WO2021027036A1 - 触摸屏及其制造方法 - Google Patents

触摸屏及其制造方法 Download PDF

Info

Publication number
WO2021027036A1
WO2021027036A1 PCT/CN2019/108936 CN2019108936W WO2021027036A1 WO 2021027036 A1 WO2021027036 A1 WO 2021027036A1 CN 2019108936 W CN2019108936 W CN 2019108936W WO 2021027036 A1 WO2021027036 A1 WO 2021027036A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
electrode
layer
via hole
touch
Prior art date
Application number
PCT/CN2019/108936
Other languages
English (en)
French (fr)
Inventor
谢铭
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/624,925 priority Critical patent/US20210286469A1/en
Publication of WO2021027036A1 publication Critical patent/WO2021027036A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the invention relates to the field of touch control, in particular to a touch screen and a manufacturing method thereof.
  • AMOLED active matrix organic light-emitting diode
  • Metal mesh technology uses metal materials such as silver and copper to grow on glass or polyethylene terephthalate (PET) and other plastic films to form conductive metal mesh patterns.
  • the resistivity of the metal grid is lower than that of indium tin oxide (ITO).
  • ITO indium tin oxide
  • the target value of the sheet resistance (R ⁇ ) of indium tin oxide (ITO) is 10 ⁇
  • the actual value range of the sheet resistance is between 8-12 ⁇ .
  • the sheet resistance of the metal grid is less than 10 ⁇ / ⁇ , which can realize roll-to-roll production, and the grid has good bending resistance and can be used for flexible folding devices.
  • Y-OCTA technology was developed by Samsung and used in flexible touch display technology.
  • the design uses metal grids to directly make touch circuits on the thin film package (TFE), which greatly reduces the original external touch screen (TP) and optical transparent adhesive
  • TFE thin film package
  • OCA optical transparent adhesive
  • the thickness of the mixture (OCA) makes the touch screen thinner and easier to bend.
  • CNT carbon nanotube
  • It uses the carbon nanotube (CNT) process to connect the upper and lower layers of metal to form a grid for flexible touch.
  • the carbon nanotube process increases the resistance between metals, which reduces the touch accuracy and affects the overall flexible touch performance.
  • the purpose of the present invention is to provide a touch screen and a manufacturing method thereof, which use digging and etching to increase the contact area of the two metal layers, improve the impedance performance of the carbon nanotubes, and thereby improve the metal mesh at the junction Reliable performance and improved touch performance, and a widened design at the connection to improve flexible dynamic bending performance.
  • the present invention provides a touch screen including an array substrate.
  • the array substrate includes a thin film packaging layer, an insulating layer, a first metal layer, a passivation layer, a second metal layer, and a flat layer.
  • the insulating layer is provided on the thin film encapsulation layer; the first metal layer is provided on the insulating layer; the passivation layer is provided on the first metal layer; the second The metal layer is provided on the passivation layer; the flat layer is provided on the second metal layer.
  • the first metal layer includes a plurality of electrode bridges
  • the second metal layer includes a plurality of touch electrodes and metal traces
  • the touch electrode includes a first electrode and a second electrode, the first The electrode and the second electrode are insulated from each other, the adjacent first electrodes are electrically connected by the electrode bridge along the first direction, and the adjacent second electrodes pass along the second direction crossing the first direction
  • the metal traces are electrically connected
  • the passivation layer is provided with a plurality of vias, and the vias extend from the passivation layer adjacent to the first electrode surface of the second metal layer toward the first metal layer
  • a hole-like structure with a gradually decreasing inner diameter is formed at both ends of the electrode bridge, the electrode bridge is further recessed at a position corresponding to the via hole, the first electrode extends and passes through the via hole and further It extends into the recess of the electrode bridge and is electrically connected to the first electrode.
  • the width of the via hole ranges from 1.4um to 1.6um.
  • the vertical line between the sidewall of the via hole and the bottom edge of the via hole forms an angle of 15°-30°.
  • the bottom of the recess is at 1/2 of the thickness of the first metal layer.
  • the first metal layer or the second metal layer includes a first titanium metal layer, an aluminum metal layer, and a second titanium metal layer that are stacked.
  • the aluminum metal layer is provided on a side of the first titanium metal layer; the second titanium metal layer is provided on a side of the aluminum metal layer away from the first titanium metal layer.
  • the first metal layer or the second metal layer includes nano silver wires.
  • the present invention also provides a manufacturing method of a touch screen, including the steps:
  • the array substrate including a thin film packaging layer
  • first metal layer Forming a first metal layer on the insulating layer, the first metal layer including a plurality of electrode bridges;
  • a recess is further recessed at the position of the first metal layer corresponding to the via hole;
  • a second metal layer is formed on the passivation layer.
  • the second metal layer includes a plurality of touch electrodes and metal traces.
  • the touch electrodes include a first electrode and a second electrode.
  • the second electrodes are insulated from each other, the adjacent first electrodes are electrically connected through the electrode bridge along the first direction, and the adjacent second electrodes pass through the second direction crossing the first direction.
  • the metal trace is electrically connected; wherein the via hole forms a hole with a gradually decreasing inner diameter from the passivation layer adjacent to the first electrode surface of the second metal layer toward the electrode bridge ends of the first metal layer Structure, the electrode bridge is further provided with a recess at a position corresponding to the via hole, and the first electrode extends through the via hole and further extends into the recess of the electrode bridge and is connected to the The first electrode is electrically connected; and
  • a flat layer is formed on the second metal layer.
  • the width of the via hole ranges from 1.4um to 1.6um.
  • the vertical line between the sidewall of the via hole and the bottom edge of the via hole forms an angle of 15°-30°.
  • the bottom of the recess is located at 1/2 of the thickness of the first metal layer.
  • the beneficial effect of the present invention is that the present invention provides a touch screen and a manufacturing method thereof, which utilizes digging and etching to increase the contact area of the two metal layers, reduce the square resistance, and improve the reliability of the metal grid at the connection. , To increase the connection strength and improve the touch performance, and use a widened design at the connection to improve the flexible dynamic bending performance.
  • Figure 1 is a cross-sectional view of a touch screen in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a structure of the first metal layer or the second metal layer in FIG. 1;
  • FIG. 3 is a partial enlarged view of the structure of the via hole and the recess in FIG. 1;
  • FIG. 4 is a flowchart of a method for manufacturing a touch screen in an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a touch panel in an embodiment of the present invention.
  • Liquid crystal layer 30, color film substrate, 31, electrode bridge, 51, touch electrode,
  • the present invention provides a touch screen 100 including an array substrate 10.
  • the array substrate 10 includes a thin film packaging layer 1, an insulating layer 2, a first metal layer 3, a passivation layer 4, a second metal layer 5, a flat layer 6 and a polarizer 7.
  • the insulating layer 2 is provided on the thin film encapsulation layer 1; the first metal layer 3 is provided on the insulating layer 2 in a mesh format; the passivation layer 4 is provided on the first On the metal layer 3; the second metal layer 5 is provided on the passivation layer 4 in a mesh format; the flat layer 6 is provided on the second metal layer 5, and the flat layer 6 is used to cover the The second metal layer 5 makes its surface flat; the polarizer 7 is arranged on the flat layer 6 for polarizing light.
