 8 is a partial schematic diagram of the ejector tube in another embodiment of the application (wherein the nozzle holes are two rows of circular holes);
  • Figure 9 is a partial schematic diagram of the ejector tube in an embodiment of the application (wherein the nozzle hole is oval);
  • Fig. 10 is a partial schematic diagram of the ejector tube in another embodiment of the application (wherein the nozzle hole is rectangular);
  • Figure 11 is a partial schematic diagram of the ejector tube in another embodiment of the application (wherein the nozzle hole is a racetrack type);
  • Figure 12 is a three-dimensional view of the air outlet device in another embodiment of the application.
  • Figure 13 is a front view of the range hood where the air outlet device shown in Figure 12 is located;
  • Fig. 14 is a schematic diagram of the local wind direction flow of the air outlet device shown in Fig. 12;
  • Figure 15 is a partial schematic diagram of the air outlet duct in an embodiment (where the air outlet duct is provided with a diversion structure at the turn of the wind direction).
  • Main housing 1 air inlet 11, negative pressure zone 111, air outlet 12, smoke collecting hood 13, exhaust fan 14, condensing plate 15, air box 16,
  • Air outlet device 2 air outlet source 21, air outlet duct 22, upper guide section 221, downward extension section 222, branch section 223, elbow 224, diversion structure 225, ejection tube 23, jet port 231, jet Hole 2311, slit 2312, diversion spacer 2313, upstream end A, downstream end B, arc-shaped wall 234, upper side wall 2341, lower side wall 2342.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be interpreted broadly unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection. Connected or integrally connected; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the range hood 100 according to an embodiment of the present application will be described below with reference to FIGS. 1 to 15.
  • the range hood 100 includes a main housing 1 and an air outlet device 2.
  • the main casing 1 has an air inlet 11 and an air outlet 12, and the air inlet 11 is located at the bottom of the main casing 1 to form a negative pressure zone 111 below the main casing 1.
  • the air outlet device 2 includes an air outlet source 21, an air outlet duct 22, and an ejection tube 23.
  • the ejection tube 23 is located below the main casing 1 and is spaced apart from the bottom wall of the main casing 1.
  • the ejection tube 23 is provided with a jet
  • the port 231 forms a jet flow field, and the air outlet source 21 guides the air flow to the jet tube 23 through the air outlet duct 22.
  • the ejector pipe 23 has an upstream end A and a downstream end B in the direction of the flue gas flow.
  • the ejector pipe 23 includes an upper side wall 2341 and a lower side wall 2342, and the upper side wall 2341 and the lower side wall 2342 are connected at the upstream end A.
  • the upper side wall 2341 and the lower side wall 2342 form an injection port 231 between the downstream end B, the upper side wall 2341 and the lower side wall 2342 are formed as arc-shaped walls 234, and at least part of the outer surface of the arc-shaped wall 234 is Coanda surface.
  • the cooker and cooking utensils under the range hood 100 generate a large amount of oil fume.
  • the oil fume rises rapidly under the action of buoyancy and spreads around during the ascent.
  • the main fan of the range hood 100 is the exhaust fan 14.
  • the exhaust fan 14 sucks in the airflow from the air inlet 11 and exhausts it from the air outlet 12.
  • cold walls such as the condensation plate 15
  • filter screens and other components during the flow .
  • the oil droplets in the air flow are easy to precipitate and be separated.
  • the negative pressure in the negative pressure zone 111 is relatively large, which can attract the cooking fume generated by the cooker and cooker to the air inlet 11 and enter the range hood 100.
  • the negative pressure field distribution formed under the main casing 1 is affected by the operating state of the main fan and the structure of the range hood 100.
  • the negative pressure is usually the largest at the area directly opposite the air inlet under the main casing 1, but when the main casing 1 When a condensing plate 15 is provided at the air inlet 11, the condensing plate 15 moves the area with the strongest negative pressure outside, and the contour of the strongest negative pressure area becomes larger. Therefore, in different embodiments, the direction of the injection port 231 can be based on this embodiment Adjustment of the negative pressure field distribution.
  • the range hood 100 of the embodiment of the present application also has an air outlet device 2, and the air outlet device 2 uses an outlet air source 21 to form an outlet air flow.
  • the air outlet 21 uses a fan to output air
  • the range hood 100 becomes a dual fan system, in which one fan sucks air from the air inlet 11 and the other blows air into the negative pressure zone 111 formed by the air inlet 11.
  • the air outlet 21 can also be realized by other devices (such as an air compressor).
  • the outlet air source 21 directs the airflow to the ejection pipe 23 through the outlet duct 22, so that the ejection port 231 can eject the airflow, and the ejection airflow can jet in the direction of the flue gas flow to form a jet flow field.
  • the negative pressure zone 111 cannot completely attract the oil smoke to the air inlet 11, and some oil smoke diffuses to both sides of the hood and tries to escape from both sides.
  • the oil fume diffuses to the vicinity of the air outlet device 2, due to the entrainment and ejection effect of the air flow at the injection port 231, the outwardly diffused oil fume will be forced to change the direction of movement by the air flow generated by the air outlet device 2 toward the negative pressure zone 111. From outward movement to inward movement, the oil fume is re-transmitted to the negative pressure zone 111, so that the leakage of oil fume can be minimized.
  • the ejector tube 23 is configured to include an upper side wall 2341 and a lower side wall 2342, the upper side wall 2341 and the lower side wall 2342 are connected at the upstream end A, and the upper side wall 2341 and the lower side wall 2342 are at the downstream end B
  • An ejection port 231 is formed between the upper side wall 2341 and the lower side wall 2342.
  • Both the upper side wall 2341 and the lower side wall 2342 are arc-shaped walls 234.
  • At least part of the outer surface of the arc-shaped wall 234 is a Coanda surface, so that the air flow outside the ejector tube 23 can be more
  • the ground surging and converging toward the negative pressure zone 111 can particularly attract a large amount of airflow that will diffuse to the outside of the range hood 100 to the negative pressure zone 111.
  • the Coanda surface can produce the Coanda effect, that is, the fluid (water flow or air flow) has a tendency to deviate from the original flow direction and change to flow with the protruding surface of the object.
  • the air flow above the upper side wall 2341 can be close to the upper surface of the upper side wall 2341 when flowing toward the negative pressure zone 111. Flow, the air flow above the upper side wall 2341 can quickly merge with the air flow ejected from the jet port 231, or flow to the negative pressure zone 111 under the action of the jet flow field generated by the jet air flow from the jet port 231.
  • the air flow above the upper side wall 2341 can flow in a consistent direction toward the negative pressure zone 111, so that a negative pressure is formed in the area above the upper side wall 2341.
  • the ejector tube 23 since the ejector tube 23 is located below the main housing 1 and is spaced from the bottom wall of the main housing 1, the outside of the main housing 1 communicates with the area above the upper side wall 2341, thereby forming an upper negative pressure.
  • the area above the side wall 2341 can attract smoke from the outside of the main housing 1.
  • the setting of the Coanda surface makes the fumes about to escape from the outside of the main casing 1 flow laterally along the Coanda surface into the negative pressure zone 111 below the air inlet 11, and then suck into the main casing 1 under negative pressure .
  • the air flow under the lower side wall 2342 can be close to the bottom of the lower side wall 2342 when flowing toward the negative pressure zone 111.
  • the surface flows, so that the area under the lower side wall 2342 forms a negative pressure, and the area under the lower side wall 2342 forming the negative pressure can suck smoke from the outside of the main housing 1.
  • the setting of the Coanda surface makes the fumes about to escape from the outside of the main casing 1 flow laterally along the Coanda surface into the negative pressure zone 111 below the air inlet 11, and then suck in under the negative pressure of the negative pressure zone 111 Inside the main housing 1.
  • the air outlet device 2 uses the ejector flow field to drive the airflow above and below the ejector flow field toward the negative pressure zone 11 on the one hand, and uses the ejector flow field to make the upper side
  • the air flow on the upper surface of the wall 2341 has a tendency to flow towards the negative pressure zone 11, and the air flow under the lower surface of the lower side wall 2342 has a tendency to flow towards the negative pressure zone 11.
  • the airflow flowing on the Coanda surface flows tightly along the Coanda surface to the jet port 231, forming another negative surface.
  • the air outlet device 2 includes an ejector tube 23.
  • the ejector tube 23 has an ejection port 231 that sprays airflow toward the negative pressure zone 111, and the ejector tube
  • the upper side wall 2341 and the lower side wall 2342 of 23 are formed as an arc-shaped wall 234.
  • At least part of the outer surface of the arc-shaped wall 234 is a Coanda surface, forming the cooperation of the ejection effect and the Coanda effect, so that the ejector tube 23
  • the upstream smoke can be strongly attracted to the air inlet 11, so that the escaping smoke from the outside of the main casing 1 flows to the air inlet 11, which compensates for the defect of insufficient suction of the existing hood for the escaping smoke outside the main casing.
  • the phenomenon that the range hood easily leaks smoke is reduced, thereby improving the range hood 100's smoke absorption effect, and protecting the health of the human body.
  • the installation of the air outlet device 2 can reduce the smoke leakage.
  • the range hood 100 greatly reduces the air volume requirements of the main fan.
  • the range hood 100 is reasonably set The rotation speed of the main fan can be appropriately lowered, thereby greatly reducing the power consumption of the hood, which is beneficial to energy saving and environmental protection.
  • the range hood 100 can appropriately reduce the rotation speed of the main fan, the overall noise of the hood can be significantly reduced. Compared with the traditional hood, the noise is significantly reduced while ensuring the same effect of absorbing the range hood.
  • the main housing 1 includes: a wind box 16 and a smoke collecting hood 13.
  • the smoke collecting hood 13 is provided at the bottom of the wind box 16, and the bottom wall of the smoke collecting hood 13 is formed upwardly concave In a curved shape, the air inlet 11 is formed at the center of the depression of the bottom wall of the smoke collecting hood 13.
