WO2021029324A1 - クメンの製造方法 - Google Patents

クメンの製造方法 Download PDF

Info

Publication number
WO2021029324A1
WO2021029324A1 PCT/JP2020/030207 JP2020030207W WO2021029324A1 WO 2021029324 A1 WO2021029324 A1 WO 2021029324A1 JP 2020030207 W JP2020030207 W JP 2020030207W WO 2021029324 A1 WO2021029324 A1 WO 2021029324A1
Authority
WO
WIPO (PCT)
Prior art keywords
cumene
reaction
reactor
liquid
catalyst
Prior art date
Application number
PCT/JP2020/030207
Other languages
English (en)
French (fr)
Inventor
弘文 小池
達郎 植草
翔子 池田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2021539249A priority Critical patent/JPWO2021029324A1/ja
Priority to CN202080053633.2A priority patent/CN114174247A/zh
Priority to KR1020227007652A priority patent/KR20220044571A/ko
Priority to US17/633,744 priority patent/US11912638B2/en
Priority to EP20852278.9A priority patent/EP3984984A4/en
Publication of WO2021029324A1 publication Critical patent/WO2021029324A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/22Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/02Boron or aluminium; Oxides or hydroxides thereof
    • C07C2521/04Alumina
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing cumene.
  • Patent Document 1 in the start-up of a process of hydrogenating a dinitrile by contacting a liquid of aromatic dinitrile with hydrogen in the presence of a catalyst, the catalyst is first contacted with hydrogen, and then the liquid containing isophthalonitrile and the liquid containing isophthalonitrile and It is disclosed that hydrogen is brought into contact with the catalyst.
  • liquid cumyl alcohol is subjected to (a) hydrogenation decomposition reaction or (a) hydrocracking reaction in the presence of a catalyst.
  • b) There is a process of obtaining Kumen by subjecting it to a dehydration reaction and a subsequent hydrogenation reaction.
  • cumyl alcohol refers to 2-phenyl-2-propanol.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing cumene, which produces a small amount of isopropylcyclohexane as a by-product.
  • the method for producing cumene according to the present invention is a method for obtaining cumene by subjecting cumyl alcohol to (a) hydrocracking reaction or (b) dehydration reaction and subsequent hydrogenation reaction, and the following step A And step B are included.
  • Step A A step of supplying a liquid containing cumene to a reactor filled with a catalyst
  • Step B A step of supplying a liquid containing cumyl alcohol and hydrogen to the reactor after the step A.
  • cumene alcohol is subjected to (a) hydrocracking reaction or (b) dehydration reaction and subsequent hydrogenation reaction to obtain cumene. It is a manufacturing method. And this method includes the following steps A and B.
  • Step A A step of supplying a liquid containing cumene to a reactor filled with a catalyst
  • Step B A step of supplying a liquid containing cumyl alcohol and hydrogen to the reactor after the step A. This embodiment will be described in detail below.
  • a liquid containing cumene is supplied to the reactor.
  • the concentration of cumene in the liquid in step A can be 50% by mass or more, 60% by mass or more, and 70% by mass or more.
  • the concentration of cumene in the liquid can be 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more, still more preferably 99% by mass or more.
  • the concentration of cumene in the liquid may be 100% by mass.
  • the liquid may contain cumyl alcohol.
  • the concentration of cumyl alcohol in the liquid can be 50% by mass or less, 40% by mass or less, and 30% by mass or less.
  • the concentration of cumyl alcohol in the liquid can be 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less, still more preferably 1% by mass or less.
  • step A it is preferable that the temperature of the catalyst in the reactor is raised so as to fall within the reaction temperature range described later.
  • step A hydrogen is usually not supplied to the reactor.
  • the hydrogen / (cumene + cumyl alcohol) molar ratio at the start of step A is preferably 1/25 or less, more preferably 1/30 or less, still more preferably 1/40 or less.
  • the hydrogen / (cumene + cumyl alcohol) molar ratio is preferably 1/25 or less, more preferably 1/30 or less, still more preferably 1/40 or less, while performing step A. is there.
  • hydrogen is not supplied to the reactor during step A.
  • step B a liquid containing cumyl alcohol and hydrogen are supplied to the reactor.
  • the concentration B1 of cumyl alcohol in the liquid in step B is not limited, but is preferably 10% by mass or more, may be 20% by mass or more, and there is no upper limit, but 60% by mass or less, 50% by mass or less, It can be 40% by mass or less.
  • the liquid may contain cumene.
  • the concentration of cumene in the liquid can be 90% by mass or less, 80% by mass or less, and 70% by mass or less.
  • the concentration of cumene can be 50% by mass or more, 60% by mass or more, 70% by mass or more.
  • the concentration B1 of cumyl alcohol in the liquid in step B and the concentration of cumyl alcohol in the liquid in step A are independent of each other.
  • the concentration B1 of the cumyl alcohol in the liquid in the step B and the concentration of the cumyl alcohol in the liquid in the step A may be the same.
  • step B it is preferable to maintain the temperature of the reactor within the range of the reaction temperature described later.
  • the temperature of the reactor is not raised in the step A, it is preferable to raise the temperature of the reactor within the range of the reaction temperature described later in the step B.
  • the amount of liquid supplied to the reactor in step B can be appropriately set according to the type and amount of the catalyst.
  • step B hydrogen is supplied to the reactor together with the liquid.
  • the amount of hydrogen will be described later.
  • step B the cumyl alcohol in the liquid containing the cumyl alcohol is converted into cumene by (a) hydrocracking reaction or (b) dehydration reaction and subsequent hydrogenation reaction.
  • a solution containing cumyl alcohol and hydrogen are brought into contact with a catalyst in a reactor, and the solution containing cumyl alcohol and hydrogen are reacted to obtain a solution containing cumene.
  • hydrocracking catalyst examples include catalysts containing metals of Group 9, Group 10, Group 11 or Group 12 of the periodic table. Specific examples thereof include catalysts containing cobalt, catalysts containing nickel, catalysts containing palladium, catalysts containing copper, and catalysts containing zinc. From the viewpoint of suppressing the formation of by-products, a catalyst containing nickel, a catalyst containing palladium, or a catalyst containing copper is preferable.
  • the nickel-containing catalyst include nickel, nickel-alumina, nickel-silica, and nickel-carbon.
  • the palladium-containing catalyst include palladium-alumina, palladium-silica, and palladium-carbon.
  • the copper-containing catalyst include copper. Examples include copper, lane copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, and copper / alumina.
  • the reactor used in the hydrocracking reaction accommodates any one or more combinations of the above catalysts.
  • the reactor can be in the form of a slurry bed or a fixed bed. For large-scale industrial operations, it is preferable to use a fixed floor.
  • the reaction is preferably carried out by a continuous method.
  • the amount of hydrogen consumed in the hydrocracking reaction is equimolar to cumyl alcohol.
  • the raw material liquid usually contains components other than the cumyl alcohol that consumes hydrogen
  • hydrogen is supplied in excess of the stoichiometric amount from the viewpoint of ensuring the conversion rate of the cumyl alcohol. Is preferable.
  • the higher the partial pressure of hydrogen the faster the reaction proceeds. Therefore, the hydrogen / cumyl alcohol molar ratio is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1, and more preferably 1/1 to 5/1.
  • the hydrogen / (cumene + cumyl alcohol) molar ratio is usually 1/25 or more. The molar ratio may be greater than 1/25.
  • the excess hydrogen remaining after the hydrocracking reaction can be recycled and used after being separated from the reaction solution.
  • the hydrocracking reaction temperature is usually 0 to 500 ° C, preferably 50 to 450 ° C, more preferably 150 to 300 ° C.
  • the hydrocracking reaction pressure is usually 100 to 10000 kPa-G, preferably 500 to 4000 kPa-G, and more preferably 1000 to 2000 kPa-G.
  • the conversion rate of cumyl alcohol when the hydrocracking reaction is applied is usually 90% or more.
  • the cumyl alcohol in the liquid is brought into contact with the catalyst in the reactor to obtain a liquid containing ⁇ -methylstyrene by the dehydration reaction of the cumyl alcohol, and then the liquid containing ⁇ -methylstyrene and hydrogen are added.
  • a liquid containing cumene is obtained by contacting with a catalyst in a reactor and hydrogenating ⁇ -methylstyrene and hydrogen.
  • the step of dehydrating cumene alcohol in a liquid to obtain a liquid containing ⁇ -methylstyrene is described as a “dehydration step”, and the liquid containing ⁇ -methylstyrene and hydrogen in the liquid are watered.
  • the step of obtaining a liquid containing cumene by a hydrogenation reaction may be referred to as a "hydrogenation step”.
  • the catalyst used in the dehydration step (hereinafter, may be referred to as “dehydration catalyst”) is a homogeneous acid catalyst such as sulfuric acid, phosphoric acid, p-toluenesulfonic acid; active alumina, titania, zirconia, silica.
  • Solid acid catalysts such as alumina and zeolite; can be mentioned. From the viewpoint of improving the reaction efficiency, it is preferable to carry out the dehydration step in the presence of a solid acid catalyst, and it is more preferable to use activated alumina.
  • the dehydration reaction in the dehydration step is usually carried out by bringing a liquid containing cumyl alcohol into contact with the dehydration catalyst in the reactor. Since the hydrogenation reaction is carried out in the hydrogenation step following the dehydration reaction, a liquid containing cumyl alcohol may be brought into contact with the dehydration catalyst in the presence of hydrogen.
  • the dehydration reaction temperature is usually 50 to 450 ° C, but is preferably 150 to 300 ° C.