  • the insulating layer 2, the passivation layer 4, and the flat layer 6 all play an insulating role.
  • the first metal layer 3 includes a plurality of electrode bridges 31, the second metal layer 5 includes a plurality of touch electrodes 51 and metal traces 52; the touch electrode 51 includes a first electrode 511 and a second electrode Two electrodes (not shown), the first electrode 511 and the second electrode are insulated from each other, the adjacent first electrodes 511 are electrically connected along the first direction through the electrode bridge 31, and the adjacent first electrodes The two electrodes are electrically connected along the second direction that crosses the first direction through the metal trace 52 in the same layer as the second electrode.
  • the first electrodes 511 are arranged along the first direction and have a grid shape, and the adjacent first electrodes 511 are electrically connected to each other along the first direction to form a first touch sensing portion;
  • the two electrodes are arranged along a second direction that crosses the first direction and have the grid shape;
  • the adjacent second electrodes are electrically connected to each other along the second direction to form a second touch sensing portion;
  • the first touch sensing portion and the second touch sensing portion are insulated from each other by the passivation layer 4 to form a bridge structure.
  • the passivation layer 4 is provided with a plurality of via holes 8, and the via holes 8 extend from the surface of the first electrode 511 of the passivation layer 4 adjacent to the second metal layer 5 toward the surface of the first metal layer 3.
  • a hole-like structure with a gradually decreasing inner diameter is formed at both ends of the electrode bridge 31.
  • the electrode bridge 31 is further recessed with a recess 9 at a position corresponding to the via hole 8, and the first electrode 511 extends and passes through the The via 8 further extends into the recess 9 of the electrode bridge 31 and is electrically connected to the first electrode 511.
  • the bottom of the recess 9 is located at 1/2 of the thickness of the first metal layer 3, that is, the plane of the bottom of the recess 9 to the lower surface of the first metal layer 3 and to the first metal layer 3
  • the distances between the upper surfaces of the layers 3 are equal. In other words, if the thickness of the first metal layer 3 is 0.2um, the depth of the recess 9 on the first metal layer 3 is 0.1um.
  • the inorganic material of the insulating layer 2 and the passivation layer 4 may be, but is not limited to, flexible materials such as SiN and SiON, and the thickness of the passivation layer 4 is 0.3 um.
  • the material of the flat layer 6 is polymethyl methacrylate (polymethyl methacrylate). methacrylate, PMMA), the thickness of the flat layer 6 is 2um.
  • the first metal layer 3 includes a plurality of touch electrode lines insulated from each other (that is, the first touch sensing portion and the second touch sensing portion described above), and the touch electrode lines may be located in the
  • the black matrix on the color filter substrate 30 (as shown in FIG. 5 for reference numerals) of the touch screen is in the vertical projection area on the array substrate 10 to reduce the influence of the touch electrode lines on the aperture ratio.
  • the touch electrode lines are interlaced to form a grid pattern distribution.
  • the touch electrode wire is connected to a touch chip (not shown), so as to transmit the touch signal sensed by the touch electrode 51 to the touch chip; that is, the first metal layer 3 and the second metal Layer 5 forms the TX-RX touch circuit.
  • the second metal layer 5 includes a plurality of touch electrodes 51 insulated from each other.
  • the multiple touch electrodes 51 are distributed in an array, and the shape of each touch electrode 51 may also be a circle, a triangle or other shapes.
  • the principle of multiple touch electrodes 51 to achieve touch is: when the human body does not touch the screen, the capacitance sensed by each touch electrode 51 is a fixed value, when the human body touches the screen, for example, when a finger operates on the screen.
  • the capacitance sensed by the touch electrode 51 corresponding to the position where the finger touches the screen is changed by the influence of the human body. Therefore, the position touched by the finger can be determined by detecting the change in the capacitance value of the respective capacitive touch electrode, thereby achieving Touch function.
  • the second metal layer 5 also serves as a common electrode layer of the array substrate 10.
  • the multiple touch electrode lines of the first metal layer 3 input common electrode signals required for display, so that each touch electrode 51 of the second metal layer 5 has a common electrode signal.
  • display is realized; in the touch scan stage, multiple touch electrode lines are used as touch leads to connect to the touch chip, so as to transmit the sensing signal from each touch electrode 51 to the touch chip, thereby realizing the touch function.
  • the width of the via hole 8 ranges from 1.4um to 1.6um.
  • the width of the via hole 8 is preferably 1.5 um, which is equal to the width of the carbon nanotube (CNT), and the cross-sectional shape of the via hole 8 can also be circular, rectangular, triangular or other shapes.
  • the present invention uses the via hole 8 to realize the connection between the first metal layer 3 and the second metal layer 5, which increases the contact area of the two metal layers, reduces the sheet resistance, and improves the connection between the metal mesh
  • the reliable performance of the joints increases the connection strength and improves the touch performance, and the widened design at the joints improves the flexible dynamic bending performance.
  • the vertical line between the sidewall of the via hole 8 and the bottom edge of the via hole 8 is at an angle of 15°-30°.
  • the side wall of the recess 9 is in contact with and parallel to the side wall of the via 8, that is, the vertical line between the side wall of the recess 9 and the bottom edge of the recess 9 also presents an angle of 15°-30°.
  • the inclination angle of the via 8 and the recess 9 can further improve the reliability of the metal grid at the connection, increase the connection strength, and increase the contact area with the second metal layer 5 and the second metal layer 5
  • the connecting line between a metal layer 3 and the second metal layer 5 is wide, thereby reducing the sheet resistance.
  • the first metal layer 3 or the second metal layer 5 may include a first titanium metal layer 11, an aluminum metal layer 12, and a second titanium metal layer 13 that are stacked.
  • the aluminum metal layer 12 is provided on one side of the first titanium metal layer 11; the second titanium metal layer 13 is provided on a side of the aluminum metal layer 12 away from the first titanium metal layer 11. side.
  • the first metal layer 3 or the second metal layer 5 may also include silver nanowires (AgNW).
  • the line width of the first metal layer 3 or the second metal layer 5 is 3um.
  • the thickness of the first titanium metal layer 11 of the first metal layer 3 is 0.03um; the thickness of the aluminum metal layer 12 of the first metal layer 3 is 0.14um; The thickness of the second titanium metal layer 13 of the first metal layer 3 is 0.03um. That is, the total thickness of the first metal layer 3 is 0.2um.
  • the bottom of the recess 9 is located at 1/2 of the thickness of the first metal layer 3, that is, the depth of the recess 9 in the first metal layer 3 is 0.1um.
  • the thickness of the first titanium metal layer 11 of the second metal layer 5 is 0.05um; the thickness of the aluminum metal layer 12 of the second metal layer 5 is 0.28um; The thickness of the second titanium metal layer 13 of the second metal layer 5 is 0.05 um.
  • the thickness A of the passivation layer 4 in FIG. 3 is 0.3um
  • the thickness B of the first metal layer 3 is 0.2um
  • the bottom of the via hole 8 is
  • the depth C of the first metal layer 3 is 0.1um, that is, the distance D between the bottom of the via hole 8 and the bottom surface of the first metal layer 3 is 0.1um, so the depth of the via hole 8 is 0.2um
  • the vertical line between the sidewall of the via hole 8 and the bottom edge of the via hole 8 presents an inclination angle ⁇ , and the inclination angle ⁇ ranges from 15°-30°, which is preferably 20°.
