WO2021027373A1 - Germe cristallin et procédé de fabrication d'une cellule solaire en pérovskite à l'aide de celui-ci - Google Patents

Germe cristallin et procédé de fabrication d'une cellule solaire en pérovskite à l'aide de celui-ci Download PDF

Info

Publication number
WO2021027373A1
WO2021027373A1 PCT/CN2020/093815 CN2020093815W WO2021027373A1 WO 2021027373 A1 WO2021027373 A1 WO 2021027373A1 CN 2020093815 W CN2020093815 W CN 2020093815W WO 2021027373 A1 WO2021027373 A1 WO 2021027373A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
precursor
film
metal halide
solar cell
Prior art date
Application number
PCT/CN2020/093815
Other languages
English (en)
Chinese (zh)
Inventor
顾楠楠
盛睿
颜步一
姚冀众
Original Assignee
杭州纤纳光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州纤纳光电科技有限公司 filed Critical 杭州纤纳光电科技有限公司
Publication of WO2021027373A1 publication Critical patent/WO2021027373A1/fr

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of perovskite solar cell preparation, and particularly relates to a seed crystal and a method for preparing the perovskite solar cell.
  • Perovskite solar cells have received widespread attention, which use organometallic halides as the light absorption layer.
  • the perovskite has a cubic octahedral structure of ABX 3 type, as shown in Figure 1.
  • Thin-film solar cells made of this material have simple process, low production cost, stability and high conversion rate. Since 2009, the photoelectric conversion efficiency has increased from 3.8% to more than 23%, which is higher than that of commercial crystalline silicon solar cells. Larger cost advantage.
  • additives can assist the formation of perovskite crystal nuclei more uniformly, and affect the crystallization process of the perovskite material, thereby improving the quality of the perovskite film, accurately controlling its crystal growth, and improving the stability of the crystal.
  • the benefits of applying additives include the ability to prepare a flat film surface, increase the surface coverage, and control the grain size, thereby increasing the parallel resistance of the perovskite battery, thereby achieving the purpose of increasing battery efficiency.
  • the existing perovskite film additives mainly include polymers, fullerenes, metal halide salts, inorganic acids, solvents, organic halide salts, nanoparticles and other types of additives. These additives regulate the crystallization process of perovskite to stabilize Alpha-phase perovskite crystals.
  • Perovskite materials may exhibit different phases under different temperatures or environments, and different phases will lead to completely different photoelectric properties.
  • formamidine lead iodide perovskite is usually a black phase at high temperature, but at room temperature.
  • the yellow ⁇ -phase perovskite crystal form exists, and this ⁇ -phase perovskite crystal has no photoactivity, which affects the stability and efficiency of the device.
  • a similar phase transition is one of the important factors for the poor stability of perovskite solar cells.
  • the technical problem to be solved by the present invention is to provide a seed crystal and a method for preparing a perovskite solar cell. Aiming at the problem of poor stability of the perovskite black phase which is easy to form delta phase crystals at room temperature, it is designed from a chemical point of view The structure of perovskite crystals, adding "seeds" to the precursor solution, perovskite crystals use this as a growth "template", making it easier to form black phase crystals with photoelectric effect during the growth of perovskite crystals. Non-yellow phase crystal.
  • the present invention is achieved in this way, providing a seed crystal, the seed crystal is a compound, the general chemical formula of which is: E x F y G z Pb(I a Br b Cl c ) 3 , where E, F, G is cesium, rubidium, amine, amidine or any one of the monovalent cations in the alkali family, 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1.1, 0 ⁇ z ⁇ 1.1, 0.8 ⁇ x+y+z ⁇ 1.1, 0.9 ⁇ a+b+c ⁇ 1.1, Pb is lead ion, I is iodide ion, Br is bromide ion, and Cl is chloride ion.