  • the dehydration reaction pressure is usually 10 to 10000 kPa-G.
  • Examples of the catalyst used in the hydrogenation step include catalysts containing metals of Group 10 or Group 11 of the periodic table, and specifically, nickel. Examples thereof include catalysts containing hydrogen, catalysts containing palladium, catalysts containing platinum, and catalysts containing copper. From the viewpoint of suppressing the nuclear hydrogenation reaction of the aromatic ring and high yield, a catalyst containing nickel, a catalyst containing palladium or a catalyst containing copper is preferable.
  • Nickel, nickel-alumina, nickel-silica, and nickel-carbon are preferable as the catalyst containing nickel, palladium-alumina, palladium-silica, and palladium-carbon are preferable as the catalyst containing palladium, and copper is preferable as the catalyst containing copper.
  • Rane copper, copper / chromium, copper / zinc, copper / chromium / zinc, copper / silica, copper / alumina are preferable. These catalysts can be used alone or in combination of two.
  • the hydrogenation step is performed by bringing a liquid containing ⁇ -methylstyrene and hydrogen into contact with a hydrogenation catalyst in a reactor.
  • a hydrogenation reaction is carried out following the dehydration reaction described above.
  • a part of the water generated in the dehydration reaction may be separated by oil-water separation or the like, or hydrogenated together with ⁇ -methylstyrene without separation. It may be brought into contact with the catalyst.
  • the amount of hydrogen consumed in the hydrogenation reaction is equimolar to ⁇ -methylstyrene.
  • the raw material liquid usually contains components other than ⁇ -methylstyrene that consume hydrogen, from the viewpoint of ensuring the conversion rate of ⁇ -methylstyrene, excess hydrogen is used rather than the stoichiometric amount. It is preferable to supply.
  • the higher the partial pressure of hydrogen the faster the reaction proceeds. Therefore, the molar ratio of hydrogen / ⁇ -methylstyrene is usually adjusted to 1/1 to 20/1, preferably 1/1 to 10/1, and more preferably 1/1 to 5/1. The excess hydrogen remaining after the hydrogenation reaction can be recycled and used after being separated from the reaction solution.
  • the hydrogen / (cumene + cumyl alcohol) molar ratio is usually 1/25 or more.
  • the amount of substance of "hydrogen” in the molar ratio is the amount of substance of hydrogen subjected to the hydrogenation reaction
  • the amount of substance of "cumen + cumyl alcohol” is the amount of substance subjected to the dehydration reaction. It is the total amount of substance of cumen and cumyl alcohol in it.
  • the molar ratio may be greater than 1/25.
  • the hydrogenation reaction temperature is usually 0 to 500 ° C, but 30 to 400 ° C is preferable, and 50 to 300 ° C is more preferable.
  • the hydrogenation reaction pressure is usually 100 to 10000 kPa-G.
  • the dehydration reaction and the subsequent hydrogenation reaction may be carried out in a reactor in which the dehydration catalyst and the hydrogenation catalyst are housed in this order from the upstream side in one container, or the dehydration catalyst and the hydrogenation catalyst are contained in one container. May be carried out in a reactor containing a physically mixed catalyst, or may be carried out in a reactor containing a hydrogenation catalyst carried on a dehydration catalyst in one container, or a dehydration catalyst is housed.
  • a reactor in which a container and a container containing a hydrogenation catalyst are connected in series in this order from the upstream side via a line may be used.
  • the contact state between the catalyst and the liquid in the container can be in the form of a slurry bed or a fixed bed. For large-scale industrial operations, it is preferable to use a fixed floor.
  • the dehydration reaction and the subsequent hydrogenation reaction are carried out by a continuous method.
  • the amount of by-products in the reaction mixture can be reduced, and the selectivity from cumene alcohol to cumene can be increased.
  • the production of propylene oxide according to the embodiment of the present invention includes the following steps.
  • Oxidation step Step to obtain cumene hydroperoxide by oxidizing cumene
  • Epoxidation step Step to obtain propylene oxide and cumyl alcohol by reacting cumene hydroperoxide obtained in the oxidation step with propylene
  • Cumene manufacturing step A step of converting cumene alcohol obtained in the above-mentioned epoxidation step into cumene by using the above-mentioned method for producing cumene, and recycling the obtained cumene into an oxidation step.
  • Cumene oxidation in the oxidation process is usually performed by autoxidation with an oxygen-containing gas such as air or oxygen-concentrated air. This oxidation reaction may be carried out without using an additive, or an additive such as alkali may be used.
  • the reaction temperature is usually 50-200 ° C. and the reaction pressure is usually between atmospheric pressure and 5 MPa.
  • additives are alkali metal hydroxides such as NaOH, KOH; alkaline earth metal hydroxides; alkali metal carbonates such as Na 2 CO 3 , NaHCO 3 ; ammonia; (NH 4 ) 2 CO 3 ; And alkali metal ammonium carbonate.
  • the epoxidation step is preferably carried out in the presence of a catalyst containing a titanium-containing silicon oxide from the viewpoint of obtaining the target propylene oxide in high yield and high selectivity.
  • a catalyst containing a titanium-containing silicon oxide from the viewpoint of obtaining the target propylene oxide in high yield and high selectivity.
  • These catalysts are preferably so-called Ti-silica catalysts containing Ti chemically bonded to silicon oxide.
  • Ti-silica catalysts containing Ti chemically bonded to silicon oxide for example, a Ti compound supported on a silica carrier, a compound compounded with a silicon oxide by a coprecipitation method or a sol-gel method, or a zeolite compound containing Ti can be mentioned.
  • the epoxidation reaction is carried out by bringing propylene and cumene hydroperoxide into contact with the catalyst.
  • the reaction can be carried out in a liquid phase using a solvent.
  • the solvent should be liquid under the temperature and pressure at the time of reaction and be substantially inert to the reactants and products.
  • An example of a solvent is cumene.
  • the epoxidation reaction temperature is generally 0 to 200 ° C, but is preferably 25 to 200 ° C.
  • the pressure may be sufficient to keep the reaction mixture in a liquid state. Generally, it is advantageous that the pressure is 100 to 10000 kPa.
  • the epoxidation reaction can be advantageously carried out using a slurry or a catalyst in the form of a fixed bed. Fixed floors are preferred for large-scale industrial operations. It can also be carried out by the batch method, the semi-continuous method or the continuous method.
  • the cumene alcohol produced by the epoxidation reaction is supplied to the above-mentioned method for producing cumene.
  • a liquid containing cumene alcohol after recovering propylene oxide and unreacted propylene from the reaction mixture obtained by the epoxidation reaction is supplied to the cumene production process.
  • Cumene produced in the cumene manufacturing process is recycled to the oxidation process. Further, the obtained cumene may be purified by distillation, washing with water or the like and then recycled to an oxidation step.
  • the liquid containing cumene in step A may be any liquid containing cumene.
  • the liquid containing cumene in the step A may be a liquid that has undergone the cumene production step, or may be a liquid containing cumene alcohol after recovering propylene oxide and unreacted propylene from the reaction mixture obtained by the epoxidation reaction. Further, as the cumene-containing liquid in step A, a cumene-containing liquid produced in another plant may be used. Furthermore, it may be a mixture of the above-mentioned liquids containing cumene.
  • the liquid containing cumene in step A can also be circulated in the oxidation step, the epoxidation step and the cumene production step after passing through the above reactor.
  • the liquid containing cumene alcohol in step B may be any liquid containing cumene alcohol, for example, obtained by reacting cumene hydroperoxide obtained by oxidizing cumene with propylene.
  • a liquid containing cumyl alcohol can be used.
  • the method for producing cumene according to the present invention may be carried out in ( ⁇ ) when the reaction in the cumene production process is stopped and then restarted; ( ⁇ ) when the reaction in the cumene production process is started for the first time; etc. it can.
  • each reaction can be started by the following method. (1) A liquid containing cumene is supplied to the reactor in the oxidation step. However, the oxidation reaction is not performed, and the cumene-containing liquid supplied to the reactor in the oxidation step is supplied to the epoxidation step as it is.
  • Step A is performed using the cumene-containing liquid that has passed through the reactor in the epoxidation step as the cumene-containing liquid in step A.
  • the oxidation reaction in the oxidation step and the epoxidation reaction in the epoxidation step are started, and the reaction in the solution containing the cumene that has passed through the reactor in the oxidation step and the reactor in the epoxidation step.
  • the liquid containing cumene that has passed through the reactor in the oxidation step and the reactor in the epoxidation step, and the liquid after separating propylene oxide and unreacted propylene from the reaction mixture contain cumene alcohol. Therefore, the liquid is used as a liquid containing cumene alcohol in step B to perform step B.
  • the "cumene-containing liquid" supplied to the reactor in the oxidation step can be the same as the "cumene-containing liquid" in step A in the above-mentioned method for producing cumene.
  • the second embodiment will be described below as an example of a method for producing cumene in such a case.
  • the method for producing cumene according to the second embodiment is a method for producing cumene, wherein cumene alcohol is subjected to (a) hydrocracking reaction or (b) dehydration reaction and subsequent hydrogenation reaction to obtain cumene. Is. Then, this method includes the following steps A'and B'.