  • the side wall of the recess 9 is in contact with and parallel to the side wall of the via 8, that is, the vertical line between the side wall of the recess 9 and the bottom edge of the recess 9 also presents an angle of 15°-30°.
  • the inclination angle ⁇ of the via 8 and the recess 9 can further improve the reliability of the metal grid at the connection, increase the connection strength, and increase the contact area and the contact area with the second metal layer 5
  • the connecting line of the first metal layer 3 and the second metal layer 5 is wide, thereby reducing the sheet resistance.
  • the present invention also provides a method for manufacturing a touch screen, including steps S1-S9.
  • Step S1 Provide an array substrate 10, the array substrate 10 includes a thin film encapsulation layer 1, and the thin film encapsulation layer 1 is used to isolate water and oxygen and protect the structure of the array substrate 10.
  • Step S2 depositing a layer of SiN or SiON film on the thin film packaging layer 1 to make the insulating layer 2.
  • Step S3 forming a first metal layer 3 on the insulating layer 2, and the first metal layer 3 includes a plurality of electrode bridges 31.
  • Step S4 Deposit a layer of SiN or SiON film on the first metal layer 3 to make the passivation layer 4, and provide a via 8 on the passivation layer 4; the width of the via 8 is 1.4 um-1.6um.
  • Step S5 A recess 9 is further recessed at the position of the first metal layer 3 corresponding to the via 8; the bottom of the recess 9 is located at 1/2 of the thickness of the first metal layer 3; the present invention uses the The via 8 and the recess 9 connect the first metal layer 3 and the second metal layer 5, increase the contact area of the two metal layers, reduce the sheet resistance, and improve the metal mesh at the connection point.
  • the reliable performance increases the connection strength and improves the touch performance, and the widened design at the connection improves the flexible dynamic bending performance.
  • the side wall of the via hole 8 and the vertical line of the bottom edge of the via hole 8 are at an angle of 15°-30°.
  • Step S6 A recess 9 is further recessed at the position of the first metal layer 3 corresponding to the via hole 8; the side wall of the recess 9 is in contact with and parallel to the side wall of the via hole 8, that is, the recess 9
  • the vertical line between the side wall of and the bottom edge of the recess 9 also presents an angle of 15°-30°.
  • the inclination angle of the via 8 and the recess 9 can further improve the reliability of the metal grid at the connection, increase the connection strength, and increase the contact area with the second metal layer 5 and the The connection line between the first metal layer 3 and the second metal layer 5 is wide, thereby reducing the sheet resistance.
  • Step S7 forming a second metal layer 5 on the passivation layer 4, the second metal layer 5 includes a plurality of touch electrodes 51 and metal traces 52; the touch electrode 51 includes a first electrode 511 and The second electrode, the first electrode 511 and the second electrode are insulated from each other, the adjacent first electrodes 511 are electrically connected along the first direction through the electrode bridge 31, and the adjacent second electrodes The second direction intersecting the first direction is electrically connected by the metal trace 52 in the same layer as the second electrode.
  • the first electrodes 511 are arranged along the first direction and have a grid shape, and the adjacent first electrodes 511 are electrically connected to each other along the first direction to form a first touch sensing portion;
  • the two electrodes are arranged along a second direction that crosses the first direction and have the grid shape;
  • the adjacent second electrodes are electrically connected to each other along the second direction to form a second touch sensing portion;
  • the first touch sensing portion and the second touch sensing portion are insulated from each other by the passivation layer 4 to form a bridge structure.
  • the multiple touch electrodes 51 are distributed in an array, and the shape of each touch electrode 51 may also be a circle, a triangle or other shapes.
  • Each touch electrode 51 is connected to a corresponding touch electrode line (that is, the first touch sensing portion and the second touch sensing portion described above), and the touch electrode line is connected to the touch chip ( (Not shown in the figure), to transmit the touch signal sensed by the touch electrode 51 to the touch chip; that is, the first metal layer 3 and the second metal layer 5 form a TX-RX touch circuit.
  • the principle of multiple touch electrodes 51 to achieve touch is: when the human body does not touch the screen, the capacitance sensed by each touch electrode 51 is a fixed value, when the human body touches the screen, for example, when a finger operates on the screen The capacitance sensed by the touch electrode 51 corresponding to the position where the finger touches the screen is changed by the influence of the human body. Therefore, the position touched by the finger can be determined by detecting the change in the capacitance value of the respective capacitive touch electrode, thereby achieving Touch function.
  • Step S8 forming a flat layer 6 on the second metal layer 5; the material of the flat layer 6 is polymethyl methacrylate (PMMA), and the thickness of the flat layer 6 is 2 um.
  • PMMA polymethyl methacrylate
  • the flat layer 6 is used to fill the patterned second metal layer 5 to make its surface flat.
  • Step S9 fabricating a polarizer 7 on the flat layer 6 for polarizing light.
  • the first metal layer 3 or the second metal layer 5 may include a first titanium metal layer, an aluminum metal layer, and a second titanium metal layer that are stacked.
  • the aluminum metal layer is provided on a side of the first titanium metal layer; the second titanium metal layer is provided on a side of the aluminum metal layer away from the first titanium metal layer.
  • the first metal layer 3 or the second metal layer 5 may also include silver nanowires (AgNW).
  • the line width of the first metal layer 3 or the second metal layer 5 is 3um.
  • the difference between the first metal layer 3 and the second metal layer 5 lies in the thickness.
  • the thickness of the first titanium metal layer of the first metal layer 3 is 0.03um; the thickness of the aluminum metal layer of the first metal layer 3 is 0.14um; the thickness of the first metal layer 3
  • the thickness of the second titanium metal layer is 0.03um; that is, the total thickness of the first metal layer 3 is 0.2um.
  • the thickness of the first titanium metal layer of the second metal layer 5 is 0.05um; the thickness of the aluminum metal layer of the second metal layer 5 is 0.28um; the thickness of the second metal layer 5
  • the thickness of the second titanium metal layer is 0.05 um; that is, the total thickness of the first metal layer 3 is 0.38 um.
  • the second metal layer 5 also serves as a common electrode layer of the array substrate 10.
  • the multiple touch electrode lines of the first metal layer 3 input common electrode signals required for display, so that each touch electrode 51 of the second metal layer 5 has a common electrode signal.
  • the touch scanning phase multiple touch electrode lines are used as touch leads to connect to the touch chip, so as to transmit the sensing signals from each touch electrode 51 to the touch chip, thereby realizing the touch function.
  • the present invention also provides a touch panel 200.
  • the touch panel is a liquid crystal display panel with touch function, and includes the above-mentioned array substrate 10, a color filter substrate 30, and the array substrate 10 The liquid crystal layer 20 between and the color filter substrate 30.
  • the touch panel may also be an OLED display panel with touch function or other display panels.
  • the present invention provides a touch screen and a manufacturing method thereof, which utilizes digging and etching to increase the contact area of the two metal layers, reduce the square resistance, and improve the reliability of the metal grid at the connection. , To increase the connection strength and improve the touch performance, and use a widened design at the connection to improve the flexible dynamic bending performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触摸屏(100)及其制造方法,其中触摸屏(100)包括阵列基板(10),所述阵列基板(10)包括薄膜封装层(1)、绝缘层(2)、第一金属层(3)、钝化层(4)、第二金属层(5)和平坦层(6)。所述钝化层(4)上设有过孔(8),所述第一金属层(3)对应所述过孔(8)的位置设有一凹陷(9),所述第二金属层(5)延伸并穿过所述过孔(8)且进一步延伸至所述第一金属层(3)的凹陷(9)内并与第一金属层(3)电连接。