  • a negative pressure zone 111 will be formed under the smoke collecting cavity, and the nearby oil fume will be sucked into the air box 16 along the profile of the smoke collecting cavity, and then discharged into the public flue.
  • the setting of the smoke collecting hood 13 can expand the negative pressure area and improve the smoke gathering effect.
  • a condensation plate 15 is provided at the bottom of the fume collecting hood 13, and the condensation plate 15 can improve the separation effect of oil droplets.
  • the condensing plate 15 is arranged corresponding to the air inlet 11, and the periphery of the condensing plate 15 and the smoke collecting cavity form an annular suction opening, and the oil fume enters the inside of the air box 16 from the annular suction opening.
  • the condensing plate 15 Through the action of the condensing plate 15, the negative pressure zone 11 is moved to the edge of the smoke collecting cavity, thereby expanding the range of the negative pressure zone 11, thereby reducing the edge of smoke and improving the effect of oil smoke.
  • the exhaust fan 14 is arranged in the air box 16.
  • the exhaust fan 14 is a centrifugal fan.
  • the exhaust fan 14 provides a larger air volume and air pressure to overcome the external flue pressure and form a negative pressure zone inside. The function is to suck indoor air into the exhaust fan 14 and discharge it to the outdoors (public flue).
  • the upper side wall 2341 and the lower side wall 2342 are formed as arc-shaped walls 234 that are first away from each other and then close to each other.
  • the ejection tube 23 is easy to process and manufacture, but also the ejection tube 23 has a large enough lumen to make the internal air flow more uniform and stable.
  • the arrows in Fig. 5 and Fig. 6 indicate the flow direction of soot.
  • the outer surfaces of the upper side wall 2341 and the lower side wall 2342 are both Coanda surfaces. It is understandable that when oil fume escapes from the periphery of the negative pressure zone 111, part of it will contact the lower side wall 2342 of the ejector tube 23. This part of the oil fume is easily affected by the jet effect and the Coanda effect. Flow along the lower side wall 2342 to the negative pressure zone 111; when some oil fume bypasses the lower side wall 2342 and diffuses upwards, it is easily attracted by the negative pressure field formed by the upper side wall 2341, and this part of the smoke can follow the upper side wall 2341 flows to the negative pressure zone 111. Through the double ejection and suction effect of the air outlet device 2 up and down, the oil smoke diffused outward can be sucked into the negative pressure zone 111 as much as possible.
  • the spray direction of the spray port 231 is within a 20-degree angle range between the horizontal plane and the relative horizontal plane.
  • the injection port 231 can spray in a horizontal direction, and the spray direction of the spray port 231 can also be slightly inclined upward, but the spray direction of the spray port 231 does not exceed 20 degrees of the horizontal plane.
  • the suction force of the smoke formed by the dual action of the ejection effect and the Coanda effect can be radiated to the upstream area of the ejection tube 23 in the opposite direction of the ejection.
  • the attractive force can well attract the flue gas on the horizontal outside of the ejector tube 23 to the negative pressure zone, so that the smoke suction range can be expanded without reducing the negative pressure of the negative pressure zone 11.
  • the tube section of the ejector tube 23 is an airfoil shape
  • the upstream end A of the ejector tube 23 is located at the leading edge of the airfoil shape
  • the downstream end of the ejector tube 23 B is located at the trailing edge of the airfoil shape.
  • the upstream end A is the leading edge of the airfoil with an obtuse angle
  • the downstream end B is the trailing edge of the airfoil with an acute angle.
  • the ejector tube 23 with a wing-shaped tube cross-section can reduce the resistance to the flow of oil fume, thereby facilitating the rapid flow of oil fume from the upstream end A to the downstream end B, thereby facilitating the rapid flow of oil fume to the negative pressure zone 111.
  • the smoking efficiency of the range hood 100 can be improved.
  • the airfoil shape refers to the cross-sectional shape of an aircraft wing
  • the tube cross section of the ejector tube 23 can adopt an airfoil shape known in the prior art, and the airfoil shape is not specifically limited here.
  • the airfoil shape of the ejection tube 23 is a symmetrical airfoil shape on the upper and lower sides.
  • the line connecting the upstream end A and the downstream end B of the ejector tube 23 is taken as the first line, so as to be in a direction perpendicular to the first line.
  • the line of the furthest point between the upper upper side wall 2341 and the lower side wall 2342 serves as the second line.
  • the distance between the upstream end A of the ejector tube 23 and the second line is L1
  • the distance between the downstream end B of the ejector tube 23 and the second line is L2
  • the farthest distance between the upper side wall 2341 and the first line is H1
  • the farthest distance between the lower side wall 2342 and the first connecting line is H2
  • H1 is equal to H2
  • the ratio of L1 to H1 is between 0.8 to 1.5
  • the ratio of L2 to H1 is between 2 to 4.
  • the first connection is the AB line segment
  • the second connection is the CD line segment
  • the intersection of the AB line segment and the CD line segment is O.
  • the length of the AO line segment is L1
  • the length of the BO line segment is L2
  • the length of the CO line segment is H1
  • the length of the DO line segment is H2.
  • H1 H2
  • set a L1/H1
  • the ejector tube 23 forms a symmetrical airfoil duct structure, which can achieve a better ejection effect.
  • the ejector tube 23 may be one tube or multiple tubes.
  • the ejector tube 23 is arranged along the bottom edge of the main casing 1.
  • the specific extension shape of the ejector tube 23 is not limited here, and can be matched according to actual needs.
  • the ejection tube 23 is linear, L-shaped, or square; when the bottom of the main casing 1 is circular or elliptical, the ejection tube 23 is arc, circular, or elliptical.
  • the ejector tube 23 can be provided with one layer or multiple layers.
  • the ejection port 231 on the ejection tube 23 also has various settings.
  • the injection port 231 is a plurality of injection holes 2311 or slits 2312. In this way, the air flow can be sprayed outward through the multiple nozzle holes 2311 or the slits 2312.
  • the multiple nozzle holes 2311 or the slits 2312 are beneficial to guide the flow of the air flow and make the air flow more uniform.
  • the hole shape of the injection hole 2311 is not limited, for example, it may be a circular hole as shown in FIG. 7 or an elliptical hole as shown in 9.
  • the ejector tube 23 is an annular tube extending around the axis of the air inlet 11, and in other examples, the ejector tube 23 is a straight pipe or an elbow pipe provided on one side of the main housing 1, and some In the example, the ejection pipe 23 extends on two adjacent sides or three adjacent sides of the main housing 1.
  • the ejection port 231 may be a plurality of ejection holes 2311 arranged along the extension direction of the ejection pipe 23, and the ejection port 231 may also It is a slit 2312 provided along the extension direction of the ejection tube 23.
  • the nozzle holes 2311 can be single row or double row.
  • the injection holes 2311 may be arranged at equal intervals, or may be arranged at unequal intervals.
  • the height dimension of the nozzle hole 2311 or the slit 2312 is between 1 mm and 5 mm.
  • the above-mentioned limitation of the height dimension refers to that the diameter d of the circular hole is between 1 mm and 5 mm.
  • the nozzle hole 2311 is an elliptical hole as shown in FIG. 9, the major axis of the elliptical hole is arranged horizontally, and the above limitation of the height dimension means that the minor axis dimension of the elliptical hole is between 1 mm and 5 mm.
  • the spray hole 2311 or the slit 2312 has a suitable height to spray the air flow, so as to achieve a good ejection effect.
  • the nozzle hole 2311 or the slit 2312 makes the air flow evenly ejected, which is conducive to the strong jet entrainment effect of the air flow and can improve The rigidity of the ejector tube 23.
  • the injection port 231 includes a plurality of injection holes 2311, and the pitch between adjacent injection holes 2311 is 2.5 to 4 times the height of the injection holes 2311.
  • the optimal range of the hole distance Ld between adjacent circular holes is 2.5*d ⁇ Ld ⁇ 4*d.
  • the plurality of nozzle holes 2311 have a proper spacing to reduce the influence on the structural strength of the upper side wall 2341 and the lower side wall 2342, and minimize the deformation of the upper side wall 2341 and the lower side wall 2342.
  • a plurality of nozzle holes 2311 with a reasonable spacing can improve the guiding effect of the ejection tube 23 on the airflow to produce a good ejection effect.
  • the injection port 231 is a slit 2312
  • the slit 2312 is provided with diversion spacing ribs 2313
  • the spacing of the diversion spacing ribs 2313 is 3 times the height of the slit 2312. -10 times. It is understandable that the diversion spacer 2313 can support the upper side wall 2341 and the lower side wall 2342, strengthen the structural strength of the upper side wall 2341 and the lower side wall 2342, and minimize the upper side wall 2341 and the lower side wall.
  • the deformation of the wall 2342, in addition, the diversion spacer 2313 can also play a role in guiding the flow direction of the airflow, so that the airflow moves toward the negative pressure zone 111, and minimizes hidden dangers such as smoke leakage caused by the airflow tilting to flow in other directions.
  • the slit 2312 has a long strip shape, and is divided into a plurality of rectangular small holes at the interval of a plurality of diversion spacer ribs 2313.
  • the width of the slit 2312 is large, the upper and lower ends of the diversion spacer ribs 2313 may also be chamfered. All of the above can achieve a good ejection effect of the air outlet device 2, and the shape of the slit 2312 is not specifically limited here.
  • the injection port 231 includes a plurality of injection holes 2311, the injection holes 2311 are elliptical, the ratio of the major axis to the minor axis of the ellipse is 2-4, and the adjacent ellipse The distance between the centers is 3 to 5 times the long axis.
  • the nozzle hole 2311 has a proper curvature to facilitate the flow of the airflow, and adjacent ellipses have a proper distance to make the airflow more uniform under the premise of ensuring the structural strength of the ejection tube 23.
  • the bottom of the main housing 1 is formed as a smoke collecting hood 13, and the ejection pipe 23 is provided at the bottom of the smoke collecting hood 13 and adjacent to the outer edge of the smoke collecting hood 12. .
  • the distance between the upper side wall 2341 of the ejection tube 23 and the bottom wall of the smoke collecting hood 13 is 30-50 mm. It is understandable that the fume collecting hood 13 can make the oil fume enter the range hood 100 along the side wall of the fume collecting hood 13 to play a role of guiding the oil fume.
  • the distance between the upper side wall 2341 of the ejection tube 23 and the bottom wall of the fume collecting hood 13 is 30-50 mm, so that the airflow has a good ejection effect, so as to achieve a good oil smoke absorption effect.