  • the seed crystal is used in the preparation of the perovskite film.
  • the present invention is achieved in this way and provides a method for preparing a perovskite solar cell.
  • the seed crystal as described above is used in the process of preparing the perovskite solar cell.
  • the method for preparing a perovskite solar cell is a solution method, which includes the following steps:
  • Step 1 Prepare a perovskite precursor containing seed crystals, dissolve the metal halide BX 2 of the perovskite precursor and the seed crystals in an organic solvent to obtain a mixed seed perovskite precursor BX 2 precursor;
  • Step 2 Coat the perovskite precursor BX 2 precursor prepared in step 1 on the surface of the substrate with the transmission layer prepared by any one of spin coating, knife coating, slit continuous coating, and spraying. , Obtaining a film containing a metal halide BX 2 precursor, and then annealing the film to obtain a metal halide BX 2 film containing a seed crystal;
  • Step 3 Dissolve the perovskite precursor AX in a solvent to obtain a solution containing the perovskite precursor AX.
  • the calcium-containing solution can be processed by any of spin coating, blade coating, slit continuous coating, and spray coating.
  • the solution of the titanium ore precursor AX is coated on the surface of the metal halide BX 2 film containing the seed crystals, so that the perovskite precursor AX molecules and the metal halide BX 2 molecules react to form a perovskite film layer containing the seed crystals.
  • the method for preparing a perovskite solar cell is a gas phase solution assisted method, which includes the following steps:
  • Step 1 Prepare a perovskite precursor liquid containing seed crystals, dissolve the metal halide BX 2 of the perovskite precursor and the seed crystals in an organic solvent to obtain a mixed seed perovskite precursor BX 2 precursor liquid;
  • Step 2 Coat the perovskite precursor BX 2 precursor solution prepared in step 1 on the surface of the substrate with the transmission layer prepared by any one of spin coating, knife coating, slit continuous coating, and spraying. , Obtaining a film containing a metal halide BX 2 precursor, and then annealing the film to obtain a metal halide BX 2 film containing a seed crystal;
  • Step 3 Place the film in the film forming cavity, and place the perovskite precursor AX in the evaporation source of the cavity for heating and evaporation, so that the film is placed in the vapor atmosphere of the perovskite precursor AX.
  • Titanium ore precursor AX gas molecules react with metal halide BX 2 molecules to form a perovskite film containing seed crystals;
  • Step 4 Rinse the perovskite film with isopropanol (IPA), dry it with nitrogen N 2 and then anneal to obtain a perovskite film layer containing seed crystals.
  • IPA isopropanol
  • B is lead, tin, tungsten, copper, zinc, gallium, germanium, arsenic, selenium, rhodium, palladium, silver, At least one divalent metal cation of cadmium, indium, antimony, osmium, iridium, platinum, gold, mercury, thallium, bismuth, and polonium, and X is at least one of iodine, bromine, chlorine, astatine, thiocyanate, and acetate
  • a negative monovalent anion A is at least one positive monovalent cation in the metal, amidino group or alkali family.
  • the concentration of the metal halide BX 2 of the perovskite precursor is 0.5 mol/L to 2 mol/L, and the amount of seed crystal blended is the molar amount of the metal halide BX 2 of the perovskite precursor 0 ⁇ 30%.
  • the air pressure of the film forming cavity ranges from 10 -5 Pa to 10 5 Pa
  • the heating temperature of the perovskite precursor AX is controlled at 30°C to 250°C
  • the heating temperature of the substrate is controlled at 30°C ⁇ 250°C
  • the reaction time between the perovskite precursor AX molecule and the metal halide BX 2 molecule of the perovskite precursor is controlled within 10min ⁇ 120min; in step 4, the prepared perovskite containing seed crystals
  • the thickness of the mineral film layer is 200nm ⁇ 800nm.