Description

触摸屏及其制造方法 技术领域
本发明涉及触控领域,尤其涉及一种触摸屏及其制作方法。
背景技术
随着显示技术的快速发展,有源矩阵有机发光二极体(AMOLED)柔性显示引起了人们极大关注,包括全面屏、可弯折,甚至可折叠,固定曲线形状的手机在未来市场会被广泛应用。柔性显示技术可以改变显示器件的形状,增加了显示的灵活性和多样性, 因此有望为显示技术领域带来重大变革。
金属网格(Metal mesh)技术利用银、铜等金属材料在玻璃或聚乙二醇对苯二甲酸酯(PET)等塑胶薄膜上生长形成导电金属网格图案。金属网格的电阻率比氧化铟锡(ITO)低,通常氧化铟锡(ITO)的方块电阻(R□)目标值为10Ω时,其方块电阻的实际数值范围在8-12Ω之间,而金属网格的方块电阻小于10Ω/□,可以实现卷对卷生产,且网格的抗弯折性良好,可用于柔性折叠器件。Y-OCTA技术被三星开发且运用在柔性触控显示技术上,该设计利用金属网格直接在薄膜封装(TFE)上做触控线路,大大减少了原有外挂触摸屏(TP)和光学透明粘合剂(OCA)的厚度,使触控更薄更利于弯折。其利用碳纳米管(CNT)工艺连接上下两层金属形成网格用于柔性触控,但碳纳米管工艺使金属间阻抗加大,使得触控精度降低,影响整体柔性触控性能。
因此,有必要提供一种新的触摸屏及其制作方法,以克服现有技术中存在的问题。
技术问题
本发明的目的在于,提供一种触摸屏及其制作方法,利用挖孔蚀刻,加大了两层金属层的接触面积,改善了碳纳米管的阻抗性能,从而提升了金属网格在连接处的可靠性能,并提升触控性能,而且在连接处采用加宽设计改善了柔性动态弯折性能。
技术解决方案
为了解决上述问题,本发明提供一种触摸屏,包括阵列基板。所述阵列基板包括薄膜封装层、绝缘层、第一金属层、钝化层、第二金属层和平坦层。具体地讲,所述绝缘层设于所述薄膜封装层上;所述第一金属层设于所述绝缘层上;所述钝化层设于所述第一金属层上;所述第二金属层设于所述钝化层上;所述平坦层设于所述第二金属层上。
其中,所述第一金属层包括多个电极跨桥,所述第二金属层包括多个触控电极和金属走线;所述触控电极包括第一电极以及第二电极,所述第一电极与所述第二电极相互绝缘,相邻的所述第一电极沿第一方向通过所述电极跨桥电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过所述金属走线电连接;所述钝化层上设有多个过孔,所述过孔从所述钝化层临近所述第二金属层的第一电极表面朝向所述第一金属层的电极跨桥两端形成一内径逐渐减小的孔状结构,所述电极跨桥对应所述过孔的位置进一步凹设有一凹陷,所述第一电极延伸并穿过所述过孔且进一步延伸至所述电极跨桥的凹陷内并与所述第一电极电连接。
进一步地,所述过孔的宽度范围为1.4um-1.6um。
进一步地,所述过孔的侧壁与所述过孔的底边的垂线呈15°-30°的角。
进一步地,所述凹陷的底部于所述第一金属层厚度的1/2处。
进一步地,所述第一金属层或所述第二金属层包括层叠设置的第一钛金属层、铝金属层和第二钛金属层。具体的,所述铝金属层设于所述第一钛金属层的一侧;所述第二钛金属层设于所述铝金属层背离所述第一钛金属层的一侧。
进一步地,所述第一金属层或所述第二金属层包括纳米银线。
本发明还提供一种触摸屏的制作方法,包括步骤:
提供一阵列基板,所述阵列基板包括薄膜封装层;
在所述薄膜封装层上制作绝缘层;
在所述绝缘层上制作第一金属层,所述第一金属层包括多个电极跨桥;
在所述第一金属层上制作钝化层;
在所述钝化层上设置过孔;
在所述第一金属层对应过孔的位置进一步凹设一凹陷;
在所述钝化层上制作第二金属层,所述第二金属层包括多个触控电极和金属走线,所述触控电极包括第一电极以及第二电极,所述第一电极与所述第二电极相互绝缘,相邻的所述第一电极沿第一方向通过所述电极跨桥电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过所述金属走线电连接;其中所述过孔从所述钝化层临近所述第二金属层的第一电极表面朝向所述第一金属层的电极跨桥两端形成一内径逐渐减小的孔状结构,所述电极跨桥对应所述过孔的位置进一步凹设有一凹陷,所述第一电极延伸并穿过所述过孔且进一步延伸至所述电极跨桥的凹陷内并与所述第一电极电连接;以及
在所述第二金属层上制作平坦层。
进一步地,所述过孔的宽度范围为1.4um-1.6um。
进一步地,所述过孔的侧壁与所述过孔的底边的垂线呈15°-30°的角。
进一步地,所述凹陷的底部位于所述第一金属层厚度的1/2处。
有益效果
本发明的有益效果在于,本发明提供一种触摸屏及其制作方法,利用挖孔蚀刻,加大了两层金属层的接触面积,降低了方块电阻,提升了金属网格在连接处的可靠性能,使连接强度增加,并提升触控性能,而且在连接处采用加宽的设计改善了柔性动态弯折性能。
附图说明
图1为本发明实施例中一种触摸屏的截面图;
图2为图1中所述第一金属层或所述第二金属层的一种结构示意图;
图3为图1中所述过孔和所述凹陷的结构局部放大图;
图4为本发明实施例中一种触摸屏的制作方法的流程图;
图5为本发明实施例中一种触摸面板的结构示意图。
图中部件标识如下:
1、薄膜封装层,2、绝缘层,3、第一金属层,4、钝化层,
5、第二金属层,6、平坦层,7、偏光片,8、过孔,9、凹陷,
10、阵列基板,11、第一钛金属层,12、铝金属层,13、第二钛金属层,
20、液晶层,30、彩膜基板,31、电极跨桥,51、触控电极,