  • the ejector pipe 23 has a large ejection range of oil fume and can produce powerful Ejection and entrainment, that is, when the oil fume is large, more oil fume will escape to the outside of the range hood.
  • the oil fume can flow to the air inlet to realize the distance from the fume collecting hood 13 Ejection of farther fume.
  • the horizontal projection of the ejector tube 23 is located within the horizontal projection of the fume hood 13, between the upstream end A of the ejector tube 23 and the outer edge of the fume hood 13
  • the distance is 0 to 100mm. In this way, a limited space is formed between the bottom of the smoke collecting hood 13 and the upper side wall 2341 of the ejection tube 23, which plays a good role of diversion.
  • the ejection tube 23 and the fume collecting hood 13 have a proper distance so that the airflow has a good ejection effect, so as to achieve a good oil smoke absorption effect.
  • the air outlet source 21 is located above the exhaust fan 14 in the main housing 1. It is understandable that, compared with the main fan, the air volume generated by the air outlet 21 is smaller, and the structural size can be designed to be smaller. Therefore, the outlet air source 21 is arranged above the exhaust fan 14, so that the space above the exhaust fan 14 can be fully utilized. The installation of the outlet air source 21 does not need to occupy the space in the area where the main fan is located, so as to avoid excessive air flow. Big obstacle.
  • the air outlet 21 may be a centrifugal or diagonal flow fan, so the air volume is large and the space occupied is small. Under reasonable settings, the air outlet 21 is not limited to the centrifugal fan or diagonal flow fan mentioned above, and the air outlet 21 may also be an axial fan or the like.
  • the air outlet source 21 is installed on the top plate above the main fan, and the air outlet end of the air outlet source 21 may be set downward, horizontally or inclined.
  • the air outlet duct 22 includes a downward extending section 222, a plurality of branch sections 223 and an elbow 224.
  • the downward extending section 222 is vertically arranged in the main housing 1, the branch section 223 is arranged at the bottom of the main housing 1, and the bottom of the downward extending section 222 is connected to a plurality of branch sections 223.
  • the elbow 224 is located below the main casing 1, the upper end of the elbow 224 extends into the main casing 1 and is connected with the end of the branch section 223, and the lower end of the elbow 224 is connected with the end of the ejector tube 23.
  • the arrangement of the plurality of branch sections 223 separates the air flow before it flows to the ejection tube 23, which is beneficial to the balanced jet of the air flow at each injection port 231.
  • the air outlet duct 22 includes an upper guide section 221, which is located above the exhaust fan 14 and is connected to the air outlet source 21, and the upper guide section 221 is arranged horizontally And the two ends are respectively connected to a downward extending section 222, so that the air flow is distributed before entering the downward extending section 222.
  • the upper guide section 221 is arranged horizontally, two ends of the upper guide section 221 are connected to a downward extension section 222 respectively, and the two downward extension sections 222 are respectively located inside the wind box 16
  • the bottom of each downward extending section 222 is respectively connected to two branch sections 223, and all the branch sections 223 are located in the smoke collecting hood 13.
  • the smoke collecting hood 13 has a top wall and a bottom wall, and the branch section 223 is located between the top wall and the bottom wall of the smoke collecting hood 13.
  • a chevron-shaped three-way structure is formed at the bottom of each downward extension section 222 in the interlayer, which is divided into two and extends to the front side and the rear side respectively.
  • the two branch sections 223 on the left side are both connected with elbows 224, and the lower ends of the two elbows 224 are bent toward each other to connect an ejector tube 23.
  • Each elbow 224 is a circular arc bend, and the arrangement of the elbow 224 can make the flow direction of the air flow smoothly transition from the vertical direction to the horizontal direction, reduce the pipe resistance and reduce the loss of the air flow.
  • the air outlet duct 22 has no upper guide section 221, the air outlet source 21 is directly connected to the downward extension section 222, and the bottom of the downward extension section 222 is connected to multiple The free end of each branch section 223 is connected to an elbow 224, and the elbow 224 is connected to the ejector tube 23.
  • the downward extending section 222 is located on the rear wall of the air box 16, and the plurality of branch sections 223 are located between the top wall and the bottom wall of the smoke collecting hood 13.
  • only one end of each ejector tube 23 is connected to an elbow 224, which is a circular arc elbow.
  • the lumen of the air outlet duct 22 preferentially has a flat cross-sectional structure, which can reduce the influence on the air intake of the main fan.
  • the cross-sectional shape can be rectangular, circular, elliptical, or the like.
  • the cross-sectional area can be changed or constant.
  • the air outlet duct 22 can be divided into one or more branch pipes, which are connected with the ejection pipe 23 below.
  • Each ejection tube 23 can be connected to the outlet duct 22 at multiple places, and the multiple inlets can reduce the fluid resistance of the outlet duct 22 and the ejection pipe 23 and increase the uniformity of the air flow of the ejection pipe 23.
  • a flow guiding structure 225 is provided in the air outlet duct 22.
  • a diversion structure 225 may be provided at the connection of the downward extending section 222 and the branch section 223, and for example, as shown in FIG. 15, a diversion structure is provided at the connection of the branch section 223 and the elbow 224 225.
  • the arrangement of the guide structure 225 is beneficial to the flow of the air flow, reduces the resistance during the flow of the air flow, and reduces the loss of the air flow, thereby improving the guiding effect of the air outlet device 2.
  • the designed jet and outflow device is used to re-collect the diffused oil fume in the negative pressure zone 111 formed by the main fan and be sucked into the main fan.
  • the dual-fan air duct system compared with the traditional single-fan system, it can still achieve a good oil fume absorption effect under the condition of greatly reducing the air volume of the main fan, and has a good ability to resist the deterioration of the external environment. Therefore, the present application can not only achieve a good oil fume absorption effect, but also can greatly reduce the power consumption and noise (low air volume, low speed) of the main fan. Whether it is from the perspective of energy saving and environmental protection or the perspective of good user experience, it can have a breakthrough improvement on the product.
  • the range hood 100 in a specific implementation of the present application will be described below with reference to FIGS. 1 to 6.
  • the range hood 100 includes: a main housing 1 and an air outlet device 2.
  • the bottom of the main casing 1 is formed as a smoke collecting hood 13.
  • the main casing 1 has an air inlet 11 and an air outlet 12.
  • the air inlet 11 is located at the bottom of the main casing 1 to form a negative pressure zone 111 below the air inlet 11.
  • the axis of 11 is set vertically.
  • the air outlet device 2 includes an air outlet source 21, an air outlet duct 22 and an ejection tube 23.
  • the air outlet source 21 guides the air flow to the ejection pipe 23 through the air outlet duct 22.
  • the ejection pipe 23 is located below the main housing 1 and is spaced apart from the bottom wall of the main housing 1, and the ejection pipe 23 is provided with an ejection port 231 on the side of the axis facing the air inlet 11.
  • the ejector tube 23 In the flue gas flow direction, the ejector tube 23 has an upstream end A and a downstream end B.
  • the ejector tube 23 includes an upper side wall 2341 and a lower side wall 2342.
  • the upper side wall 2341 and the lower side wall 2342 are connected at the upstream end A.
  • the side wall 2341 and the lower side wall 2342 form an injection port 231 at the downstream end B.
  • the tube section of the ejector tube 23 is an airfoil shape.
  • the upstream end A of the ejector tube 23 is located at the leading edge of the airfoil shape.
  • the downstream end B is located at the trailing edge of the airfoil shape.
  • the upper side wall 2341 and the lower side wall 2342 are formed as symmetrically arranged arc-shaped walls 234, and the upper surface of the upper side wall 2341 and the lower surface of the lower side wall 2342 are both Coanda surfaces.
  • the line connecting the upstream end A and the downstream end B of the ejector tube 23 is taken as the first line, so that the upper side wall 2341 and the lower side wall are perpendicular to the first line.
  • the line connecting the furthest points between 2342 is used as the second line, the distance between the upstream end A of the ejector tube 23 and the second line is L1, and the distance between the downstream end B of the ejector tube 23 and the second line is L2 ,
  • the farthest distance between the upper side wall 2341 and the first line is H1
  • the farthest distance between the lower side wall 2342 and the first line is H2
  • H1 is equal to H2
  • the ratio of L1 to H1 is between 0.8 and 1.5
  • the ratio of L2 to H1 is between 2 and 4.
  • the injection port 231 is a plurality of injection holes 2311 arranged along the extension direction of the injection pipe, and the injection holes 2311 are circular holes.
  • the diameter of the nozzle hole 2311 is between 1 mm and 5 mm, and the hole distance between adjacent nozzle holes 2311 is 2.5 to 4 times the diameter of the nozzle hole 2311.
  • the horizontal projection of the ejector tube 23 is located within the horizontal projection of the smoke collecting hood 13, and the distance between the upstream end A of the ejecting pipe 23 and the outer edge of the smoke collecting hood 13 is 0 to 100 mm.
  • the air outlet duct 22 includes: an upper guiding section 221, a downward extending section 222, a plurality of branch sections 223 and a plurality of elbows 224.
  • the upper guide section 221 is located above the exhaust fan 14 and is connected to the outlet source 21.
  • the downward extending section 222 respectively extends downward from both ends of the upper guiding section 221, and the upper guiding section 221 and the two downward extending sections 222 are located in the main housing 1.
  • a plurality of branch sections 223 are connected to the bottom of each downward extension section 222, and each branch section is connected to the ejector tube 23 through an elbow 224.
  • the description with reference to the terms “embodiment”, “example”, etc. means that the specific feature, structure, material or characteristic described in conjunction with the embodiment or example is included in at least one embodiment or example of the present application .
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ventilation (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Duct Arrangements (AREA)
  • Air-Flow Control Members (AREA)