  • the seed crystal of the present invention and the method for preparing the perovskite solar cell add the perovskite seed crystal to the lead halide to control the growth of the perovskite crystal in a specific direction so that it is in the crystallization process.
  • Figure 1 is a schematic diagram of the molecular structure in a perovskite film
  • Figure 2 is an XRD comparison diagram of perovskite films prepared without seed crystals and seed crystals
  • Fig. 3 is a J-V curve diagram of a perovskite solar cell containing seed crystals prepared in Example 1 of the present invention.
  • the seed crystal is a compound whose general chemical formula is: E x F y G z Pb(I a Br b Cl c ) 3 , where E, F, and G are respectively Cesium, rubidium, amine group, amidine group or any one of the monovalent cations in the alkali family, 0 ⁇ x ⁇ 1.1, 0 ⁇ y ⁇ 1.1, 0 ⁇ z ⁇ 1.1, 0.8 ⁇ x+y+z ⁇ 1.1, 0.9 ⁇ a+b+c ⁇ 1.1, Pb is lead ion, I is iodide ion, Br is bromide ion, and Cl is chloride ion.
  • the seed crystals are used in the preparation of perovskite films.
  • the invention also discloses a method for preparing the perovskite solar cell.
  • the seed crystal as described above is used in the process of preparing the perovskite solar cell.
  • the method for preparing a perovskite solar cell is a solution method, which includes the following steps:
  • Step 1 Prepare a perovskite precursor liquid containing seed crystals, dissolve the metal halide BX 2 of the perovskite precursor and the seed crystals in an organic solvent to obtain a mixed seed perovskite precursor BX 2 precursor liquid.
  • Step 2 Coat the perovskite precursor BX 2 precursor prepared in step 1 on the surface of the substrate with the transmission layer prepared by any one of spin coating, knife coating, slit continuous coating, and spraying. , A film containing a metal halide BX 2 precursor solution is obtained, and then the film is annealed to obtain a metal halide BX 2 film containing a seed crystal.
  • Step 3 Dissolve the perovskite precursor AX in a solvent to obtain a solution containing the perovskite precursor AX.
  • the calcium-containing solution can be processed by any of spin coating, blade coating, slit continuous coating, and spray coating.
  • the solution of the titanium ore precursor AX is coated on the surface of the metal halide BX 2 film containing the seed crystals, so that the perovskite precursor AX molecules and the metal halide BX 2 molecules react to form a perovskite film layer containing the seed crystals.
  • the thickness of the prepared perovskite thin film layer containing seed crystals is 200 nm to 800 nm.
  • the method for preparing a perovskite solar cell is a gas phase solution assisted method, which includes the following steps:
  • Step 1 Prepare a perovskite precursor containing seed crystals, and dissolve the metal halide BX 2 of the perovskite precursor and the seed crystals in an organic solvent to obtain a mixed seed perovskite precursor BX 2 precursor.
  • Step 2 Coat the perovskite precursor BX 2 precursor solution prepared in step 1 on the surface of the substrate with the transmission layer prepared by any one of spin coating, knife coating, slit continuous coating, and spraying. , A film containing a metal halide BX 2 precursor solution is obtained, and then the film is annealed to obtain a metal halide BX 2 film containing a seed crystal.
  • Step 3 Place the film in the film forming cavity, use a vacuum pump to control the air pressure within a certain range, place the perovskite precursor AX in the evaporation source of the cavity for heating and evaporation, so that the film is placed in the perovskite In the vapor atmosphere of the precursor AX, the perovskite precursor AX gas molecules react with the metal halide BX 2 molecules to form a perovskite film containing seed crystals.
  • Step 4 Rinse the perovskite film with isopropanol (IPA), dry it with nitrogen N 2 and then anneal to obtain a perovskite film layer containing seed crystals.
  • IPA isopropanol