52、金属走线,511、第一电极,100、触摸屏,200、触摸面板。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1所示,本发明提供一种触摸屏100,包括阵列基板10。所述阵列基板10包括薄膜封装层1、绝缘层2、第一金属层3、钝化层4、第二金属层5、平坦层6和偏光片7。具体地讲,所述绝缘层2设于所述薄膜封装层1上;所述第一金属层3呈网格式设于所述绝缘层2上;所述钝化层4设于所述第一金属层3上;所述第二金属层5呈网格式设于所述钝化层4上;所述平坦层6设于所述第二金属层5上,所述平坦层6用于覆盖所述第二金属层5使其表面平整;所述偏光片7设于所述平坦层6上,用于偏光。其中所述绝缘层2、所述钝化层4、所述平坦层6均起到绝缘的作用。
其中,所述第一金属层3包括多个电极跨桥31,所述第二金属层5包括多个触控电极51和金属走线52;所述触控电极51包括第一电极511以及第二电极(未图示),所述第一电极511与所述第二电极相互绝缘,相邻的所述第一电极511沿第一方向通过所述电极跨桥31电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过与所述第二电极同层的所述金属走线52电连接。换句话讲,所述第一电极511沿第一方向排布并且具有网格形状,相邻的所述第一电极511沿第一方向彼此电连接构成第一触摸感测部;所述第二电极沿与所述第一方向交叉的第二方向排布并且具有所述网格形状;相邻的所述第二电极沿所述第二方向彼此电连接构成第二触摸感测部;所述第一触摸感测部与所述第二触摸感测部通过所述钝化层4相互绝缘形成一个跨桥结构。
所述钝化层4上设有多个过孔8,所述过孔8从所述钝化层4临近所述第二金属层5的第一电极511表面朝向所述第一金属层3的电极跨桥31两端形成一内径逐渐减小的孔状结构,所述电极跨桥31对应所述过孔8的位置进一步凹设有一凹陷9,所述第一电极511延伸并穿过所述过孔8且进一步延伸至所述电极跨桥31的凹陷9内并与所述第一电极511电连接。其中,所述凹陷9的底部位于所述第一金属层3厚度的1/2处,即所述凹陷9的底部所在平面到所述第一金属层3的下表面与到所述第一金属层3的上表面的距离相等,换句话讲,所述第一金属层3的厚度为0.2um,则所述凹陷9在所述第一金属层3上的深度为0.1um。
所述绝缘层2、所述钝化层4的无机材料可以是但不仅限于SiN和SiON等柔性材料,所述钝化层4的厚度为0.3um。所述平坦层6的材料为聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA),所述平坦层6的厚度为2um。
所述第一金属层3包括多条相互绝缘的触控电极线(即上文所述第一触摸感测部与所述第二触摸感测部),所述触控电极线可位于所述触摸屏的彩膜基板30(标号见图5所示)上的黑色矩阵在所述阵列基板10上的垂直投影区域内,以减小触控电极线对开口率的影响。所述触控电极线相互交错形成网格式分布。所述触控电极线连接至触控芯片(未图示),从而将触控电极51所感应到的触控信号传输至触控芯片;即所述第一金属层3和所述第二金属层5形成TX-RX触控线路。
所述第二金属层5包括多个相互绝缘的触控电极51。多个所述触控电极51呈阵列分布,每个触控电极51的形状还可以是圆形、三角形或其他形状。多个所述触控电极51实现触控的原理是:当人体未触碰屏幕时,各触控电极51所感知的电容为一固定值,当人体触碰屏幕,例如手指在屏幕上操作时,手指触碰屏幕的位置所对应的触控电极51感知的电容受人体的影响而发生变化,由此通过检测各自容式触控电极的电容值变化即可判断出手指触摸的位置,从而实现触控功能。
本实施方式中,所述第二金属层5同时作为所述阵列基板10的公共电极层。在显示阶段,所述第一金属层3的多条所述触控电极线输入显示所需的公共电极信号,以使得所述第二金属层5的各触控电极51上具有公共电极信号,进而实现显示;在触摸扫描阶段,多条所触控电极线用作触控引线连接至触控芯片,从而将来自各触控电极51的感应信号传输给触控芯片,进而实现触控功能。
在本实施例中,所述过孔8的宽度范围为1.4um-1.6um。所述过孔8的宽度优选为1.5um,即与碳纳米管(CNT)的宽度相等,所述过孔8的横截面形状还可以是圆形、矩形、三角形或其他形状。本发明利用所述过孔8实现所述第一金属层3和所述第二金属层5的连接,加大了两层金属层的接触面积,降低了方块电阻,提升了金属网格在连接处的可靠性能,使连接强度增加,并提升触控性能,而且在连接处采用加宽的设计改善了柔性动态弯折性能。
在本实施例中,所述过孔8的侧壁与所述过孔8的底边的垂线呈15°-30°的角。所述凹陷9的侧壁与所述过孔8的侧壁相接且平行,即所述凹陷9的侧壁与所述凹陷9的底边的垂线也呈15°-30°的角。所述过孔8及所述凹陷9的倾斜角度可进一步提升金属网格在连接处的可靠性能,使连接强度增加,并且增大了与所述第二金属层5的接触面积以及所述第一金属层3和所述第二金属层5的连接线宽,从而降低了方块电阻。
如图2所示,在本实施例中,所述第一金属层3或所述第二金属层5可包括层叠设置的第一钛金属层11、铝金属层12和第二钛金属层13。具体的,所述铝金属层12设于所述第一钛金属层11的一侧;所述第二钛金属层13设于所述铝金属层12背离所述第一钛金属层11的一侧。所述第一金属层3或所述第二金属层5也可包括纳米银线(AgNW)。所述第一金属层3或所述第二金属层5的线宽均为3um。