  • Step A' A step of supplying a liquid containing cumene having a cumyl alcohol concentration of 5% by mass or less to a reactor filled with a catalyst
  • Step B' After the step A', hydrogen is added to the reactor. And a step of supplying a liquid having a cumyl alcohol concentration of 10% by mass or more
  • the present embodiment will be described in detail below.
  • step A' a liquid containing cumene having a cumene alcohol concentration of 5% by mass or less is supplied to the reactor.
  • concentration C0 of cumyl alcohol in step A' is preferably sufficiently low, for example, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.1% by mass. It may be% or less, and may be substantially 0.
  • Cumene can occupy 90% by mass or more of components other than cumyl alcohol in the liquid, preferably 95% by mass or more, more preferably 98% by mass or more, and further preferably 99% by mass or more.
  • step A' it is preferable to raise the temperature of the catalyst in the reactor during the process A'.
  • the temperature of the reactor catalyst is preferably raised to fall within the reaction temperature range described in step B of the first embodiment.
  • step A' If all the catalysts in the reactor have come into contact with a liquid containing cumene having a cumene alcohol concentration of 5% by mass or less, the supply of hydrogen to the reactor may be started in step A'.
  • step B' a liquid having a concentration of hydrogen and a cumyl alcohol concentration of 10% by mass or more is supplied to the reactor.
  • step B' the temperature of the reactor is maintained within the reaction temperature range described in step B of the first embodiment.
  • the temperature of the reactor is raised within the range of the reaction temperature described in step B of the first embodiment in step B'.
  • the concentration C1 of cumyl alcohol may be 10% by mass or more, 20% by mass or more, and there is no upper limit, but it can be 60% by mass or less, 50% by mass or less, and 40% by mass or less.
  • the liquid may contain cumene.
  • the concentration of cumene in the liquid can be 90% by mass or less, 80% by mass or less, and 70% by mass or less.
  • the concentration of cumene can be 40% by mass or more, 50% by mass or more, 60% by mass or more.
  • the amount of liquid supplied to the reactor in step B' can be appropriately set according to the type and amount of the catalyst.
  • step B' hydrogen is supplied to the reactor together with a liquid having a cumyl alcohol concentration of 10% by mass or more.
  • the amount of hydrogen can be set as described in step B of the first embodiment.
  • hydrogen may be started to be supplied to the reactor before step B', for example, at the start of step A'or in the middle of step A'. Further, for example, the supply of hydrogen may be started at the start of step B'or in the middle of step B'. Further, if hydrogen is started to be supplied at the start of step A'or in the middle of step A', and there is a step X'described later between the step A'and the step B', the hydrogen is continued in the step X'. Hydrogen may be supplied.
  • the concentration of cumyl alcohol in the liquid supplied to the reactor may be rapidly increased from C0 of 5% by mass or less to C1 of 10% by mass or more. Further, between step A'and step B', the concentration of cumyl alcohol in the liquid supplied to the reactor is gradually increased from a concentration C0 of 5% by mass or less to a concentration C1 of 10% by mass or more. It may have a step X'to cause.
  • step X' it is preferable to maintain the temperature of the reactor within the range of the reaction temperature described in step B of the first embodiment.
  • the temperature of the reactor is not raised in step A', it is preferable to raise the temperature of the reactor within the range of the reaction temperature described in step B of the first embodiment in step X'. is there.
  • the supply of hydrogen to the reactor may be started in step X'.
  • Example 1 A metal reactor with an inner diameter of 14 mm (the metal reactor includes a sheath tube with an outer diameter of 3 mm equipped with a thermometer) and a catalyst (catalyst mass 3.0 g, catalyst is activated alumina and 0.05 mass%). Included with palladium.).
  • the method of holding the catalyst was a fixed bed. Liquid cumene was supplied to the reactor under a pressure of 0.9 MPa-G, and the inside of the reactor was filled with liquid cumene. Then, while supplying 84 Nml / min of nitrogen gas and 24 g / hour of liquid cumene to the reactor at the same pressure, the mixture was heated in an electric furnace so that the temperature at the inlet of the catalyst layer was 230 ° C.
  • the amount of liquid (reaction solution sample) discharged from the reactor from 43 minutes to 73 minutes based on the start of hydrogen gas supply is 11.3 g, and the cumyl alcohol concentration in the reaction solution is 0.0% by mass. Met.
  • the analysis results are shown in Table 1.
  • the average temperature of the catalyst layer measured during the recovery of the reaction solution was 232 ° C. It was estimated that the cumyl alcohol concentration in the reactor became steady 103 minutes after the start of hydrogen supply.
  • the amount of liquid (reaction solution sample) discharged from the reactor in 103 to 133 minutes based on the start of hydrogen gas supply was 10.9 g, and when the reaction solution was analyzed, the concentration of cumyl alcohol was 0.1. It was% by mass.
  • the analysis results are shown in Table 1.
  • the average temperature of the catalyst layer measured during the recovery of the reaction solution was 232 ° C.
  • Example 2 A reactor similar to that in Example 1 was prepared.
  • a cumene solution (1) (cumene concentration 71% by mass, cumene alcohol concentration 26% by mass, isopropylcyclohexane concentration 0.03% by mass) was supplied to the reactor under a pressure of 0.9 MPa-G, and the inside of the reactor was filled with the cumene solution. It was filled with (1). Then, while supplying 84 Nml / min of nitrogen gas and 24 g / hour of cumene solution (1) to the reactor at the same pressure, the catalyst layer was heated so as to have an inlet temperature of 230 ° C.
  • the nitrogen gas was switched to hydrogen gas at the same pressure, and hydrogen gas was supplied at 72 Nml / min.
  • the raw material solution is a cumene solution (1).
  • the number of moles supplied per unit time of hydrogen was 4.3 times the number of moles supplied per unit time of cumyl alcohol.
  • the amount of liquid (reaction solution sample) discharged from the reactor in 35 to 60 minutes based on the start of hydrogen gas supply was 9.6 g.
  • the concentration of cumyl alcohol in the reaction solution after 35 minutes was 1.7% by mass based on the start of supply of hydrogen gas.
  • the analysis results are shown in Table 1.
  • the average catalyst temperature measured after the reaction solution was recovered was 233 ° C.
  • Example 3 A reactor similar to that in Example 1 was prepared.
  • a cumene solution (2) (cumene concentration 46% by mass, cumene alcohol concentration 51% by mass, isopropylcyclohexane concentration 0.03% by mass) was supplied to the reactor under a pressure of 0.9 MPa-G, and the inside of the reactor was filled with the cumene solution. It was filled with (2). Then, while supplying 84 Nml / min of nitrogen gas and 24 g / hour of cumene solution (2) to the reactor at the same pressure, the catalyst layer was heated so as to have an inlet temperature of 230 ° C.
  • the nitrogen gas was switched to hydrogen gas at the same pressure, and hydrogen gas was supplied at 72 Nml / min.
  • the raw material solution is a cumene solution (2).
  • the number of moles supplied per unit time of hydrogen was set to 2.1 times the number of moles supplied per unit time of cumyl alcohol.
  • the amount of liquid (reaction solution sample) discharged from the reactor in 30 to 60 minutes based on the start of hydrogen gas supply was 12.2 g.
  • the concentration of cumyl alcohol in the reaction solution after 30 minutes was 10.8% by mass based on the start of supply of hydrogen gas.
  • the analysis results are shown in Table 1.
  • the average catalyst temperature measured during the recovery of the reaction solution was 235 ° C.
  • Comparative Example 1 A reactor similar to that in Example 1 was prepared. Under the condition of a pressure of 0.9 MPa-G, while supplying nitrogen gas to the reactor, the catalyst layer was heated until the inlet temperature reached 210 ° C. After the temperature at the inlet of the catalyst layer stabilized at 210 ° C., the nitrogen gas was switched to hydrogen gas at the same pressure, and when hydrogen gas was supplied at 72 N ml / min, the temperature at the inlet of the catalyst layer rose to 223 ° C. Then, the reactor was heated at the same pressure so that the temperature at the inlet of the catalyst layer became 230 ° C.
  • a cumyl alcohol solution (1) (cumene alcohol concentration 26% by mass, cumene concentration 71% by mass, isopropylcyclohexane concentration 0.03% by mass) was supplied to the reactor as a raw material solution at 24 g / hour. did.
  • the number of moles supplied per unit time of hydrogen was 4.3 times the number of moles supplied per unit time of cumyl alcohol.
  • the reaction solution was discharged from the reactor 43 minutes after the start of the supply of hydrogen gas.
  • the amount of liquid (reaction solution sample) discharged from the reactor from 43 minutes to 73 minutes with reference to the start of hydrogen gas supply is 12.0 g, and the cumyl alcohol concentration in the reaction solution is 1.6% by mass. Met.
  • the analysis results are shown in Table 1.
  • the average catalyst temperature measured during the recovery of the reaction solution was 233 ° C.
  • Comparative Example 2 A reactor similar to that in Example 1 was prepared, and nitrogen gas was supplied to the reactor under a pressure of 0.9 MPa-G, heated until the temperature at the inlet of the catalyst layer reached 230 ° C., and then nitrogen gas was added. When switching to hydrogen gas and supplying hydrogen gas at 72 N ml / min, it is expected that the temperature at the inlet of the catalyst layer will rise to 240 ° C. or higher.