Abstract

一种吸油烟机,包括主壳体(1)和出风装置(2)。出风装置(2)包括出风源(21)、出风导管(22)和引射管(23)。引射管(23)间隔开地设在主壳体(1)下方,引射管(23)上设有喷射口(231)以形成引射流场,出风源(21)通过出风导管(22)将气流导向引射管(23)。引射管(23)包括上侧壁(2341)和下侧壁(2342),上侧壁(2341)和下侧壁(2342)在烟气流动方向上的引射管(23)的上游端(A)相连,上侧壁(2341)和下侧壁(2342)在引射管(23)的下游端(B)之间形成喷射口(231),上侧壁(2341)和下侧壁(2342)形成弧形壁(234),弧形壁(234)的至少部分外表面为柯恩达面。

Description

吸油烟机
相关申请的交叉引用
本申请基于申请号为201910780120.0、申请日为2019年08月22日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及厨房电器技术领域,尤其是涉及一种吸油烟机。
背景技术
吸油烟机已经成为现在家庭厨房中必不可少的家用电器之一。吸油烟机主要用于排出烹饪过程中产生的油烟等有害气体,维护人体健康和室内空气质量。
为了达到较好的吸油烟效果,防止产生漏烟现象,通常以改进叶轮的设计为主,提升主风机的风量或者风压冗余为主要手段,来保证即使风机性能衰减也能有足够的能力来保证吸油烟性能。这种方法虽然可以有效地改善吸油烟效果,但是也会带来一定的弊端,比如风机功率提升带来功耗的显著增加、噪音增加影响用户体验等。因此,目前的吸油烟机还有较大的改进空间。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种吸油烟机,可以提高油烟机的吸油烟效果。
根据本申请实施例的吸油烟机,包括:主壳体,所述主壳体具有进风口和出风口;出风装置,所述出风装置包括出风源、出风导管和引射管,所述引射管位于所述主壳体下方且与所述主壳体的底壁间隔开,所述引射管上设有喷射口以形成引射流场,所述出风源通过所述出风导管将气流导向所述引射管;其中,在烟气流动方向上所述引射管具有上游端和下游端,所述引射管包括上侧壁和下侧壁,所述上侧壁和所述下侧壁在上游端相连,所述上侧壁和所述下侧壁在下游端之间形成所述喷射口,所述上侧壁和所述下侧壁形成为弧形壁,所述弧形壁的至少部分外表面为柯恩达面。
根据本申请实施例的吸油烟机,通过设置出风装置,出风装置包括引射管,引射管 具有喷射气流的喷射口,并且使引射管的上侧壁、下侧壁形成为弧形壁,弧形壁的至少部分外表面为柯恩达面,形成引射效应和柯恩达效应的配合,使引射管上游的烟气能被强力吸引至进风口,从而主壳体外侧即将逃逸的烟气流向进风口,弥补了现有烟机对主壳体外侧逃逸烟气吸力不足的缺陷。由此,减少了吸油烟机容易漏烟的现象,进而提高吸油烟机的吸油烟效果,保护人体的健康。而且即使主风机风量不足时出风装置的设置也能减少漏烟现象,因此在保证吸油烟效果的同时,吸油烟机对主风机的风量要求大幅降低,在合理设置下吸油烟机可以适当下调主风机的转速,从而可以大幅降低烟机的功耗,有利于节能环保。另外,如果吸油烟机能适当降低主风机的转速,可以显著降低烟机的整体噪音,相比传统的烟机而言,在保证同样的吸油烟效果情况下,噪音明显降低。
在一些实施例中,在烟气流动方向上所述上侧壁和所述下侧壁先彼此远离后彼此靠近,所述上侧壁和所述下侧壁的外表面均为柯恩达面。
在一些实施例中,所述喷射口的喷射方向在水平面至相对水平面向上20度角的范围内。
在一些实施例中,所述引射管的管截面为翼型形状,所述引射管的上游端位于翼型形状的前缘,所述引射管的下游端位于翼型形状的尾缘。
具体地,在所述引射管的管截面上,以所述引射管的上游端和下游端连线作为第一连线,以在垂直于所述第一连线的方向上所述上侧壁和所述下侧壁之间距离最远点连线作为第二连线,所述引射管的上游端与所述第二连线的距离为L1,所述引射管的下游端与所述第二连线的距离为L2,所述上侧壁与所述第一连线的最远距离为H1,所述下侧壁与所述第一连线的最远距离为H2,H1与H2相等,L1与H1的比值在0.8至1.5之间,L2与H1的比值在2至4之间。
在一些实施例中,所述喷射口为多个喷孔或者条缝。。
具体地,所述喷孔或者所述条缝的高度尺寸在1mm至5mm之间。
在一些实施例中,所述喷射口包括多个所述喷孔,相邻所述喷孔之间孔距为所述喷孔高度尺寸的2.5至4倍。
在一些实施例中,所述喷射口为所述条缝,所述条缝内设有导流间隔筋,所述导流间隔筋的间距为所述条缝高度尺寸的3-10倍。
在一些实施例中,所述喷射口包括多个所述喷孔,所述喷孔为椭圆形,所述椭圆形的长轴与短轴之间的比值为2-4,相邻所述椭圆形的中心之间距离为长轴的3至5倍。
在一些实施例中,所述主壳体的底部形成为集烟罩,所述引射管设在所述集烟罩的底部且临近所述集烟罩的外边缘处。
在一些实施例中,所述引射管的水平投影位于所述集烟罩的水平投影内,所述引射管的所述上侧壁与所述集烟罩的底壁之间间距为30-50mm,所述引射管的上游端与所述集烟罩的外边缘之间距离为0至100mm。
在一些实施例中,所述出风源位于所述主壳体内的抽风风机的上方。
具体地,所述出风导管包括:向下延伸段,所述向下延伸段竖向设置在所述主壳体内;分支段,所述分支段设置在所述主壳体的底部,所述向下延伸段的底部连接多个所述分支段;弯管,所述弯管位于所述主壳体的下方,所述弯管的上端伸到所述主壳体内并与所述分支段的端部相连,所述弯管的下端与所述引射管的端部相连。
进一步地,所述出风导管还包括:上导引段,所述上导引段位于所述抽风风机的上方且与所述出风源相连,所述上导引段水平设置且两端分别连接一个所述向下延伸段。
在一些可选的实施例中,所述出风导管内设有导流结构,在所述向下延伸段和所述分支段连接处设有所述导流结构,在所述分支段和所述弯管连接处设有所述导流结构。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请一个实施例中吸油烟机的主视图;
图2为本申请一个实施例中出风装置的立体图;
图3为图2所示出风装置与集烟罩的局部放大图;
图4为本申请一个实施例中引射管和部分弯管的示意图;
图5为一个实施例中在集烟罩下方在烟机使用时的烟气流动方向示意图;
图6为图4所示结构在烟机使用时的烟气流动方向示意图;
图7为本申请一个实施例中引射管的局部示意图(其中,喷孔为圆形);
图8为本申请另一个实施例中引射管的局部示意图(其中,喷孔为两排圆孔);
图9为本申请一个实施例中引射管的局部示意图(其中,喷孔为椭圆形);
图10为本申请又一个实施例中引射管的局部示意图(其中,喷孔为长方形);
图11为本申请再一个实施例中引射管的局部示意图(其中,喷孔为跑道型);
图12为本申请另一个实施例中出风装置的立体图;
图13为图12所示出风装置所在的吸油烟机的主视图;
图14为图12所示出风装置的局部风向流动示意图;
图15为一个实施例中出风导管的局部示意图(其中,出风导管在风向拐弯处设有导流结构)。
附图标记:
吸油烟机100、
主壳体1、进风口11、负压区111、出风口12、集烟罩13、抽风风机14、冷凝板15、风机箱16、
出风装置2、出风源21、出风导管22、上导引段221、向下延伸段222、分支段223、弯管224、导流结构225、引射管23、喷射口231、喷孔2311、条缝2312、导流间隔筋2313、上游端A、下游端B、弧形壁234、上侧壁2341、下侧壁2342。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”、“中心”、“宽度”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
下面参考图1-图15描述根据本申请实施例的吸油烟机100。
根据本申请实施例的吸油烟机100,如图1-图3所示,包括:主壳体1和出风装置2。主壳体1具有进风口11和出风口12,进风口11位于主壳体1的底部以在主壳体1下方形成负压区111。
出风装置2包括出风源21、出风导管22和引射管23,引射管23位于主壳体1下方且与主壳体1的底壁间隔开,引射管23上设有喷射口231以形成引射流场,出风源21通过出风导管22将气流导向引射管23。其中,在烟气流动方向上引射管23具有上游端A和下游端B,引射管23包括上侧壁2341和下侧壁2342,上侧壁2341和下侧壁2342在上游端A相连,上侧壁2341和下侧壁2342在下游端B之间形成喷射口231,上侧壁2341和下侧壁2342形成为弧形壁234,弧形壁234的至少部分外表面为柯恩达面。