在本实施例中,所述第一金属层3的所述第一钛金属层11的厚度为0.03um;所述第一金属层3的所述铝金属层12的厚度为0.14um;所述第一金属层3的所述第二钛金属层13的厚度为0.03um。即所述第一金属层3的总厚度为0.2um。所述凹陷9的孔底位于所述第一金属层3厚度的1/2处,亦即所述凹陷9在所述第一金属层3的深度为0.1um。
在本实施例中,所述第二金属层5的所述第一钛金属层11的厚度为0.05um;所述第二金属层5的所述铝金属层12的厚度为0.28um;所述第二金属层5的所述第二钛金属层13的厚度为0.05um。
更具体的,如图3所示,在图3中所述钝化层4的厚度A为0.3um,所述第一金属层3的厚度B为0.2um,所述过孔8的孔底在所述第一金属层3的深度C为0.1um,即所述过孔8的孔底距所述第一金属层3底面的距离D为0.1um,因此所述过孔8的深度为0.2um;所述过孔8的侧壁与所述过孔8的底边的垂线呈一倾斜角度θ,倾斜角度θ的范围为15°-30°的角,其优选为20°。所述凹陷9的侧壁与所述过孔8的侧壁相接且平行,即所述凹陷9的侧壁与所述凹陷9的底边的垂线也呈15°-30°的角。所述过孔8及所述凹陷9的倾斜角度θ可进一步提升了金属网格在连接处的可靠性能,使连接强度增加,并且增大了与所述第二金属层5的接触面积以及所述第一金属层3和所述第二金属层5的连接线宽,从而降低了方块电阻。
如图4所示,本发明还提供一种触摸屏的制作方法,包括步骤S1-S9。
步骤S1:提供一阵列基板10,所述阵列基板10包括薄膜封装层1,薄膜封装层1用于隔绝水氧保护所述阵列基板10的结构。
步骤S2:在所述薄膜封装层1上沉积一层SiN或SiON薄膜来制作绝缘层2。
步骤S3:在所述绝缘层2上制作第一金属层3,所述第一金属层3包括多个电极跨桥31。
步骤S4:在所述第一金属层3上沉积一层SiN或SiON薄膜来制作钝化层4,并在所述钝化层4上设置过孔8;所述过孔8的宽度范围为1.4um-1.6um。
步骤S5:在所述第一金属层3对应过孔8的位置进一步凹设一凹陷9;所述凹陷9的底部位于所述第一金属层3厚度的1/2处;本发明利用所述过孔8及所述凹陷9进行述第一金属层3和所述第二金属层5的连接,加大了两层金属层的接触面积,降低了方块电阻,提升了金属网格在连接处的可靠性能,使连接强度增加,并提升触控性能,而且在连接处采用加宽的设计改善了柔性动态弯折性能。所述过孔8的侧壁与所述过孔8的底边的垂线呈15°-30°的角。
步骤S6:在所述第一金属层3对应过孔8的位置进一步凹设一凹陷9;所述凹陷9的侧壁与所述过孔8的侧壁相接且平行,即所述凹陷9的侧壁与所述凹陷9的底边的垂线也呈15°-30°的角。所述过孔8及所述凹陷9的倾斜角度可进一步提升了金属网格在连接处的可靠性能,使连接强度增加,并且增大了与所述第二金属层5的接触面积以及所述第一金属层3和所述第二金属层5的连接线宽,从而降低了方块电阻。
步骤S7:在所述钝化层4上制作第二金属层5,所述第二金属层5包括多个触控电极51和金属走线52;所述触控电极51包括第一电极511以及第二电极,所述第一电极511与所述第二电极相互绝缘,相邻的所述第一电极511沿第一方向通过所述电极跨桥31电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过与所述第二电极同层的所述金属走线52电连接。换句话讲,所述第一电极511沿第一方向排布并且具有网格形状,相邻的所述第一电极511沿第一方向彼此电连接构成第一触摸感测部;所述第二电极沿与所述第一方向交叉的第二方向排布并且具有所述网格形状;相邻的所述第二电极沿所述第二方向彼此电连接构成第二触摸感测部;所述第一触摸感测部与所述第二触摸感测部通过所述钝化层4相互绝缘形成一个跨桥结构。多个所述触控电极51呈阵列分布,每个触控电极51的形状还可以是圆形、三角形或其他形状。每个触控电极51与相应的一条触控电极线(即上文所述第一触摸感测部与所述第二触摸感测部)连接,所述触控电极线连接至触控芯片(图未示),以将触控电极51所感应到的触控信号传输至触控芯片;即所述第一金属层3和所述第二金属层5形成TX-RX触控线路。多个所述触控电极51实现触控的原理是:当人体未触碰屏幕时,各触控电极51所感知的电容为一固定值,当人体触碰屏幕,例如手指在屏幕上操作时,手指触碰屏幕的位置所对应的触控电极51感知的电容受人体的影响而发生变化,由此通过检测各自容式触控电极的电容值变化即可判断出手指触摸的位置,从而实现触控功能。
步骤S8:在所述第二金属层5上制作平坦层6;所述平坦层6的材料为聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA),所述平坦层6的厚度为2um。所述平坦层6用于填充图形化的所述第二金属层5使其表面平整。
步骤S9:在所述平坦层6上制作偏光片7,用于偏光。
其中,所述第一金属层3或所述第二金属层5可包括层叠设置的第一钛金属层、铝金属层和第二钛金属层。具体的,所述铝金属层设于所述第一钛金属层的一侧;所述第二钛金属层设于所述铝金属层背离所述第一钛金属层的一侧。所述第一金属层3或所述第二金属层5也可包括纳米银线(AgNW)。所述第一金属层3或所述第二金属层5的线宽均为3um。