Abstract

本発明のクメンの製造方法は、クミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得るクメンの製造方法であって、下記工程を含む。 (A)触媒が充填された反応器に、クメンを含有する液を供給する工程 (B)前記工程Aの後に、前記反応器に、クミルアルコールを含有する液、及び、水素を供給する工程

Description

クメンの製造方法
 本発明はクメンの製造方法に関する。
 従来より、触媒の存在下で液体有機化合物を水素と接触させて水素化反応をさせるプロセスが知られている。
 このようなプロセスのスタートアップ時において、液体有機化合物及び水素を触媒と接触させる前に、触媒に水素ガスを接触させ、その後、液体有機化合物及び水素を触媒と接触させることが知られている。
 例えば、特許文献1では、触媒の存在下で芳香族ジニトリルの液体を水素と接触させてジニトリルを水素化するプロセスのスタートアップに当たり、まず触媒に水素を接触させ、その後、イソフタロニトリルを含む液及び水素を触媒と接触させることが開示されている。
特開2003-327563号公報
 触媒の存在下で、液体有機化合物を水素と接触させて水素化反応をさせるプロセスの一つとして、触媒の存在下で、液体のクミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得るプロセスがある。なお、本明細書において、クミルアルコールとは2-フェニル-2-プロパノールを指す。
 しかしながら、本発明者らが検討したところ、このようなプロセスのスタートアップ時に上述の方法を適用すると、反応副生物であるイソプロピルシクロヘキサンの生成量が増加する問題があることが判明した。
 本発明は上記課題に鑑みてなされたものであり、副生物であるイソプロピルシクロヘキサンの生成量の少ない、クメンの製造方法を提供することを目的とする。
 本発明にかかるクメンの製造方法は、クミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得る方法であって、下記工程A及び工程Bを含む。
 工程A:触媒が充填された反応器に、クメンを含有する液を供給する工程
 工程B:前記工程Aの後に、前記反応器に、クミルアルコールを含有する液、及び、水素を供給する工程
 本発明によれば、副生物であるイソプロピルシクロヘキサンの生成量の少ないクメンの製造方法が提供される。
 (第1実施形態にかかるクメンの製造方法)
 本発明の第1実施形態にかかるクメンの製造方法を説明する。
 本発明の第1実施形態にかかるクメンの製造方法は、クミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得る、クメンの製造方法である。そして、この方法は、下記工程A及び工程Bを含む。
 工程A:触媒が充填された反応器に、クメンを含有する液を供給する工程
 工程B:前記工程Aの後に、前記反応器に、クミルアルコールを含有する液、及び、水素を供給する工程
 本実施形態について以下に詳細に説明する。
 工程A
 工程Aでは、クメンを含有する液を反応器に供給する。工程Aにおける液中のクメンの濃度は、50質量%以上、60質量%以上、70質量%以上であることができる。一態様において、液中のクメンの濃度は、90質量%以上であることができ、好ましくは95質量%以上、より好ましくは98質量%以上、さらに好ましくは99質量%以上である。液中のクメンの濃度は100質量%でもよい。
 当該液はクミルアルコールを含んでもよい。一態様において、液中のクミルアルコールの濃度は、50質量%以下、40質量%以下、30質量%以下であることができる。一態様において、液中のクミルアルコールの濃度は、10質量%以下であることができ、好ましくは5質量%以下、より好ましくは2質量%以下、さらに好ましくは1質量%以下である。
 工程Aを行う途中で、反応器における触媒の温度を昇温することが好適である。工程Aの最後の時点で、反応器の触媒の温度は、後述する反応温度の範囲に入るように昇温されていることが好適である。
 工程Aの開始時点では、通常、反応器へ水素を供給しない。工程Aの開始時点における水素/(クメン+クミルアルコール)モル比は1/25以下が好ましく、より好ましくは1/30以下であり、さらに好ましくは1/40以下である。
 一態様において、工程Aを行っている間は、水素/(クメン+クミルアルコール)モル比は1/25以下が好ましく、より好ましくは1/30以下であり、さらに好ましくは1/40以下である。一態様において、工程Aを行っている間は、反応器へ水素を供給しない。
 工程B
 工程Bでは、前記反応器に、クミルアルコールを含有する液、及び、水素を供給する。
 工程Bにおける液中のクミルアルコールの濃度B1に限定はないが、10質量%以上であることが好ましく、20質量%以上でもよく、上限は無いが、60質量%以下、50質量%以下、40質量%以下であることができる。
 当該液はクメンを含んでもよい。一態様において、液中のクメンの濃度は、90質量%以下、80質量%以下、70質量%以下であることができる。一態様において、クメンの濃度は、50質量%以上、60質量%以上、70質量%以上であることができる。
 工程Bにおける液中のクミルアルコールの濃度B1と、工程Aにおける液中のクミルアルコールの濃度は、それぞれ独立である。工程Bにおける液中のクミルアルコールの濃度B1と、工程Aにおける液中のクミルアルコールの濃度は同一でもよい。
 工程Bにおいて、反応器の温度を後述する反応温度の範囲内に維持することが好適である。工程Aにおいて反応器の温度を昇温しない場合には、工程Bにおいて、反応器の温度を後述する反応温度の範囲内に昇温することが好適である。
 工程Bで反応器に供給する液の量は、触媒の種類や量に応じて適宜設定できる。
 工程Bでは、液と共に反応器に水素を供給する。水素の量については後述する。
 工程Bにおいて、クミルアルコールを含有する液中のクミルアルコールが、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応により、クメンに変換される。
 水素化分解反応の場合の触媒及び条件
 続いて、クミルアルコールを、(a)水素化分解反応に供してクメンを得る場合の触媒及び条件について説明する。
 水素化分解反応の場合、反応器内で、クミルアルコールを含有する液及び水素を触媒と接触させ、クミルアルコールと水素とを反応させることにより、クメンを含有する液を得る。
 水素化分解反応において使用される触媒(以下、「水素化分解触媒」と記載することがある。)としては周期表9族、10族、11族または12族の金属を含む触媒を挙げることができ、具体的にはコバルトを含む触媒、ニッケルを含む触媒、パラジウムを含む触媒、銅を含む触媒、亜鉛を含む触媒を挙げることができる。副生成物の生成を抑制する観点からニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としてはニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが挙げられ、パラジウムを含む触媒としてはパラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボン等が挙げられ、銅を含む触媒としては銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナ等が挙げられる。
 水素化分解反応で用いる反応器は、上記の触媒の内のいずれか1つ又は複数の組み合わせを収容する。反応器は、スラリー床または固定床の形式であることができる。大規模な工業的操作の場合には、固定床を用いることが好ましい。反応は連続法で行うことが好適である。