可以理解的是,烹饪过程中,吸油烟机100下方的灶具和炊具生成大量的油烟,在浮力作用下油烟快速上升,并在上升过程中向四周扩散。吸油烟机100的主风机为抽风风机14,抽风风机14将气流由进风口11吸入,由出风口12排出,气流在流动过程中遇到冷壁(如冷凝板15)、滤网等部件时,气流中油滴容易析出而被分离。
主风机的驱动作用影响,负压区111负压较大,可以吸引灶具和炊具生成的油烟向进风口11汇聚,进入吸油烟机100中。当然,主壳体1下方形成的负压场分布,受主风机运转状态和吸油烟机100结构的影响,在主壳体1下方通常进风口正对区处负压最大,但是当主壳体1在进风口11处设有冷凝板15时,冷凝板15使负压最强区域外移,负压最强区域轮廓变大,因此在不同实施例中,喷射口231的方向可以根据该实施例的负压场分布调整。
本申请实施例的吸油烟机100除了抽风风机14还具有出风装置2,出风装置2利用出风源21形成出风气流。当出风源21采用风机出风时,吸油烟机100成了一种双风机系统,其中一风机从进风口11吸气,另一风机向进风口11形成的负压区111吹气。当然出风源21也可以采用其他装置(如空气压缩机)实现。出风源21通过出风导管22将气流导向引射管23,使喷射口231能够喷射气流,喷出气流能在朝向烟气流动的方向喷气形成引射流场。当油烟量较大时,负压区111无法完全将油烟吸引到进风口11,部分油烟向烟机两侧扩散并试图从两侧逃逸。当油烟扩散到出风装置2附近时,由于喷射口231处气流的卷吸和引射效应,向外扩散的油烟会被出风装置2产生的朝向负压区111的气流强行改变运动方向,从向外运动改为向内运动,将油烟重新输送到负压区111,从而能够尽可能减少油烟的泄漏。
在本申请中将引射管23设置成包括上侧壁2341和下侧壁2342,上侧壁2341和下侧壁2342在上游端A相连,上侧壁2341和下侧壁2342在下游端B之间形成喷射口231,上侧壁2341和下侧壁2342均为弧形壁234,弧形壁234的至少部分外表面为柯恩达面,从而使引射管23外部的气流能够更多地向负压区111涌动、汇集,尤其能将 即将向吸油烟机100外侧扩散的气流大量吸引至负压区111。
具体而言,柯恩达面可以产生柯恩达效应,即流体(水流或气流)有偏离原本流动方向,改为随着凸出的物体表面流动的倾向。如图5和图6所示,如果上侧壁2341的上表面是柯恩达面,能使上侧壁2341上方的气流在朝向负压区111流动时紧贴着上侧壁2341的上表面流动,上侧壁2341上方的气流能迅速与从喷射口231喷出的气流汇合,或者在喷射口231喷射气流产生的引射流场作用下,流向负压区111。上侧壁2341上方的气流能方向一致地朝向负压区111流动,从而使上侧壁2341上方区域形成负压。在本申请实施例中由于引射管23位于主壳体1下方且与主壳体1的底壁间隔开,因此主壳体1外侧与上侧壁2341上方区域连通,从而形成负压的上侧壁2341上方区域可从主壳体1外侧吸引烟气。柯恩达面的设置,使主壳体1外侧即将逸流的烟气沿着柯恩达面横向流动进入进风口11下方的负压区111,然后在负压作用下吸入主壳体1内。
同样如图5和图6所示,如果下侧壁2342的下表面是柯恩达面,能使下侧壁2342下方的气流在朝向负压区111流动时紧贴着下侧壁2342的下表面流动,使下侧壁2342下方区域形成负压,形成负压的下侧壁2342下方区域可从主壳体1外侧吸引烟气。柯恩达面的设置,使主壳体1外侧即将逸流的烟气沿着柯恩达面横向流动进入进风口11下方的负压区111,然后在负压区111的负压作用下吸入主壳体1内。
可以理解的是,出风装置2通过将引射管23如此设置,一方面利用引射流场带动引射流场上方和下方的气流朝向负压区11流动,另一方面利用引射流场使上侧壁2341的上表面上的气流形成朝向负压区11流动的趋势,使下侧壁2342的下表面下的气流形成朝向负压区11流动的趋势。利用将上侧壁2341和下侧壁2342的至少部分外表面设置为柯恩达面,使柯恩达面上流动的气流紧紧地顺着柯恩达面流向喷射口231,形成另一负压吸引主壳体1外侧即将逸流的烟气流向负压区111。引射流场和柯恩达效应的配合,对吸引的区域非常明确,更好地吸引引射管23外侧的烟气流向进风口11。这种吸引作用,弥补了现有进风口11产生的负压区对主壳体1外侧吸引不足的缺陷。
根据本申请实施例的吸油烟机100,通过设置出风装置2,出风装置2包括引射管23,引射管23具有朝向负压区111喷射气流的喷射口231,并且使引射管23的上侧壁2341、下侧壁2342形成为弧形壁234,弧形壁234的至少部分外表面为柯恩达面,形成引射效应和柯恩达效应的配合,使引射管23上游的烟气能被强力吸引至进风口11,从而主壳体1外侧即将逃逸的烟气流向进风口11,弥补了现有烟机对主壳体外侧逃逸烟气吸力不足的缺陷。由此,减少了吸油烟机容易漏烟的现象,进而提高吸油烟机100的吸油烟效果,保护人体的健康。而且即使主风机风量不足时出风装置2的设置也能减 少漏烟现象,因此在保证吸油烟效果的同时,吸油烟机100对主风机的风量要求大幅降低,在合理设置下吸油烟机100可以适当下调主风机的转速,从而可以大幅降低烟机的功耗,有利于节能环保。另外,如果吸油烟机100能适当降低主风机的转速,可以显著降低烟机的整体噪音,相比传统的烟机而言,在保证同样的吸油烟效果情况下,噪音明显降低。
在一些实施例中,如图1所示,主壳体1包括:风机箱16和集烟罩13,集烟罩13设在风机箱16的底部,集烟罩13的底壁形成向上凹陷的曲面形状,进风口11形成在集烟罩13底壁凹陷的中心处。在主风机开启后,会在集烟腔下方形成负压区111,将附近的油烟沿集烟腔的型线吸入风机箱16后,再排到公共烟道中。集烟罩13的设置可扩大负压区,提高烟气聚拢效果。
可选地,集烟罩13底部设有冷凝板15,冷凝板15可提高油滴的分离效果。进一步地,冷凝板15对应进风口11设置,冷凝板15的四周与集烟腔形成环形的吸风口,油烟从环形吸风口进入风机箱16内部。通过冷凝板15的作用,将负压区11向集烟腔的边缘移动,从而扩大负压区11的范围,从而减少边缘的跑烟,提升吸油烟效果。
具体地,抽风风机14设在风机箱16内,可选地,抽风风机14为离心风机,抽风风机14提供较大的风量和风压,起到克服外部烟道压力以及在内部形成负压区的作用,将室内的气体吸入抽风风机14并排到室外(公共烟道)。
在一些实施例中,如图4-图6所示,在烟气流动方向上,上侧壁2341和下侧壁2342形成为先彼此远离后彼此靠近的弧形壁234。这样不仅引射管23容易加工制造,而且引射管23内具有足够大的管腔以使内部气流更加均匀、平稳。其中,图5和图6中的箭头表示油烟的流动方向。
具体地,上侧壁2341和下侧壁2342的外表面均为柯恩达面。可以理解的是,油烟从负压区111的外围向外逸流时,部分会接触到引射管23的下侧壁2342,这部分油烟容易在射流效应和柯恩达效应的双重作用下,沿着下侧壁2342向负压区111流动;还有部分油烟绕过下侧壁2342向上扩散时,容易被上侧壁2341形成的负压场吸引,这部分烟气可沿着上侧壁2341流向负压区111。经过出风装置2上下双重引射吸引作用,向外扩散的油烟能够尽可能吸入负压区111。
在一些实施例中,如图1和图2所示,喷射口231的喷射方向在水平面与相对水平面向上的20度角范围内。也就是说,喷射口231可以沿水平方向喷射,喷射口231的喷射方向也可以略向上倾斜,但是喷射口231的喷射方向不会超过水平面20度。这样设置引射效应和柯恩达效应双重作用形成的烟气吸引力,可以沿着喷射的反方向辐射到 引射管23的上游区域,以喷射口231沿水平方向喷射为例,上述烟气吸引力能很好地将引射管23水平外侧的烟气吸引至负压区,从而可以在不降低负压区11负压的前提下,扩大吸取烟气范围。
在一些实施例中,如图4和图5所示,引射管23的管截面为翼型形状,引射管23的上游端A位于翼型形状的前缘,引射管23的下游端B位于翼型形状的尾缘。上游端A为翼型前缘,为钝角,下游端B为翼型尾缘,为锐角。
这样当油烟逃逸到引射管23外侧时,引射效应和柯恩达效应双重作用产生的烟气吸引力将气流卷吸朝向负压区111流动。在流动过程中,管截面为翼型形状的引射管23可以减少油烟流动所受到的阻力,从而有利于油烟从上游端A快速流向下游端B,进而有利于油烟快速流向负压区111,可以提高吸油烟机100的吸烟效率。需要说明的是,翼型形状是指飞机机翼的截面形状,引射管23的管截面可采用现有技术公知的翼型形状,这里对翼型形状不作具体限制。
具体地,以喷射口231的喷射方向作参考面,引射管23的翼型形状为上下侧对称的翼型形状。