在本实施例中,所述第一金属层3和所述第二金属层5的区别在于厚度不同。所述第一金属层3的所述第一钛金属层的厚度为0.03um;所述第一金属层3的所述铝金属层的厚度为0.14um;所述第一金属层3的所述第二钛金属层的厚度为0.03um;即所述第一金属层3的总厚度为0.2um。所述第二金属层5的所述第一钛金属层的厚度为0.05um;所述第二金属层5的所述铝金属层的厚度为0.28um;所述第二金属层5的所述第二钛金属层的厚度为0.05um;即所述第一金属层3的总厚度为0.38um。
本实施方式中,所述第二金属层5同时作为所述阵列基板10的公共电极层。在显示阶段,所述第一金属层3的多条所述触控电极线输入显示所需的公共电极信号,以使得所述第二金属层5的各触控电极51上具有公共电极信号,进而实现显示;在触摸扫描阶段,多条所触控电极线用作触控引线连接至触控芯片,以将来自各触控电极51的感应信号传输给触控芯片,进而实现触控功能。
如图5所示,在本发明还提供一种触摸面板200,所述触摸面板为具有触控功能的液晶显示面板,包括以上所述阵列基板10、彩膜基板30以及位于所述阵列基板10和彩膜基板30之间的液晶层20。
当然,在其他实施方式中,触摸面板还可以是具有触控功能的OLED 显示面板或其他显示面板。
本本发明的有益效果是:本发明提供一种触摸屏及其制作方法,利用挖孔蚀刻,加大了两层金属层的接触面积,降低了方块电阻,提升了金属网格在连接处的可靠性能,使连接强度增加,并提升触控性能,而且在连接处采用加宽的设计改善了柔性动态弯折性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种触摸屏,其中,所述触摸屏包括阵列基板,所述阵列基板包括:
    薄膜封装层;
    绝缘层,设于所述薄膜封装层上;
    第一金属层,设于所述绝缘层上;
    钝化层,设于所述第一金属层上;
    第二金属层,设于所述钝化层上;以及
    平坦层,设于所述第二金属层上;
    其中,所述第一金属层包括多个电极跨桥,所述第二金属层包括多个触控电极和金属走线;所述触控电极包括第一电极以及第二电极,所述第一电极与所述第二电极相互绝缘,相邻的所述第一电极沿第一方向通过所述电极跨桥电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过所述金属走线电连接;所述钝化层上设有多个过孔,所述过孔从所述钝化层临近所述第二金属层的第一电极表面朝向所述第一金属层的电极跨桥两端形成一内径逐渐减小的孔状结构,所述电极跨桥对应所述过孔的位置进一步凹设有一凹陷,所述第一电极延伸并穿过所述过孔且进一步延伸至所述电极跨桥的凹陷内并与所述第一电极电连接。
  2. 根据权利要求1所述的触摸屏,其中,所述过孔的宽度范围为1.4 um -1.6um。
  3. 根据权利要求1所述的触摸屏,其中,所述过孔的侧壁与所述过孔的底边的垂线呈15°-30°的角。
  4. 根据权利要求1所述的触摸屏,其中,所述凹陷的底部位于所述第一金属层厚度的1/2处。
  5. 根据权利要求1所述的触摸屏,其中,所述第一金属层或所述第二金属层包括:
    第一钛金属层;
    铝金属层,设于所述第一钛金属层的一侧;以及
    第二钛金属层,设于所述铝金属层背离所述第一钛金属层的一侧。
  6. 根据权利要求1所述的触摸屏,其中,所述第一金属层或所述第二金属层包括纳米银线。
  7. 一种触摸屏的制作方法,其包括步骤:
    提供一阵列基板,所述阵列基板包括薄膜封装层;
    在所述薄膜封装层上制作绝缘层;
    在所述绝缘层上制作第一金属层,所述第一金属层包括多个电极跨桥;
    在所述第一金属层上制作钝化层;
    在所述钝化层上设置过孔;
    在所述第一金属层对应过孔的位置进一步凹设一凹陷;
    在所述钝化层上制作第二金属层,所述第二金属层包括多个触控电极和金属走线,所述触控电极包括第一电极以及第二电极,所述第一电极与所述第二电极相互绝缘,相邻的所述第一电极沿第一方向通过所述电极跨桥电连接,相邻的第二电极沿与所述第一方向交叉的第二方向通过所述金属走线电连接;其中所述过孔从所述钝化层临近所述第二金属层的第一电极表面朝向所述第一金属层的电极跨桥两端形成一内径逐渐减小的孔状结构,所述电极跨桥对应所述过孔的位置进一步凹设有一凹陷,所述第一电极延伸并穿过所述过孔且进一步延伸至所述电极跨桥的凹陷内并与所述第一电极电连接;以及
    在所述第二金属层上制作平坦层。
  8. 根据权利要求7所述的触摸屏的制作方法,其中,所述过孔的宽度范围为1.4 um -1.6um。
  9. 根据权利要求7所述的触摸屏的制作方法,其中,所述过孔的侧壁与所述过孔的底边的垂线呈15°-30°的角。
  10. 根据权利要求7所述的触摸屏的制作方法,其中,所述凹陷的底部位于所述第一金属层厚度的1/2处。
PCT/CN2019/108936 2019-08-13 2019-09-29 触摸屏及其制造方法 WO2021027036A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,925 US20210286469A1 (en) 2019-08-13 2019-09-29 Touch screen and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910744668.X 2019-08-13
CN201910744668.XA CN110633021B (zh) 2019-08-13 2019-08-13 触摸屏及其制作方法