 水素化分解反応で消費される水素の量は、クミルアルコールと等モルである。しかしながら、通常、原料液中には水素を消費するクミルアルコール以外の成分も含まれているため、クミルアルコールの転化率を確保する観点から、化学量論量よりも過剰の水素を供給することが好適である。また水素の分圧を上げるほど反応はより速やかに進む。したがって、通常、水素/クミルアルコールモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~5/1である。また、通常、水素/(クメン+クミルアルコール)モル比は1/25以上である。前記モル比は1/25超であってもよい。
 水素化分解反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。水素化分解反応温度は通常0~500℃であるが、50~450℃が好ましく、150~300℃がより好ましい。水素化分解反応圧力は通常100~10000kPa-Gであり、好ましくは500~4000kPa-Gであり、より好ましくは1000~2000kPa-Gである。
 水素化分解反応を適用した場合のクミルアルコールの転化率は通常90%以上である。
 脱水反応及びこれに続く水添反応を行う場合の触媒及び条件
 続いて、クミルアルコールを、(b)脱水反応及びその後の水添反応に供してクメンを得る場合の触媒及び条件について説明する。
 この場合、反応器内で液中のクミルアルコールを触媒と接触させ、クミルアルコールの脱水反応によりα-メチルスチレンを含有する液を得、次いで、α-メチルスチレンを含有する液及び水素を反応器内で触媒と接触させて、α-メチルスチレンと水素とを水添反応させることにより、クメンを含有する液を得る。
 本態様において、液中のクミルアルコールを脱水してα-メチルスチレンを含有する液を得る工程を「脱水工程」と記載し、液中のα-メチルスチレンを含有する液と水素とを水添反応させることにより、クメンを含有する液を得る工程を「水添工程」と記載することがある。
 脱水工程において使用される触媒(以下、「脱水触媒」と記載することがある。)としては、硫酸、リン酸、p-トルエンスルホン酸等の均一系酸触媒;活性アルミナ、チタニア、ジルコニア、シリカアルミナ、ゼオライト等の固体酸触媒;を挙げることができる。反応効率を向上させる観点から脱水工程を固体酸触媒存在下で行うことが好ましく、活性アルミナを用いることがより好ましい。
 脱水工程における脱水反応は通常、クミルアルコールを含む液を反応器内で脱水触媒に接触させることにより行われる。脱水反応に引き続いて水添工程において水添反応を行なうため、水素の存在下、クミルアルコール含む液を脱水触媒に接触させてもよい。脱水反応温度は通常50~450℃であるが、150~300℃が好ましい。脱水反応圧力は通常10~10000kPa-Gである。
 水添工程において使用される触媒(以下、「水添触媒」と記載することがある。)としては、周期表10族または11族の金属を含む触媒を挙げることができ、具体的にはニッケルを含む触媒、パラジウムを含む触媒、白金を含む触媒、銅を含む触媒を挙げることができる。芳香環の核水添反応の抑制、高収率の観点からニッケルを含む触媒、パラジウムを含む触媒または銅を含む触媒が好ましい。ニッケルを含む触媒としてはニッケル、ニッケル・アルミナ、ニッケル・シリカ、ニッケル・カーボンが好ましく、パラジウムを含む触媒としては、パラジウム・アルミナ、パラジウム・シリカ、パラジウム・カーボンが好ましく、銅を含む触媒としては銅、ラネー銅、銅・クロム、銅・亜鉛、銅・クロム・亜鉛、銅・シリカ、銅・アルミナが好ましい。これらの触媒は単一でも用いることができるし、複数のものを用いることもできる。
 水添工程は、α-メチルスチレンを含む液と水素とを反応器内で水添触媒に接触させることにより行われる。前述した脱水反応に引き続いて水添反応を行なうが、この態様では、脱水反応において発生した水の一部を油水分離等によって分離してもよいし、分離せずにα-メチルスチレンとともに水添触媒に接触させてもよい。
 水添反応で消費される水素の量は、α-メチルスチレンと等モルである。しかしながら、通常、原料液中には水素を消費するα-メチルスチレン以外の成分も含まれているため、α-メチルスチレンの転化率を確保する観点から、化学量論量よりも過剰の水素を供給することが好適である。また水素の分圧を上げるほど反応はより速やかに進む。したがって、通常、水素/α-メチルスチレンのモル比は1/1~20/1に調整され、好ましくは1/1~10/1であり、より好ましくは1/1~5/1である。水添反応後に残存した過剰分の水素は反応液と分離した後にリサイクルして使用することもできる。また、通常、水素/(クメン+クミルアルコール)モル比は1/25以上である。(b)の場合、前記モル比中の「水素」の物質量は水添反応に供される水素の物質量であり、「クメン+クミルアルコール」の物質量は脱水反応に供される液中のクメンとクミルアルコールの合計の物質量である。前記モル比は1/25超であってもよい。
 水添反応温度は通常0~500℃であるが、30~400℃が好ましく、50~300℃がより好ましい。水添反応圧力は通常100~10000kPa-Gである。
 脱水反応およびこれに続く水添反応は、一つの容器内に脱水触媒及び水添触媒を上流側からこの順に収容した反応器で行ってもよいし、一つの容器内に脱水触媒及び水添触媒を物理的に混合した触媒を収容した反応器で行ってもよいし、一つの容器内に脱水触媒に担持された水添触媒を収容した反応器で行ってもよいし、脱水触媒を収容した容器及び水添触媒を収容した容器がラインを介して上流側からこの順に直列に接続された反応器で行ってもよい。
 容器内における触媒と液との接触状態は、スラリー床または固定床の形式であることができる。大規模な工業的操作の場合には、固定床を用いることが好ましい。本実施形態では、脱水反応及びこれに続く水添反応を連続法で行う。
 本実施形態にかかる方法によれば、反応混合物中の副生物、特に、イソプロピルシクロヘキサンの量を低減することができ、クミルアルコールからクメンへの選択率を高くすることができる。
 プロピレンオキサイドの製造方法
 上述のクメンの製造方法は、以下に記すプロピレンオキサイドの製造方法における、クメン製造工程に好適に採用できる。
 すなわち、本発明の実施形態にかかるプロピレンオキサイドの製造は以下の工程を含む。
 酸化工程:クメンを酸化することによりクメンハイドロパーオキサイドを得る工程
 エポキシ化工程:酸化工程で得たクメンハイドロパーオキサイドとプロピレンとを反応させることによりプロピレンオキサイド及びクミルアルコールを得る工程
 クメン製造工程:上述のエポキシ化工程で得たクミルアルコールを、上述のクメンの製造方法を用いて、クメンに転化し、得られたクメンを酸化工程へリサイクルする工程
 以下に各工程について説明する。
 酸化工程におけるクメンの酸化は、通常空気や酸素濃縮空気などの含酸素ガスによる自動酸化で行われる。この酸化反応は添加剤を用いずに実施してもよいし、アルカリのような添加剤を用いてもよい。反応温度は通常50~200℃であり、反応圧力は通常大気圧から5MPaの間である。
 添加剤の例は、NaOH、KOHのようなアルカリ金属水酸化物;アルカリ土類金属水酸化物;NaCO、NaHCOのようなアルカリ金属炭酸塩;アンモニア;(NHCO;及び、アルカリ金属炭酸アンモニウム塩である。
 エポキシ化工程は目的物であるプロピレンオキサイドを高収率及び高選択率下に得る観点から、チタン含有珪素酸化物を含む触媒の存在下に実施することが好ましい。これらの触媒は珪素酸化物と化学的に結合したTiを含有する、いわゆるTi-シリカ触媒が好ましい。たとえば、Ti化合物をシリカ担体に担持したもの、共沈法やゾルゲル法で珪素酸化物と複合したもの、あるいはTiを含むゼオライト化合物などをあげることができる。