具体地,如图4所示,在引射管23的管截面上,以引射管23的上游端A和下游端B连线作为第一连线,以在垂直于第一连线的方向上上侧壁2341和下侧壁2342之间距离最远点连线作为第二连线。引射管23的上游端A与第二连线的距离为L1,引射管23的下游端B与第二连线的距离为L2,上侧壁2341与第一连线的最远距离为H1,下侧壁2342与第一连线的最远距离为H2,H1与H2相等,L1与H1的比值在0.8至1.5之间,L2与H1的比值在2至4之间。
具体如图4所示,第一连线为AB线段,第二连线为CD线段,AB线段和CD线段的交点为O。AO线段的长度为L1,BO线段的长度为L2,CO线段的长度为H1,DO线段的长度为H2。其中,H1=H2,设a=L1/H1,b=L2/H1,0.8≤a≤1.5,2≤b≤4。如此限制,引射管23形成上下对称的翼型风道结构,可以达到较好的引射效果。
在本申请实施例中,引射管23可以是一根管,也可以是多根管。引射管23沿主壳体1的底部边缘设置,当然引射管23的具体延伸形状这里不限制,可以根据实际需要相匹配。例如主壳体1底部呈方形时,引射管23为线形、L形或者方形等;主壳体1底部呈圆形或者椭圆时,引射管23为弧形或者圆形、椭圆形等。在高度方向上,引射管23可以设一层也可以设多层。
同样,引射管23上的喷射口231也具有多种设置方式。
在一些实施例中,如图3、图7所示,喷射口231为多个喷孔2311或者条缝2312。 这样气流能够通过多个喷孔2311或者条缝2312向外喷射,多个喷孔2311或条缝2312有利于引导气流的流动,且使得气流更加均匀。
当喷射口231为多个喷孔2311时,对喷孔2311的孔形这里不作限制,例如可为图7所示的圆孔、如9所示的椭圆孔。
有的示例中引射管23为环绕进风口11的轴线方向延伸的环形管,也有的示例中,引射管23为设在主壳体1单侧的直管或者弯管等,还有的示例中引射管23延伸在主壳体1的相邻两侧或者相邻三侧,喷射口231可为沿引射管23的延伸方向排布的多个喷孔2311,喷射口231也可为沿引射管23的延伸方向设置的条缝2312。
另外如图7和图8所示,喷孔2311可为单排,也可以为双排。
具体地,当喷射口231为多个喷孔2311时,喷孔2311可以等距排列,也可以不等距排列。
可选地,如图7-图11所示,喷孔2311或者条缝2312的高度尺寸在1mm至5mm之间。当喷孔2311为如图7和图8所示的圆孔时,上述高度尺寸的限定指的是圆孔的直径d的尺寸在1mm至5mm之间。当喷孔2311为如图9所示的椭圆孔时,椭圆孔的长轴沿水平设置,上述高度尺寸的限定指的是椭圆孔的短轴尺寸在1mm至5mm之间。这样喷孔2311或者条缝2312具有合适的高度以喷射气流,以达到良好的引射效果。
需要说明的是,当喷孔2311或者条缝2312尺寸在1mm至5mm之间时,喷孔2311或者条缝2312使得气流均衡喷出,有利于气流产生强有力的射流卷吸作用,且可以提高引射管23的刚性。
在一些实施例中,喷射口231包括多个喷孔2311,相邻喷孔2311之间孔距为喷孔2311高度尺寸的2.5至4倍。以图7为例,相邻圆孔之间孔距Ld最佳范围为2.5*d≤Ld≤4*d。这样多个喷孔2311间具有合适的间距以减少对上侧壁2341和下侧壁2342结构强度的影响,尽可能减少上侧壁2341和下侧壁2342的变形。同时,具有合理间距的多个喷孔2311可以提高引射管23对气流的引导作用以产生良好的引射效果。
在一些实施例中,如图10和图11所示,喷射口231为条缝2312,条缝2312内设有导流间隔筋2313,导流间隔筋2313的间距为条缝2312高度尺寸的3-10倍。可以理解的是,导流间隔筋2313可以支撑上侧壁2341和下侧壁2342,对上侧壁2341和下侧壁2342的结构强度起到加强作用,尽可能减少上侧壁2341和下侧壁2342的变形,此外,导流间隔筋2313还可以起到对气流的流向的引导作用,使得气流朝向负压区111移动,尽可能减少气流倾斜以流向其它方向而导致的漏烟等隐患。
具体地,如图10所示,条缝2312为长条形,在多个导流间隔筋2313的间隔下分 成多个长方形的小孔。当条缝2312宽度较大时,也可以于导流间隔筋2313的上下端形成倒角。以上均能实现出风装置2良好的引射效果,在此对条缝2312的形状不做具体限制。
在一些实施例中,如图9所示,喷射口231包括多个喷孔2311,喷孔2311为椭圆形,椭圆形的长轴与短轴之间的比值为2-4,相邻椭圆形的中心之间距离为长轴的3至5倍。这样喷孔2311具有合适的曲率以有利于引导气流的流动,且相邻椭圆形具有合适的间距以在保证引射管23的结构强度的前提下,使得气流更加均匀。
在一些实施例中,如图1和图2所示,主壳体1的底部形成为集烟罩13,引射管23设在集烟罩13的底部且临近集烟罩12的外边缘处。
具体地,引射管23的上侧壁2341与集烟罩13的底壁之间间距为30-50mm。可以理解的是,集烟罩13可以使得油烟沿着集烟罩13的侧壁进入吸油烟机100,起到对油烟的引导作用。引射管23的上侧壁2341与集烟罩13的底壁之间间距为30-50mm,这样使得气流具有良好的引射效果,从而达到良好的吸油烟效果。具体而言,当引射管23的上侧壁2341与集烟罩13的底壁之间的间距为30-50mm时,引射管23对油烟的引射范围大,且能够产生强有力的引射卷吸作用,即当油烟较大时,会有较多油烟逃逸到油烟机的外侧,此时在引射管23喷射气流的引导下,油烟能够流向进风口,从而实现距离集烟罩13较远的油烟的引射。
在一些实施例中,如图1和图2所示,引射管23的水平投影位于集烟罩13的水平投影内,引射管23的上游端A与集烟罩13的外边缘之间距离为0至100mm。这样集烟罩13的底部与引射管23的上侧壁2341之间形成限定的空间,起到良好导流作用。在水平方向上,引射管23与集烟罩13具有合适的距离以使得气流具有良好的引射效果,从而达到良好的吸油烟效果。
在一些实施例中,如图1和图3所示,出风源21位于主壳体1内的抽风风机14的上方。可以理解的是,相对于主风机而言,出风源21产生的风量较小,结构尺寸可以设计得较小。因此将出风源21设置在抽风风机14的上方,可以使抽风风机14上方的空间可以得到充分利用,出风源21的设置不需要占用主风机所在区域的空间,避免对主风风量造成过大阻碍。
具体地,出风源21可以是离心或者斜流式风机,由此风量大且占用空间较小。在合理设置下出风源21并不限于上述的离心风机或斜流式风机,出风源21也可以为轴流风机等。
具体地,出风源21安装在主风机上方的顶板上,出风源21的出风端可朝下设置, 也可水平设置或者倾斜设置。
更具体地,如图2和图12所示,出风导管22包括:向下延伸段222、多个分支段223和弯管224。向下延伸段222竖向设置在主壳体1内,分支段223设置在主壳体1的底部,向下延伸段222的底部连接多个分支段223。弯管224位于主壳体1的下方,弯管224的上端伸到主壳体1内并与分支段223的端部相连,弯管224的下端与引射管23的端部相连。多个分支段223的设置使气流在流向引射管23之前就均分开,有利于各喷射口231处气流均衡喷射。
在一些实施例中,如图2所示,出风导管22包括:上导引段221,上导引段221位于抽风风机14的上方且与出风源21相连,上导引段221水平设置且两端分别连接一个向下延伸段222,这样气流在进入向下延伸段222之前进行了一些分配。
在一个具体实施例中,如图2所示,上导引段221水平设置,上导引段221两端各连接一个向下延伸段222,两个向下延伸段222分别位于风机箱16内部的左右两侧壁上,每个向下延伸段222的底部分别连接两个分支段223,所有分支段223均位于集烟罩13内。可以理解的是,集烟罩13具有顶壁和底壁,分支段223位于集烟罩13的顶壁和底壁之间。因此在夹层内每个向下延伸段222底部形成人字形的三通结构,一分为二,分别延伸到前侧与后侧。这样,在烟机的左右两侧,出风风道各有两根管路。在图2中,左侧的两个分支段223均连接有弯管224,两个弯管224的下端朝向彼此弯曲,连接一根引射管23。每个弯管224均为圆弧弯,弯管224的设置可以使得气流流向从垂直方向平滑地过渡到水平方向,减少管道阻力,减少气流的损耗。
在另一个具体实施例中,如图12和图13所示,出风导管22没有上导引段221,出风源21直接连接向下延伸段222,向下延伸段222的底部连接多个分支段223,每个分支段223的自由端连接一个弯管224,弯管224连接引射管23。其中,向下延伸段222位于风机箱16内的后壁上,多个分支段223位于集烟罩13的顶壁和底壁之间。在图12中每个引射管23仅一端连接一个弯管224,弯管224为圆弧弯管。