  • B is lead, tin, tungsten, copper, zinc, gallium, germanium, arsenic, selenium, rhodium, palladium, silver, cadmium, indium , Antimony, osmium, iridium, platinum, gold, mercury, thallium, bismuth, polonium at least one divalent metal cation, X is at least one of iodine, bromine, chlorine, astatine, thiocyanate, acetate A monovalent anion, A is at least one positive monovalent cation in the metal, amidino group, or alkali family.
  • the concentration of the metal halide BX 2 of the perovskite precursor is 0.5 mol/L to 2 mol/L, and the doping amount of the seed crystal is 0-30 of the molar amount of the metal halide BX 2 of the perovskite precursor %.
  • the air pressure of the film forming cavity ranges from 10 -5 Pa to 10 5 Pa
  • the heating temperature of the perovskite precursor AX is controlled at 30°C to 250°C
  • the heating temperature of the substrate is controlled at 30°C ⁇
  • the reaction time between AX molecules of the perovskite precursor and the metal halide BX 2 molecules of the perovskite precursor is controlled within 10min ⁇ 120min; in step 4, the prepared perovskite film layer containing seed crystals
  • the thickness is 200nm ⁇ 800nm.
  • the method for preparing a perovskite solar cell is a solution method, which includes the following steps:
  • the Cu electrode of the metal conductive layer is evaporated to prepare the perovskite solar cell containing the seed crystal.
  • the method for preparing a perovskite solar cell is a gas phase solution assisted method, which includes the following steps:
  • a metal conductive layer Ag electrode is evaporated to prepare a perovskite solar cell containing seed crystals.
  • the method for preparing a perovskite solar cell is a solution method, which includes the following steps:
  • the 5 ⁇ 5 cm ITO glass plate was ultrasonically cleaned with detergent, deionized water, acetone, and isopropanol for 30 minutes, then dried with N 2 and treated with UV O-zone for 10 minutes.
  • a metal conductive layer Au electrode is evaporated to prepare a perovskite solar cell containing a seed crystal.
  • Fig. 2 shows the comparison of XRD patterns between doped perovskite seed crystals and undoped seed crystals in Example 2.
  • the undoped phase is stable for three days, FA perovskite It is converted into a yellow phase, which has low photoactivity and affects the stability of the perovskite solar cell device.
  • the perovskite doped with seed crystals remains in the black phase after being placed for a week and has photoactivity.
  • the efficiency of perovskite solar cells doped with FA 0.83 Cs 0.17 PbI 3 perovskite seeds is significantly higher than that of perovskite solar cells without doped seeds, and its efficiency is increased from 8.63% to 17.31 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un germe cristallin, qui est un composé. La formule chimique générale de celui-ci est la suivante : E xF yG zPb(I aBr bCl c) 3. Dans la formule, E, F et G représentent respectivement des cations monovalents d'un élément quelconque parmi le césium, le rubidium, une amine, une amidine ou un alcali, 0 ≤ x ≤ 1,1, 0 ≤ y ≤ 1,1, 0 ≤ z ≤ 1,1, 0,8 ≤ x + y + z ≤ 1,1, 0,9 ≤ a + b + c ≤ 1,1, Pb représente un ion plomb, I représente un ion iodure, Br représente un ion bromure et Cl représente un ion chlorure. La présente invention concerne également un procédé de fabrication d'une cellule solaire en pérovskite à l'aide du germe cristallin. Selon la présente invention, des germes cristallins de pérovskite sont ajoutés à de l'halogénure de plomb, et le cristal de pérovskite est amené à se développer dans une direction spécifique, de sorte que le cristal de pérovskite en phase alpha noire, plutôt que le cristal en phase jaune, se forme dans le cadre d'un processus de cristallisation, la phase cristalline de pérovskite est stabilisée dans diverses conditions, une couche de film mince en pérovskite stable à long terme est fabriquée, et le rendement ainsi que la stabilité des cellules solaires sont améliorés.
PCT/CN2020/093815 2019-08-09 2020-06-01 Germe cristallin et procédé de fabrication d'une cellule solaire en pérovskite à l'aide de celui-ci WO2021027373A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910733124.3 2019-08-09
CN201910733124.3A CN112349846A (zh) 2019-08-09 2019-08-09 一种晶种及其制备钙钛矿太阳能电池的方法