 エポキシ化反応はプロピレンとクメンハイドロパーオキサイドを触媒に接触させることで行われる。反応は溶媒を用いて液相中で実施できる。溶媒は反応時の温度及び圧力のもとで液体であり、かつ反応体及び生成物に対して実質的に不活性なものであるべきである。溶媒の例はクメンである。
 エポキシ化反応温度は一般に0~200℃であるが、25~200℃が好ましい。圧力は反応混合物を液体の状態に保つのに充分な圧力でよい。一般に圧力は100~10000kPaであることが有利である。
 エポキシ化反応はスラリー又は固定床の形の触媒を使用して有利に実施できる。大規模な工業的操作の場合には固定床を用いるのが好ましい。また、回分法、半連続法または連続法によって実施できる。
 エポキシ化反応で生成したクミルアルコールは上述したクメンを製造する方法に供給する。通常、エポキシ化反応で得られた反応混合物からプロピレンオキサイドおよび未反応プロピレンを回収した後のクミルアルコールを含む液をクメン製造工程に供給する。
 クメン製造工程で製造したクメンは酸化工程へリサイクルされる。また、得られたクメンは蒸留および水洗等により精製された後に酸化工程へリサイクルしてもよい。
 工程Aにおけるクメンを含有する液は、クメンを含有する液ならばいかなるものでもよい。
 工程Aにおけるクメンを含有する液は、クメン製造工程を経た液でもよいし、エポキシ化反応で得られた反応混合物からプロピレンオキサイドおよび未反応プロピレンを回収した後のクミルアルコールを含む液でもよい。また、工程Aにおけるクメンを含有する液は、別のプラントで製造されたクメンを含有する液を用いてもよい。さらには、上記に挙げたクメンを含む液の混合物であってもよい。
 工程Aにおけるクメンを含有する液を、上記の反応器を通過させた後、酸化工程、エポキシ化工程およびクメン製造工程に循環させることもできる。
 工程Bにおけるクミルアルコールを含有する液は、クミルアルコールを含有する液ならばいかなるものでもよく、例えば、クメンを酸化することにより得られたクメンハイドロパーオキサイドをプロピレンと反応させることにより得られたクミルアルコールを含有する液を用いることができる。
 本発明に係るクメンの製造方法は、(α)クメン製造工程における反応を停止した後に、クメン製造工程における反応を再開する場合;(β)初めてクメン製造工程を開始する場合;等に行うことができる。
 例えば、プロピレンオキサイドの製造方法において、酸化工程、エポキシ化工程、及びクメン製造工程の全ての工程において反応を停止した場合、以下の方法により、各反応を開始することができる。
(1)酸化工程の反応器にクメンを含有する液を供給する。ただし、酸化反応は行わず、酸化工程の反応器に供給されたクメンを含有する液は、そのまま、エポキシ化工程へ供給される。
(2)酸化工程の反応器を通過したクメンを含有する液をエポキシ化工程の反応器に供給する。ただし、エポキシ化反応は行わず、エポキシ化工程の反応器に供給されたクメンを含有する液は、そのまま、クメン製造工程へ供給される。
(3)エポキシ化工程の反応器を通過したクメンを含有する液を、工程Aのクメンを含有する液として使用して、工程Aを行う。
(4)(3)の後に、酸化工程の酸化反応、及びエポキシ化工程のエポキシ化反応を開始し、酸化工程の反応器及びエポキシ化工程の反応器を通過したクメンを含有する液中のクミルアルコール濃度を増加させる。この場合、酸化工程の反応器及びエポキシ化工程の反応器を通過したクメンを含有する液、並びに、反応混合物からプロピレンオキサイドおよび未反応プロピレンを分離後の液は、クミルアルコールを含有しているため、該液を、工程Bのクミルアルコールを含有する液として使用して、工程Bを行う。
 このような場合において、酸化工程の反応器に供給される「クメンを含有する液」は、上述のクメンの製造方法における工程Aの「クメンを含有する液」と同様であることができる。
 このような場合におけるクメンの製造方法の一例として、以下、第2の実施形態を記載する。
 (第2の実施形態にかかるクメンの製造方法)
 第2の実施形態にかかるクメンの製造方法は、クミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得る、クメンの製造方法である。そして、この方法は、下記工程A’、及び工程B’を含む。
 工程A’:触媒が充填された反応器へ、クミルアルコール濃度が5質量%以下のクメンを含有する液を供給する工程
 工程B’:前記工程A’の後に、前記反応器に、水素、及び、クミルアルコール濃度が10質量%以上の液を供給する工程
 本実施形態について以下に詳細に説明する。
 工程A’
 工程A’では、クミルアルコール濃度が5質量%以下のクメンを含有する液を反応器に供給する。工程A’におけるクミルアルコールの濃度C0は十分低いことが好ましく、例えば、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.1質量%以下でもよく、実質的に0でも良い。
 当該液におけるクミルアルコール以外の成分の例はクメンである。当該液におけるクミルアルコール以外の成分の90質量%以上をクメンが占めることができ、好ましくは95質量%以上、より好ましくは98質量%以上、さらに好ましくは99質量%以上をクメンが占める。
 工程A’を行う途中で、反応器における触媒の温度を昇温することが好適である。工程A’の最後の時点で、反応器の触媒の温度は、第1の実施形態の工程Bで説明した反応温度の範囲に入るように昇温されていることが好適である。
 反応器中の触媒全てが、クミルアルコール濃度が5質量%以下のクメンを含有する液と接触後であれば、工程A’で反応器への水素の供給を開始してもよい。
 工程B’
 工程B’では、反応器に水素、及び、クミルアルコール濃度が10質量%以上の濃度C1の液を供給する。工程B’においては、反応器の温度を第1の実施形態の工程Bで説明した反応温度の範囲内に維持する。工程A’において反応器の温度を昇温しない場合には、工程B’において、反応器の温度を第1の実施形態の工程Bで説明した反応温度の範囲内に昇温する。
 クミルアルコールの濃度C1は10質量%以上であれば良く、20質量%以上でもよく、上限は無いが、60質量%以下、50質量%以下、40質量%以下であることができる。
 当該液はクメンを含んでもよい。一態様において、液中のクメンの濃度は、90質量%以下、80質量%以下、70質量%以下であることができる。一態様において、クメンの濃度は、40質量%以上、50質量%以上、60質量%以上であることができる。
 工程B’で反応器に供給する液の量は、触媒の種類や量に応じて適宜設定できる。
 工程B’では、クミルアルコール濃度が10質量%以上の液と共に反応器に水素を供給する。水素の量については第1の実施形態の工程Bで説明したとおりに設定できる。反応率の向上の観点から、工程B’よりも前から、例えば工程A’の開始時あるいは工程A’の途中から、水素を反応器に供給開始してもよい。また、例えば、工程B’の開始時、あるいは、工程B’の途中から水素を供給開始しても良い。また、工程A’の開始時あるいは工程A’の途中から水素を供給開始し、工程A’と工程B’との間に後述する工程X’がある場合には、工程X’でも継続して水素を供給しても良い。
 クミルアルコールを効率よく反応させる観点から、液中のクミルアルコール濃度が1質量%以上では、少なくとも水素を供給することが好適である。
 A’工程とB’工程との間で、反応器に供給する液中のクミルアルコールの濃度を、5質量%以下のC0から10質量%以上のC1まで急激に増加させてもよい。また、工程A’と工程B’との間に、反応器に供給する液中のクミルアルコール濃度を、5質量%以下の濃度C0から、10質量%以上の濃度C1となるまで徐々に増加させる工程X’を有してもよい。