由图2和图12的两个实施例可以看出,在气流由出风源21向引射管23导向的过程中,出风导管22可以设置出各种分支方式,使气流能够均布到引射管23中。
进一步地,出风导管22的管腔优先扁平截面结构,可减少对主风机进气的影响,截面形状可以为矩形、圆形、椭圆形等。在风道延伸过程中,截面积可以是变化的,也可以是不变的。在进入集烟罩12的顶壁、底壁之间的夹层空间后,出风导管22可分化出一个或者多个分支管路,与下方的引射管23相连。每个引射管23可以在多处与出风导管22相连通,多处进风可以减少出风导管22和引射管23的流体阻力,并增加引射 管23气流的速度均匀性。
在一些可选的实施例中,如图14和图15所示,出风导管22内设有导流结构225。例如如图14所示,在向下延伸段222和分支段223连接处可设有导流结构225,又例如如图15所示,在分支段223和弯管224连接处设有导流结构225。导流结构225的设置有利于气流的流动,减少气流流动过程中的阻力,减少气流的损耗,从而提高出风装置2的引射效果。
综上,本申请实施例的吸油烟机100中,利用设计的射流出风装置,将向四周扩散的油烟重新聚集在主风机形成的负压区111,被吸入主风机中。在双风机风道系统的共同作用下,相比传统的单风机系统,能够在极大降低主风机风量情况下,仍然能够实现很好的吸油烟效果,具有良好的抵御外界环境恶化的能力。因此本申请既能实现良好的吸油烟效果,也能大幅降低主风机的功耗与噪音(低风量、低转速)。不论是从节能环保的角度还是用户体验好的角度,都能对产品有突破性的提升。
下面参考图1-图6描述本申请一个具体实施中的吸油烟机100。
根据本申请实施例的吸油烟机100,包括:主壳体1和出风装置2。
主壳体1的底部形成为集烟罩13,主壳体1具有进风口11和出风口12,进风口11位于主壳体1的底部以在进风口11下方形成负压区111,进风口11的轴线竖向设置。
出风装置2包括出风源21、出风导管22和引射管23,出风源21通过出风导管22将气流导向引射管23。
引射管23位于主壳体1下方且与主壳体1的底壁间隔开,引射管23在朝向进风口11的轴线一侧设有喷射口231。在烟气流动方向上引射管23具有上游端A和下游端B,引射管23包括上侧壁2341和下侧壁2342,上侧壁2341和下侧壁2342在上游端A相连,上侧壁2341和下侧壁2342在下游端B形成喷射口231,引射管23的管截面为翼型形状,引射管23的上游端A位于翼型形状的前缘,引射管23的下游端B位于翼型形状的尾缘。上侧壁2341和下侧壁2342形成为对称设置的弧形壁234,上侧壁2341的上表面和下侧壁2342的下表面均为柯恩达面。
在引射管23的管截面上,以引射管23的上游端A和下游端B连线作为第一连线,以在垂直于第一连线的方向上上侧壁2341和下侧壁2342之间距离最远点连线作为第二连线,引射管23的上游端A与第二连线的距离为L1,引射管23的下游端B与第二连线的距离为L2,上侧壁2341与第一连线的最远距离为H1,下侧壁2342与第一连线的最远距离为H2,H1与H2相等,L1与H1的比值在0.8至1.5之间,L2与H1的比值 在2至4之间。喷射口231为沿引射管延伸方向排布的多个喷孔2311,喷孔2311为圆孔。喷孔2311的直径尺寸在1mm至5mm之间,相邻喷孔2311之间孔距为喷孔2311直径尺寸的2.5至4倍。引射管23的水平投影位于集烟罩13的水平投影内,引射管23的上游端A与集烟罩13的外边缘之间距离为0至100mm。
出风导管22包括:上导引段221、向下延伸段222、多个分支段223和多个弯管224。上导引段221位于抽风风机14的上方且与出风源21相连。向下延伸段222分别从上导引段221的两端向下延伸,上导引段221和两个向下延伸段222位于主壳体1内。每个向下延伸段222的底部均连接多个分支段223,每个分支段通过弯管224与引射管23相连。
根据本申请实施例的吸油烟机100其他构成例如电路板和电机等以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种吸油烟机,其特征在于,包括:
    主壳体,所述主壳体具有进风口和出风口;
    出风装置,所述出风装置包括出风源、出风导管和引射管,所述引射管位于所述主壳体下方且与所述主壳体的底壁间隔开,所述引射管上设有喷射口以形成引射流场,所述出风源通过所述出风导管将气流导向所述引射管;其中,
    在烟气流动方向上所述引射管具有上游端和下游端,所述引射管包括上侧壁和下侧壁,所述上侧壁和所述下侧壁在上游端相连,所述上侧壁和所述下侧壁在下游端之间形成所述喷射口,所述上侧壁和所述下侧壁形成为弧形壁,所述弧形壁的至少部分外表面为柯恩达面。
  2. 根据权利要求1所述的吸油烟机,其特征在于,在烟气流动方向上所述上侧壁和所述下侧壁先彼此远离后彼此靠近,所述上侧壁和所述下侧壁的外表面均为柯恩达面。
  3. 根据权利要求1-2中任一项所述的吸油烟机,其特征在于,所述喷射口的喷射方向在水平面至相对水平面向上20度角的范围内。
  4. 根据权利要求1-3中任一项所述的吸油烟机,其特征在于,所述引射管的管截面为翼型形状,所述引射管的上游端位于翼型形状的前缘,所述引射管的下游端位于翼型形状的尾缘。
  5. 根据权利要求4所述的吸油烟机,其特征在于,在所述引射管的管截面上,以所述引射管的上游端和下游端连线作为第一连线,以在垂直于所述第一连线的方向上所述上侧壁和所述下侧壁之间距离最远点连线作为第二连线,所述引射管的上游端与所述第二连线的距离为L1,所述引射管的下游端与所述第二连线的距离为L2,所述上侧壁与所述第一连线的最远距离为H1,所述下侧壁与所述第一连线的最远距离为H2,H1与H2相等,L1与H1的比值在0.8至1.5之间,L2与H1的比值在2至4之间。
  6. 根据权利要求1-5中任一项所述的吸油烟机,其特征在于,所述喷射口为多个喷孔或者条缝。
  7. 根据权利要求6所述的吸油烟机,其特征在于,所述喷孔或者所述条缝的高度尺寸在1mm至5mm之间。
  8. 根据权利要求6-7中任一项所述的吸油烟机,其特征在于,所述喷射口包括多个所述喷孔,相邻所述喷孔之间孔距为所述喷孔高度尺寸的2.5至4倍。
  9. 根据权利要求6-8中任一项所述的吸油烟机,其特征在于,所述喷射口为所述条缝,所述条缝内设有导流间隔筋,所述导流间隔筋的间距为所述条缝高度尺寸的3-10倍。
  10. 根据权利要求6-9中任一项所述的吸油烟机,其特征在于,所述喷射口包括多个所述喷孔,所述喷孔为椭圆形,所述椭圆形的长轴与短轴之间的比值为2-4,相邻所述椭圆形的中心之间距离为长轴的3至5倍。
  11. 根据权利要求1-10中任一项所述的吸油烟机,其特征在于,所述主壳体的底部形成为集烟罩,所述引射管设在所述集烟罩的底部且临近所述集烟罩的外边缘处。
  12. 根据权利要求11所述的吸油烟机,其特征在于,所述引射管的水平投影位于所述集烟罩的水平投影内,所述引射管的所述上侧壁与所述集烟罩的底壁之间间距为30-50mm,所述引射管的上游端与所述集烟罩的外边缘之间距离为0至100mm。
  13. 根据权利要求1-12中任一项所述的吸油烟机,其特征在于,所述出风源位于所述主壳体内的抽风风机的上方。
  14. 根据权利要求13所述的吸油烟机,其特征在于,所述出风导管包括:
    向下延伸段,所述向下延伸段竖向设置在所述主壳体内;
    分支段,所述分支段设置在所述主壳体的底部,所述向下延伸段的底部连接多个所述分支段;
    弯管,所述弯管位于所述主壳体的下方,所述弯管的上端伸到所述主壳体内并与所述分支段的端部相连,所述弯管的下端与所述引射管的端部相连。
  15. 根据权利要求14所述的吸油烟机,其特征在于,所述出风导管还包括:
    上导引段,所述上导引段位于所述抽风风机的上方且与所述出风源相连,所述上导引段水平设置且两端分别连接一个所述向下延伸段。
  16. 根据权利要求14-15中任一项所述的吸油烟机,其特征在于,所述出风导管内设有导流结构,在所述向下延伸段和所述分支段连接处设有所述导流结构,在所述分支段和所述弯管连接处设有所述导流结构。
PCT/CN2019/122738 2019-08-22 2019-12-03 吸油烟机 WO2021031449A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021569953A JP7383054B2 (ja) 2019-08-22 2019-12-03 レンジフード
KR1020217043333A KR102576015B1 (ko) 2019-08-22 2019-12-03 레인지 후드