Publications (1)

Publication Number Publication Date
WO2021027373A1 true WO2021027373A1 (fr) 2021-02-18

Family

ID=74367644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093815 WO2021027373A1 (fr) 2019-08-09 2020-06-01 Germe cristallin et procédé de fabrication d'une cellule solaire en pérovskite à l'aide de celui-ci

Country Status (2)

Country Link
CN (1) CN112349846A (fr)
WO (1) WO2021027373A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920282A (zh) * 2022-06-30 2022-08-19 齐鲁工业大学 一种在GaN单晶衬底上生长钙钛矿纳米晶及其制备方法
CN115843189A (zh) * 2022-12-22 2023-03-24 浙江科鼐尔机电制造有限公司 一种通过钙钛矿晶粒二次生长提升钙钛矿太阳能电池性能的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113782685B (zh) * 2021-09-10 2022-10-21 华能新能源股份有限公司 一种钙钛矿薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890816B2 (en) * 2003-02-07 2005-05-10 Freescale Semiconductor, Inc. Compound semiconductor structure including an epitaxial perovskite layer and method for fabricating semiconductor structures and devices
CN108321300A (zh) * 2018-02-06 2018-07-24 杭州纤纳光电科技有限公司 一种掺杂添加剂的钙钛矿薄膜及其制备方法和应用
CN108950689A (zh) * 2017-05-19 2018-12-07 卫子健 钙钛矿晶体的制备方法
CN110120455A (zh) * 2019-04-25 2019-08-13 武汉大学 一种基于双效种子生长法的钙钛矿光伏薄膜制备方法
CN111313238A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种锥状钙钛矿微纳晶激光器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890816B2 (en) * 2003-02-07 2005-05-10 Freescale Semiconductor, Inc. Compound semiconductor structure including an epitaxial perovskite layer and method for fabricating semiconductor structures and devices
CN108950689A (zh) * 2017-05-19 2018-12-07 卫子健 钙钛矿晶体的制备方法
CN108321300A (zh) * 2018-02-06 2018-07-24 杭州纤纳光电科技有限公司 一种掺杂添加剂的钙钛矿薄膜及其制备方法和应用
CN110120455A (zh) * 2019-04-25 2019-08-13 武汉大学 一种基于双效种子生长法的钙钛矿光伏薄膜制备方法
CN111313238A (zh) * 2020-02-29 2020-06-19 华南理工大学 一种锥状钙钛矿微纳晶激光器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO YICHENG, TAN HAIREN, YUAN HAIFENG, YANG ZHENYU, FAN JAMES Z., KIM JUNGHWAN, VOZNYY OLEKSANDR, GONG XIWEN, QUAN LI NA, TAN CHI: "Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells", NATURE COMMUNICATIONS, vol. 9, no. 1, 1 December 2018 (2018-12-01), XP055780840, DOI: 10.1038/s41467-018-04029-7 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920282A (zh) * 2022-06-30 2022-08-19 齐鲁工业大学 一种在GaN单晶衬底上生长钙钛矿纳米晶及其制备方法
CN115843189A (zh) * 2022-12-22 2023-03-24 浙江科鼐尔机电制造有限公司 一种通过钙钛矿晶粒二次生长提升钙钛矿太阳能电池性能的方法
CN115843189B (zh) * 2022-12-22 2023-07-25 浙江科鼐尔机电制造有限公司 一种通过钙钛矿晶粒二次生长提升钙钛矿太阳能电池性能的方法

Also Published As

Publication number Publication date
CN112349846A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN108232014B (zh) 一种掺杂离子稳定剂的钙钛矿薄膜及其制备方法和应用
WO2019153906A1 (fr) Film de pérovskite dopé avec un additif, son procédé de préparation et son application
WO2019141044A1 (fr) Cellule solaire de pérovskite comportant une couche de modification d'interface et son procédé de préparation
WO2021027373A1 (fr) Germe cristallin et procédé de fabrication d'une cellule solaire en pérovskite à l'aide de celui-ci
CN109103274B (zh) 一种全无机钙钛矿太阳能电池及制备方法
CN112216799A (zh) 一种钝化钙钛矿的方法及钙钛矿太阳能电池的制备工艺
CN110176539B (zh) 一种全光谱光稳定的高效钙钛矿太阳能电池的制备方法
CN111952455B (zh) 一种离子液体型有机大体积胺分子盐制备低维锡基钙钛矿薄膜及其太阳能电池和应用
CN112349845A (zh) 一种相稳定剂及其制备钙钛矿太阳能电池的方法
CN114335356A (zh) 一种钙钛矿薄膜及组件的处理和制备方法
US11034590B2 (en) BaSnO3 thin flim and low-temperature preparation method therefor
CN112216796A (zh) 一种掺杂的钙钛矿层和钙钛矿电池及其制备方法
CN110634965A (zh) 一种全无机钙钛矿太阳能电池及其制备方法
US20220158104A1 (en) Perovskite precursor composition, method of preparing perovskite film, perovskite film and perovskite solar cell
CN114284440A (zh) 一种双功能离子盐钝化锡基钙钛矿薄膜及其钙钛矿太阳能电池的制备方法和应用
KR101912735B1 (ko) BaSnO3 박막 및 이의 저온 제조 방법
CN110444668B (zh) 一种平面型钙钛矿太阳能电池的制备方法
CN110224067B (zh) 钙钛矿太阳能电池的空穴传输材料及其制备方法和应用
CN113831785A (zh) 金属氧化物掺杂型钙钛矿薄膜、太阳能电池及制备方法
CN110854271A (zh) 一种高稳定钙钛矿太阳能电池及其制备方法
KR20200046916A (ko) 고안정성 유기-무기 하이브리드 태양전지 및 이의 제조 방법
CN115360307B (zh) 一种钙钛矿薄膜的制备方法
Jia et al. Polyhydroxy Compound Modifying Sno2 for High-Performance and Stable Perovskite Solar Cells
CN114899324A (zh) 一种高品质高稳定性钙钛矿层及太阳电池的制备方法
CN117202750A (zh) 一种掺杂的钙钛矿薄膜及其制备方法和钙钛矿太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852771

Country of ref document: EP

Kind code of ref document: A1