Publications (1)

Publication Number Publication Date
WO2021027036A1 true WO2021027036A1 (zh) 2021-02-18

Family

ID=68970375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108936 WO2021027036A1 (zh) 2019-08-13 2019-09-29 触摸屏及其制造方法

Country Status (3)

Country Link
US (1) US20210286469A1 (zh)
CN (1) CN110633021B (zh)
WO (1) WO2021027036A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919043A (zh) * 2008-01-21 2010-12-15 日本电气株式会社 显示装置
US20140198266A1 (en) * 2013-01-16 2014-07-17 Samsung Display Co., Ltd. Touch screen panel and method for manufacturing the same
CN104752382A (zh) * 2013-12-30 2015-07-01 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN105629597A (zh) * 2016-01-14 2016-06-01 京东方科技集团股份有限公司 阵列基板及其显示驱动方法、制作方法、显示装置
CN106292036A (zh) * 2016-09-28 2017-01-04 厦门天马微电子有限公司 一种阵列基板、显示装置及其制作方法
CN107024813A (zh) * 2017-06-06 2017-08-08 厦门天马微电子有限公司 阵列基板、液晶显示面板及显示装置
CN107589576A (zh) * 2017-09-30 2018-01-16 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102090602B1 (ko) * 2013-06-26 2020-03-18 엘지디스플레이 주식회사 정전용량식 터치 감지 패널
KR101516078B1 (ko) * 2013-09-16 2015-04-29 삼성전기주식회사 인쇄회로기판 및 인쇄회로기판 제조 방법
KR101572432B1 (ko) * 2014-04-08 2015-11-30 전자부품연구원 투명전극 패턴 구조, 그의 제조 방법 및 그를 이용한 터치스크린패널
CN104699321B (zh) * 2015-04-01 2018-03-23 上海天马微电子有限公司 触控显示基板和触控显示装置
CN104698709A (zh) * 2015-04-01 2015-06-10 上海天马微电子有限公司 一种阵列基板和液晶显示面板
CN104793421B (zh) * 2015-05-08 2018-07-03 上海中航光电子有限公司 阵列基板、显示面板和显示装置
KR102375275B1 (ko) * 2015-09-10 2022-03-18 삼성디스플레이 주식회사 터치 스크린 일체형 표시장치 및 그의 제조방법
CN106200173A (zh) * 2016-07-18 2016-12-07 武汉华星光电技术有限公司 阵列基板及其制作方法
CN109426389B (zh) * 2017-09-05 2021-03-02 京东方科技集团股份有限公司 触控基板及其制备方法、显示面板
CN107765917B (zh) * 2017-10-18 2021-08-27 京东方科技集团股份有限公司 一种触控面板的制备方法、触控面板和触控装置
CN109671756A (zh) * 2018-12-17 2019-04-23 武汉华星光电半导体显示技术有限公司 显示屏及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101919043A (zh) * 2008-01-21 2010-12-15 日本电气株式会社 显示装置
US20140198266A1 (en) * 2013-01-16 2014-07-17 Samsung Display Co., Ltd. Touch screen panel and method for manufacturing the same
CN104752382A (zh) * 2013-12-30 2015-07-01 台湾积体电路制造股份有限公司 半导体器件及其制造方法
CN105629597A (zh) * 2016-01-14 2016-06-01 京东方科技集团股份有限公司 阵列基板及其显示驱动方法、制作方法、显示装置
CN106292036A (zh) * 2016-09-28 2017-01-04 厦门天马微电子有限公司 一种阵列基板、显示装置及其制作方法
CN107024813A (zh) * 2017-06-06 2017-08-08 厦门天马微电子有限公司 阵列基板、液晶显示面板及显示装置
CN107589576A (zh) * 2017-09-30 2018-01-16 武汉华星光电技术有限公司 阵列基板及其制作方法、触控显示面板

Also Published As

Publication number Publication date
CN110633021A (zh) 2019-12-31
US20210286469A1 (en) 2021-09-16
CN110633021B (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
US11531436B2 (en) Touch panel and method of manufacturing the same, electronic device
US9740344B2 (en) Touch screen and manufacturing method thereof, display device
US9671909B2 (en) Mutual capacitance one glass solution touch panel and manufacture method thereof
KR102489262B1 (ko) 터치 스크린 패널 및 이의 제조 방법
WO2020029371A1 (zh) 一种触摸屏及oled显示面板
KR101103751B1 (ko) 메쉬형 전극패턴을 갖는 터치스크린 패널
US11561657B2 (en) Touch panel and manufacturing method therefor, and touch display device
KR20140070103A (ko) 플렉서블 터치 스크린 패널 및 이의 제조방법
WO2019029226A1 (zh) 触控面板及其制作方法、触控显示装置
JP5827972B2 (ja) タッチセンサ一体型表示装置
TWI452508B (zh) 電容式觸碰面板的佈局結構及其製作方法
KR102544560B1 (ko) 터치 스크린 패널 및 이의 형성 방법
US9058083B2 (en) Touch sensing structure and method for making the same
US11494041B2 (en) Touch panel, manufacturing method thereof, and electronic device
JP2020531932A (ja) タッチパネル、その製造方法及びタッチ表示装置
KR20160124987A (ko) 터치 스크린 패널 및 이의 제조방법
WO2014015618A1 (zh) 触控面板及其制造方法、触控设备
TWI689854B (zh) 觸控顯示面板及其製造方法
US11455064B2 (en) Touch structure, touch display panel and touch display device
KR20140078881A (ko) 결정질 ito와 비정질 ito를 사용하는 터치패널
US11520435B2 (en) Touch structure and display apparatus
CN110633021B (zh) 触摸屏及其制作方法
US20230168757A1 (en) Touch Panel and Preparation Method thereof, and Display Touch Apparatus
TWI730625B (zh) 觸控面板、其製備方法及觸控顯示裝置
TWI497393B (zh) 電容式觸控面板及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941342

Country of ref document: EP

Kind code of ref document: A1