 工程X’において、反応器の温度を第1の実施形態の工程Bで説明した反応温度の範囲内に維持することが好適である。工程A’において反応器の温度を昇温しない場合には、工程X’において、反応器の温度を第1の実施形態の工程Bで説明した反応温度の範囲内に昇温することが好適である。
 工程X’で反応器への水素の供給を開始してもよい。
 実施例1
 内径14mmの金属製反応器(該金属製反応器は、温度計を内部に備えた外径3mmの鞘管を含む)に触媒(触媒質量3.0g、触媒は活性アルミナと0.05質量%のパラジウムとを含む。)を充填した。触媒の保持方法は固定床とした。
 圧力0.9MPa-G条件で、反応器に液体クメンを供給し反応器内を液体クメンで満たした。その後、同圧力で窒素ガス84Nml/分と液体クメン24g/時間を反応器に供給しながら、触媒層の入口部温度が230℃になるように電気炉で加熱した。触媒層の入口部温度が230℃で安定した後、同圧力で窒素ガスを水素ガスに切り替え、水素ガスを72Nml/分で供給した。水素ガスへの切り替えとほぼ同時に、液体供給ラインの入れ替えにより、液体クメンに変えて、原料液として、クミルアルコール溶液(1)(クミルアルコール濃度26質量%、クメン濃度71質量%、イソプロピルシクロヘキサン濃度0.03質量%)を24g/時間で反応器に供給した。水素の単位時間あたりの供給モル数は、クミルアルコールの単位時間あたりの供給モル数に対して4.3倍とした。
 水素ガスの供給開始を基準として、43分~73分に反応器から排出された液体(反応液サンプル)は、11.3gであり、前記反応液中のクミルアルコール濃度は0.0質量%であった。分析結果を表1に示す。なお、反応液回収中に測定した触媒層平均温度は232℃であった。なお、反応器内のクミルアルコール濃度が定常状態となるのは、水素供給開始から103分後であると推定された。
 水素ガスの供給開始を基準として、103~133分に反応器から排出された液体(反応液サンプル)は10.9gであり、当該反応液を分析したところ、クミルアルコールの濃度は0.1質量%であった。分析結果を表1に示す。なお、反応液回収中に測定した触媒層平均温度は、232℃であった。
 実施例2
 実施例1と同様の反応器を用意した。圧力0.9MPa-G条件で、反応器にクメン溶液(1)(クメン濃度71質量%、クミルアルコール濃度26質量%、イソプロピルシクロヘキサン濃度0.03質量%)を供給し反応器内をクメン溶液(1)で満たした。その後、同圧力で窒素ガス84Nml/分とクメン溶液(1)24g/時間を反応器に供給しながら、触媒層の入口部温度が230℃になるように加熱した。触媒層の入口部温度が230℃で安定した後、同圧力で窒素ガスを水素ガスに切り替え、水素ガスを72Nml/分で供給した。実施例2において、原料液はクメン溶液(1)である。水素の単位時間あたりの供給モル数は、クミルアルコールの単位時間あたりの供給モル数に対して4.3倍とした。
 水素ガスの供給開始を基準として、35分~60分に反応器から排出された液体(反応液サンプル)は、9.6gであった。水素ガスの供給開始を基準として、35分後の反応液中のクミルアルコール濃度は1.7質量%であった。分析結果を表1に示す。なお、反応液回収後に測定した平均触媒温度は233℃であった。
 実施例3
 実施例1と同様の反応器を用意した。圧力0.9MPa-G条件で、反応器にクメン溶液(2)(クメン濃度46質量%、クミルアルコール濃度51質量%、イソプロピルシクロヘキサン濃度0.03質量%)を供給し反応器内をクメン溶液(2)で満たした。その後、同圧力で窒素ガス84Nml/分とクメン溶液(2)24g/時間を反応器に供給しながら、触媒層の入口部温度が230℃になるように加熱した。触媒層の入口部温度が230℃で安定した後、同圧力で窒素ガスを水素ガスに切り替え、水素ガスを72Nml/分で供給した。実施例3において、原料液はクメン溶液(2)である。水素の単位時間あたりの供給モル数は、クミルアルコールの単位時間あたりの供給モル数に対して2.1倍とした。
 水素ガスの供給開始を基準として、30分~60分に反応器から排出された液体(反応液サンプル)は、12.2gであった。水素ガスの供給開始を基準として、30分後の反応液中のクミルアルコール濃度は10.8質量%であった。分析結果を表1に示す。なお、反応液回収中に測定した平均触媒温度は235℃であった。
 比較例1
 実施例1と同様の反応器を用意した。圧力0.9MPa-G条件で、反応器に窒素ガスを供給しながら、触媒層の入口部温度が210℃になるまで加熱した。触媒層の入口部温度が210℃で安定した後、同圧力で窒素ガスを水素ガスに切り替え、水素ガスを72Nml/分で供給したところ、触媒層の入口部温度が223℃まで上昇した。その後、同圧力で触媒層入口部温度が230℃になるように反応器を加熱した。その後、同圧力で、原料液として、クミルアルコール溶液(1)(クミルアルコール濃度26質量%、クメン濃度71質量%、イソプロピルシクロヘキサン濃度0.03質量%)を24g/時間で反応器に供給した。水素の単位時間あたりの供給モル数は、クミルアルコールの単位時間あたりの供給モル数に対して4.3倍とした。
 水素ガスの供給開始を基準として、43分後に反応器から反応液が排出された。水素ガスの供給開始を基準として、43分~73分に反応器から排出された液体(反応液サンプル)は、12.0gであり、前記反応液中のクミルアルコール濃度は1.6質量%であった。分析結果を表1に示す。なお、反応液回収中に測定した平均触媒温度は233℃であった。
 比較例2
 実施例1と同様の反応器を用意し、圧力0.9MPa-G条件で、反応器に窒素ガスを供給しながら、触媒層の入口部温度が230℃になるまで加熱した後、窒素ガスを水素ガスに切り替え、水素ガスを72Nml/分で供給すると、触媒層の入口部温度が240℃以上に上昇することが予想される。
 以下の表1中のクミルアルコール転化率、イソプロピルシクロヘキサン選択率は、以下の式により計算した。
 理論液供給重量(g)=サンプル回収重量×(原料液中のクミルアルコール濃度×(クミルアルコール分子量/クメン分子量)+(100-原料液中のクミルアルコール濃度))/100
 原料液中のクメンモル数(mol)=理論液供給重量×(原料液中のクメン濃度/クメン分子量)/100
 原料液中のクミルアルコールモル数(mol)=理論液供給重量×(原料液中のクミルアルコール濃度/クミルアルコール分子量)/100
 原料液中のイソプロピルシクロヘキサンモル数(mol)=理論液供給重量×(原料液中のイソプロピルシクロヘキサン濃度/イソプロピルシクロヘキサン分子量)/100
 反応液中のクメンモル数(mol)=サンプル回収重量×(反応液中のクメン濃度/クメン分子量)/100
 反応液中のクミルアルコールモル数(mol)=サンプル回収重量×(反応液中のクミルアルコール濃度/クミルアルコール分子量)/100
 反応液中のイソプロピルシクロヘキサンモル数(mol)=サンプル回収重量×(反応液中のイソプロピルシクロヘキサン濃度/イソプロピルシクロヘキサン分子量)/100
 クミルアルコール転化率(%)=(原料液中のクミルアルコールモル数-反応液中のクミルアルコールモル数)/原料液中のクミルアルコールモル数×100
 イソプロピルシクロヘキサン選択率(%)=(反応液中のイソプロピルシクロヘキサンモル数-原料液中のイソプロピルシクロヘキサンモル数)/(原料液中のクミルアルコールモル数-反応液中のクミルアルコールモル数+原料液中のクメンモル数)×100
 クメン選択率(%)=(反応液中のクメンモル数-原料液中のクメンモル数)/(原料液中のクミルアルコールモル数-反応液中のクミルアルコールモル数)×100
Figure JPOXMLDOC01-appb-T000001
 実施例では、比較例に比して、副生成物であるイソプロピルシクロヘキサンの選択率が低かった。