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910780120.0 2019-08-22
CN201910780120.0A CN110345540B (zh) 2019-08-22 2019-08-22 吸油烟机

Publications (1)

Publication Number Publication Date
WO2021031449A1 true WO2021031449A1 (zh) 2021-02-25

Family

ID=68181080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122738 WO2021031449A1 (zh) 2019-08-22 2019-12-03 吸油烟机

Country Status (4)

Country Link
JP (1) JP7383054B2 (zh)
KR (1) KR102576015B1 (zh)
CN (1) CN110345540B (zh)
WO (1) WO2021031449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110345540B (zh) * 2019-08-22 2020-11-24 美的集团股份有限公司 吸油烟机
CN112503593B (zh) * 2020-09-25 2022-05-17 宁波方太厨具有限公司 一种吸油烟机
CN113915665B (zh) * 2021-11-26 2024-06-11 杭州老板电器股份有限公司 引射导烟装置及油烟机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6044838A (en) * 1999-06-05 2000-04-04 Deng; David Fume exhaust apparatus for cooking stoves
US6336451B1 (en) * 1996-04-04 2002-01-08 Roehl-Hager Hannelore Process and device for confining, retaining and sucking off fumes, dust or the like
EP1757864A2 (en) * 2005-08-22 2007-02-28 LG Electronics Inc. Exhaust hood
CN102465932A (zh) * 2010-11-02 2012-05-23 戴森技术有限公司 风扇组件
CN106524267A (zh) * 2016-12-30 2017-03-22 宁波方太厨具有限公司 一种顶吸式吸油烟机
CN208312483U (zh) * 2018-04-17 2019-01-01 宁波方太厨具有限公司 一种吸油烟机
CN110345540A (zh) * 2019-08-22 2019-10-18 美的集团股份有限公司 吸油烟机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155839A (ja) * 1984-01-24 1985-08-15 Matsushita Electric Ind Co Ltd 排煙補助装置
JPH01114649A (ja) * 1987-10-26 1989-05-08 Matsushita Electric Works Ltd 調理用排煙処理装置
JPH0674510A (ja) * 1992-08-24 1994-03-15 Fuji Kogyo Kk レンジフード
JPH0654992U (ja) * 1992-12-28 1994-07-26 ベニックス株式会社 ダクト
JP2512042Y2 (ja) * 1993-01-29 1996-09-25 富士工業株式会社 レンジフ―ド
CN2213298Y (zh) * 1995-02-15 1995-11-22 康守营 吹油烟机
JP2001074287A (ja) 1999-09-03 2001-03-23 Osaka Gas Co Ltd 換気装置
JP4169912B2 (ja) 2000-07-31 2008-10-22 日産ディーゼル工業株式会社 バスのダクト装置
CN1693765A (zh) * 2005-06-29 2005-11-09 杨伟 油烟导流机
CN2926879Y (zh) * 2006-06-30 2007-07-25 郭斌学 射流式免拆洗节能抽油烟机
TW200951377A (en) 2008-06-04 2009-12-16 Acxing Ind Co Ltd Structure of air curtain machine
GB2532557B (en) * 2012-05-16 2017-01-11 Dyson Technology Ltd A fan comprsing means for suppressing noise
CN203131926U (zh) * 2013-03-27 2013-08-14 朱湧泉 出风口隐藏式导烟机
CN104791869B (zh) * 2015-02-14 2017-09-01 张英华 近吸式吸油烟机
CN107327884B (zh) * 2017-03-17 2023-04-14 宁波方太厨具有限公司 一种空气膜引射装置及使用该装置的吸油烟机
CN109579084B (zh) * 2017-09-29 2024-03-29 宁波方太厨具有限公司 一种吸油烟机的控制方法
CN108591135A (zh) * 2018-06-11 2018-09-28 南华大学 锥形空气诱导器
CN108980938B (zh) * 2018-08-22 2023-02-24 珠海格力电器股份有限公司 一种升降式风幕导流装置及油烟机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6336451B1 (en) * 1996-04-04 2002-01-08 Roehl-Hager Hannelore Process and device for confining, retaining and sucking off fumes, dust or the like
US6044838A (en) * 1999-06-05 2000-04-04 Deng; David Fume exhaust apparatus for cooking stoves
EP1757864A2 (en) * 2005-08-22 2007-02-28 LG Electronics Inc. Exhaust hood
CN102465932A (zh) * 2010-11-02 2012-05-23 戴森技术有限公司 风扇组件
CN106524267A (zh) * 2016-12-30 2017-03-22 宁波方太厨具有限公司 一种顶吸式吸油烟机
CN208312483U (zh) * 2018-04-17 2019-01-01 宁波方太厨具有限公司 一种吸油烟机
CN110345540A (zh) * 2019-08-22 2019-10-18 美的集团股份有限公司 吸油烟机

Also Published As

Publication number Publication date
JP7383054B2 (ja) 2023-11-17
JP2022534237A (ja) 2022-07-28
KR102576015B1 (ko) 2023-09-06
CN110345540B (zh) 2020-11-24
KR20220016224A (ko) 2022-02-08
CN110345540A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
WO2021031449A1 (zh) 吸油烟机
CN101182941A (zh) 吸顶式空调机
WO2018032606A1 (zh) 油烟机
CN112178716B (zh) 一种防油烟逃逸结构及应用有该结构的吸油烟机
WO2022021767A1 (zh) 一种导风箱及应用有该导风箱的内循环吸油烟机
CN108317564A (zh) 排烟装置
CN210441281U (zh) 一种双重引射助吸的吸油烟机
CN101614415A (zh) 节能环保高效边吸式油烟机
CN105020757B (zh) 一种可形成人造龙卷风的吸油烟机风机结构
CN203549955U (zh) 一种抽油烟机
CN110500633B (zh) 吸油烟机
CN112344403A (zh) 一种防油烟逃逸结构及应用有该结构的吸油烟机
TW201833484A (zh) 抽油煙機
WO2019218795A1 (zh) 吸油烟机导流装置
TWI629438B (zh) 廚房抽油煙烹飪設備
CN110500632B (zh) 吸油烟机
CN115388444A (zh) 一种烟机头及集成灶
CN210373603U (zh) 一种带有引射结构的侧吸式油烟机
CN209165716U (zh) 一种主动室内循环出风口装置
WO2019148994A1 (zh) 吸油烟机
CN208186750U (zh) 一种散流器结构
CN113154496B (zh) 一种旋流器、旋流装置及吸油烟机
CN214791360U (zh) 一种吸排气装置
CN215863596U (zh) 一种吸油烟机
CN101482282B (zh) 一种气流定向驱动油烟排除装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942502

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569953

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217043333

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942502

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19942502

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19942502

Country of ref document: EP

Kind code of ref document: A1