Claims (2)

  1.  クミルアルコールを、(a)水素化分解反応、又は、(b)脱水反応及びその後の水添反応に供してクメンを得る、クメンの製造方法であって、
     下記工程を含む、方法。
     (A)触媒が充填された反応器に、クメンを含有する液を供給する工程
     (B)前記工程Aの後に、前記反応器に、クミルアルコールを含有する液、及び、水素を供給する工程
  2.  前記触媒が周期表10族または11族の金属を含む触媒である、請求項1に記載の方法。
PCT/JP2020/030207 2019-08-09 2020-08-06 クメンの製造方法 WO2021029324A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021539249A JPWO2021029324A1 (ja) 2019-08-09 2020-08-06
CN202080053633.2A CN114174247A (zh) 2019-08-09 2020-08-06 枯烯的制造方法
KR1020227007652A KR20220044571A (ko) 2019-08-09 2020-08-06 쿠멘의 제조 방법
US17/633,744 US11912638B2 (en) 2019-08-09 2020-08-06 Method for producing cumene
EP20852278.9A EP3984984A4 (en) 2019-08-09 2020-08-06 CUMENE PRODUCTION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019148080 2019-08-09
JP2019-148080 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029324A1 true WO2021029324A1 (ja) 2021-02-18

Family

ID=74570305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030207 WO2021029324A1 (ja) 2019-08-09 2020-08-06 クメンの製造方法

Country Status (6)

Country Link
US (1) US11912638B2 (ja)
EP (1) EP3984984A4 (ja)
JP (1) JPWO2021029324A1 (ja)
KR (1) KR20220044571A (ja)
CN (1) CN114174247A (ja)
WO (1) WO2021029324A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327563A (ja) 2002-05-10 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族ジメチルアミンの製造法
JP2009007294A (ja) * 2007-06-28 2009-01-15 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2009167130A (ja) * 2008-01-17 2009-07-30 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081888A (ja) 2001-09-13 2003-03-19 Sumitomo Chem Co Ltd クメンの製造方法
JP2003081886A (ja) 2001-09-13 2003-03-19 Sumitomo Chem Co Ltd クメンの製造方法
JP4400120B2 (ja) * 2002-12-24 2010-01-20 住友化学株式会社 クメンの製造方法
JP2004203753A (ja) 2002-12-24 2004-07-22 Sumitomo Chem Co Ltd クメンの製造方法
KR20060025581A (ko) 2003-06-30 2006-03-21 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 알킬벤젠의 생산 방법
JP2005097188A (ja) 2003-09-25 2005-04-14 Sumitomo Chemical Co Ltd クメンの製造方法
CN100376520C (zh) 2003-09-25 2008-03-26 住友化学株式会社 生产异丙基苯的方法和包括该方法的生产环氧丙烷的方法
CN1308273C (zh) * 2004-09-27 2007-04-04 华东理工大学 催化氢解α,α-二甲基苯甲醇制备异丙苯的方法
CN102746100A (zh) * 2011-04-20 2012-10-24 中国石油化工股份有限公司 制备异丙苯的方法
CN108929189B (zh) 2018-08-07 2021-06-11 杭州伽南企业管理有限公司 一种由α,α-二甲基苄醇氢解制备异丙苯的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327563A (ja) 2002-05-10 2003-11-19 Mitsubishi Gas Chem Co Inc 芳香族ジメチルアミンの製造法
JP2009007294A (ja) * 2007-06-28 2009-01-15 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法
JP2009167130A (ja) * 2008-01-17 2009-07-30 Sumitomo Chemical Co Ltd プロピレンオキサイドの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984984A4

Also Published As

Publication number Publication date
CN114174247A (zh) 2022-03-11
JPWO2021029324A1 (ja) 2021-02-18
US20220363611A1 (en) 2022-11-17
EP3984984A1 (en) 2022-04-20
KR20220044571A (ko) 2022-04-08
US11912638B2 (en) 2024-02-27
EP3984984A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
WO2001070711A1 (fr) Procede de production d'oxyde de propylene
WO2001070714A1 (fr) Procede de production d'un oxyde de propylene
JP4400120B2 (ja) クメンの製造方法
US7705166B2 (en) Process for producing propylene oxide
JP4228742B2 (ja) α−メチルスチレンの製造方法
KR101050343B1 (ko) 쿠멘의 제조 방법 및 상기 제조 방법을 포함하는프로필렌옥시드의 제조 방법
WO2021029324A1 (ja) クメンの製造方法
JP4013444B2 (ja) プロピレンオキサイドの製造方法
CN116964033A (zh) 过氧化氢异丙苯的制造设备和制造方法
RU2809251C2 (ru) Способ получения кумола
KR20040002874A (ko) 쿠멘의 회수방법
JP2005097188A (ja) クメンの製造方法
US7381829B2 (en) Method for producing propylene oxide
WO2005030742A1 (ja) プロピレンオキサイドの製造方法
JP2005097184A (ja) プロピレンオキサイドの製造方法
WO2003057682A1 (fr) Procede de production d'oxyde de propylene
JP2005097175A (ja) プロピレンオキサイドの製造方法
JP2005097183A (ja) プロピレンオキサイドの製造方法
JP2005097182A (ja) プロピレンオキサイドの製造方法
JP2005097210A (ja) クメンの製造方法
JP2005097178A (ja) プロピレンオキサイドの製造方法
JP2005097174A (ja) プロピレンオキサイドの製造方法
JP2005097186A (ja) プロピレンオキサイドの製造方法
JP2005097212A (ja) プロピレンオキサイドの製造方法
JP2005097187A (ja) プロピレンオキサイドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539249

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020852278

Country of ref document: EP

Effective date: 20220111

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007652

Country of ref document: KR

Kind code of ref document: A